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ABSTRACT

Speech language models align with human brain responses to natural language to
an impressive degree. However, current models rely heavily on low-level speech
features, indicating they lack brain-relevant semantics which limits their utility as
model organisms of semantic processing in the brain. In this work, we address this
limitation by inducing brain-relevant bias directly into the models via fine-tuning
with fMRI recordings of people listening to natural stories–a process we name
brain-tuning. After testing it on 3 different pretrained model families, we show
that brain-tuning not only improves overall alignment with new brain recordings
in semantic language regions, but also reduces the reliance on low-level speech
features for this alignment. Excitingly, we further show that brain-tuning leads to
1) consistent improvements in performance on a range of downstream tasks and 2)
a representational space with increased semantic preference. Our results provide
converging evidence, for the first time, that incorporating brain signals into the
training of language models improves the models’ semantic understanding.

1 INTRODUCTION

It is an exciting time for the cognitive neuroscience of language with the rise of language models
which have been shown to align with (e.g. predict) brain activity evoked by natural language to
impressive and unprecedented degrees (Wehbe et al., 2014; Jain & Huth, 2018; Toneva & Wehbe,
2019; Schrimpf et al., 2021; Caucheteux & King, 2022; Goldstein et al., 2022; Karamolegkou et al.,
2023). Researchers aim to use language models as model organisms (Toneva, 2021) of reading
and listening in the brain to learn more about the underlying information processing that leads to
brain-like representations of language.

However, recent work has questioned whether current popular speech language models can serve
this role fully, as their alignment with semantic brain regions was shown to be mostly due to low-
level speech features, indicating that speech language models lack brain-relevant semantics (Oota
et al., 2024a). Given that most large public brain recordings datasets are of speech-evoked language
(LeBel et al., 2023; Nastase et al., 2021; Deniz et al., 2019; Momenian et al., 2024), having access
to speech models with improved brain-relevant semantics is important and will provide better model
organisms for auditory language processing. The lack of brain-relevant semantics in speech models
(Oota et al., 2024a) may also be related to their incomplete semantic understanding for downstream
language tasks (Choi et al., 2024).

To bridge the gap between language understanding in speech models and the human brain, we pro-
pose to augment pretrained speech model training directly with brain recordings in a process we call
brain-tuning (see Fig. 1a for illustration of the training approach). We then evaluate the resulting
brain-tuned speech models in three distinct ways (see Fig. 1c for an illustration of the evaluation ap-
proach): 1) alignment with new brain recordings in semantic regions of the brain, which we expect to
significantly increase if brain-tuning successfully induces brain-relevant semantics, 2) effect of low-
level features, such as Tri-Phones and Articulation, on the alignment with these semantic regions,
which we expect to significantly decrease if brain-tuning successfully induces brain-relevant seman-
tics 3) downstream performance on linguistic tasks that require semantic understanding, which we
expect to significantly improve if the brain-relevant semantic understanding induced by the brain-
tuning is also useful for downstream tasks.
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We brain-tune three popular speech language models using the largest available fMRI dataset,
recorded when participants listened to natural stories. Across all models, we find that brain-tuning
1) significantly improves alignment with new fMRI recordings in semantic brain regions, 2) sig-
nificantly reduces the impact of low-level features on this alignment, and 3) significantly improves
downstream performance on 5 tasks that are thought to require semantic understanding. We show
that these results hold when comparing the brain-tuned models to their pretrained counterparts, and
to two additional strong baselines (i.e. brain-tuning with block-permuted fMRI data, and fine-tuning
using representations from a larger speech model).

Our results provide converging evidence that augmenting speech models with brain signals from
listening to natural language improves semantic understanding in speech models. Excitingly, our
findings indicate for the first time that improving alignment with semantic understanding in the
brain also translates to downstream gains for the models. We will make all models and code publicly
available, and hope that the improved speech models our work provides will contribute to a better
understanding of listening in the brain.

Our main contributions can be summarized as follows:

1. We provide an approach to fine-tune pretrained speech models using fMRI recordings of
people listening to natural stories, and validate it across three popular model families.

2. We conduct extensive analyses to understand the impact of this fine-tuning on the speech
model representations and behavior.

3. For the first time, we show that improving alignment with the brain has a substantial and
significant downstream benefit for an AI model.

2 RELATED WORK

Our work is most closely related to that of Schwartz et al. (2019), who fine-tune one pretrained text-
based language model (BERT (Devlin et al., 2019)) using fMRI and MEG recordings of participants
reading a chapter of a book. We instead focus on speech models, validate our method across three
model families, and conduct comprehensive analyses to reveal that brain-tuning improves semantic
understanding in speech language models for the first time. Separately, a growing literature inves-
tigates the alignment between human brains and pretrained language models. A number of studies
have shown a degree of alignment between language-evoked brain activity with text-based language
models (Wehbe et al., 2014; Jain & Huth, 2018; Toneva & Wehbe, 2019; Caucheteux & King,
2022; Jat et al., 2019; Abdou et al., 2021; Schrimpf et al., 2021; Toneva et al., 2022a;b; Antonello
et al., 2021; Oota et al., 2022; Merlin & Toneva, 2022; Aw & Toneva, 2023; Oota et al., 2024b;
Lamarre et al., 2022; Antonello et al., 2024), and with speech-based language models (Millet et al.,
2022; Vaidya et al., 2022; Tuckute et al., 2023; Oota et al., 2023; 2024a; Chen et al., 2024). Our
approach of brain-tuning pretrained language models is complementary and can be used in addition
to previously proposed techniques for analysis of the alignment between language models and brain
activity.

3 METHODS

3.1 SPEECH LANGUAGE MODELS

We build on three popular pretrained transformer-based speech language model families:
Wav2vec2.0 (Baevski et al., 2020), HuBERT (Hsu et al., 2021), and Whisper (Radford et al., 2023).
We chose versions of these models that have comparable sizes (∼90M parameters), the same num-
ber of encoder layers (12), and the same embedding size (768). Wav2vec2.0 and HuBERT are
self-supervised models that are trained to predict representations of masked portions of the input.
They both divide the input into tokens of 20ms and then use a CNN feature extractor. We use the
base architectures which are trained on ∼960 hours of audio. Whisper, unlike Wav2Vec2.0 and Hu-
BERT, is trained in a weakly supervised manner, using 680K hours of paired audio-text data and has
an encoder-decoder architecture. Contrary to HuBERT and Wav2Vec2.0, Whisper takes a fixed 30s
input and then converts it to log-mel spectrograms. We fine-tune only the Whisper encoder for two
reasons: 1) to keep the model of comparable size to the other two models, and 2) since the encoder
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Figure 1: Training and Evaluation Approaches. (a) Brain-tuning approach for a given speech model;
(b) Evaluation of brain alignment and low-level feature impact on the brain alignment; (c) Types of
evaluation and expected outcomes if brain-tuning successfully improves semantic understanding in
speech models: increase of alignment with semantic brain regions, decrease of impact of low-level
features on this alignment, and increase in downstream performance on semantic tasks.

is expected to represent lower-level information than the decoder, it is a good testbed for whether
brain-tuning can induce semantic understanding.

3.2 NATURALISTIC BRAIN DATASET AND DATA PREPROCESSING

We use the largest public dataset of fMRI recordings (LeBel et al., 2024) for brain-tuning. The
dataset contains fMRI recordings for 8 participants listening to 27 short stories from the Moth Radio
Hour podcast for a total of 6.4 hours of audio per participant (11, 543 fMRI images (TRs) with
TR = 2.0045s). To fine-tune a model using fMRI recordings, we need to build a paired dataset of
fMRI recordings and the corresponding audio snippets that were presented to the participants. We
follow previously proposed approaches for this (Oota et al., 2024a; Vaidya et al., 2022; Antonello
et al., 2024; Schwartz et al., 2019). Specifically, we first partition the audio input by utilizing a
sliding window of length T seconds with a stride W seconds. This way, at each time t in the audio,
a window of length [t − T, t] seconds is provided as input to the speech model. We use T = 16s
and W = 0.1s. We next align the stimulus presentation rate with the slower fMRI acquisition rate
by downsampling using a 3-lobed Lanczos filter. Lastly, we account for the slowness of the fMRI
hemodynamic response by modeling it as a finite response filter with 10 seconds (5 TRs). These
steps result in a audio-fMRI paired dataset that can be used for brain-tuning or evaluation.

Estimated noise ceiling. Noise in the fMRI data can impair the brain-tuning and evaluation, so it is
important to estimate the ”noise ceiling” of each voxel and participant in the fMRI recordings. We
estimate the voxel-wise noise ceiling for all participants’ fMRI data based on the preferred method
by the original dataset paper (LeBel et al., 2023), which leverages within-participant repetitions of
the same story. This noise ceiling value estimates the amount of explainable variance (the maximum
variance that can be explained by a given model) and its values range from 0 to 1. We use this
estimated noise ceiling to filter noisy voxels and to normalize the brain alignment during evaluation.
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We chose the threshold for filtering as 0.4, in line with the findings of Antonello et al. (2024). After
filtering voxels with low noise ceiling, there remain 30, 000 to 50, 000 voxels per participant.

3.3 BRAIN-TUNING SPEECH MODELS

Brain-tuning approach. Given an input audio and its corresponding fMRI response, obtained via
the method in Section 3.2, we aim to fine-tune a pretrained speech model with the fMRI responses
(i.e., brain-tune the model). Specifically, we fine-tune the model to reconstruct the fMRI responses
corresponding to the voxels with high noise ceiling (> 0.4). The approach is illustrated in Figure
1a. To this end, we add a pooling layer and a projection head on top of the output tokens. The
projection head predicts the fMRI response from the pooled model tokens. More formally, given the
o1....oN output tokens, we have a function H, that predicts fMRI targets such that H(o1 : oN ) =
FC (P (o1 : oN )), where P is an average pooling function and FC is a linear function. The training
objective is a reconstruction loss (L2 loss) between the outputs of H and the fMRI voxels. We
freeze the feature extractor and backpropagate the loss to fine-tune the projection head as well as the
transformer layers.

Training details. We used a base learning rates of 5 × 10−5 and 10−4 respectively for the trans-
former layers and the linear projection head. Both had a linear decay scheduler for the learning rate
with a warmup period for 10% of the epochs. The 27 fMRI stories are split into a training set (24
stories), a validation set (2 stories), and a held-out test set (1 story). The training is stopped when the
validation loss saturates or begins to diverge. Since the number of voxels differs for each participant,
this fine-tuning process is done separately for each fMRI participant. We apply this approach to the
3 pretrained models: Wav2vec2.0, HuBERT, and the Whisper encoder.

Additional comparison models. In addition to comparing the brain-tuned models to the pretrained
ones, we further train 2 baselines for comparison: 1) a Random-fMRI baseline to test how addition of
any fMRI data impacts model performance. This baseline uses the same fine-tuning process in Fig.
1a but, instead of using the matched fMRI responses for the input stimulus, it uses block-permuted
fMRI responses. 2) a Big Spoken-Language Model (BigSLM) baseline to test the importance of
having fMRI responses as the reconstruction targets. This baseline replaces the fMRI targets for the
input stimuli with representations for the same stimuli obtained from a BigSLM. We use Whisper
Medium (800M parameters) as the BigSLM and use a concatenation of its internal representations
from all layers of decoder. Both baselines create a proxy for the true fMRI targets, one with ran-
dom fMRI signals that don’t correspond to the input and the other with rich representations from a
large pretrained state-of-the-art speech model. Comparing brain-tuned models with these baselines
helps understand changes in performance due to simple regularization and additional data. Any
improvements over these baselines will thus be due the correct fMRI targets.

3.4 EVALUATION

We evaluate multiple aspects of the brain-tuned models and illustrate our evaluation strategy in
Fig. 1c. If brain-tuning successfully improves semantic understanding in speech models, we expect
that brain-tuned models will align better with semantic language regions in new brain recordings,
have impact of lower low-level features on the alignment with these regions, and have improved
downstream performance on semantic tasks.

3.4.1 BRAIN ALIGNMENT

To compare brain alignment for a model before (i.e., the pretrained version) and after brain-tuning,
we compute the normalized brain alignment using standard voxel-wise encoding models and re-
port it for language- and speech-related brain regions. For each region, we statistically test whether
brain-tuning leads to significantly better alignment.

Normalized brain alignment. We estimate standard voxel-wise encoding models to evaluate the
brain alignment of a model representation (Antonello et al., 2024; Vaidya et al., 2022; Oota et al.,
2024a). We carry out this voxel-wise encoding as shown in the original alignment branch in Figure
1b. The audio data is processed as detailed in Section 3.2, then a voxel-wise encoding function h
is learned using ridge regression on the training portion of the dataset. The prediction performance
of this encoding function is computed over the held-out testing portion of the dataset via Pearson
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correlation. For a voxel v, we define ρv (the alignment for voxel v) as the Pearson correlation
between the predictions of h and the corresponding brain responses for this voxel across all held-out
data samples. Lastly, we define the normalized brain alignment B for a brain region of V voxels as:

B =
1

|V |
∑
v∈V

1

NCv
ρv (1)

where NCv is the noise ceiling for voxel v. This serves as a standardized measure for alignment
between a model and different brain regions since it is computed relative to the estimated explainable
variance in the brain region.

Parsing language and primary auditory regions. To make the normalized brain alignment com-
parison focused on language and primary auditory regions, we use FreeSurfer v7 to project the
participants’ data, and then we use the human cerebral cortex parcellation atlas from (Glasser et al.,
2016) to parse the regions of interest (ROIs). We focus mainly on the late language regions (e.g., in-
ferior frontal gyrus, angular gyrus, anterior and posterior temporal lobes, and middle frontal gyrus)
and the primary auditory regions. The full ROI list and their functions is provided in Appendix A.1.

Significance testing. To test whether the brain-tuned models have significantly different alignment
than the pretrained ones, we use the Wilcoxon signed-rank test. We indicate significant differences
(corresponding to p-value < 0.05) with an asterisk *.

3.4.2 IMPACT OF LOW-LEVEL FEATURES ON BRAIN ALIGNMENT

Previous work showed that the alignment of pretrained speech models with late language regions
is mostly due to low-level features (Oota et al., 2024a), which is undesirable. We further set out to
test the impact of low-level features on the brain-tuned models’ alignment with the brain. To enable
comparisons with previous work, we estimate the low-level feature impact on brain alignment using
the same approach as in Oota et al. (2024a). Intuitively, the impact of a specific low-level feature
is estimated by comparing the brain alignment of a model before and after this low-level feature is
computationally removed from the model. If, after removal of the low-level feature, the alignment
is significantly lower than the original one, the low-level feature is said to have high impact on the
brain alignment. We illustrate this process in Fig. 1b and provide details about this method below.

Low-level features. We focus on four low-level speech features: Power Spectrum (the time-varying
power spectrum across frequency bands), Di-Phones & Tri-Phones (adjacent pairs and triples of
phonemes), and Articulation (articulatory characteristics of the phonemes). These features cover
different stages of speech and are considered to be non-semantic features. The specifics of obtaining
these features from the audio are detailed in (Oota et al., 2024a) and Appendix A.3.

Low-level feature impact. First, for a given low-level feature of the input audio, a linear function F
is learned using this feature as input to predict the representations of the model. Then, the predicted
model representations are subtracted from the true model representations, and the brain alignment
of this residual is estimated via a standard encoding model, as described in Sec. 3.4.1. We define
the low-level impact R as:

R = 100 · Bo −Br

Bo
(2)

where Bo and Br correspond to the original and residual brain alignments. R represents the percent-
age drop in alignment due to the removed low-level feature. Large R means that much of the original
alignment was due to the low-level feature. To test for significant differences between models, we
perform the same statistical tests as described in Sec. 3.4.1.

3.4.3 DOWNSTREAM TASKS

To test whether improving brain-relevant semantics via brain-tuning also improves semantic under-
standing in models, we evaluate our models on a range of downstream tasks at different semantic
levels. We also test the semantic vs. phonetic preference of the models’ representations.

Downstream tasks. We choose tasks with several semantic difficulties, namely: automatic speech
recognition (ASR), phonetic sentence type prediction, sequence understanding, phonemes predic-
tion, word identity prediction, and emotion recognition. We use standard datasets for these tasks:
TIMIT (Garofolo, 1993), Crema-D (Cao et al., 2014), Speech Commands (Warden, 2018), and

5
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SLURP (Bastianelli et al., 2020). We consider emotion recognition to be the least semantic as
tone and prosodic information are highly predictive of emotions in speech (Singh & Gupta, 2023).
Phonemes and word prediction are moderate in semantic difficulty, and the rest are high in semantic
difficulty as they require understanding beyond single-word/phone decoding. All datasets were not
seen by the model during brain-tuning. Appendix B details further information about the datasets
and the formulations for each task.

Downstream evaluation. To perform downstream analysis, we add a linear projection head f ,
where the input is the layer representation and the output is task-specific (e.g., which phonemes
were present, which word was present, etc). Each task performance is evaluated on held-out data,
provided by each dataset, and an aggregate performance metric is reported. Except for ASR, all tasks
use linear probes across layers and are evaluated using the F1-score on a held-out test set. Since
they are classification tasks, we also report an additional Naive classifier as a comparison baseline
that predicts the majority class for the given task. For ASR, we fine-tune the whole transformer
model, calculate the Word Error Rate (WER) on the held-out test set, and report (1 − WER) as the
performance accuracy metric.

Semantic-phonetic preference. Previous work has shown that speech models’ representations are
consistently more phonetic than semantic across all layers (Choi et al., 2024). They also show that
even in a seemingly semantic task such as Intent Classification (IC), the models rely on phonetic not
semantic features to do the task. We further test the semantic-phonetic preference of our models,
using the same method as Choi et al. (2024), which we detail in Appendix C. Briefly, the method
tests the representation distance between a set of words, their phonetic neighbors (e.g. ”divine” and
”divide”), and their semantic neighbors (e.g. ”divine” and ”god”). A model for which phonetic
neighbors are closer than semantic ones is said to have a phonetic preference.

4 RESULTS

4.1 BRAIN ALIGNMENT WITH HELDOUT DATA

We estimate the normalized brain alignment described in Section 3.4.1 separately for two important
language-related areas of the brain: the late language regions and the primary auditory regions.
The late language regions are thought to support semantic language processing, while the primary
auditory regions support mostly lower-level processing related to the speech signal (Deniz et al.,
2019). For each of the three model families, we evaluate the normalized brain alignment for the
pretrained and brain-tuned versions, along with the alignments of the two comparison baselines–
BigSLM fine-tuned and Random-fMRI (see Section 3.3).

In Fig. 2a and b, we show the normalized brain alignment averaged across voxels, layers, and par-
ticipants for all models. We observe that brain-tuning significantly improves alignment with late
language regions for the self-supervised models (Wav2vec2.0 and HuBERT), with an increase of
30% over the corresponding pretrained models. This gain in alignment with late language regions
can also be seen on the level of individual voxels (Fig. 2c for Wav2vec2.0 and one representative par-
ticipant; the brain maps for the remaining participants are shown in Appendix F.2). In contrast, the
two comparison models–BigSLM Fine-tuned and Random-fMRI (see Appendix Fig. 6 for Random-
fMRI results)–lead to lower brain alignment than the pretrained models. This suggests that the gain
from the brain-tuned models is due to incorporating the correct fMRI signal that corresponds to the
audio input. We do not observe significant gains for Whisper in the late language regions or for any
of the model families in the primary auditory regions.

The result that brain-tuning improves the alignment of two of the pretrained models with semantic
late language regions, and not with less semantic regions, such as the primary auditory cortices, sug-
gests that brain-tuning may improve the brain-relevant semantics in at least some speech language
models. We test this further in the next sections.

4.2 EFFECT OF LOW-LEVEL FEATURES ON BRAIN ALIGNMENT

We further test the dependence on low-level features of the observed gain in brain alignment due to
brain-tuning. Fig. 3a and b present the impact of low-level features on the brain alignment across
model families (averaged over voxels, layers, low-level features, and participants).
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(a) Normalized alignment for late language regions
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(b) Normalized alignment for primary auditory
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(c) Difference in brain alignment due to brain-tuning of Wav2vec2.0

Figure 2: (a), (b) Mean normalised brain alignment across participants and layers for different brain
areas. Error bars indicate the standard error of the mean across participants. Significantly different
alignment from pretrained is marked with *. Brain-tuning significantly improves alignment with
late language regions for the self-supervised models. (c) Voxel-wise differences in brain alignment
between brain brain-tuned and pretrained Wav2vec2.0 for a representative participant. Higher align-
ment is observed in semantic language areas.

We observe that brain-tuning reduces the impact of low-level features on alignment with late lan-
guage regions across all model families, including Whisper, which did not originally show improve-
ments in the total brain alignment in these regions (Fig. 2a). The comparison models once again
do not account for the improvements due to brain-tuning. Similarly to before, for all models, brain-
tuning leads to no significant changes related to the primary auditory regions. These observations
also hold on the voxel-level (Fig. 3c for Wav2Vec2.0 and one representative participant; see Ap-
pendix F.3 for the remaining participants) ). Moreover, brain-tuning can also make up for scale: we
observe that a brain-tuned smaller model (HuBERT small) is similarly aligned with late language
regions as a substantially larger pretrained model of the same family (HuBERT large), while having
lower impact of low-level features on this alignment (see Appendix A.2 for more details).

Overall, these results indicate that brain-tuning’s gain in alignment with the late language areas is
not merely in the magnitude but also in its nature, as the reliance on low-level features for alignment
with semantic regions is reduced. Next, we investigate if the induced brain-relevant semantics via
brain-tuning also lead to improvement in semantic understanding of the models.
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(a) Low-level impact in late language regions
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(b) Low-level impact in primary auditory regions
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(c) Difference in low-level impact due to brain-tuning of Wav2vec2.0

Figure 3: (a), (b) Mean impact of low-level speech features (percentage drop in brain alignment) for
different regions. Error bars indicate the standard error of the mean across participants, and * denotes
significantly lower low-level impact than in the pretrained model. All models have significantly
lower low-level impact in late language regions. (c) Voxel-wise differences in low-level impact
between brain-tuned and pretrained Wav2vec2.0 for a representative participant.

4.3 DOWNSTREAM PERFORMANCE

We next investigate the models’ semantic understanding via their performance on downstream tasks
(detailed in Section 3.4.3), and their semantic-phonetic preference (detailed in Appendix C).

Performance on downstream tasks. Fig. 4 presents the models’ performances on popular down-
stream tasks that require different levels of semantic understanding. The brain-tuned performance is
averaged across layers and participants, with the exception of ASR where the performance is only
averaged across participants since evaluations are done only once per model. We observe that brain-
tuning boosts the performance of all model families across all downstream tasks with varying seman-
tic difficulty, with the exception of emotion prediction, in which the performance improves slightly
for one model family and decreases slightly for the other two (Fig. 4f). Specifically, brain-tuning
leads to the biggest gains for tasks that are most semantically challenging and require recognition
and understanding beyond the local context. Brain-tuning increases the ASR accuracy on English
ASR by up to 12% (Fig. 4a), enhances the phonetic sentence type understanding by 20-23% (Fig.
4b), and nearly doubles the performance on sequence understanding for the self-supervised model
families (Fig. 4c). Tasks that relate to local word or phoneme understanding see moderate gains
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Figure 4: Downstream task performance for different models. Brain-tuned models’ performance is
the mean and STE across participants. Brain-tuned models show consistent improvement over the
baselines, with biggest gains in more semantic tasks (ASR and phonetic sentence-type prediction).

(6% gain in phonemes prediction across model families (Fig. 4d), and 3% gain in word identity
prediction for the self-supervised models and 17% for Whisper (Fig. 4e)).

General trends in downstream performance. We observe a few trends in all downstream tasks:
(1) the BigSLM fine-tuned models are the same or worse than the pretrained ones, except for ASR,
for which BigSLM offers a noticeable improvement over pretraining. (2) Generally, the pretrained,
brain-tuned, and BigSLM fine-tuned models perform better than the Random-fMRI baselines, which
indicates that permuting fMRI targets does not lead to improvement on downstream tasks. (3) The
models perform better than naive classifiers, so substantial gains in performance cannot be attributed
to random behavior. (4) More interestingly, the brain-tuned Whisper encoder consistently and sub-
stantially outperforms its pretrained and BigSLM-finetuned versions, which often have close to ran-
dom or naive performances. This shows that the substantial gain in performance is due to fine-tuning
with the matched fMRI data.

Change in semantic-phonetic preference. Finally, when we compare the semantic-phonetic pref-
erence for the brain-tuned vs. pretrained models (Appendix Fig. 8), we find that the preference
becomes more semantic in the late layers for the brain-tuned models. In contrast, the pretrained
models show either no change or a decrease in semantic preferences. This indicates that the brain-
tuned models have reduced phonetic preference in the later layers. We elaborate on these findings
in Appendix C.

Excitingly, the consistent improvement in downstream tasks and reduced phonetic preference in
late layers is in tandem with the improvement in brain alignment with late language regions and
the reduced impact of low-level features on this brain alignment. These results provide converging
evidence for improved semantics in the brain-tuned models.

5 DISCUSSION

In this work, we present a method to augment speech model training directly with fMRI recordings
of people listening to natural stories and show two converging lines of evidence that this leads to
improved semantic understanding in the models.

First, two of the three tested model families have improved alignment with new brain recordings
in the semantic language regions after brain-tuning (Fig. 2). For all model families, brain-tuning
also significantly reduces the impact of low-level speech features on alignment with late language

9
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regions (Fig. 3). This is a marked improvement on pretrained models, which were shown to almost
entirely rely on low-level speech features to align with semantic brain regions Oota et al. (2024a).
Furthermore, brain-tuned models align with semantic language regions as well as larger pretrained
models while also having a lower low-level feature impact (Appendix Fig. 5). This suggests that
brain-tuning has the potential to break the brain alignment plateau for speech models, which has
been shown to reach saturation around 700M parameters (Antonello et al., 2024). Brain-tuning
larger models may break this saturation and lead to substantially more alignment in the semantic
language regions, further increasing their utility as model organisms (Toneva, 2021).

Second, the brain-tuned models generally improve in performance on a range of downstream tasks
with different semantic difficulties (Fig. 4). This shows that brain-tuned models have improved
general capabilities and that the fine-tuning process did not degrade the performance or make the
models gain evident capabilities in one task but not the others. Moreover, specifically Whisper gains
substantially from brain-tuning, improving from close to naive/random F1 scores to significant en-
hancement across the board. Lastly, the brain-tuned models also improve their semantic preference
in the late layers (Appendix Fig. 8). We further emphasize that the gain in performance and se-
mantic preference is due to additional training data of less than 0.7% of the original training size,
which is comparable to, if not less than, a typical fine-tuning dataset for a specific task. Yet, in the
brain-tuning case, there is an evident gain in performance and a wider generalization across multiple
downstream semantic tasks. Overall, to the extent of our knowledge, this is the first work to show
substantial downstream performance gains when augmenting an ML model with brain-relevant data,
across not only the speech domain but also language and vision.

Both lines of evidence show that brain-tuning not only increases the raw performance metrics but
also changes the representations of the model to rely less on low-level features when performing
a task that relies on semantics. These findings also strengthen the utility of brain alignment in
determining how semantically oriented a given model representation is. Lastly, all results signal that
there is still room for improvement in the speech models’ semantic capabilities, and we hope that
our work inspires future work that improves on our brain-tuning method.

6 CONCLUSION

Our systematic analyses of the utility of brain-tuning on semantic brain alignment and downstream
performance reveal a parallel among the gain in brain alignment, its reduced impact of low-level
speech features, and increased downstream performance on several tasks with varying semantic
difficulty. We further observe an increase in the semantic preference of late layers of the brain-tuned
models. These exciting results provide evidence for the first time that incorporating brain signals into
the training of language models improves their semantic understanding. Future work can investigate
further refinement of the brain-tuning loss and the incorporation of additional participants and brain
datasets in the brain-tuning process. We hope that the brain-tuned models we provide will serve as
better model organisms for auditory language processing in the brain, and will inspire more work
on improving the alignment between language in machines and language in the brain.

Reproducibility Statement. In this paper, we fully describe our proposed Brain-tuning approach
and how to evaluate it. (1) Sections 3.1, 3.2, and 3.3 detail the exact model families, data processing,
and fine-tuning settings and hyper-parameters needed to carry out Brain-tuning for any given model.
(2) Section 3.4, Appendix B, and Appendix C detail all evaluation pipelines and metrics, alongside
any additional datasets or training settings and hyper-parameters needed for evaluation. (3) We will
make the code for brain-tuning and its evaluation publically available once the paper is accepted.
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Subba Reddy Oota, Emin Çelik, Fatma Deniz, and Mariya Toneva. Speech language models lack
important brain-relevant semantics. ACL, 2024a.

Subba Reddy Oota, Manish Gupta, and Mariya Toneva. Joint processing of linguistic properties in
brains and language models. Advances in Neural Information Processing Systems, 36, 2024b.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and Ilya Sutskever.
Robust speech recognition via large-scale weak supervision. In International Conference on Ma-
chine Learning, pp. 28492–28518. PMLR, 2023.

Martin Schrimpf, Idan Asher Blank, Greta Tuckute, Carina Kauf, Eghbal A Hosseini, Nancy Kan-
wisher, Joshua B Tenenbaum, and Evelina Fedorenko. The neural architecture of language: In-
tegrative modeling converges on predictive processing. Proceedings of the National Academy of
Sciences, 2021.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Dan Schwartz, Mariya Toneva, and Leila Wehbe. Inducing brain-relevant bias in natural language
processing models. Advances in neural information processing systems, 32, 2019.

Anant Singh and Akshat Gupta. Decoding emotions: A comprehensive multilingual study of speech
models for speech emotion recognition. arXiv preprint arXiv:2308.08713, 2023.

Mariya Toneva. Bridging language in machines with language in the brain. PhD thesis, Carnegie
Mellon University, 2021.

Mariya Toneva and Leila Wehbe. Interpreting and improving natural-language processing (in ma-
chines) with natural language-processing (in the brain). Advances in Neural Information Process-
ing Systems, 32, 2019.

Mariya Toneva, Tom M Mitchell, and Leila Wehbe. Combining computational controls with natural
text reveals aspects of meaning composition. Nature Computational Science, 2(11):745–757,
2022a.

Mariya Toneva, Jennifer Williams, Anand Bollu, Christoph Dann, and Leila Wehbe. Same cause;
different effects in the brain. Causal Learning and Reasoning, 2022b.

Greta Tuckute, Jenelle Feather, Dana Boebinger, and Josh H McDermott. Many but not all deep
neural network audio models capture brain responses and exhibit correspondence between model
stages and brain regions. Plos Biology, 21(12):e3002366, 2023.

Aditya R Vaidya, Shailee Jain, and Alexander Huth. Self-supervised models of audio effectively
explain human cortical responses to speech. In International Conference on Machine Learning,
pp. 21927–21944. PMLR, 2022.

Pete Warden. Speech commands: A dataset for limited-vocabulary speech recognition, 2018.

Leila Wehbe, Brian Murphy, Partha Talukdar, Alona Fyshe, Aaditya Ramdas, and Tom Mitchell.
Simultaneously uncovering the patterns of brain regions involved in different story reading sub-
processes. PloS One, (11), 2014.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A BRAIN ALIGNMENT

A.1 ROIS DETAILS

The human cerebral cortex multi-modal parcellation (Glasser Atlas) has 180 labeled ROIs per hemi-
sphere(Glasser et al., 2016). It has language regions that include the following labels: Angular gyrus
(AG: PFm, PGs, PGi, TPOJ2, TPOJ3), lateral temporal cortex (LTC: STSda, STSva, STGa, TE1a,
TE2a, TGv, TGd, A5, STSdp, STSvp, PSL, STV, TPOJ1), inferior frontal gyrus (IFG: 44, 45, IFJa,
IFSp) and middle frontal gyrus (MFG: 55b) ((Oota et al., 2024a), Desai et al. (2023)). It also has the
primary auditory (A1) and the early auditory (A1, PBelt, MBelt, LBelt, RI, A4) regions.
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Figure 5: Brain alignment and low-level impact comparison with pretrained HuBERT large ar-
chitecture on 3 subjects. The HuBERT base architecture performs closely to the large pretrained
architecture and is less affected by removal of low-level features

A.2 BRAIN-TUNING ALIGNMENT COMPARISON WITH BIGGER MODELS

To get a clearer idea about the improvement in brain alignment we get from Brain-tuning on late
language regions, we compare the HuBERT model’s base architectures ( 90M parameters ) both
pretrained and brain-tuned to the pretrained HuBERT large architecture (320M parameters) in Fig.
5. The pretrained large architecture has a much larger alignment in late language regions than the
pretrained base model, which is in line with the trend of increase in alignment when scaling the
model size shown in (Chung et al., 2024); however, the Brain-tuned base model is very close to
the pretrained large model’s alignment. Moreover, the low-level impact of the Brain-tuned model is
noticeably less than the pretrained large model. This is an indicator that we can explain much more in
the brain late language semantic regions with smaller models and brain-tuning bigger models might
break the plateau we see in (Antonello et al., 2024) when reaching huge model sizes. Breaking
this plateau might allow for better and more accurate computational models for speech semantic
processing in the brain.

A.3 LOW-LEVEL SPEECH FEATURES DETAILS

Here, we detail the definition and acquisition method of the low-level speech features used in our
computation of low-level impact (namely Power Spectrum, Di-Phones & Tri-Phones, and Articula-
tion ). We obtain these features for the fMRI stories used for brain alignment computation (Section
3.4.1).

Power Spectrum. We follow the method described in (Gong et al., 2023). For each TR time (a 2s
segment), we quantify the time-varying power spectrum across 448 frequency bands. This power
spectrum is obtained by estimating the power of the sound signal between 25 Hz and 15 kHz, in 33.5
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Hz bands (giving a total of 448 bands). For our experiments, we use the power spectrum features
from (Deniz et al., 2019).

Di-Phones & Tri-Phones. For a given speech utterance, DiPhones represent the adjacent pair of
phones (e.g., [da], [aI]). For each audio segment of length 2 seconds (TR length), we have a one-hot
encoding vector representing the presence or absence of all possible 858 diphones. The same is
done for Tri-Phones but for triplets of phones instead of pairs. The annotations of this data were
done using the Praat software and were obtained from the shared data by the authors of (Oota et al.,
2024a).1

Articulation. Phoneme articulations are the specific ways speech organs (e.g., tongue or vocal
cord) move to produce different phonemes. They associate each phoneme with a set of properties
that specify things like whether this phoneme makes vocal cords vibrate. We use phoneme artic-
ulations as mid-level speech features, mapping hand-labeled phonemes to a set of 22 articulatory
characteristics. For our experiments, we use the articulation annotations from (Deniz et al., 2019).

A.4 BRAIN ALIGNMENT WITH RANDOM-FMRI

We extend Fig. 6 by showing the Random-fMRI baseline alongside the brain-tuned, pretrained, and
BigSLM fine-tuned models. Fig. 6b clearly shows that Random-fMRI models have the lowest brain
alignment values in late language regions compared to even BigSLM fine-tuned baselines, and in the
primary auditory regions, it’s also much lower than the pretrained version. This strongly indicates
that randomly permuting the fMRI targets while brain-tuning the models with the same stimuli
substantially harms the model’s alignment. Hence, having the correct fMRI targets is essential for
the alignment results we get from the brain-tuned models.
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(a) Normalised alignment for Late Language Regions
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Figure 6: (a), (b) Normalized brain alignment across participants and models for different ROIs,
where * means brain-tuned has alignment values that are statistically significantly different from
pretrained. Random-fMRI fine-tuned baselines have much lower brain alignment than pretrained
models in that late language and primary auditory areas.

A.5 LOW-LEVEL IMPACT WITH RANDOM-FMRI

We extend Fig. 3 by showing the Random-fMRI baseline alongside the brain-tuned, pretrained, and
BigSLM fine-tuned models. Fig. 7 clearly shows that Random-fMRI models have the highest low-
level impact (highest drop) compared to even BigSLM fine-tuned baselines in both late language
regions and the primary auditory region. Even though the original normalized alignment values for
the Random-fMRI models are very low to begin with, they still undergo a substantial drop after
we remove the low-level features. Similar to the results from Fig. 6, these results also indicate
that randomly permuting the fMRI targets while brain-tuning the models with the same stimuli
substantially harms the model’s semantics. Hence, having the correct fMRI targets is essential for
reduced low-level impact we get in the brain-tuned models.

1https://www.fon.hum.uva.nl/praat/
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Figure 7: (a), (b) Low-level Speech Features Impact (Percentage Drop in Brain Alignment) for
different ROIs, where * means brain-tuned has alignment values that are statistically significantly
different from pretrained. Random-fMRI fine-tuned baselines have a much higher low-level impact
than pretrained models in that late language and primary auditory areas.

B DOWNSTREAM TASKS

We detail here the description and dataset used for each downstream task mentioned in Section

3.4.3.

Automatic Speech Recognition (ASR). We run an ASR fine-tuning pipeline for the self-
supervised models (Wav2vec2.0 and HuBERT). For ASR we fine-tune the whole model to get the
best possible performance. The rationale is to essentially see if the brain-tuning process will make it
harder or require longer training to fine-tune the speech model for tasks like ASR. We use a version
of TIMIT (Garofolo, 1993) for ASR to carry out this experiment. We use the CTC loss (Baevski
et al., 2020) for both self-supervised models and calculate Word-Error-Rate (WER) as the evaluation
metric (on the padded test-set). We then report the ASR accuracy as 1− WER.

Phonetic Sentence Type Prediction. The TIMIT dataset Garofolo (1993) has 3 different sentence
types: SA (Dialect), SX (Compact), and SI (Diverse). The SA sentences are supposed to expose the
dialectal variations of the speakers ( and are designed to span all the phonemes of American English);
the SX sentences should provide good coverage of phones (phonetically balanced and cover a wide
range of phonetic contexts with a small number of words). The SI sentences are anything else
(phonetically diverse and more naturalistic). We add a classification head and we use the F1-score
for evaluation.

Sequence Understanding. This is very similar to Intent Classification tasks; it tests the ability to
understand a sequence. We use the SLURP (Bastianelli et al., 2020) dataset that has audio paired
with actions. For example, if the input is ”Wake me up at eight o’clock”, the action should be
”set alarm”. We have 46 possible actions and we add a linear head to predict the action and evaluate
using the F1-score.

Phonemes Prediction. Phoneme prediction is formulated as a multi-label classification problem,
where the classifier predicts which of the 39 Phonemes were present in the input audio clip. We use
the TIMIT dataset Garofolo (1993) for its phonetically rich sentences; we evaluate the test set using
the F1-score.

Word Identity Prediction. We want to test the model’s ability to decode words from input audio.
To simplify this task to befit a classification head, we convert it to a classification task on the Speech
Commands dataset (Warden, 2018) which has audio clips, each of which has only one word belong-
ing to a set of 35 commands. The classifier predicts which of the 35 commands were said, and the
evaluation is done using the F1-score.
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Emotion Recognition. We add a classification head for emotion recognition on the CREMA-
D dataset Cao et al. (2014); CREMA-D has 7.4K clips from 91 actors, and six different emotions
(Anger, Disgust, Fear, Happy, Neutral, and Sad). The classifier predicts which of the 6 emotions is
present and is evaluated using the F1-score.

C MEASURING SEMANTIC-PHONETIC PREFERENCE

To test if there are semantic changes to the models’ representations at a more fundamental level,
we try to quantify how a model prefers phonetic over semantic features and compare our brain-
tuned models to the pretrained ones. To be able to quantify this difference, we take inspiration
from the work by Choi et al. (2024), which found that speech models have a huge bias towards
phonetic features. This was done by constructing phonetically similar pairs and semantically similar
pairs and then computing their similarity/ distance in the embedding space. Doing this clearly
shows that phonetically similar words are closer than semantically similar ones in the embedding
space (i.e., the model has strong phonetic preference ). This behavior persists across layers and
across models. One aspect of desirable change in that behavior is to have the differences between
phonetically and semantically similar pairs lower in the more semantic layers (both should still be
better than random), or at least to have a clear hierarchy of that change. To do a similar but more
curated analysis, we build a dataset of 2K words, each of word is paired with several semantically
similar (e.g., Synonyms) and phonetically similar words (e.g., Homophones). Then, we compute the
representational distance between them, namely semantic distance for the distance of the word to
the synonym and phonetic distance for the distance of the word to the homophone. After that, we are
able to compute a semantic-phonetic preference d for any given layer or model. We define d as the
average difference between semantic and phonetic distances. Essentially, since we know phonetic
distances are smaller from the work by Choi et al. (2024), then when d decreases it means that the
gap between semantic and phonetic decreases (semantic is closer to phonetic) and vice versa. If
d < 0, it means that the given layer is more semantic than it’s phonetic. Thus, comparing the values
of d for the brain-tuned models and the pretrained ones will tell us if there is a difference in the
phonetic preference across layers between them.

2 4 6 8 10 12
Layer

0.05

0.10

0.15

0.20

0.25

0.30

Se
m

an
tic

-P
ho

ne
tic

 P
re

fe
re

nc
e

Brain-tuned Pretrained BigSLM

(a) Semantic-phonetic preference for Wav2Vec2.0
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(b) Semantic-phonetic preference for HuBERT

Figure 8: Semantic-phonetic preference (d) Comparison between brain-tuned and Pretrained mod-
els. d decreases in late layers for brain-tuned models, suggesting that the phonetic preference for
these layers is decreased.

Finally, when we investigate the semantic-phonetic preference d (the delta of the distances between
semantic and phonetic features) in the brain-tuned vs. pretrained models (Fig. 8), we find that d
decreases in the late layers for the brain-tuned models, but it either increases or stays the same for
the pretrained ones. Our findings about the pretrained model replicate those of Choi et al. (2024).
The findings about the brain-tuned models indicate that, unlike the pretrained models, semantic
pairs in the late layers of these models are closer to the phonetic ones, and hence the layers are
less phonetically dominated (i.e., the semantic preference increases and the phonetic vs semantic
preference decreases in these layers). This together with the downstream results from Fig. 4 indicate
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that the brain-tuned models are not phonetically biased (in late layers) and that they are capable of
performing better on both phonetic and semantic tasks.

D ADDITIONAL TASKS AND BASELINES

In this section, we extend the evaluation of brain-tuned models to include two low-level tasks,
namely MFCC and FBANK prediction. We also add language model baseline (comparison model)
and report its downstream and low-level performance relative to to the other models (i.e., brain-
tuned, Pretrained and BigSLM).

D.1 BRAIN-TUNED LOW-LEVEL PERFORMANCE

For MFCC prediction, we train linear probes to predict the MFCC coefficients, while for FBANK
prediction, we train linear probes to predict the filter banks. For both tasks, we use the TIMIT dataset
(Garofolo, 1993) and we evaluate using the R2 coefficient, averaged across layers.

Fig.9 reports pretrained, BigSLM, and brain-tuned models’ performance on two low-level tasks
(MFCC prediction and FBANK prediction); it shows that brain-tuned and BigSLM models don’t
perform substantially lower than their pretrained counterparts. This indicates that fine-tuned models
are still capable of doing these core low-level tasks just as well as their pretrained version. We think
this evidence reduces the possibility that catastrophic forgetting happened after fine-tuning.
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(a) MFCC prediction mean R2 values
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(b) FBANK prediction mean R2 values
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(c) R2 values of MFCC prediction layer-wise
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(d) R2 values of FBANK prediction layer-wise

Figure 9: Low-level task performance comparison for different models. It signifies that brain-tuned
models didn’t lose low-level capabilities at the expense of gaining more semantics, as the averaged
R2 values are very close and the layer-wise values are the same in early layers and slightly decreased
in late layers.

D.2 LANGUAGE MODEL BASELINE

To test out the potential of using a language model (LM) as a baseline in a similar fashion to the
BigSLM baseline, we use representations from the pretrained GPT2 model. Then, we apply the
same fine-tuning pipeline with the concatenated representations of the GPT2 model as MSE Loss
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targets. We report this on the Wav2Vec2.0 model family. When we evaluate the downstream perfor-
mance of this GPT2-finetuned baselines, it’s consistently lower than brain-tuned models (Fig.10).
Furthermore, when tested on speech low-level tasks, the GPT2-finetuned model shows more drop
than either brain-tuned or BigSLM fine-tuned models.
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Figure 10: Comparison of GPT2 fine-tuned vs Brain-tuned, BigSLM fine-tuned and Pretrained mod-
els for Wav2Vec2.0. For all tasks, the GPT2 fine-tuned model still underperforms the the brain-tuned
model and falls behind BigSLM fine-tuned in half of the tasks.
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Figure 11: Low-level task performance for GPT2-finetuned Wav2Vec2.0 model. It signifies that an
LM-finetuned baseline would downgrade the performance on low-level speech tasks, compared to
the brain-tuned and BigSLM fine-tuned models

E MORE STUDIES ON DOWNSTREAM TASKS

E.1 BRAIN-TUNING WITH ROIS

Detailed anatomical annotations of semantic networks in the brain are not provided by the authors
of the dataset (LeBel et al., 2023); only Broca’s area and Auditory cortex (AC) are annotated across
participants. This limits our ability to conduct a thorough ablation study on the effect of adding or
removing relevant regions on the brain-tuned process. However, to get an initial idea of the effects of
using only some restricted regions in the brain on brain-tuning, we apply our brain-tuning pipeline
using fMRI targets from Broca and AC only (i.e., a restricted ROI set). We then report their down-
stream performance compared to the original brain-tuned models (with noise-filtered voxels from
the whole brain). Fig. 12 shows this comparison for Wav2Vec2.0; the model fine-tuned with only
these two ROIs (the blue bar) is better than the pretrained model but still underperforms compared

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

to the original brain-tuned one. This indicates that other regions are still essential and contribute to
the semantics of the brain-tuned models; we will work on parsing more regions from the dataset and
investigate that more formally in future work.
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Figure 12: Downstream performance comparison of Brain-tuned Wav2Vec2.0 with only two ROIs
vs the same model Brain-tuned with the whole brain (all noise-filtered voxels).

E.2 DOWNSTREAM PERFORMANCE COMPARISON WITH HUBERT LARGE

To complement our results on the brain alignment gap between HuBERT Large and the Brain-tuned
Base version (App.A.2), we report here the gap between them in downstream performance (reporting
the same participants for brain-tuned models). Fig.13 shows that for HuBERT, the brain-tuned base
architecture is closing on the pretrained large architecture. In other words, we gain a performance
close to the large architecture with the same number of parameters of the base architecture (after it’s
brain-tuned).
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Figure 13: Downstream performance comparison of pretrained HuBERT large architecture vs Brain-
tuned HuBERT base architecture. The HuBERT base architecture performs closely to the large
pretrained architecture, bridging the gap between the base and large model sizes.

F ADDITIONAL BRAIN PLOTS FOR DIFFERENT PARTICIPANTS

Here, we show samples of noise-filtered voxels (the ones that will be used for brain tuning). More-
over, we extend the whole-brain plots (flat and lateral views) for different participants for both brain
alignment and low-level impact analyses.

F.1 HIGH NC FILTERED VOXELS

Fig. 14 shows the remaining voxels after applying the noise threshold mentioned in Section 3.2
for two participants. These are the voxels that will be used during brain-tuning. Looking at their
locations, we see that they cover a large number of semantic regions, as well as the auditory cortex.

F.2 BRAIN ALIGNMENT VOXEL-WISE DIFFERENCES

We show in Fig. 15 more whole-brain analyses for the voxel-wise differences in brain alignment be-
tween brain-tuned and pretrained models for different participants. The trend we detailed in section
4.1 is also consistent with the plots below and is in line with the increase in the values of alignment
in late language regions (Fig. 2a) and the insignificant change in alignment in primary auditory
regions (Fig. 2b). All shown Brain plots are for the Wav2vec2.0 model family.
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Figure 14: Voxels with Noise Ceiling values above the threshold for Participants 2 and 3. These are
the voxels that will be used for brain-tuning
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Difference in Brain Alignment (Brain-tuned - Pretrained)

(a) Difference in Brain Alignment for Participant 1

0.2 0.2

Difference in Brain Alignment (Brain-tuned - Pretrained)

(b) Difference in Brain Alignment for Participant 2

F.3 LOW-LEVEL IMPACT VOXEL-WISE DIFFERENCES

In Fig. 16, we show more whole-brain analyses for the voxel-wise differences in low-level impact
due to brain-tuning (between brain-tuned and pretrained models) for different participants. The trend
we detailed in section 4.2 is also generally consistent with the plots below and is in line with the
increase in the values of alignment in late language regions (Fig. 3a) and the insignificant change
in alignment in primary auditory regions (Fig. 3b). All shown Brain plots are for the Wav2vec2.0
model family.
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Difference in Brain Alignment (Brain-tuned - Pretrained)

(c) Difference in Brain Alignment for Participant 6
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(d) Difference in Brain Alignment for Participant 7
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(e) Difference in Brain Alignment for Participant 8

Figure 15: Difference in brain alignment performance (measured by Pearson correlation) between
brain brain-tuned and pretrained Wav2Vec2.0 models for different participants. It shows better align-
ment of the brain-tuned model in semantic language areas.
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(a) Difference in low-level impact for Participant 1
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(b) Difference in low-level impact for Participant 2

50 50

Low-level Impact Difference (Brain-tuned - Pretrained)

(c) Difference in low-level impact for Participant 6
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(d) Difference in low-level impact for Participant 7

50 50

Low-level Impact Difference (Brain-tuned - Pretrained)
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Figure 16: Difference in low-level impact brain brain-tuned and pretrained Wav2Vec2.0 models
for different participants. It shows a lower low-level impact (lower drop due to low-level feature
removal) for the brain-tuned model in semantic language areas.
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