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Abstract001

Multimodal Retrieval-Augmented Generation002
(MM-RAG) has emerged as a promising ap-003
proach for enhancing the reliability and factual-004
ity of large vision-language models (LVLMs).005
While end-to-end loss backpropagation is infea-006
sible due to non-differentiable operations dur-007
ing the forward process, current methods pri-008
marily focus on component-level optimizations,009
necessitate extensive component-specific train-010
ing datasets and suffer from a gap between local011
and global optimization objectives. In this pa-012
per, we propose a new paradigm that backprop-013
agates global rewards from the system output014
to each component and then transforms these015
rewards into specific local losses, enabling each016
component to perform gradient descent and017
thus ensuring end-to-end optimization. Specif-018
ically, we first insert two lightweight multi-019
modal components, a query translator and an020
adaptive reranker, to address the heterogene-021
ity of multimodal knowledge and the varying022
knowledge demands for different questions,023
and then tune only these inserted components024
using our proposed paradigm to integrate the025
entire system. Our method achieves SOTA026
performance on multiple knowledge-intensive027
multimodal benchmarks with high training ef-028
ficiency, relying exclusively on supervised sig-029
nals from an external reward model. Experi-030
mental results and our detailed analysis of the031
evolution of components during training collec-032
tively reveal the advantages and considerable033
potential of this paradigm as a promising direc-034
tion for MM-RAG research.035

1 Introduction036

Large Vision Language Models (LVLMs) (Lu037

et al., 2024; Bai et al., 2025) have extended038

LLMs (Grattafiori et al., 2024; Jiang et al., 2024)039

with vision encoders (Radford et al., 2021; Oquab040

et al., 2024), enabling them to process visual in-041

puts and achieve exceptional performance across042

various vision-language tasks. However, due to043
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Figure 1: Non-differentiable tensor operations during
the forward process render direct loss backpropagation
infeasible by disrupting the tensor graph and prevent-
ing gradient flow. Our method instead sequentially
propagates global rewards backward, converts them to
component-specific local losses, and then applies gradi-
ent descent for optimization.

parameter capacity constraints and outdated para- 044

metric knowledge after pertaining, these models 045

perform poorly on knowledge-intensive tasks, gen- 046

erating hallucinated responses lacking reliability 047

and factuality. The research community has pro- 048

posed Multimodal Retrieval-Augmented Genera- 049

tion (MM-RAG) (Khandelwal et al., 2020; Lewis 050

et al., 2021; Caffagni et al., 2024) to provide ad- 051

ditional contextual knowledge as a supplement to 052

intrinsic parametric knowledge of models. 053

However, due to the discrete tensor operations 054

between components that disrupt the computational 055

graph, direct optimization through loss backprop- 056

agation and gradient descent is infeasible. Sev- 057

eral approaches have sought to optimize individ- 058

ual components separately, but they need exten- 059

sive component-specific training datasets and suf- 060

fer from a misalignment between local and global 061

objectives, even compromising the generalization 062

of each component. 063

In this paper, we introduce a novel paradigm for 064

MM-RAG that achieves end-to-end optimization by 065

reward backpropagation, called MM-RewardRAG. 066

As shown in Figure 1, after obtaining the system 067

output from the answer generator, an external re- 068
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Figure 2: Illustration of MM-RewardRAG. (Left) Forward inference: Multimodal question processing utilizing a
query translator to route queries to text, image, and LLM knowledge bases, with adaptive reranking subsequently
applied for answer generation. (Right) Reward backpropagation optimization: upper part shows reward propagation
via alignment based on direct instance and relative relationship within group ranking respectively, and lower part
illustrates the process of query adaptation for integrating knowledge bases using a time-evolving reward signal.

ward model calculates the global reward, which is069

then backpropagated to each component and con-070

verted into a component-specific local loss to guide071

parameter optimization. To preserve general re-072

trieval and instruction-following capabilities, our073

method tunes only the inserted lightweight compo-074

nents. As illustrated in more detail in Figure 2, to075

propagate the reward signal from the answer gener-076

ator to the adaptive reranker, both traditional direct077

instance alignment and our proposed novel Group078

Preference Alignment are employed to model rel-079

ative relationships within rankings. To guide the080

query translator, a group-weighted, time-evolving081

reward signal, derived from the ongoing optimiza-082

tion process, is backpropagated from the adaptive083

reranker to adapt the translator to heterogeneous084

knowledge bases.085

We evaluate our approach on a diverse set of086

knowledge-intensive multimodal benchmarks, ad-087

vancing beyond previous studies that focused solely088

on benchmarks requiring only textual knowledge,089

to incorporate those demanding both textual and090

visual knowledge to perform deep cross-modal rea-091

soning. Our approach achieves SOTA performance092

on E-VQA, Infoseek, MultimodalQA, WebQA,093

OKVQA and A-OKVQA, with only 4k total train-094

ing questions without human-labeled ground truth,095

depending entirely on the supervised signal from 096

an external verifiable reward model. We provide a 097

detailed analysis to interpret the evolution of com- 098

ponents during the training process, demonstrating 099

that our adaptive reranker surpasses three propri- 100

etary models using substantially more training data, 101

despite sharing the same model architecture. Our 102

contributions can be summarized as follows: 103

• We propose MM-RewardRAG, a novel paradigm 104

enabling end-to-end optimization for MM-RAG 105

systems. 106

• We introduce two multimodal components de- 107

signed to address inherent challenges within MM- 108

RAG, and offer an interpretative analysis of their 109

learned evolution under our paradigm. 110

• Experimental results validate the effectiveness 111

of our paradigm and underscore its considerable 112

potential as a promising new direction for MM- 113

RAG research. 114

2 Related Work 115

Large Vision Language Models. Recent 116

LVLMs (Bai et al., 2025; Wang et al., 2024) 117

have demonstrated remarkable capabilities by 118

extending LLMs with multimodal alignment 119

modules connected to vision encoders. However, 120

the parametric knowledge of these models is 121
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capacity-constrained and outdated after pretraining,122

and insufficient multimodal alignment further123

compromises the knowledge already embedded124

in the language model backbone, which leads125

to hallucinations (Zhou et al., 2024) in model126

responses when encountering knowledge-intensive127

visual questions (Marino et al., 2019; Chen et al.,128

2023).129

Retrieval Augmented Generation. RAG en-130

hances the factuality and reliability of LLM re-131

sponses while reducing hallucinations by retriev-132

ing relevant information from external knowledge133

bases. Recent works have extended RAG to the134

multimodal domain, retrieving text documents or135

image-text pairs as in-context examples to pro-136

vide additional commonsense and visual knowl-137

edge. EchoSight (Yan and Xie, 2024) and Wiki-138

LLaVA (Caffagni et al., 2024) retrieve supplemen-139

tary textual knowledge to improve LVLM perfor-140

mance on knowledge-intensive visual tasks. For141

domain-specific tasks, RULE (Xia et al., 2024b)142

and MMed-RAG (Xia et al., 2024a) enhance the143

factuality of medical LVLMs by retrieving rel-144

evant medical reports associated with radiology145

images. The scope of retrieved content further146

broadens to diverse visual inputs: V-RAG (Chu147

et al., 2025) extends retrieval to include similar148

images, MORE (Cui et al., 2024) leverages im-149

ages for commonsense reasoning, and VisRAG (Yu150

et al., 2025) incorporates screenshots as a distinct151

document type. Regarding optimization strategies,152

SURf (Sun et al., 2024), RULE (Xia et al., 2024b),153

and RoRA-VLM (Qi et al., 2024) primarily aim154

to train the answer generator to selectively utilize155

retrieved information and avoid being misled by156

irrelevant or noisy data, while V-RAG (Chu et al.,157

2025) enables the answer generator to accept mul-158

tiple interleaved multimodal inputs. Alternatively,159

VisRAG (Yu et al., 2025) focuses on training the160

retriever to better adapt to screenshots. Contrary to161

current works that focus on local component-level162

optimization, our proposed MM-RewardRAG aims163

to optimize the whole system end-to-end, which164

reduces the need for extensive training data and165

directly aligns local component objectives with the166

global system objective.167

3 Methodology168

3.1 Overview169

In this section, we first introduce the necessity of170

heterogeneous knowledge bases for MM-RAG and171

then detail the proposed native multimodal compo- 172

nents designed to integrate the MM-RAG system, 173

followed by an explanation of the reward backprop- 174

agation algorithm that enables end-to-end optimiza- 175

tion of the entire pipeline. 176

Notation. We denote the input question by Q; the 177

query for a specific knowledge base by qm, where 178

m ∈ {T, I, L} indicates the text, image, or lan- 179

guage model, respectively; the i-th retrieved doc- 180

ument by di; and the model’s output based on di 181

by Oi. Each item can be assigned a reward Rn
i cor- 182

responding to different stages n: query translation 183

(n = 1), adaptive reranking (n = 2), and answer 184

generation (n = 3). The ranking rn for each stage 185

is derived from the rewards set {Rn
i }; specifically 186

for the adaptive reranking stage (n = 2), r2 can be 187

derived from either usefulness levels {li}, which 188

are unique to this stage, or the rewards {R2
i }. 189

3.2 Heterogeneous Knowledge Bases 190

Our framework leverages three distinct types of 191

knowledge bases to address the inherent hetero- 192

geneity of multimodal information, which stems 193

from the fact that some knowledge is intrinsically 194

modality-specific: Text KB contains background 195

content related to entities, including historical con- 196

text, conceptual definitions, and specific details like 197

times and names. Image KB provides information 198

mainly embedded in the visual modality, such as 199

landmarks, the relative sizes of different buildings, 200

and visual attributes. LLM-as-a-KB is leveraged to 201

supplement parametric knowledge interruption dur- 202

ing the multimodal alignment process. We provide 203

qualitative examples in Appendix H for interested 204

readers. 205

3.3 Query Translator 206

The information needed to answer a multimodal 207

question exists across different modalities in a com- 208

plementary manner. However, using the question 209

directly as a query to retrieve leads to poor perfor- 210

mance and incomplete recall due to modality mis- 211

match and semantic decoupling. We thus design 212

a modality-aware query translator that generates 213

queries adapted to different knowledge bases, serv- 214

ing as a soft connector to couple the multimodal 215

question with the appropriate knowledge sources. 216

The generation process can be modeled probabilis- 217
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tically as:218

P ({qT , qI , qL}|I,Q) =
∏

j∈{T,I,L}

P (qj |I,Q, q<j)

(1)219

where these queries are then used to retrieve from220

each knowledge base, resulting in the candidate221

sets {dT1, dT2, . . . , dTk}, {dI1, dI2, . . . , dIk}, and222

{dL1, dL2, . . . , dLk} that represent texts, images,223

and LLM responses, respectively.224

3.4 Adaptive Reranker225

This component is designed to address the vari-226

able knowledge demands across diverse questions.227

Traditional fixed Top-K reranking methods fail to228

accommodate the fluctuating information needs:229

they either introduce unnecessary noise when min-230

imal context would suffice, or truncate critical in-231

formation when more comprehensive knowledge is232

required. The adaptive reranker, instead, dynami-233

cally calibrates the information boundary to match234

the specific requirements of each question. Specifi-235

cally, it evaluates each candidate and assigns differ-236

ent levels of usefulness, indicating how helpful the237

document is anticipated to be for the answer gener-238

ator. These levels can then be converted to scalars239

to establish a ranking. Subsequently, all candidates240

deemed useless are discarded. The remaining can-241

didates, along with their assigned usefulness levels,242

are passed to the answer generator, explicitly in-243

forming the generator about the potential utility244

of each piece of information, highlighting which245

might be noisy (e.g., neutral) and should be utilized246

selectively.247

3.5 Optimization Process248

The supervised signal for training is solely pro-249

vided by an external reward model, which directly250

reflects the accuracy and factuality of the system251

output, and can be extended to other preference252

types that a function or parametric neural networks253

can model. The optimization objective of every254

component within the whole MM-RAG system255

is to collaboratively maximize this global reward.256

The core idea involves propagating this global re-257

ward backward to each component step-by-step.258

For each neural network-based component, the re-259

ward is then converted into a specific local loss,260

enabling gradient-based optimization of its parame-261

ters. To ensure the general retrieval and instruction262

following capabilities remain unaffected, which is263

necessary for robustness and transferability across264

different domains, our approach freezes the param- 265

eters of the retriever and answer generator while 266

only adjusting the parameters of the inserted com- 267

ponents to enhance coupling and alignment within 268

the system. It is noted that the query translator can 269

be viewed as a pre-retrieval domain shifter. Conse- 270

quently, even if a distribution gap exists between 271

the target data and the corpus used by the retriever, 272

retrieval performance can still be specifically opti- 273

mized. Furthermore, the adaptive reranker serves 274

a dual function. Firstly, it acts as a post-retrieval 275

filter to further improve retrieval results. Secondly, 276

it operates as a coupler to ensure that the contex- 277

tual knowledge supplied to the answer generator is 278

both preferred and complementary to the paramet- 279

ric knowledge of the answer generator. 280

Generator to Reranker. We describe our al- 281

gorithm following a backward component-by- 282

component order to enhance clarity. For retrieved 283

documents, the reranker assigns usefulness levels 284

li to each item, producing a ranking r2. These 285

items are then individually paired with the input 286

question Q and fed to the generator to produce cor- 287

responding answers Oi, which the reward model 288

evaluates and assigns each score R3
i to create an- 289

other ranking r3. Ideally, the ranking r2, provided 290

by the reranker without assessing the final answer 291

directly, should be consistent with r3, but due to 292

the misalignment between the reranker’s local ob- 293

jective and the system’s global goal, discrepancies 294

exist between these rankings. We show the detailed 295

analysis results in Appendix A. To address this 296

problem, we propagate the final global reward R3
i 297

backward to the reranker to obtain R2
i , which is 298

then transformed into a specific loss function for 299

reranker optimization. This procedure consists of 300

two sequential stages: 301

The first stage distills preference from the gener- 302

ator to the reranker directly, transferring awareness 303

of knowledge usefulness for answering questions 304

and aligning the two components. For an input 305

question Q, the generator answers the question 306

both with and without each candidate document di 307

separately, then compares the results to determine 308

whether the candidate is helpful. The outcome can 309

be constructed into a restricted-format CoT reason- 310

ing sequence, which is then directly used to train 311

the reranker: 312

Ldistill = −
∑
i

logPAR(CoT, li|(Q, I), di) (2) 313

The second stage, which we propose as Group 314
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Preference Tuning, involves a comparative align-315

ment process. The reranker first samples two316

groups of usefulness levels {lai }, {lbi} from n re-317

trieved candidates {di}, generating two distinct318

rankings ra2 and rb2. These rankings are then com-319

pared with the reference r3 to determine which320

group demonstrates closer alignment with the de-321

sired outcome. Items within the better-aligned322

group are considered preferred. The reranker,323

parameterized by θAR, assigns usefulness levels324

l(d; θAR) to each document d. We define the325

aggregate score for a group of documents G as326

U(G; θAR) =
∑

d∈G l(d; θAR). The Group Pref-327

erence Tuning then aims to maximize the score328

difference between a preferred winner group (GW )329

and a dispreferred loser group (GL), where prefer-330

ence (GW ≻r3 GL) is determined by their relative331

alignment with the reference ranking r3. This ob-332

jective is formalized by minimizing the following333

loss:334

LGroup = −E(GW ,GL) s.t. GW≻r3GL

[log σ (U(GW ; θAR)− U(GL; θAR))]
(3)335

This loss guides the reranker to adjust its usefulness336

levels l(d; θAR) to favor groups that better align337

with the global objective reflected in r3. Unlike338

traditional methods that focus solely on the qual-339

ity of individual item outputs, our proposed Group340

Preference Tuning emphasizes the relative relation-341

ships among multiple items within a group. The342

supervised signal extends beyond the prediction ac-343

curacy of single items to encompass the correctness344

of relative relationships among predictions across345

multiple items, making it inherently suitable for346

addressing the challenges posed by questions that347

require multi-hop reasoning across multiple ground348

truth documents.349

Reranker to Translator. Since the adaptive350

reranker has been aligned with the global rewards351

of the system output, we continue to propagate sig-352

nals derived from the reranker’s evaluations back-353

ward to optimize the query translator. We denote354

the reinforcement signal for the j-th query group355

as R1
j . For each multimodal question (Q, I) or356

textual question Q, the query translator (param-357

eterized by θQT ) generates n distinct groups of358

modality-specific queries Gq = {Gq,j | Gq,j =359

{qT,j , qI,j , qL,j}}n−1
j=0 . Each query group Gq,j is360

then used to retrieve a corresponding ranked list361

of m candidate documents, denoted as Dj =362

(dj,1, dj,2, . . . , dj,m). An optimal query transla-363

tor should formulate queries that maximize the 364

retrieval of pertinent knowledge, with high-utility 365

documents concentrated at the top of each retrieved 366

list Dj. This minimizes the computational load on 367

the adaptive reranker by providing a more focused 368

set of initial candidates. To this end, we define 369

a position-sensitive reward function R for each 370

list Dj retrieved by its corresponding query group 371

Gq,j : 372

R(Dj, βt) =

m∑
k=1

l(dj,k; θ
∗
AR)

(log2(k + 1))βt
(4) 373

where l(dj,k; θ∗AR) is the usefulness score assigned 374

to document dj,k (at rank k in list Dj) by the pre- 375

viously aligned adaptive reranker, and βt ≥ 0 is a 376

time-dependent position sensitivity parameter. This 377

computed reward R(Dj, βt) serves as the reinforce- 378

ment signal R1
j for optimizing the query transla- 379

tor’s parameters θQT using appropriate policy opti- 380

mization algorithms (e.g., PPO, GRPO for online 381

settings, or adapting for offline settings like DPO). 382

During the initial training phase of the query trans- 383

lator, we employ a curriculum learning strategy 384

for βt. We start with βt close to zero by setting a 385

large retrieval size m and a small initial β0, which 386

encourages the query translator to retrieve any rel- 387

evant items, regardless of their position, thus ini- 388

tially optimizing for recall. As training progresses, 389

the objective shifts to prioritize the placement of 390

high-scoring documents at higher ranks. Thus, βt 391

evolves according to: 392

βt = βmax ·
(
1− e

−λ t
Ttotal

)
(5) 393

where λ > 0 controls the rate of convergence to 394

βmax. This evolving βt adapts the reward landscape, 395

guiding the query translator to generate queries that 396

not only retrieve high-quality content but also rank 397

it effectively, thereby enhancing the synergy with 398

the subsequent component. 399

4 Experiments 400

Detailed experimental settings are provided in Ap- 401

pendix B. 402

4.1 Main Results 403

The experimental results on Infoseek and E-VQA 404

benchmarks are presented in Table 1. Our approach 405

demonstrates superior performance over all exist- 406

ing methods, including those leveraging proprietary 407

search engines and models as well as open-source 408
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E-VQA InfoSeek

Model Retriever Feature Single-Hop All Unseen-Q Unseen-E All

Zero-shot MLLMs
BLIP-2 - - 12.6 12.4 12.7 12.3 12.5
InstructBLIP - - 11.9 12.0 8.9 7.4 8.1
LLaVA-v1.5 - - 16.3 16.9 9.6 9.4 9.5
Qwen2-VL-Instruct† - - 16.4 16.4 17.9 17.8 17.9
Qwen2-VL-Instruct(sft)† - - 25.0 23.8 22.7 20.6 21.6

Retrieval-Augmented Models
Wiki-LLaVA CLIP ViT-L/14+Contriever Textual 17.7 20.3 30.1 27.8 28.9
EchoSight EVA-CLIP-8B Visual 26.4 24.9 18.0 19.8 18.8
ReflectiVA EVA-CLIP-8B Visual 35.5 35.5 28.6 28.1 28.3
MM-RewardRAG (Ours) Query-Translator Native multimodality 41.3 43.2 39.3 40.2 39.8

Table 1: Comparative performance on Encyclopedia-VQA and Infoseek benchmarks. MM-RewardRAG demon-
strates the ability to leverage diverse multimodal retrievers without being constrained to dataset-specific retrieval
strategies.

Metrics Text Image All

EM F1 EM F1 EM F1

Hard Negatives
Question-Only 15.4 18.4 11.0 15.6 13.8 -
AutoRouting 49.5 56.9 37.8 37.8 46.6 -
ImplicitDecomp 51.6 58.4 44.6 51.2 48.8 55.5
MuRAG 60.8 67.5 58.2 58.2 60.2 -
SKURG 66.1 69.7 52.5 57.2 59.8 64.0
Solar 69.7 74.8 55.5 65.4 69.8 66.1
PERQA 69.7 74.1 54.7 60.3 62.8 67.8
MM-RwardRAG (Ours) 77.2 78.1 63.9 67.8 72.1 69.3

Full Wiki
AutoRouting 35.6 40.2 32.5 32.5 34.7 -
MuRAG 49.7 56.1 56.5 56.5 51.4 -
MM-RwardRAG (Ours) 57.6 59.8 63.2 64.7 59.5 60.3

Table 2: MultimodalQA evaluation results show that
our approach surpasses other methods, including those
specifically designed for different settings.

LLMs and LVLMs, achieving new state-of-the-art409

results. Our method differs from others in three key410

aspects: 1) We only use 4k data samples for train-411

ing, which reduces computational resource require-412

ments and is efficient enough to be applied to other413

domains; 2) Only the query translator and adaptive414

reranker are fine-tuned to couple each component,415

thereby preserving the general visual instruction-416

following capability of the answer generator, which417

contrasts with previous methods that sacrifice gen-418

eral capabilities to obtain domain-specific perfor-419

mance; 3) The supervised signal is only provided420

by a reward model from the system output, and421

then distributed to each component through reward422

backpropagation, which ensures that the local opti-423

mization objectives of each component are aligned424

with the global goals for improved accuracy and425

factuality of the system output.426

Results on MultimodalQA and WebQA bench-427

Method QA-FL QA-Acc QA

Baseline 47.6 49.3 27.4
VLP + VinVL 47.6 49.6 27.5
VLP + x101fpn 46.9 44.3 23.8
OFA-Cap + GPT 52.8 55.4 33.5
PROMPTCAP + GPT 53.0 57.2 34.5
ETG 60.1 77.2 47.1
MM-RwardRAG (Ours) 64.1 77.9 58.2

Table 3: Evaluation results on WebQA.

marks are presented in Table 2 and Table 3, re- 428

spectively. Notably, previous MM-RAG methods 429

mainly focus on scenarios requiring only textual 430

knowledge, while neglecting those demanding joint 431

multimodal reasoning across text and vision infor- 432

mation. Additionally, current approaches address- 433

ing these two benchmarks typically aim to train 434

task-specific models rather than developing general 435

solutions, due to the challenges in effectively re- 436

trieving relevant cross-modality information and 437

leveraging combined multimodal content. Despite 438

these limitations, our method still outperforms all 439

specialized fine-tuned models. Our proposed native 440

multimodal query translator effectively leverages 441

modality-specific retrieval methods by translating 442

the original question into separate queries for differ- 443

ent knowledge bases, while the adaptive reranker 444

further enhances the quality of external knowledge 445

for the answer generator, more effectively activat- 446

ing its cross-modality reasoning capability to gen- 447

erate superior answers. 448

Table 4 presents the results on OK-VQA and 449

A-OKVQA benchmarks. It is observed that cur- 450

rent LVLMs already possess sufficient paramet- 451

ric knowledge to answer these relatively outdated 452
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Models OK-VQA(%) A-OKVQA(%)

ViLBERT 30.6 25.8
LXMERT 30.7 26.1
ClipCap 30.9 27.2
KRISP 33.7 29.4
GPV-2 48.6 39.3
REVEAL-Base 50.4 41.7
REVEAL-Large 51.5 42.8
REVEAL 52.2 44.5
MM-RwardRAG (Ours) 66.1 63.8

Table 4: Performance comparison on OK-VQA and A-
OKVQA benchmarks.

questions accurately, and the naïve introduction453

of external knowledge potentially degrades model454

performance due to misleading content. However,455

our adaptive reranker effectively filters out noisy456

information, selectively retaining only knowledge457

beneficial to the answer generator, which develops458

an innovative fusion of contextual and paramet-459

ric knowledge, thereby further enhancing overall460

performance.461

E-VQA InfoSeek

Model Single-Hop Un-Q Un-E All

KB Article
Vanilla (Vicuna-7B) 34.1 5.3 4.3 4.7
Vanilla (LLaMA-3-8B) 72.9 10.0 7.9 8.8
Vanilla (LLaMA-3.1-8B) 73.6 15.2 13.9 14.5
LLaVA-v1.5 (Vicuna-7B) 42.9 14.2 13.4 13.8
LLaVA-v1.5 (LLaMA-3.1-8B) 54.1 20.1 17.7 18.8
Ours 83.2 59.8 59.7 59.8

KB Passages
Wiki-LLaVA 38.5 52.7 50.3 51.5
Wiki-LLaVA ⋄ 46.8 51.2 50.6 50.9
ReflectiVA 75.2 57.8 57.4 57.6
Ours 89.2 62.6 62.3 62.4

Table 5: Oracle evaluation demonstrates our approach
achieves a superior upperbound across different back-
bones and granularities, given identical ideal retrieval
results.

We also evaluate our framework under oracle462

settings, with results presented in Table 5, demon-463

strating consistent superior performance with a sub-464

stantial margin of improvement. This suggests that465

our approach can continuously benefit from ad-466

vances in multimodal retrieval techniques. Our467

framework exhibits robust model transferability,468

which is detailed in Appendix C, enabling straight-469

forward integration of emerging models. We will470

track developments in the field and report updated471

results as our method incorporates these advance-472

ments.473

The transfer results on M2KR benchmarks using474

PreFLMR are presented in Table 6. Our method475

Model OKVQA Infoseek E-VQA

Zero-shot MLLMs
RA-VQAv2 55.44 21.78 19.80
Qwen2-VL-Instruct 60.45 21.75 19.01

Retrieval-Augmented Models
RA-VQAv2 w/ FLMR 60.75 - -
RA-VQAv2 w/ PreFLMR 61.88 30.65 54.45
Qwen2-VL-Instruct w/ PreFLMR 46.99 24.68 51.81
Qwen2.5-VL-Instruct w/PreFLMR 65.07 30.74 53.89
Ours w/ PreFLMR 66.02 44.44 63.28

Table 6: Evaluation results on M2KR filtered bench-
marks using PreFLMR as a retriever.

consistently outperforms all previous approaches, 476

further demonstrating its robustness and general- 477

ization effectiveness. 478
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Figure 3: The impact of the query translator on retrieval
performance.

4.2 Query Translator Analysis 479

In this section, we provide the answer to the ques- 480

tion: What has changed during the optimization 481

process of the query translator? As shown in 482

Figure 3, the overall recall across heterogeneous 483

knowledge bases increases as training progresses, 484

with the position of pseudo documents gradually 485

advancing toward the front of retrieval results until 486

reaching a threshold. Notably, the optimized query 487

translator enables top-50 retrieval results to achieve 488

performance comparable to the original top-100, 489

which allows us to set a lower value of n for the 490

retriever, passing significantly fewer candidates to 491

the reranker, thereby reducing computational re- 492

sources and latency while maintaining comparable 493

performance. 494

4.3 Reranker Comparison 495

We compared our adaptive reranker with other mul- 496

timodal rerankers based on the Qwen-VL architec- 497

ture, which includes (1) Jina-reranker-m0, in- 498

cluding an additional post-trained MLP head to gen- 499

erate ranking scores measuring query-document 500
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Models Webqa MMQA Infoseek E-VQA

NDCG MAP MRR P@1 NDCG MAP MRR P@1 NDCG MAP MRR P@1 NDCG MAP MRR P@1

Mono 73.51 70.99 74.69 61.47 82.81 79.48 80.23 71.73 - - - - - - - -
Des 68.74 65.45 69.71 55.28 80.33 77.42 78.60 68.47 47.36 27.42 27.42 14.80 60.29 48.61 47.99 41.90
Jina 79.02 78.07 81.16 70.45 87.21 85.04 86.14 80.16 77.20 74.76 74.76 63.10 65.02 59.39 58.95 41.90

Ours 90.87 91.22 91.79 85.62 92.00 92.11 92.50 86.68 100.0 100.0 100.0 100.0 97.34 97.03 100.0 100.0

Table 7: Performance comparison of various reranker models across different benchmark hard-negative datasets.

1 3 5 10 20 50 100
42.5

45.0

47.5

50.0

52.5

55.0

57.5

60.0

62.5

Pe
rf

or
m

an
ce

OKVQA

1 3 5 10 20 50 100

Number of Retrieved Documents
25.0

27.5

30.0

32.5

35.0

37.5

40.0

42.5

45.0

Pe
rf

or
m

an
ce

Infoseek
7B w/o reranker
7B w/ reranker
3B w/o reranker
3B w/ reranker

1 3 5 10 20 50 100

45

50

55

60

65

Pe
rf

or
m

an
ce

E-VQA

Figure 4: Scaling Law of retrieved documents on three datasets across models with different parameters.

relevance; (2) Mono-reranker, which compares501

the logits of two tokens (True and False) to ob-502

tain a relevancy score that can be used to rerank503

candidates; (3) Dse-reranker, which generates504

embeddings for the query and document separately505

and then calculates the relevance score. Unlike506

our approach that dynamically selects candidates507

based on usefulness, these models all use fixed top-508

k selection after ranking. Additionally, our model509

features versatile any-to-any modality support, con-510

trasting with existing models constrained to fixed511

text-to-image or image-to-text pathways. As shown512

in Table 7, our adaptive reranker outperforms other513

competitors on four benchmarks across all metrics,514

with much less computing resources for training.515

For inference, our model achieves a throughput of516

21.5k tokens per second on a single GPU, which517

significantly outperforms others that incorporate518

non-autoregressive structures, resulting in slower519

processing speeds despite higher GPU power uti-520

lization. Specifically, competing models consume521

substantially more power (e.g. Jina: 453 W, Des:522

315 W, Mono: 426 W) compared to our model’s523

271 W.524

4.4 Scaling Law525

Figure 4 shows the scaling behavior of our pro-526

posed method on three benchmarks within M2KR527

as the number of retrieved documents increases,528

using the PreFLMR retriever. Despite minor fluc-529

tuations across different benchmarks, the trends530

remain consistent. Performance increases to reach 531

an upper bound before subsequently declining, 532

which demonstrates that indiscriminately retrieving 533

more documents is not optimal due to the uncer- 534

tainty in determining the ideal quantity for each 535

dataset. However, when incorporating our adaptive 536

reranker, which dynamically determines the opti- 537

mal number of external knowledge sources for the 538

answer generator regardless of the total retrieved 539

documents, MM-RAG consistently achieves supe- 540

rior performance. Even when the retrieval count 541

reaches high values, the knowledge sources passed 542

to the answer generator remain effectively filtered, 543

eliminating potentially misleading content. We pro- 544

vide additional ablation studies in Appendix C. 545

5 Conclusion 546

In this paper, we propose MM-RewardRAG, a 547

novel end-to-end paradigm that optimizes MM- 548

RAG systems by using reward backpropagation, 549

achieving superior performance, robust transfer- 550

ability across diverse benchmarks and backbones, 551

and high training efficiency with reduced resource 552

needs. Our detailed analysis interprets the learning 553

dynamics and component evolution during training, 554

offering clear interpretability for the effectiveness 555

of our paradigm. Looking ahead, we aim to con- 556

tinuously integrate advancements in multimodal 557

retrieval to further enhance this framework, inspir- 558

ing continued research in this promising direction. 559
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Limitations560

A primary factor limiting the upper-bound perfor-561

mance of MM-RewardRAG is the inherent capa-562

bility of the employed retriever. While our method563

effectively trains lightweight components to couple564

with the retriever at both pre-retrieval (e.g., query565

translation) and post-retrieval (e.g., adaptive rerank-566

ing) stages, the overall system’s ability to surface567

relevant knowledge is ultimately constrained by568

the retriever’s own performance. Consequently, fu-569

ture work incorporating more powerful pretrained570

retrievers will be essential to further boost the per-571

formance of our MM-RewardRAG system.572

Ethics Statements573

A core ethical benefit of the proposed MM-574

RewardRAG lies in its targeted approach to mitigat-575

ing hallucinations in LVLMs. Addressing model-576

generated fabrications is critical, as hallucinations577

can lead to the spread of misinformation and578

erode user trust. By reducing such outputs, MM-579

RewardRAG enhances the factuality and reliability580

of LVLMs, rendering their outputs more trustwor-581

thy. Another ethical aspect of MM-RewardRAG582

is its efficiency. Requiring only a final reward sig-583

nal for supervision makes the system particularly584

applicable to resource-limited scenarios, thereby585

promoting broader and more equitable access to586

these more reliable and safer LVLM capabilities.587
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A Retrieval Performance751

We provide a detailed analysis of retrieval perfor-752

mance in this section, explaining why the query753

translator and adaptive reranker are necessary for754

MM-RAG, which operate in the pre-retrieval and755

post-retrieval stages, respectively. As shown in756

Tables 15, 16, 17, and 18, the optimal model and757

retrieval strategies (e.g., img2img or text2img) vary758

across different benchmarks, likely due to distri-759

bution shifts and differences in data architecture.760

Additionally, directly using a single input question761

or image as a query leads to poor performance, as762

this approach ignores the complementary nature of763

multimodal questions. Despite advancements in764

unsupervised learning methods for retrieval, some765

neural network-based approaches still fall behind766

the sparse BM25 algorithm. Therefore, it is nec-767

essary to fuse multimodal information before the768

retrieval phase and utilize heterogeneous knowl-769

edge bases equipped with different retrieval models770

to obtain targeted retrieval results. After retrieval,771

documents that can lead to the correct final answer772

are not limited to just the annotated ground truth,773

as human annotations are often imperfect and in-774

sufficient. In practice, useful documents frequently775

extend beyond labeled ground truth, as shown in776

Table 13. The suboptimal retriever performance777

makes it inadvisable to provide all retrieved con-778

tent directly to the answer generator. Therefore,779

the adaptive reranker plays a crucial post-retrieval780

role in refining retrieved documents. Even in the781

worst-case scenario where all retrieved documents782

are filtered out, the system would simply revert783

to a vanilla multimodal QA task, which is still su-784

perior to a MM-RAG system contaminated with785

misleading noisy content.786

B Experimental Settings787

B.1 Datasets788

Evaluation Benchmarks. Previous MM-RAG789

methods have primarily focused on benchmarks790

requiring only textual knowledge, which over-791

looks realistic scenarios where essential knowl-792

edge exists across both textual and visual modali-793

ties, necessitating cross-modality joint understand-794

ing and reasoning. To bridge this gap, we eval-795

uate our approach using six datasets comprehen-796

sively covering scenarios that better reflect real-797

world multimodal information needs. (1) In-798

foseek (Chen et al., 2023), which focuses on799

information-seeking visual questions that cannot be800

answered directly through common sense knowl- 801

edge; (2) Encyclopedia-VQA (Mensink et al., 802

2023), containing visual questions about detailed 803

properties of fine-grained categories and instances 804

requiring Wikipedia knowledge (hereafter referred 805

to as E-VQA); (3) MultimodalQA (Talmor et al., 806

2021) and (4) WebQA (Chang et al., 2022), which 807

include questions necessitating reasoning across vi- 808

sual and textual knowledge; (5) OK-VQA (Marino 809

et al., 2019) along with its augmented successor (6) 810

A-OKVQA (Schwenk et al., 2022), both contain- 811

ing visual questions requiring outside knowledge 812

to answer. 813

Metrics. We evaluate our system using the 814

benchmark-specific metrics: Accuracy, F1 score, 815

Fluency, Exact Match, and BARTScore for the 816

answer generator; recall@{1, 3, 5, 10, 20, 50, 100} 817

for the retriever to comprehensively assess result 818

distributions; and standard ranking metrics NDCG, 819

MAP, MRR, and P@1 for the reranker perfor- 820

mance. 821

Knowledge Base. We utilize dataset-provided 822

multimodal knowledge sources for WebQA and 823

MultimodalQA, including both distractor and full- 824

wiki settings. For E-VQA, we employ WIT (Srini- 825

vasan et al., 2021), which contains 2M Wikipedia 826

pages consisting of free-form text and images. 827

For Infoseek, we use OVEN (Hu et al., 2023), 828

which includes 6M Wikipedia information entries. 829

We also use the filtered knowledge corpus pro- 830

vided by Echosight and Reflectiva for fair com- 831

parison. Since OK-VQA and A-OKVQA do not 832

provide dedicated knowledge sources, we employ 833

the same knowledge base as used for Infoseek, and 834

use GS112k (Luo et al., 2021) to study the trans- 835

fer capabilities of optimized MM-RAG systems 836

across different knowledge bases, following previ- 837

ous works. 838

B.2 Implementation Details 839

Retrieval. CLIP-ViT-Large, EVA-CLIP-8B, and 840

Jina-CLIP-v2 are employed for cross-modality re- 841

trieval. While the first two models are constrained 842

by a context window of 77 tokens, Jina-CLIP-v2 843

extends this capacity to 1024 tokens and incorpo- 844

rates additional optimizations for text-to-text re- 845

trieval. For image-to-image retrieval, we utilize the 846

vision encoders from these models to extract image 847

features. BGE dense embedding model and BM25 848

sparse algorithms are used for text-to-text retrieval. 849
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Index. All embeddings are precomputed in850

advance to enhance computational efficiency.851

FAISS-GPU is leveraged for index construction,852

specifically implementing IndexFlatIP for ex-853

haustive vector search operations.854

Backbone. The backbone of the query trans-855

lator and adaptive reranker is initialized with856

Qwen-2-VL 3B, allowing for fair comparisons857

against other models with comparable parameter858

counts. Qwen-2-VL 7B/3B is utilized for the answer859

generator without any finetuning.860

C Ablation Study861

Backbone. We find that using alternative LVLMs862

as backbones for answer generators, including863

those not involved in the training process, also864

yields improvements across these benchmarks,865

highlighting the practical value of our approach866

in being compatible with existing models for in-867

ference without requiring additional training for868

adaptation.869

Cross-KB Transferability. Knowledge bases in870

real-world scenarios inevitably require temporal871

updates to maintain currency and timeliness, which872

requires MM-RAG systems to seamlessly incor-873

porate newly available information. Our learned874

query translator and adaptive reranker can effec-875

tively operate with different embedded corpora,876

simulating the extreme scenario of complete knowl-877

edge replacement during practical updates. This878

confirms that our framework ensures knowledge879

bases can be continuously updated to maintain880

current information, which is critical for long-881

term deployment in environments where knowl-882

edge rapidly evolves.883

Computational Efficiency Our approach re-884

quires significantly fewer training data and compu-885

tational resources due to its efficient design. Dur-886

ing the training or adapting to new domains, the887

embedding models do not require retraining, thus888

eliminating the need for costly frequent reindexing,889

a critical and resource-intensive phase in traditional890

RAG systems. Instead, we insert the tunable query891

translator and adaptive reranker at the pre-retrieval892

and post-retrieval stages, respectively, allowing for893

targeted optimization without disturbing the core894

indexing and retrieval infrastructure.895

D Evaluation Details. 896

D.1 Inference Parameters. 897

The query translator, adaptive reranker, and answer 898

generator are all served in an OpenAI-compatible 899

format, using vllm. To make sure the results can be 900

reproduced, the temperature is set to 0, and top-p 901

is set to 1, max length is 2048. To accelerate the 902

evaluation process, eight instances are served at the 903

same time across multiple servers. Power consump- 904

tion is calculated through nvml. The models that 905

support flash-attn are all enabled to accelerate 906

inference speed. 907

D.2 Hard Negatives Construction. 908

Hard negatives for the MMQA and WebQA 909

datasets are sourced directly from their respective 910

original datasets. For Infoseek and EVQA, hard 911

negatives are derived from the top-10 results of re- 912

trieval results that separately use questions, images, 913

and ground truth documents as query inputs. To 914

simulate demanding real-world conditions where 915

strong retrievers are employed, and thus generate 916

negatives that are genuinely difficult to discrim- 917

inate, BGE, Eva-CLIP, and CLIP-Large are lever- 918

aged as our retriever models to construct these hard- 919

negative samples. 920

E Training Details 921

E.1 Component Initialization. 922

We leverage the visual instruction following capa- 923

bilities to initialize the query translator and adap- 924

tive reranker components by designing prompt tem- 925

plates that guide the model to produce responses 926

in the expected format. For the query translator, 927

we prompt the model to generate queries in a strict 928

JSON format, which can be easily parsed and tai- 929

lored to different knowledge bases. For the Adap- 930

tive Reranker, we instruct the model to perform 931

Chain-of-Thought (CoT) (Wei et al., 2023) reason- 932

ing first to improve interpretation, then output a 933

usefulness level from predefined options. Note that 934

the initialization phase only sets up the output style 935

of these components, while their critical policies 936

still need to be activated and aligned through the 937

following algorithms. 938

E.2 Hyperparameters 939

We use LoRA to train these models to preserve 940

their original general visual instruction capabilities. 941

The hyperparameters for training these models are 942
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Parameter Value

SFT Stage Parameters
Learning Rate 2× 10−5

Batch Size (per device) 16
Number of Epochs 3
Optimizer AdamW
Weight Decay 0.01
Warmup Steps 500
LR Scheduler Type Cosine
Max Sequence Length 2048
Max Gradient Norm 1.0
Dataset Size 4k
LoRA Rank (r) 8
LoRA Alpha (α) 16
LoRA Trainable Modules q_proj, v_proj

DPO Stage Parameters
Learning Rate 1× 10−6

Batch Size (per device) 8
Number of Epochs 1
Optimizer AdamW
Weight Decay 0.01
Warmup Steps 100
LR Scheduler Type Constant
Max Gradient Norm 1.0
Max Sequence Length 2048
Dataset Size 4k
DPO β 0.1
Label Smoothing 0.0
Loss Type Sigmoid

Table 8: Hyperparameters for SFT and RL Training
Stages of MM-RewardRAG Components.

presented in Table 8. All models are trained on a943

server with 8 H200 GPUs.944

E.3 Training Datasets945

To train our inserted components, we construct a946

dataset by sampling 1,000 question-answer pairs947

(along with any associated images) from each of948

the E-VQA, Infoseek, MultimodalQA, and WebQA949

benchmarks, yielding a total of 4,000 examples.950

The supervision for optimizing these components951

is provided exclusively by an external verifiable952

reward model. This reward model generates a953

scalar reward for each system output by compar-954

ing it against the corresponding ground-truth an-955

swer, reflecting aspects such as accuracy and factu-956

ality. This reward then serves as the basis for the957

learning signals propagated throughout our MM-958

RewardRAG framework. 959

F SFT Limitations 960

This section provides the answer to the question: 961

Why can SFT not be solely used to optimize the 962

query translator and adaptive reranker?, to dis- 963

criminate the contributions of our proposed end-to- 964

end optimization paradigm and the two lightweight 965

components designed. 966

The query translator aims to generate queries to 967

retrieve relevant knowledge from diverse knowl- 968

edge bases. A primary challenge for SFT here 969

is the absence of available ground truth for what 970

constitutes an optimal translated query. While hu- 971

man labeling could theoretically produce training 972

datasets (i.e., pairs of original queries and ideal 973

translated queries), determining the “best” trans- 974

lation is non-trivial, even for humans. The effec- 975

tiveness of a translated query can often only be 976

assessed after executing a search with the retriever 977

and evaluating the results again and again. This 978

inherent characteristic suggests that the optimiza- 979

tion of the query translator is more aptly modeled 980

as a reinforcement learning problem. In such a 981

framework, the model iteratively refines its query 982

generation strategy (action) by interacting with the 983

retriever and corpus (environment) and analyzing 984

the retrieval performance (reward). 985

For the adaptive reranker, SFT faces limitations 986

even though a ground truth document is typically 987

provided for each question. As demonstrated in Ta- 988

ble 13, documents capable of leading to the correct 989

answer are often not restricted to this single ground 990

truth instance. Consequently, an SFT approach that 991

narrowly defines only the provided ground truth 992

as positive and other retrieved candidates as nega- 993

tive can introduce significant training noise. This 994

occurs when other genuinely useful documents, 995

which could also lead to the correct answer, are in- 996

correctly labeled and penalized as negatives during 997

the SFT process. 998

G Detailed Discussion with Related 999

Works 1000

Before the era of large pre-trained models, early 1001

MM-RAG systems aimed to jointly train a genera- 1002

tion module for final answers, a knowledge encoder, 1003

and an embedding model. Common methods in- 1004

cluded using MIPS for optimizing knowledge re- 1005

trieval and employing momentum encoders for up- 1006

dating embeddings. However, these early systems 1007
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faced several limitations. They were typically pre-1008

trained from scratch, resulting in models with sig-1009

nificantly smaller parameter counts than contempo-1010

rary LVLMs. Furthermore, the joint training of the1011

generation and knowledge encoding components1012

often led to tight coupling between them, mak-1013

ing it difficult to independently upgrade or replace1014

modules, such as integrating more advanced, sep-1015

arately developed retriever models. Additionally,1016

these approaches required loading all model param-1017

eters and knowledge base embeddings into mem-1018

ory for training, necessitating substantial comput-1019

ing resources. In contrast, our MM-RewardRAG1020

paradigm, while aiming for end-to-end optimiza-1021

tion, is designed to leverage the power of LVLMs.1022

It enables end-to-end optimization by strategically1023

tuning only lightweight, newly inserted compo-1024

nents via reward backpropagation, which preserves1025

the general capabilities of the foundational models,1026

reduces the need for extensive resources for pre-1027

training from scratch, mitigates hardware demands1028

for fine-tuning, and offers greater modularity for1029

component updates.1030

H Qualitative Examples1031

Figure 5 presents qualitative results underscoring1032

the necessity of a heterogeneous knowledge base1033

for MM-RAG. Information pertinent to queries1034

often spans multiple modalities and is frequently1035

modality-specific. Consequently, reliance on a uni-1036

modal knowledge base inherently leads to an in-1037

complete representation of the required knowledge.1038

Illustrative outputs from the RL process are pre-1039

sented in Table 9 and Table 10. These exam-1040

ples demonstrate that queries achieving the highest1041

and lowest reward scores often exhibit only mi-1042

nor lexical differences, yet yield substantially di-1043

vergent retrieval results. The sensitivity to subtle1044

query variations underscores the impracticality of1045

manually annotating translated queries for these1046

knowledge bases, given the prevalence of nuanced,1047

system-specific biases. Consequently, employing1048

RL to train a model capable of adapting to these1049

knowledge bases by discerning their implicit biases1050

through exploration presents a resource-efficient1051

and, indeed, necessary strategy.1052

Tables 11 and 12 show that, during the RL pro-1053

cess, the output of the adaptive reranker gradually1054

aligns with the preferences of the answer genera-1055

tor, exhibiting subtle refinements in semantics and1056

logical flow. The subtle nature of these refinements1057

makes them difficult for humans to directly iden- 1058

tify and distinguish. This, in turn, complicates the 1059

direct collection of labeled datasets required for 1060

supervised tuning. Consequently, after training, the 1061

adaptive reranker becomes closely coupled with the 1062

answer generator to maximize this implicit reward. 1063

I Prompt Tuning vs. Parameter Tuning 1064

While directly fine-tuning the parameters of the 1065

answer generator might be an intuitive solution, 1066

we found this approach suboptimal for two main 1067

reasons: (i) intensive parameter tuning on spe- 1068

cific datasets can degrade its broad, pre-trained vi- 1069

sual instruction-following capabilities, potentially 1070

harming its generalization. (ii) More importantly, 1071

with our proposed query translator and adaptive 1072

reranker, which effectively filter noisy data and 1073

dynamically determine the optimal amount of con- 1074

textual information passed to the generator, we find 1075

that lightweight prompt engineering, primarily just 1076

to define input and output formats, is sufficient 1077

for achieving high performance. Consequently, 1078

the additional advantages of full parameter fine- 1079

tuning for the generator become minimal in our 1080

MM-RewardRAG framework. 1081

J Prompt Templates 1082

We provide the prompts used in this paper in Fig- 1083

ure 6, 8, 7, 9. 1084
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Example: Dirt Track Racing Driver

Highest Scoring Output Details
Chain of Thought: The image shows a dirt track racing car. The question asks about a New
Zealander who raced on this track in 2008. We need to identify the track and find out if any New
Zealanders raced there in 2008.

Generated Queries:
• "New Zealand dirt track racing 2008"
• "2008 New Zealand dirt track racing driver"

Keywords String: New Zealand, dirt track, racing, 2008, driver

Lowest Scoring Output Details
Chain of Thought: The image shows a race car on a dirt track, suggesting it might be related
to motorsport, possibly involving New Zealand racing history. The question asks about a New
Zealander who raced at this track in 2008. The first step is to identify the race track, which could
be inferred from the context or the track’s distinctive features. If the track is not recognizable,
the focus shifts to identifying any specific races or events in 2008 where New Zealand drivers
participated. This could involve searching for notable New Zealand racing events from that year.

Generated Queries:
• "New Zealand motorsport history 2008"
• "New Zealand race cars 2008"

Keywords String: New Zealand motorsport 2008 race track

Table 9: Qualitative example for Dirt Track Racing Driver case: generated queries and reasoning during RL training.
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Example: Plant Synonym from Seed Pod

Highest Scoring Output Details
Chain of Thought: The question asks for a synonym of the plant shown in the image. To find
this information, I need to identify the plant species first. The image shows a dry seed pod with a
distinctive shape. This could be a type of plant like a milkweed or a similar species known for its
seed pods. Once the plant species is identified, I can search for synonyms related to that species.

Generated Queries:
• "dry seed pod plant"
• "plant with dry seed pod synonyms"
• "common names for plants with dry seed pods"
Keywords String: dry seed pod, plant, synonyms, common names

Lowest Scoring Output Details
Chain of Thought: The question asks for a synonym of the plant shown in the image. The first step
is to identify the plant in the image. Once identified, synonyms can be searched.

Generated Queries:
• "What is a synonym for the plant in the image?"
• "Identify the plant in the image and find its synonyms."
Keywords String: plant, synonyms

Table 10: Qualitative example for Plant Synonym from Seed Pod case: generated queries and reasoning during RL
training.
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Transition: useful → useless

Positive Case (Predicted Label: useful)

Chain of Thought: The knowledge snippet provides information about Monarda didyma, commonly
known as crimson beebalm. It mentions that this plant grows in dense clusters along stream banks,
moist thickets, and ditches. This directly answers the VQA question about what kind of clusters
the plant grows in.

Negative Case (Predicted Label: useless)

Chain of Thought: The knowledge snippet provides information about Monarda didyma, commonly
known as crimson beebalm or scarlet monarda. It describes various aspects of the plant, such as its
family, habitat, and characteristics. However, it does not explicitly mention the type of clusters in
which the plant grows. Therefore, the knowledge snippet is not directly relevant to answering the
VQA question about the plant’s cluster growth pattern.

Transition: useful → neutral

Positive Case (Predicted Label: useful)

Chain of Thought: The knowledge snippet provides information about Monarda didyma, commonly
known as crimson beebalm. It mentions that the plant grows in dense clusters along stream banks,
moist thickets, and ditches. This matches the VQA question which asks about the type of clusters
the plant grows in. Therefore, the knowledge snippet is relevant and useful for answering the
question.

Negative Case (Predicted Label: neutral)

Chain of Thought: The knowledge snippet provides information about the plant Monarda didyma,
commonly known as crimson beebalm. It describes various aspects of the plant such as its
appearance, growth habits, and historical uses. However, it does not specifically mention how the
plant grows in clusters or provide details about its cluster formation.

Table 11: Qualitative examples of textual knowledge for adaptive reranker.
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Transition: useful → neutral

Positive Case (Predicted Label: useful)

Chain of Thought: The image confirms that the city in question is Tokyo, which hosted events in
the BWF Super Series in 2017 and has a tall, narrow tower (Tokyo Skytree) illuminated in blue
light. This visual evidence supports the question’s requirements, making the image useful for
answering the population-related part.

Negative Case (Predicted Label: neutral)

Chain of Thought: The question asks about the population of a city that hosted a scheduled event in
2017’s BWF Super Series and has a tall, narrow tower illuminated in blue light. The image shows
Tokyo, which is known to host such events and has a distinctive tall, narrow tower (the Tokyo
Skytree) that is illuminated in blue at night. However, the image does not provide information
about the population of Tokyo’s metropolitan area.

Transition: neutral → useless

Positive Case (Predicted Label: neutral)

Chain of Thought: The image confirms that the city in question is Tokyo, which fits the description
of having a tall, narrow tower (Tokyo Skytree) lit up in blue light. However, the image does not
provide any data or indicators regarding the population of the metropolitan area.

Negative Case (Predicted Label: useless)

Chain of Thought: The image shows Tokyo and the Tokyo Skytree illuminated in blue, but it does
not confirm that Tokyo hosted the 2017 BWF Super Series events or provide data on the population
of its metropolitan area.

Table 12: Qualitative examples of visual knowledge for adaptive rerankers.

Dataset
Pseudo Recall Recall

@1 @5 @10 @20 @50 @100 @1 @5 @10 @20 @50 @100

OKVQA 0.421 0.676 0.781 0.866 0.941 0.969 0.136 0.303 0.392 0.493 0.635 0.718
EVQA 0.511 0.719 0.785 0.833 0.883 0.909 0.402 0.624 0.702 0.780 0.861 0.912
Infoseek 0.311 0.575 0.686 0.780 0.874 0.916 0.190 0.392 0.487 0.584 0.713 0.797

Table 13: PReFLMR Recall Performance on Different Datasets.
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Dataset Model
NDCG Precision

Overall @3 @5 @10 @1 @3 @5 @10 MAP MRR

EVQA

Mono – – – – – – – – – –
DES 60.29 43.42 47.03 57.54 34.10 18.33 13.36 10.51 48.61 47.99
Jinaimg 65.02 56.90 62.50 65.36 41.90 25.30 10.00 11.46 59.39 58.95
Jinatext 86.16 85.99 87.41 86.42 76.80 34.53 22.36 11.54 85.56 85.33
Ours 97.34 99.69 98.83 97.51 100.0 34.23 21.42 11.46 97.03 100.0

Infoseek

Mono – – – – – – – – – –
DES 47.36 20.34 21.96 35.98 14.80 8.20 5.90 6.86 27.42 27.42
Jinaimg 77.20 74.52 76.39 76.64 63.10 27.76 18.08 9.75 74.76 74.76
Jinatext 71.76 68.26 70.56 71.89 54.30 26.33 17.54 9.90 68.97 68.97
Ours 100.0 100.0 100.0 100.0 100.0 33.33 20.00 10.00 100.0 100.0

MMQA

Text-to-Image
Mono 82.81 79.89 81.28 81.72 71.73 30.15 21.01 11.34 79.48 80.23
DES 80.33 77.87 80.18 80.13 68.47 31.32 21.28 11.59 77.42 78.60
Jina 87.21 85.70 86.33 85.79 80.16 33.33 22.01 11.51 85.04 86.14
Ours 92.00 93.05 93.36 91.87 86.68 37.24 23.75 12.12 92.11 92.50

Text-to-Text
Mono - - - - - - - - - -
DES 75.47 76.99 78.38 75.46 68.27 37.36 26.03 15.32 71.46 78.60
Jina 90.66 91.93 91.82 90.67 87.62 47.70 30.01 15.39 90.47 92.22
Ours 95.70 96.24 96.37 95.70 93.74 49.54 30.64 15.39 95.71 96.20

WebQA

Text-to-Image
Mono 73.51 74.74 76.40 75.37 61.47 33.26 22.63 13.08 70.99 74.69
DES 68.74 68.83 71.01 71.03 55.28 30.80 21.87 13.10 65.45 69.71
Jina 79.02 81.54 81.81 80.96 70.45 36.92 24.59 13.40 78.07 81.16
Ours 90.87 93.01 92.89 91.66 85.62 44.17 27.46 13.88 91.22 91.79

Text-to-Text
Mono - - - - - - - - - -
DES 76.05 84.33 82.26 78.35 77.55 47.09 33.06 18.94 72.83 85.44
Jina 89.65 30.00 30.00 21.54 30.00 16.66 20.00 5.00 88.09 30.00
Ours 100.0 100.0 100.0 100.0 100.0 66.66 40.00 20.00 100.0 100.0

Table 14: Performance Comparison of Reranker Models Across Multiple Datasets.
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Ethnobotany [edit]
Smilax bona-nox has many uses. The 
leaves of this plant were used for cigarette 
wrappers by the Native Americans. The 
roots can be used not only to make bread 
but also as medicines. The roots of this 
plant are known to help urinary tract 
infections and as an antioxidant.[4]

Textual Knowledge Visual Knowledge LLM Knowledge

Q: What kind of medical 
usage has this plant?

A: help urinary tract 
infections and as an 
antioxidant.

Q: What animals race in the 
Kentucky Derby?

A: horses

Q: In what year was the 
Swahili Wikipedia first 
created?

LLM: 2003

LVLM: 2007

Figure 5: Different types of knowledge that are required to answer questions.

Prompt For Verifiable Reward Model

Given a question , a ground truth answer , and a prediction answer , please
evaluate the prediction answer.
If the prediction answer is correct , please return "True".
If the prediction answer is wrong , please return "False".
The question is: {{ {question }} }}
The ground truth answer is: {{ {ground_truth_answer} }}
The prediction answer is: {{ {prediction_answer} }}
Please answer with "True" or "False".

Figure 6: Prompt for Verifiable Reward Model.

Model Modality Recall
@1 @3 @5 @10 @20 @50 @100

Jina-CLIP-V2

I → I 10.99 17.46 20.62 24.81 31.35 38.66 44.01
I → Tpart 2.31 5.09 6.45 10.43 15.18 22.50 28.13
I → Twhole 4.43 8.33 10.06 14.67 19.49 27.96 34.88
T → I 0.27 0.43 0.60 1.06 1.53 2.85 4.10
T → Tpart 3.75 5.42 6.71 8.31 9.98 13.00 15.84
T → Twhole 1.89 2.64 3.28 4.26 5.49 7.93 10.38

CLIP-Large
I → I 10.34 17.72 21.32 26.69 33.37 40.60 47.66
I → Ititle 21.85 23.89 32.45 35.84 39.02 43.23 45.09
I → Isummary 15.23 19.96 31.89 35.55 39.08 42.12 45.79

EVA-CLIP-8B
I → I 15.28 25.09 30.20 37.28 43.86 50.97 55.66
I → Ititle 17.29 30.01 33.22 35.13 41.12 45.09 49.82
I → Isummary 20.83 33.72 37.56 42.30 43.58 47.26 50.39

Table 15: Recall results on E-VQA dataset

20



Prompt For Answer Generator

Given a Visual Question Answering (VQA) question and a knowledge snippet ,
please generate the answer to the question.
Here is the VQA question:
<img_start ><img ><img_end >
Question: {question}
Here is the knowledge snippet: {document}
Please output the answer to the question.

(a) Prompt For Answer Generator (VQA with Knowledge Snippet).

Prompt For Answer Generator

Given a question and a knowledge snippet , please generate the answer to the
question.
Here is the question:
Question: {question}
Here is the knowledge snippet: {document}
Please output the answer to the question.

(b) Prompt For Answer Generator (Text Question with Knowledge Snippet).

Prompt For Answer Generator

Given a question and an image with a caption , please generate the answer to
the question.
Here is the question:
Question: {question}
Here is the image with caption:
<img_start ><img ><img_end >
Caption: {caption}
Please output the answer to the question.

(c) Prompt For Answer Generator (Question with Image and Caption).

Figure 7: Examples of different prompts for the Answer Generator module.
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Prompt For Query Translator

Given a Visual Question Answering (VQA) question , please generate some
possible search engine queries and keywords that can be used to retrieve
knowledge from an external knowledge base that can answer the question
without referring to the input image.
Please output strict JSON that can be directly parsed by Python , in the
following format: {" Chain_of_Thought ": your analysis here , "queries ": search
engine queries here , "image_queries ": image search engine queries here , "
key_words_string ": keywords for BM25 here .}.
Here is the VQA question:
<img_start ><img_token ><img_end >
Question: {question}
Please output the Chain of Thought reasoning and the queries in strict JSON
format.

Figure 8: Prompt For Query Translator.

Prompt For Adaptive Reranker

Given a Visual Question Answering (VQA) question and a knowledge snippet ,
please determine whether this knowledge snippet is useful for answering the
VQA question. Please output one of the following levels: useful , neutral ,
useless. First , perform Chain of Thought (CoT) reasoning and then output the
label. Please output strict JSON that can be directly parsed by Python , in
the following format: {"CoT": your analysis here , "level": the level obtained
after analysis }.

Here is the VQA question:
<img_start ><img_token ><img_end >
Question: {question}
Here is the knowledge snippet: {document}
Please output the Chain of Thought reasoning and the label in strict JSON
format.

Figure 9: Prompt For Adaptive Reranker.

Model Modality Recall
@1 @3 @5 @10 @20 @50 @100

Jina-CLIP-V2

I → I 2.76 4.57 5.47 6.93 8.79 11.86 14.87
I → T 9.9 16.82 20.67 26.34 32.64 41.49 48.00
T → I 0 0 0 0 0.01 0.01 0.09
T → T 0 0 0 0.04 0.15 0.30 0.67

CLIP-Large
I → I 10.81 16.22 19.78 23.89 27.96 33.52 37.36
I → Ititle 9.72 13.22 17.08 21.09 22.78 25.32 29.85
I → Isummary 9.83 15.72 17.99 25.37 28.90 31.85 33.05

Eva-CLIP-8b
I → I 16.00 23.21 26.66 30.29 33.60 38.17 41.42
I → Ititle 21.23 26.79 33.95 35.23 40.26 43.23 47.58
I → Isummary 20.01 27.83 35.23 37.21 39.89 42.08 43.72

Table 16: Recall results on Infoseek dataset
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Model Modality Recall
@1 @3 @5 @10 @20 @50 @100

Jina-CLIP-V2
T → I 12.40 24.80 29.60 33.20 37.60 44.00 50.40
T → Ititle 82.80 88.00 89.20 90.40 92.00 93.60 94.40
T → T 39.67 58.29 63.80 71.08 77.66 83.99 87.22

BM25
T → Ititle 87.60 90.40 90.80 91.20 91.20 92.00 92.00
T → T 36.08 60.06 67.47 76.01 81.52 86.84 90.06

BGE
T → Ititle 86.13 90.53 91.13 91.93 92.93 93.53 94.33
T → T 45.76 70.76 77.28 83.19 86.37 89.96 91.43

Table 17: Recall results on MMQA dataset

Model Modality Recall
@1 @3 @5 @10 @20 @50 @100

Jina-CLIP-V2
T → I 65.20 80.00 91.60 99.20 1 - -
T → Ititle 93.60 97.20 98.80 1 - - -
T → T 53.73 77.15 86.84 1 - - -

BM25
T → Ititle 96.80 99.60 1 - - - -
T → T 48.42 85.06 92.59 1 - - -

BGE
T → Ititle 96.40 99.20 99.60 1 - - -
T → T 61.65 89.56 95.13 1 - - -

Table 18: Recall results on WebQA dataset
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