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Abstract

Large language models (LLMs) have been001
shown to develop linguistic competence from002
mere exposure to language content, making003
them a promising avenue for investigating in-004
fants’ language learning processes (Lavechin005
et al., 2023; Chang and Bergen, 2022). Never-006
theless, LLMs typically require orders of mag-007
nitude more data than children, and language008
outcomes cannot be directly compared. Here,009
we introduce machine-CDI, a metric based on010
the learner’s output to enable a direct compar-011
ison of machines and infants on their expres-012
sive vocabulary as a function of input quantity.013
This metric adapts the Communicative Devel-014
opment Inventories (Fenson et al., 2007; Frank015
et al., 2017), a normalized inventory of words016
to quantify child language development, to the017
evaluation set of language models. We illus-018
trate machine-CDI by comparing the expressive019
vocabulary in infants and character language020
models (LSTMs and Transformers) trained on021
English audiobooks. The results show that lan-022
guage models approximately match the chil-023
dren’s learning curves, although Transformers024
are delayed compared to LSTMs. A further025
analysis show that the models are more im-026
pacted by word frequency than children, with a027
large delay in acquiring low frequency words028
for models. This delay is found to be linked029
to the more general phenomenon of long tail030
truncation observed in language models, which031
makes them unable to learn words based on few032
shot observations. These results shed new light033
on the principles of language acquisition, and034
highlights important divergences in how hu-035
mans and modern algorithms learn to process036
natural language.037

1 Introduction038

From a cognitive perspective, language models039

are of theoretical interest to test the distributional040

hypothesis of language acquisition according to041

which human children learn from the statistical pat-042

terns within language data (Boleda, 2020; Lenci,043

2018; Saffran et al., 1996). Previous research 044

has shown that language models can effectively 045

simulate aspects of the language acquisition pro- 046

cess, such as phoneme categorization (Lavechin 047

et al., 2023), word acquisition prediction (Chang 048

and Bergen, 2022), and grammatical development 049

(Evanson et al., 2023; Lavechin et al., 2023; Pan- 050

nitto and Herbelot, 2020). However, these studies 051

have predominantly focused on qualitative analy- 052

ses, often lacking detailed comparisons with real- 053

world human data. 054

For a more quantitative approach to the simula- 055

tion of language acquisition, we propose to match 056

learning environment and outcome measures in the 057

following two aspects. First, despite variations in 058

socio-economic factors and cultural settings (Hart 059

et al., 1997; Cristia et al., 2019), current estimates 060

suggest that American English-learning children 061

receive between 300 and 1,000 hours of speech 062

input annually, totaling at most 30 million of words 063

by the age of three. In contrast with modern lan- 064

guage models trained on trillions of words(Hart 065

et al., 1997; Cristia et al., 2019), we train mod- 066

els on developmentally plausible input, matched 067

in quantity to the input that children are exposed 068

to. Second, evaluation methods for language mod- 069

els should be consistent with those available form 070

human dataset. Currently, human behavioral data 071

are derived mainly from children’s speech produc- 072

tion (e.g., CHILDES) or parental reports (Com- 073

municative Development Inventories, hereafter hu- 074

man CDI) (MacWhinney and Snow, 1985; Fenson 075

et al., 2007). In contrast, language model evalua- 076

tions often involve zero-shot probing tasks, such as 077

spot-the-word (Le Godais et al., 2017) or grammat- 078

ical acceptability judgments (Warstadt et al., 2019), 079

which, although inspired by psycholinguistic meth- 080

ods, are intrinsically different from production- 081

based human data and typically rely on carefully 082

designed probing sets. 083

To address these issues, we introduce Machine- 084
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CDI, a lexical benchmark designed for direct com-085

parison between infant language acquisition and086

language modeling. In this study, we (i) train087

vanilla character LSTMs and Transformers on de-088

velopmentally plausible data; (ii) introduce a new089

metric to evaluate how the language models’ gener-090

ations fit into human acquisition patterns from the091

human CDI (Fenson et al., 2007; Frank et al., 2017),092

rather than relying on extrinsic evaluations or down-093

stream tasks; and (iii) provide a comprehensive094

analysis on generations. Our findings reveal gen-095

erally comparable curves in expressive vocabulary096

development between children and LSTMs, while097

Transformers show learning delays. A detailed ex-098

amination on missing rates and out-of-vocabulary099

rate show that this is linked to the more general100

phenomenon of long tail truncation observed in lan-101

guage models, which makes them unable to learn102

words based on few shot observations. These find-103

ings provide new insights into the principles of104

language acquisition and highlight important differ-105

ences in how humans and modern algorithms learn106

to process natural language.107

2 Related Work108

2.1 Language model as distributional learner109

Recently, there has been substantial research ap-110

plying language models to simulate language ac-111

quisition. The earliest study by (Rumelhart et al.,112

1986) investigated past tense verb form learning in113

phoneme-level neural networks, which was later114

replicated in character-level recurrent neural net-115

works Kirov and Cotterell, 2018.116

Inspired by "acceptability judgments" in psy-117

cholinguistic experiments, these models are of-118

ten evaluated using zero-shot linguistic probes,119

i.e. comparing the estimated probability of legiti-120

mate sequences with that of matched implausible121

ones. Previous studies on infants’ language acqui-122

sition have used this method to probe word-level123

acquisition (’spot-the-word’) and sentence-level ac-124

ceptability judgments (word: (Chang and Bergen,125

2022; Vong et al., 2024); syntactic: (Evanson et al.,126

2023)). Notably, linguistic abilities in children and127

models are tested differently: models are explic-128

itly tested on next-word prediction using a two-129

alternative forced-choice metric, while children are130

implicitly evaluated based on their spontaneous131

use of linguistic structures during natural speech.132

This critical difference addresses the necessity for133

a more comparable metric.134

Additionally, previous studies applying language 135

models to test cognitive hypotheses tend to make 136

an analogy between training dynamics and lan- 137

guage learning process. For instance, Chang and 138

Bergen (2022) has shown the similarity of vocabu- 139

lary learning curves between training steps and age 140

of acquisition(AOA). One follow-up study showed 141

that GPT-2 language models tend to acquire gram- 142

matical knowledge in a sequential order, which 143

corresponds to what has observed from transcripts 144

between children-parents (Evanson et al., 2023). 145

However, most of the studies focus on qualitative 146

analysis by making an analogy between children’s 147

developmental stages and training steps. This mis- 148

alignment in time scales makes the trajectories less 149

comparable. Subsequent research addressed this 150

issue by training self-supervised models with vary- 151

ing input sizes to explicitly quantify human’s de- 152

velopmental trajectories (Lavechin et al., 2023). 153

Their study demonstrate analogous linear growth 154

patterns in lexical test, initially suggesting the ef- 155

ficacy of language model for vocabulary develop- 156

ment. However, there exists a discrepancy on the 157

evaluation task, with the human reference data rep- 158

resenting the proportion of children knowing the 159

word, whereas the model is measured in probing 160

task accuracy. What’s more, the constructed test 161

words do not directly reflect the distributional pat- 162

terns of children’s exposure to the words. 163

Therefore, the broad motivation of our work is 164

to assess the distributional mechanisms in infants 165

lexical acquisition (Saffran et al., 1996; Romberg 166

and Saffran, 2010) using neural language models as 167

distributional learners. If analogous distributional 168

learning mechanisms were involved in children, 169

then we would expect similar evaluation outcomes 170

from the proposed lexical metrics. 171

2.2 Word representation in language models 172

Language models are typically trained in a way 173

that take as inputs a series of token and output the 174

predicted tokens. In text language models, the pre- 175

dicted tokens can be characters (Xue et al., 2022), 176

entire words (Mikolov et al., 2013; Pennington 177

et al., 2014), or word fragments, for example, byte 178

pair encodings, (Sennrich et al., 2015)). In these 179

two latter cases, the training of the LMs is done 180

in two phases: first a tokenizer is learned, using 181

spaces or punctuation to delimit the word bound- 182

aries, and the training corpus is tokenized; second 183

the LM is trained with the token-prediction objec- 184
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Figure 1: Overview of Machine-CDI. Models are fed
with linguistic input in matched quantities compared to
children and their output is also matched to their outputs.
A list of test words is prepared for the machine, matched
to the human-CDI in word frequency distibution, yield-
ing comparable vocabulary growth curves.

tive. Tokenization assumes that beginning and ends185

of words can be identified prior learning, while in-186

fants typically acquire language from continuous187

speech without without knowing the correct linguis-188

tic labels like word boundaries a prior (Maye et al.,189

2002). Prior work (Sutskever et al., 2011; Graves190

et al., 2014; Hahn and Baroni, 2019; Nguyen et al.,191

2022; Boldsen et al., 2022; Yu et al., 2024), have192

found that character LMs can learn lexical, syntac-193

tic and semantic representations and do not need194

a prior segmentation in words. In such models,195

words are latent representations instead of being196

explicitly represented, making them a promising197

approach to simulate the process of lexical learn-198

ing.199

Therefore, we use characters as tokens and leave200

the language models to learn words in an unsu-201

pervised fashion in this work. Instead of applying202

models that are trained on speech or phonemes, we203

start with character language models to take the204

simplified invariant representations of word forms205

as input regardless of the acoustic variability. This206

might provide an upper bound of the overall model207

performance when compared with human data.208

3 Method209

We follow the reverse engineering approach in210

(Dupoux, 2018) where a simulation jointly models211

the input to the learner, the learner and the outcome212

measure in a quantitative fashion (Figure 1).213

3.1 Metrics 214

3.1.1 Machine-CDI 215

We detail two key aspects of Machine-CDI that 216

enable direct comparisons on the learning speed of 217

human and machine: data quantity alignment and 218

evaluation metric alignment. 219

Aligning input data quantity with infants’ lin- 220

guistic exposure Initially, we standardized the 221

amount of training data to reflect the estimated 222

speech exposure of each child, based on prior re- 223

search of an average annual exposure of 1,000 224

hours of speech per child (Mendoza and Fausey, 225

2021). This number corresponds to an upper bound 226

rather than an average when taking into consider- 227

ation cross-linguistic variation , with the median 228

being 500h/year, and the minimum around 60h/y 229

or less(Cristia, 2023). We converted speech du- 230

ration into corresponding word counts, assuming 231

an average speech rate of 3 words per second, or 232

10,000 words per hour as is shown in Figure 2c. 233

We then trained models with varying input sizes to 234

represent infant cohorts at different developmen- 235

tal stages to ensure a realistic approximation of 236

linguistic exposure. 237

Aligning evaluation metric We base our model 238

evaluation task on human CDI (Fenson et al., 2007; 239

Frank et al., 2017), a checklist of representative 240

word samples used to measure word learning. Our 241

evaluation tasks reported binary scores for a word 242

set to align with parents’ binary reports (Frank 243

et al., 2017). 244

To construct the model’s evaluation sets, we se- 245

lected 520 words from the training set by match- 246

ing both the number and frequency distribution 247

of content words in the human CDI set. To esti- 248

mate word frequency of human CDI set, we con- 249

catenated and cleaned all the transcripts from the 250

English CHILD Language Data Exchange Sys- 251

tem (CHILDES) database, resulting in 14.5 mil- 252

lion words of adult speech. For the machine CDI 253

word set, frequency was derived from the largest 254

language model training set, consisting of approxi- 255

mately 1 million word types from 30M words. We 256

iteratively minimized the loss function between the 257

frequency distributions of the human and machine 258

CDI sets. 259

To bridge the gap between parental reports 260

and observable language model performance, we 261

aligned the vocabulary growth curve derived from 262

children’s speech in the CHILDES corpus with hu- 263

man CDI scores (see Figure 2b). We constructed 264
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the vocabulary growth curve by calculating the cu-265

mulative word frequency for each month and ap-266

plying a constant count threshold to convert these267

results into binary scores. Due to data sparsity,268

the word frequency was recalibrated to approxi-269

mate monthly speech production based on previous270

research on child vocalization duration. We se-271

lected the count threshold to best fit the human CDI272

growth curve, assuming that an optimal threshold273

would closely approximate the observed growth274

speed(see Figure 2c). Figure 2b shows that, on275

average, a child is expected to produce a correct276

word form approximately 60 times per month.277
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Figure 2: Calibration method. a. The distribution of
frequency per million of the machine CDI (reference
corpus: audiobooks) is matched to that of child-CDI
(reference corpus: English-CHILDES). b. To decide
whether a word is ’known’ based on the speaker’s output,
we count instances of the word and apply a threshold.
In plain blue, resulting vocabulary growth curves for
different thresholds. In dotted blue, application of this
criterion to the adult’s own input. In red, parental reports
of children vocabulary. c. Estimates of monthly parental
output (input to the child) and child output.

3.1.2 Generation set analysis278

To provide a detailed analysis of the gener-279

ated dataset by language models, we conducted280

an examination of the missing rate and out-of-281

vocabulary (OOV) rate. Specifically, we gener-282

ated an equal number of words using LSTM and283

Transformer language models, each trained on a284

3.4 million-word corpus. The missing rate quanti-285

fies the proportion of words present in the training286

set but absent in the generated set, indicating the287

extent to which the generated data replicates the288

vocabulary of the training set. The OOV rate mea-289

sures the proportion of words in the generated set290

that do not appear in the training set, thus assess-291

ing the model’s ability to generalize beyond the292

training data. Additionally, we evaluate the true-293

word rate as the proportion of correct word forms 294

in the generated set, to further assess the model’s 295

generalizability. For this evaluation, we use a com- 296

bination of word lists from CELEX (Van Heuven 297

et al., 2014), the Enchant Library 1, and Wiktionary 298
2 as a spelling checker. 299

To contextualize the characteristics of the model- 300

generated text, we constructed two equal-sized ref- 301

erence sets respectively: the in-domain test set, 302

which are selected from audiobook transcripts that 303

are aligned in genres but not included in the training 304

set, and an out-of-domain set consisting of child- 305

directed speech from the English CHILDES cor- 306

pus. 307

3.2 Developmentally plausible training set 308

Following STELA (Lavechin et al., 2022), we built 309

a developmentally plausible training set from the 310

orthographic transcripts of Librovox English audio- 311

books (Kearns, 2014), consisting subsets of tran- 312

scripts of 400h, 800h, 1600h and 3200h respec- 313

tively. Given our calibration of 1000h/year, this 314

translates into 4.8m, 9.6m, 19.2m, and 38.4m, re- 315

spectively. 316

3.3 Models 317

We applied two types of models on devel- 318

opmentally plausible datasets to simulate lan- 319

guage acquisition: probabilistic language mod- 320

els (including Long Short-Term Memory mod- 321

els and decoder-only transformers 1), and a non- 322

parametric Bayesian model: Chinese Restaurant 323

Process(Gershman and Blei, 2012). 324

Chinese Restaurant Process (CRP) The non- 325

parametric Bayesian CRP model clusters data by 326

assigning probabilities. A new word joins an ex- 327

isting cluster with a probability proportional to the 328

cluster size and starts a new cluster with a prob- 329

ability proportional to a parameter α (Gershman 330

and Blei, 2012). We initialized the CRP model 331

using a 3-gram language model derived from the 332

developmentally plausible datasets. 333

Neural Network Architectures We employed 334

two types of neural network architectures: decoder- 335

only LSTMs (Hochreiter and Schmidhuber, 1997) 336

and Transformers (Vaswani et al., 2017). Similar 337

performance from both models would indicate that 338

the learned patterns are robustly present in the data, 339

not artifacts of a specific model architecture. 340

1https://pypi.org/project/pyenchant/
2https://www.wiktionary.org
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For LSTMs, we used a three-layer architecture341

with an embedding layer of size 200, hidden lay-342

ers of size 1024, and a feed-forward output layer343

of size 200, based on prior work (Lavechin et al.,344

2023). For the Transformer model, we experi-345

mented on different attention heads and decoding346

layers, and ended with 8 attention heads and 6 de-347

coding layers that yielded the optimal perplexity.348

3.4 Generations349

The generation process for the Chinese Restaurant350

Process (CRP) model uses a concentration param-351

eter, α, derived from the training data to simulate352

word occurrences. This approach ensures that each353

token is generated either as a new word or by in-354

crementing the count of an existing word, thereby355

creating a corpus that reflects the token distribution356

dynamics as modeled by the CRP.357

For LSTMs and Transformers, we employed358

both unprompted and prompted generation using359

temperature sampling. Temperature sampling ad-360

justs the output logits by dividing them by a tem-361

perature parameter before sampling from the distri-362

bution. Higher temperature values make the distri-363

bution more uniform, increasing randomness. The364

number of prompts was matched to the number of365

sentences generated. Each prompt consisted of 3366

words from the audiobook dataset that do not exist367

in the training set as a whole sequence. We also ex-368

cluded sequences containing words in the machine369

CDI test set.370

4 Results371

4.1 Human-model comparison372

Protracted development of language models373

The results from our lexical benchmark, illus-374

trated in Figure 3, reveal significant dependen-375

cies of vocabulary growth curves on model archi-376

tectures. The CRP models consistently demon-377

strate higher vocabulary sizes across all months378

compared to probabilistic language models. In379

contrast, probabilistic language models, including380

LSTMs and Transformers, exhibit slower vocab-381

ulary growth, a trend that persists regardless of382

decoding temperatures and prompt types. This dif-383

ference highlights a fundamental limitation in their384

ability to mimic human-like vocabulary expansion.385

A closer examination reveals that LSTM mod-386

els align more closely with human vocabulary387

growth curves than Transformers, particularly in388

unprompted generations. Manual analysis of gen-389

erated utterances indicates that unprompted gener- 390

ations from Transformers frequently suffer from 391

repeated characters. The architectual influence on 392

model fitness is less pronounced but still present 393

in prompted generations, but the effect is re- 394

verse in two architectures: with the LSTM fitness 395

with human vocabulary growth interferred with 396

the prompts; the Transformer’s fitness largely in- 397

creased by the prompts. 398

Variations in temperature during the generation 399

process yield similar trends across different exper- 400

iment settings, with closest fitness observed for 401

temperature settings around 1. Lower temperatures 402

produce more deterministic outputs, while higher 403

temperatures result in more random and noisy gen- 404

erations. These results highlight the importance of 405

model architecture and generation settings in simu- 406

lating human language acquisition, suggesting that 407

incorporating mechanisms to handle memory and 408

context appropriately could enhance the vocabu- 409

lary learning capabilities of probabilistic language 410

models. 411

Frequency effect So far, our findings indicate 412

that language models acquire lexical knowledge 413

less effectively than humans, regardless of decod- 414

ing methods and prompts. One potential reason 415

for this discrepancy is the models’ difficulty with 416

infrequent words. To investigate this, we decom- 417

posed the CDI words into six frequency bands, each 418

containing equal number of words, and fitted sig- 419

moid functions for each frequency band(Chang and 420

Bergen, 2022). We then calculated the estimated 421

month for each frequency band to 80% of known 422

words. 423

As shown in Figure 4, child speech is less in- 424

fluenced by input word frequency than language 425

models, whereras the expressive vocabulary growth 426

of language models is significantly affected by 427

lower-frequency words across all experimental set- 428

tings. This frequency effect varies by model archi- 429

tectures, with Transformer models require consid- 430

erably more training data to reproduce the same 431

proportion of infrequent words compared to LSTM 432

models. 433

Additionally, lower temperatures exacerbate this 434

effect, likely due to the altered probability distri- 435

bution generated by the output layers of the lan- 436

guage models. These observations suggest that 437

while humans learn words more uniformly across 438

frequencies, probabilistic language models struggle 439

with lower-frequency words, and their performance 440
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Figure 3: Vocabulary growth curves for children and models. Words are considered known if produced more
than 60 times. For LSTM and Transformer models, unprompted and prompted generation were sampled at different
temperatures. We also plot the curves for an accumulator model and a CRP model.

Figure 4: Estimated age of acquisition as a function of word frequency. Growth curves for 6 frequency bins of
child- and machine-CDI word lists were fitted with a sigmoid and number of months to reach 80% of known words
was computed.

is further influenced by architectural choices and441

decoding methods.442

4.2 Generation set analysis443

Notably, the frequency effects observed in the Ma-444

chine CDI are evaluated on a selected subset though445

matched carefully with human-CDI set. It is un-446

clear whether this effect is influenced by the ran-447

domness of sampling. To address this, we expand448

our analysis on the generations using the same size449

of training set, focusing on models trained on 3.4M450

words as a case study. Specifically, we investi-451

gated the potential reasons for the human-model452

discrepency on vocabulary growth curve. Our anal-453

ysis examined whether the discrepancy arises from454

the omission of infrequent words in the training455

data (missing rate) and whether it can be mitigated456

by the models generating novel sequences (OOV457

rate).458

Figure 5 illustrates that the overall missing459

proportion of word types generated by language460

models is higher than that of the reference in-461

domain test set across various settings. This sug-462

gests that language models tend to omit a sig-463

nificant proportion of word types in their gener-464

ated sets.Additionally, lower temperatures result in465

higher missing rates across different experimental466

settings.467

The comparison with OOV rates reveals a sub-468

stantial gap between the proportion of missing469

Figure 5: OOV and word missing rates Top: the pro-
portion of out-of-vocabulary token types among the
generation types; the shaded part shows the proportion
of non-words. Below: the proportion of missing token
types out of train token types

word types and the amount of novel sequence types 470

generated. Moreover, Figure 5 highlights a very 471

high non-word rate across different generation sets, 472

indicating that current models struggle to general- 473

ize through compositional rules. 474

We further examined whether the missing words 475

are influenced by their frequency in training set. 476

Figure 6 shows that most missing words are in 477

lower-frequency bands, which indicates LMs’ de- 478
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Figure 6: Missing rates as a function of word count in input corpus. The subfigures show the missing rates
for unprompted and prompted generations from LSTMs and Transformers, respectively. Perfect memorization
corresponds to no missing word types from the generation sets, with y=0 as the baseline.

ficiency in reproducing words in tail distributions.479

Further comparison across different temperatures480

reveals a negative relationship between tempera-481

tures and the proportion of missing words. Simi-482

larly, as shown in Figure 7, OOV words predomi-483

nantly appear in low-frequency bands across differ-484

ent experimental settings. This suggests that while485

language models exhibit some degree of general-486

ization, this effect is minimal and limited to a few487

instances.488

5 Discussion489

In this study, we assess the distributional mech-490

anisms in infants language acquisition (Saffran491

et al., 1996; Romberg and Saffran, 2010) using492

neural language models as distributional learners.493

Our results demonstrate that a purely distributional494

learner trained on text only approximately repro-495

duce human’s expressive vocabulary growth.496

We found two main differences. First, the mod-497

els are much more influenced by word frequency498

compared to children. This yield a delay in word499

acquisition for low frequency words. Further anal-500

yses show that very low frequency items (seen less501

than 10 times in the training corpus) tend to be502

overwhelmingly missed by the language models.503

Our findings suggest that while current language504

models approximate the statistical properties of505

their training data, this does not necessarily im-506

ply generating the desired underlying data distri-507

bution across various model architectures and de-508

coding methods. This echoes prior research on509

language model’s memorization, in which a log-510

linear trend between the number of duplicates in511

the training data and the extent of verbatim memo-512

rization (Carlini et al., 2022; Razeghi et al., 2022;513

Kandpal et al., 2022). In contrast, evidence show514

that children can learn new words in a few shot fash-515

ion, suggesting that they may use different learning516

mechanisms (e.g., episodic memory), not available517

in LMs. Prior study using non-parametric knowl- 518

edge to capture long-tail information has shown a 519

promising avenue to simulate the episodic memory 520

mechanism(Kandpal et al., 2023). Further investi- 521

gation needs to be done on cognitive plausibility. 522

Second, the models tend to produce a large quantity 523

of novel word forms (more than 80% of the word 524

forms) , the vast majority of which are nonwords. 525

This corresponds to the well known tendency of 526

LLMs to ’hallucinate’ (Ji et al., 2023). In only a 527

small fraction of the cases, these hallucinations are 528

actual words, obtained through the combinatory 529

recomposition of known words or morphemes. In 530

contrast, infants do not produce many nonwords, 531

and these nonwords tend to be due to be mispro- 532

nunciations of real words. 533

These differences could be interpreted in terms 534

both of learning mechanisms and input. Children’s 535

linguistic experience is grounded in multi-modal 536

experience. Research shows that children as young 537

as ten months old learn word-object pairings, map- 538

ping novel words onto perceptually salient objects 539

(Pruden et al., 2006). By the age of two, they in- 540

tegrate social cues such as eye gaze, pointing, and 541

joint attention (Çetinçelik et al., 2021). Our find- 542

ings suggest that these grounded and interactive 543

experiences could impact child word acquisition in 544

ways that cannot be fully explained by linguistic 545

signals alone. Additionally, the communicative na- 546

ture of the language environment provides a more 547

dynamic context where infants receive feedback 548

from caregivers. Studies on reinforcement learning 549

in multi-agent communication tasks highlight the 550

importance of these non-distributional properties 551

for achieving more human-like natural language 552

understanding. For example, research by Chevalier- 553

Boisvert et al. (2018), Lazaridou et al. (2016), and 554

Zhu et al. (2020) emphasizes the role of interaction 555

and feedback in language learning. 556

In this paper, we have described how lexical eval- 557
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Figure 7: OOV rates as a function of word count in generated corpus. The subfigures show the OOV rates from
unprompted and prompted generations from LSTMs and Transformers, respectively. This score reflects the novelty
of the generation sets.

uation metrics have been carefully designed to eval-558

uate language models trained on developmentally559

plausible text corpus. Notably, we only focused on560

the word form inspection, which might inflate the561

model performance. Even with the upper bound562

of the model performance, the models are delayed563

for expressive vocabulary. And we found a stable564

frequency effect across different language model565

architectures and decoding settings. We show that566

this is linked to the more general phenomenon of567

long tail truncation observed in language models,568

which makes them unable to learn words based569

on few shot observations. These results shed new570

light on the principles of language acquisition, and571

highlights important divergences in how humans572

and modern algorithms learn to process natural lan-573

guage.574

6 Limitations575

One limitation lies in discrepancies between infant576

behavioral measures derived from parental reports577

and those evaluated on our model. This difference578

potentially accounts for differences observed be-579

tween estimates from CHILDES transcripts and580

parental reports. On the one hand, the model’s581

evaluation test, focusing on word form segmenta-582

tion from input data. In contrast, parental criteria583

may involve the proper usage of the test words,584

which typically involve a broader scope of linguis-585

tic knowledge on semantic and syntactic levels.586

On the other one hand, the CHILDES transcripts,587

though pre-processed carefully to remove all the588

human annotations, it is possible that incomplete589

word forms are completed and normalized by hu-590

man annotators, which may cause the inflated lan-591

guage performance in the transcript.Also, some592

subsets interview procedure’s richness may boost593

children’s expressivity beyond everyday speech,594

potentially leading parents to underestimate vocab-595

ulary in CDI inventories. What’s more, CHILDES596

transcripts aggregate data from multiple children, 597

while parental reports are averaged on single child. 598

Also, we calibrated the word counts based on the 599

estimated vocalization length. This might result in 600

duplicated counts on children’s production. Nev- 601

ertheless, all these differences might inflate the 602

lexical scores obtained from transcripts. Notably, 603

we apply the exactly the same post-process on the 604

model’s generation and also compare model’s gen- 605

erations with CHILDES references. Therefore, this 606

might exert a trivial influence on CHILDES-model 607

difference. 608

Another limitation lies in the usage of character- 609

level input rather than speech input. Characters 610

preserve the invariant form of words, and space or 611

punctuation indicate word boundaries. Hence the 612

models we tested correspond to an upper bound 613

of what could be found with some realistic mod- 614

els based on speech inputs (Lavechin et al., 2023, 615

2024), where word forms are variable and not de- 616

limited with clear boundaries. Further studies are 617

needed to evaluate speech-LMs (Lakhotia et al., 618

2021; Nguyen et al., 2024) and address the techni- 619

cal difficulty of transcribing the speech output of 620

such models in a format that can be applied to our 621

machine-CDI benchmark. 622

Ethics Statement 623

Use of human data: While we did not collect any 624

new human data ourselves, many of our analy- 625

ses involved the use of prior datasets within the 626

CHILDES database. All of these datasets were 627

collected in accordance with IRB policies at the 628

institutions of the data collectors, and all followed 629

standard practices in obtaining informed consent 630

and deidentifying data. 631
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months # words # char # utt
4-8 3.4M 17.7M 0.3M
9-18 7.0M 36.6M 0.7M
19-28 14.7M 76.7M 1.4M
29-36 27.7M 144.9M 2.6M

Table 1: Statistics of train data

Hyperparameter Value
Max sequence length 40960
Batch size 40960
Learning rate 0.0001
Learning rate scheduler inverse sqrt
Warmup steps 10000
Optimizer Adam
Adam-beta1 0.9
Adam-beta2 0.98
Dropout 0.1
LSTM hyperparameter Value
decoder layers 3
hidden size 1024
embedding dimension 200
Transformer hyperparameter Value
Transformer layers 3
Intermediate hidden size 2048
Attention heads 8
Attention dropout 0.1

Table 2: Language model training hyperparameters.

A Appendix 852

A.1 Training data Details 853

Table 1 shows details of training dataset. All the 854

digits and punctuation are removed and all the char- 855

acters are lower-cased, with special tokens inserted 856

as word boundaries. Language model training hy- 857

perparameters are listed in Table 2. Each model 858

was trained on four A40 GPUs. 859

A.2 Lexical diversity across different sets 860

We investigated linguistic diversity of different test 861

sets. Figure 8 shows the type-token ratios of dif- 862

ferent sets. The CHILD-directed speech is less 863

lexically diverse compared with other sets, which 864

corresponds to previous language acquisition study 865

that caregivers tend to repeat same words to scaf- 866

fold lexical learning. 867

The overall inspection of the generated data pat- 868

terns correspond to prior observation of declin- 869

ing lexical diversity of generated data (Guo et al., 870

2023). And the decreased lexical diversity might 871
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train data 3.4M 7.0M 14.7M 27.7M
child production aha bye bye mommy he eaten toes it is there mom
LSTM(un wounded for woman says smile some that professor at once busy
Trans(un) to o he had been him to bring aaia with all his
Prompt it tries to one side only smile when you but while giving
LSTM(prompted) make of his wife king of him thing they must never
Trans(prompted) me horse the wilderness will have me the greater i

Table 3: Examples of generated sequences. The boundary marker is replaced with blank space for the ease of
reading. We show the generations with the temperature = 1.0 as examples

Figure 8: Type/token ratios in different datasets

stem from the large proportion of missing words,872

which might not necessarily be compensated by the873

amount of OOV words.874

A.3 Fitted vocabulary growth curves875

The figures below show the fitted sigmoid curves876

across different consitions877
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Figure 9: Fitted sigmoid curves of models in temperature of 0.3.

Figure 10: Fitted sigmoid curves of models in temperature of 0.6.

Figure 11: Fitted sigmoid curves of models in temperature of 0.8.

Figure 12: Fitted sigmoid curves of models in temperature of 1.0.
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Figure 13: Fitted sigmoid curves of models in temperature of 1.5.
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