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Abstract

Large language models (LLMs) have been
shown to develop linguistic competence from
mere exposure to language content, making
them a promising avenue for investigating in-
fants’ language learning processes (Lavechin
et al., 2023; Chang and Bergen, 2022). Never-
theless, LLMs typically require orders of mag-
nitude more data than children, and language
outcomes cannot be directly compared. Here,
we introduce machine-CDI, a metric based on
the learner’s output to enable a direct compar-
ison of machines and infants on their expres-
sive vocabulary as a function of input quantity.
This metric adapts the Communicative Devel-
opment Inventories (Fenson et al., 2007; Frank
et al., 2017), a normalized inventory of words
to quantify child language development, to the
evaluation set of language models. We illus-
trate machine-CDI by comparing the expressive
vocabulary in infants and character language
models (LSTMs and Transformers) trained on
English audiobooks. The results show that lan-
guage models approximately match the chil-
dren’s learning curves, although Transformers
are delayed compared to LSTMs. A further
analysis show that the models are more im-
pacted by word frequency than children, with a
large delay in acquiring low frequency words
for models. This delay is found to be linked
to the more general phenomenon of long tail
truncation observed in language models, which
makes them unable to learn words based on few
shot observations. These results shed new light
on the principles of language acquisition, and
highlights important divergences in how hu-
mans and modern algorithms learn to process
natural language.

1 Introduction

From a cognitive perspective, language models
are of theoretical interest to test the distributional
hypothesis of language acquisition according to
which human children learn from the statistical pat-
terns within language data (Boleda, 2020; Lenci,

2018; Saffran et al., 1996). Previous research
has shown that language models can effectively
simulate aspects of the language acquisition pro-
cess, such as phoneme categorization (Lavechin
et al., 2023), word acquisition prediction (Chang
and Bergen, 2022), and grammatical development
(Evanson et al., 2023; Lavechin et al., 2023; Pan-
nitto and Herbelot, 2020). However, these studies
have predominantly focused on qualitative analy-
ses, often lacking detailed comparisons with real-
world human data.

For a more quantitative approach to the simula-
tion of language acquisition, we propose to match
learning environment and outcome measures in the
following two aspects. First, despite variations in
socio-economic factors and cultural settings (Hart
et al., 1997, Cristia et al., 2019), current estimates
suggest that American English-learning children
receive between 300 and 1,000 hours of speech
input annually, totaling at most 30 million of words
by the age of three. In contrast with modern lan-
guage models trained on trillions of words(Hart
et al., 1997; Cristia et al., 2019), we train mod-
els on developmentally plausible input, matched
in quantity to the input that children are exposed
to. Second, evaluation methods for language mod-
els should be consistent with those available form
human dataset. Currently, human behavioral data
are derived mainly from children’s speech produc-
tion (e.g., CHILDES) or parental reports (Com-
municative Development Inventories, hereafter hu-
man CDI) (MacWhinney and Snow, 1985; Fenson
et al., 2007). In contrast, language model evalua-
tions often involve zero-shot probing tasks, such as
spot-the-word (Le Godais et al., 2017) or grammat-
ical acceptability judgments (Warstadt et al., 2019),
which, although inspired by psycholinguistic meth-
ods, are intrinsically different from production-
based human data and typically rely on carefully
designed probing sets.

To address these issues, we introduce Machine-



CDI, a lexical benchmark designed for direct com-
parison between infant language acquisition and
language modeling. In this study, we (i) train
vanilla character LSTMs and Transformers on de-
velopmentally plausible data; (ii) introduce a new
metric to evaluate how the language models’ gener-
ations fit into human acquisition patterns from the
human CDI (Fenson et al., 2007; Frank et al., 2017),
rather than relying on extrinsic evaluations or down-
stream tasks; and (iii) provide a comprehensive
analysis on generations. Our findings reveal gen-
erally comparable curves in expressive vocabulary
development between children and LSTMs, while
Transformers show learning delays. A detailed ex-
amination on missing rates and out-of-vocabulary
rate show that this is linked to the more general
phenomenon of long tail truncation observed in lan-
guage models, which makes them unable to learn
words based on few shot observations. These find-
ings provide new insights into the principles of
language acquisition and highlight important differ-
ences in how humans and modern algorithms learn
to process natural language.

2 Related Work

2.1 Language model as distributional learner

Recently, there has been substantial research ap-
plying language models to simulate language ac-
quisition. The earliest study by (Rumelhart et al.,
1986) investigated past tense verb form learning in
phoneme-level neural networks, which was later
replicated in character-level recurrent neural net-
works Kirov and Cotterell, 2018.

Inspired by "acceptability judgments" in psy-
cholinguistic experiments, these models are of-
ten evaluated using zero-shot linguistic probes,
i.e. comparing the estimated probability of legiti-
mate sequences with that of matched implausible
ones. Previous studies on infants’ language acqui-
sition have used this method to probe word-level
acquisition (’spot-the-word’) and sentence-level ac-
ceptability judgments (word: (Chang and Bergen,
2022; Vong et al., 2024); syntactic: (Evanson et al.,
2023)). Notably, linguistic abilities in children and
models are tested differently: models are explic-
itly tested on next-word prediction using a two-
alternative forced-choice metric, while children are
implicitly evaluated based on their spontaneous
use of linguistic structures during natural speech.
This critical difference addresses the necessity for
a more comparable metric.

Additionally, previous studies applying language
models to test cognitive hypotheses tend to make
an analogy between training dynamics and lan-
guage learning process. For instance, Chang and
Bergen (2022) has shown the similarity of vocabu-
lary learning curves between training steps and age
of acquisition(AOA). One follow-up study showed
that GPT-2 language models tend to acquire gram-
matical knowledge in a sequential order, which
corresponds to what has observed from transcripts
between children-parents (Evanson et al., 2023).
However, most of the studies focus on qualitative
analysis by making an analogy between children’s
developmental stages and training steps. This mis-
alignment in time scales makes the trajectories less
comparable. Subsequent research addressed this
issue by training self-supervised models with vary-
ing input sizes to explicitly quantify human’s de-
velopmental trajectories (Lavechin et al., 2023).
Their study demonstrate analogous linear growth
patterns in lexical test, initially suggesting the ef-
ficacy of language model for vocabulary develop-
ment. However, there exists a discrepancy on the
evaluation task, with the human reference data rep-
resenting the proportion of children knowing the
word, whereas the model is measured in probing
task accuracy. What’s more, the constructed test
words do not directly reflect the distributional pat-
terns of children’s exposure to the words.

Therefore, the broad motivation of our work is
to assess the distributional mechanisms in infants
lexical acquisition (Saffran et al., 1996; Romberg
and Saffran, 2010) using neural language models as
distributional learners. If analogous distributional
learning mechanisms were involved in children,
then we would expect similar evaluation outcomes
from the proposed lexical metrics.

2.2 Word representation in language models

Language models are typically trained in a way
that take as inputs a series of token and output the
predicted tokens. In text language models, the pre-
dicted tokens can be characters (Xue et al., 2022),
entire words (Mikolov et al., 2013; Pennington
et al., 2014), or word fragments, for example, byte
pair encodings, (Sennrich et al., 2015)). In these
two latter cases, the training of the LMs is done
in two phases: first a tokenizer is learned, using
spaces or punctuation to delimit the word bound-
aries, and the training corpus is tokenized; second
the LM is trained with the token-prediction objec-
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Figure 1: Overview of Machine-CDI. Models are fed
with linguistic input in matched quantities compared to
children and their output is also matched to their outputs.
A list of test words is prepared for the machine, matched
to the human-CDI in word frequency distibution, yield-
ing comparable vocabulary growth curves.

tive. Tokenization assumes that beginning and ends
of words can be identified prior learning, while in-
fants typically acquire language from continuous
speech without without knowing the correct linguis-
tic labels like word boundaries a prior (Maye et al.,
2002). Prior work (Sutskever et al., 2011; Graves
et al., 2014; Hahn and Baroni, 2019; Nguyen et al.,
2022; Boldsen et al., 2022; Yu et al., 2024), have
found that character LMs can learn lexical, syntac-
tic and semantic representations and do not need
a prior segmentation in words. In such models,
words are latent representations instead of being
explicitly represented, making them a promising
approach to simulate the process of lexical learn-
ing.

Therefore, we use characters as tokens and leave
the language models to learn words in an unsu-
pervised fashion in this work. Instead of applying
models that are trained on speech or phonemes, we
start with character language models to take the
simplified invariant representations of word forms
as input regardless of the acoustic variability. This
might provide an upper bound of the overall model
performance when compared with human data.

3 Method

We follow the reverse engineering approach in
(Dupoux, 2018) where a simulation jointly models
the input to the learner, the learner and the outcome
measure in a quantitative fashion (Figure 1).

3.1 Metrics
3.1.1 Machine-CDI

We detail two key aspects of Machine-CDI that
enable direct comparisons on the learning speed of
human and machine: data quantity alignment and
evaluation metric alignment.

Aligning input data quantity with infants’ lin-
guistic exposure Initially, we standardized the
amount of training data to reflect the estimated
speech exposure of each child, based on prior re-
search of an average annual exposure of 1,000
hours of speech per child (Mendoza and Fausey,
2021). This number corresponds to an upper bound
rather than an average when taking into consider-
ation cross-linguistic variation , with the median
being 500h/year, and the minimum around 60h/y
or less(Cristia, 2023). We converted speech du-
ration into corresponding word counts, assuming
an average speech rate of 3 words per second, or
10,000 words per hour as is shown in Figure 2c.
We then trained models with varying input sizes to
represent infant cohorts at different developmen-
tal stages to ensure a realistic approximation of
linguistic exposure.

Aligning evaluation metric We base our model
evaluation task on human CDI (Fenson et al., 2007,
Frank et al., 2017), a checklist of representative
word samples used to measure word learning. Our
evaluation tasks reported binary scores for a word
set to align with parents’ binary reports (Frank
et al., 2017).

To construct the model’s evaluation sets, we se-
lected 520 words from the training set by match-
ing both the number and frequency distribution
of content words in the human CDI set. To esti-
mate word frequency of human CDI set, we con-
catenated and cleaned all the transcripts from the
English CHILD Language Data Exchange Sys-
tem (CHILDES) database, resulting in 14.5 mil-
lion words of adult speech. For the machine CDI
word set, frequency was derived from the largest
language model training set, consisting of approxi-
mately 1 million word types from 30M words. We
iteratively minimized the loss function between the
frequency distributions of the human and machine
CDI sets.

To bridge the gap between parental reports
and observable language model performance, we
aligned the vocabulary growth curve derived from
children’s speech in the CHILDES corpus with hu-
man CDI scores (see Figure 2b). We constructed



the vocabulary growth curve by calculating the cu-
mulative word frequency for each month and ap-
plying a constant count threshold to convert these
results into binary scores. Due to data sparsity,
the word frequency was recalibrated to approxi-
mate monthly speech production based on previous
research on child vocalization duration. We se-
lected the count threshold to best fit the human CDI
growth curve, assuming that an optimal threshold
would closely approximate the observed growth
speed(see Figure 2¢). Figure 2b shows that, on
average, a child is expected to produce a correct
word form approximately 60 times per month.
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Figure 2: Calibration method. a. The distribution of
frequency per million of the machine CDI (reference
corpus: audiobooks) is matched to that of child-CDI
(reference corpus: English-CHILDES). b. To decide
whether a word is "’known’ based on the speaker’s output,
we count instances of the word and apply a threshold.
In plain blue, resulting vocabulary growth curves for
different thresholds. In dotted blue, application of this
criterion to the adult’s own input. In red, parental reports
of children vocabulary. c. Estimates of monthly parental
output (input to the child) and child output.

3.1.2 Generation set analysis

To provide a detailed analysis of the gener-
ated dataset by language models, we conducted
an examination of the missing rate and out-of-
vocabulary (OOV) rate. Specifically, we gener-
ated an equal number of words using LSTM and
Transformer language models, each trained on a
3.4 million-word corpus. The missing rate quanti-
fies the proportion of words present in the training
set but absent in the generated set, indicating the
extent to which the generated data replicates the
vocabulary of the training set. The OOV rate mea-
sures the proportion of words in the generated set
that do not appear in the training set, thus assess-
ing the model’s ability to generalize beyond the
training data. Additionally, we evaluate the true-

word rate as the proportion of correct word forms
in the generated set, to further assess the model’s
generalizability. For this evaluation, we use a com-
bination of word lists from CELEX (Van Heuven
et al., 2014), the Enchant Library I and Wiktionary
2 as a spelling checker.

To contextualize the characteristics of the model-
generated text, we constructed two equal-sized ref-
erence sets respectively: the in-domain test set,
which are selected from audiobook transcripts that
are aligned in genres but not included in the training
set, and an out-of-domain set consisting of child-
directed speech from the English CHILDES cor-
pus.

3.2 Developmentally plausible training set

Following STELA (Lavechin et al., 2022), we built
a developmentally plausible training set from the
orthographic transcripts of Librovox English audio-
books (Kearns, 2014), consisting subsets of tran-
scripts of 400h, 800h, 1600h and 3200h respec-
tively. Given our calibration of 1000h/year, this
translates into 4.8m, 9.6m, 19.2m, and 38.4m, re-
spectively.

3.3 Models

We applied two types of models on devel-
opmentally plausible datasets to simulate lan-
guage acquisition: probabilistic language mod-
els (including Long Short-Term Memory mod-
els and decoder-only transformers 1), and a non-
parametric Bayesian model: Chinese Restaurant
Process(Gershman and Blei, 2012).

Chinese Restaurant Process (CRP) The non-
parametric Bayesian CRP model clusters data by
assigning probabilities. A new word joins an ex-
isting cluster with a probability proportional to the
cluster size and starts a new cluster with a prob-
ability proportional to a parameter o (Gershman
and Blei, 2012). We initialized the CRP model
using a 3-gram language model derived from the
developmentally plausible datasets.

Neural Network Architectures We employed
two types of neural network architectures: decoder-
only LSTMs (Hochreiter and Schmidhuber, 1997)
and Transformers (Vaswani et al., 2017). Similar
performance from both models would indicate that
the learned patterns are robustly present in the data,
not artifacts of a specific model architecture.

"https://pypi.org/project/pyenchant/
2https: //www.wiktionary.org
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For LSTMs, we used a three-layer architecture
with an embedding layer of size 200, hidden lay-
ers of size 1024, and a feed-forward output layer
of size 200, based on prior work (Lavechin et al.,
2023). For the Transformer model, we experi-
mented on different attention heads and decoding
layers, and ended with 8 attention heads and 6 de-
coding layers that yielded the optimal perplexity.

3.4 Generations

The generation process for the Chinese Restaurant
Process (CRP) model uses a concentration param-
eter, «, derived from the training data to simulate
word occurrences. This approach ensures that each
token is generated either as a new word or by in-
crementing the count of an existing word, thereby
creating a corpus that reflects the token distribution
dynamics as modeled by the CRP.

For LSTMs and Transformers, we employed
both unprompted and prompted generation using
temperature sampling. Temperature sampling ad-
justs the output logits by dividing them by a tem-
perature parameter before sampling from the distri-
bution. Higher temperature values make the distri-
bution more uniform, increasing randomness. The
number of prompts was matched to the number of
sentences generated. Each prompt consisted of 3
words from the audiobook dataset that do not exist
in the training set as a whole sequence. We also ex-
cluded sequences containing words in the machine
CDI test set.

4 Results

4.1 Human-model comparison

Protracted development of language models
The results from our lexical benchmark, illus-
trated in Figure 3, reveal significant dependen-
cies of vocabulary growth curves on model archi-
tectures. The CRP models consistently demon-
strate higher vocabulary sizes across all months
compared to probabilistic language models. In
contrast, probabilistic language models, including
LSTMs and Transformers, exhibit slower vocab-
ulary growth, a trend that persists regardless of
decoding temperatures and prompt types. This dif-
ference highlights a fundamental limitation in their
ability to mimic human-like vocabulary expansion.
A closer examination reveals that LSTM mod-
els align more closely with human vocabulary
growth curves than Transformers, particularly in
unprompted generations. Manual analysis of gen-

erated utterances indicates that unprompted gener-
ations from Transformers frequently suffer from
repeated characters. The architectual influence on
model fitness is less pronounced but still present
in prompted generations, but the effect is re-
verse in two architectures: with the LSTM fitness
with human vocabulary growth interferred with
the prompts; the Transformer’s fitness largely in-
creased by the prompts.

Variations in temperature during the generation
process yield similar trends across different exper-
iment settings, with closest fitness observed for
temperature settings around 1. Lower temperatures
produce more deterministic outputs, while higher
temperatures result in more random and noisy gen-
erations. These results highlight the importance of
model architecture and generation settings in simu-
lating human language acquisition, suggesting that
incorporating mechanisms to handle memory and
context appropriately could enhance the vocabu-
lary learning capabilities of probabilistic language
models.

Frequency effect So far, our findings indicate
that language models acquire lexical knowledge
less effectively than humans, regardless of decod-
ing methods and prompts. One potential reason
for this discrepancy is the models’ difficulty with
infrequent words. To investigate this, we decom-
posed the CDI words into six frequency bands, each
containing equal number of words, and fitted sig-
moid functions for each frequency band(Chang and
Bergen, 2022). We then calculated the estimated
month for each frequency band to 80% of known
words.

As shown in Figure 4, child speech is less in-
fluenced by input word frequency than language
models, whereras the expressive vocabulary growth
of language models is significantly affected by
lower-frequency words across all experimental set-
tings. This frequency effect varies by model archi-
tectures, with Transformer models require consid-
erably more training data to reproduce the same
proportion of infrequent words compared to LSTM
models.

Additionally, lower temperatures exacerbate this
effect, likely due to the altered probability distri-
bution generated by the output layers of the lan-
guage models. These observations suggest that
while humans learn words more uniformly across
frequencies, probabilistic language models struggle
with lower-frequency words, and their performance



unprompted generations by LSTM by

>-
T
T
@

by

o
T

1.0 o " , Loj-Erempted generatjons by L3 "
g ===2 2 i e €
S PP s s P 5 e
30.8 4272 0.8 208 T 208 P
3 Y7 3 3 o 3 >
= ) = ‘ = U = 7
306 Jofoie” 506 ,22 306 s 206 e
o 22957 o /" 1 o I/ 7’ o ’I /
i 77 s % 3 7K s s
504 449 0.4 2% 504 77, 504 7 Models
c v c ,’, c e c ” child production
§ iy s 7 s 7 s 4 o
S02 f o2 4 £o2 o 502 o 03
g e 2 wm=z==7 2 L 2 e
13 4 13 sk 3 4 e / 06
= 0.0 2 =00 £ =00 = o0 08
5 10 15 20 25 30 35 P05 10 15 20 25 30 35 P05 10 15 20 25 30 35 % 5 10 15 20 25 30 35 - 10

(Pseudo) month (Pseudo) month

(Pseudo) month (Pseudo) month - 15
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is further influenced by architectural choices and
decoding methods.

4.2 Generation set analysis

Notably, the frequency effects observed in the Ma-
chine CDI are evaluated on a selected subset though
matched carefully with human-CDI set. It is un-
clear whether this effect is influenced by the ran-
domness of sampling. To address this, we expand
our analysis on the generations using the same size
of training set, focusing on models trained on 3.4M
words as a case study. Specifically, we investi-
gated the potential reasons for the human-model
discrepency on vocabulary growth curve. Our anal-
ysis examined whether the discrepancy arises from
the omission of infrequent words in the training
data (missing rate) and whether it can be mitigated
by the models generating novel sequences (OOV
rate).

Figure 5 illustrates that the overall missing
proportion of word types generated by language
models is higher than that of the reference in-
domain test set across various settings. This sug-
gests that language models tend to omit a sig-
nificant proportion of word types in their gener-
ated sets.Additionally, lower temperatures result in
higher missing rates across different experimental
settings.

The comparison with OOV rates reveals a sub-
stantial gap between the proportion of missing
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Figure 5: OOV and word missing rates Top: the pro-
portion of out-of-vocabulary token types among the
generation types; the shaded part shows the proportion
of non-words. Below: the proportion of missing token
types out of train token types

word types and the amount of novel sequence types
generated. Moreover, Figure 5 highlights a very
high non-word rate across different generation sets,
indicating that current models struggle to general-
ize through compositional rules.

We further examined whether the missing words
are influenced by their frequency in training set.
Figure 6 shows that most missing words are in
lower-frequency bands, which indicates LMs’ de-
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Figure 6: Missing rates as a function of word count in input corpus. The subfigures show the missing rates
for unprompted and prompted generations from LSTMs and Transformers, respectively. Perfect memorization
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ficiency in reproducing words in tail distributions.
Further comparison across different temperatures
reveals a negative relationship between tempera-
tures and the proportion of missing words. Simi-
larly, as shown in Figure 7, OOV words predomi-
nantly appear in low-frequency bands across differ-
ent experimental settings. This suggests that while
language models exhibit some degree of general-
ization, this effect is minimal and limited to a few
instances.

5 Discussion

In this study, we assess the distributional mech-
anisms in infants language acquisition (Saffran
et al., 1996; Romberg and Saffran, 2010) using
neural language models as distributional learners.
Our results demonstrate that a purely distributional
learner trained on text only approximately repro-
duce human’s expressive vocabulary growth.

We found two main differences. First, the mod-
els are much more influenced by word frequency
compared to children. This yield a delay in word
acquisition for low frequency words. Further anal-
yses show that very low frequency items (seen less
than 10 times in the training corpus) tend to be
overwhelmingly missed by the language models.
Our findings suggest that while current language
models approximate the statistical properties of
their training data, this does not necessarily im-
ply generating the desired underlying data distri-
bution across various model architectures and de-
coding methods. This echoes prior research on
language model’s memorization, in which a log-
linear trend between the number of duplicates in
the training data and the extent of verbatim memo-
rization (Carlini et al., 2022; Razeghi et al., 2022;
Kandpal et al., 2022). In contrast, evidence show
that children can learn new words in a few shot fash-
ion, suggesting that they may use different learning
mechanisms (e.g., episodic memory), not available

in LMs. Prior study using non-parametric knowl-
edge to capture long-tail information has shown a
promising avenue to simulate the episodic memory
mechanism(Kandpal et al., 2023). Further investi-
gation needs to be done on cognitive plausibility.
Second, the models tend to produce a large quantity
of novel word forms (more than 80% of the word
forms) , the vast majority of which are nonwords.
This corresponds to the well known tendency of
LLMs to *hallucinate’ (Ji et al., 2023). In only a
small fraction of the cases, these hallucinations are
actual words, obtained through the combinatory
recomposition of known words or morphemes. In
contrast, infants do not produce many nonwords,
and these nonwords tend to be due to be mispro-
nunciations of real words.

These differences could be interpreted in terms
both of learning mechanisms and input. Children’s
linguistic experience is grounded in multi-modal
experience. Research shows that children as young
as ten months old learn word-object pairings, map-
ping novel words onto perceptually salient objects
(Pruden et al., 2006). By the age of two, they in-
tegrate social cues such as eye gaze, pointing, and
joint attention (Cetingelik et al., 2021). Our find-
ings suggest that these grounded and interactive
experiences could impact child word acquisition in
ways that cannot be fully explained by linguistic
signals alone. Additionally, the communicative na-
ture of the language environment provides a more
dynamic context where infants receive feedback
from caregivers. Studies on reinforcement learning
in multi-agent communication tasks highlight the
importance of these non-distributional properties
for achieving more human-like natural language
understanding. For example, research by Chevalier-
Boisvert et al. (2018), Lazaridou et al. (2016), and
Zhu et al. (2020) emphasizes the role of interaction
and feedback in language learning.

In this paper, we have described how lexical eval-
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of the generation sets.

uation metrics have been carefully designed to eval-
uate language models trained on developmentally
plausible text corpus. Notably, we only focused on
the word form inspection, which might inflate the
model performance. Even with the upper bound
of the model performance, the models are delayed
for expressive vocabulary. And we found a stable
frequency effect across different language model
architectures and decoding settings. We show that
this is linked to the more general phenomenon of
long tail truncation observed in language models,
which makes them unable to learn words based
on few shot observations. These results shed new
light on the principles of language acquisition, and
highlights important divergences in how humans
and modern algorithms learn to process natural lan-
guage.

6 Limitations

One limitation lies in discrepancies between infant
behavioral measures derived from parental reports
and those evaluated on our model. This difference
potentially accounts for differences observed be-
tween estimates from CHILDES transcripts and
parental reports. On the one hand, the model’s
evaluation test, focusing on word form segmenta-
tion from input data. In contrast, parental criteria
may involve the proper usage of the test words,
which typically involve a broader scope of linguis-
tic knowledge on semantic and syntactic levels.
On the other one hand, the CHILDES transcripts,
though pre-processed carefully to remove all the
human annotations, it is possible that incomplete
word forms are completed and normalized by hu-
man annotators, which may cause the inflated lan-
guage performance in the transcript.Also, some
subsets interview procedure’s richness may boost
children’s expressivity beyond everyday speech,
potentially leading parents to underestimate vocab-
ulary in CDI inventories. What’s more, CHILDES

transcripts aggregate data from multiple children,
while parental reports are averaged on single child.
Also, we calibrated the word counts based on the
estimated vocalization length. This might result in
duplicated counts on children’s production. Nev-
ertheless, all these differences might inflate the
lexical scores obtained from transcripts. Notably,
we apply the exactly the same post-process on the
model’s generation and also compare model’s gen-
erations with CHILDES references. Therefore, this
might exert a trivial influence on CHILDES-model
difference.

Another limitation lies in the usage of character-
level input rather than speech input. Characters
preserve the invariant form of words, and space or
punctuation indicate word boundaries. Hence the
models we tested correspond to an upper bound
of what could be found with some realistic mod-
els based on speech inputs (Lavechin et al., 2023,
2024), where word forms are variable and not de-
limited with clear boundaries. Further studies are
needed to evaluate speech-LMs (Lakhotia et al.,
2021; Nguyen et al., 2024) and address the techni-
cal difficulty of transcribing the speech output of
such models in a format that can be applied to our
machine-CDI benchmark.

Ethics Statement

Use of human data: While we did not collect any
new human data ourselves, many of our analy-
ses involved the use of prior datasets within the
CHILDES database. All of these datasets were
collected in accordance with IRB policies at the
institutions of the data collectors, and all followed
standard practices in obtaining informed consent
and deidentifying data.
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months # words # char #utt
4-8 3.4M 17.7M 0.3M
9-18 7.0M 36.6M 0.7M
19-28 14.7M 76.7M 1.4M
29-36 27.7M 144.9M 2.6M

Table 1: Statistics of train data

Hyperparameter Value
Max sequence length 40960
Batch size 40960
Learning rate 0.0001
Learning rate scheduler inverse sqrt
Warmup steps 10000
Optimizer Adam
Adam-betal 0.9
Adam-beta2 0.98
Dropout 0.1
LSTM hyperparameter Value
decoder layers 3
hidden size 1024
embedding dimension 200
Transformer hyperparameter Value
Transformer layers 3
Intermediate hidden size 2048
Attention heads 8
Attention dropout 0.1

Table 2: Language model training hyperparameters.

A Appendix

A.1 Training data Details

Table 1 shows details of training dataset. All the
digits and punctuation are removed and all the char-
acters are lower-cased, with special tokens inserted
as word boundaries. Language model training hy-
perparameters are listed in Table 2. Each model
was trained on four A40 GPUs.

A.2 Lexical diversity across different sets

We investigated linguistic diversity of different test
sets. Figure 8 shows the type-token ratios of dif-
ferent sets. The CHILD-directed speech is less
lexically diverse compared with other sets, which
corresponds to previous language acquisition study
that caregivers tend to repeat same words to scaf-
fold lexical learning.

The overall inspection of the generated data pat-
terns correspond to prior observation of declin-
ing lexical diversity of generated data (Guo et al.,
2023). And the decreased lexical diversity might



train data 3.4M 7.0M 14.7M 27.7M

child production aha bye bye mommy he eaten toes it is there mom
LSTM(un wounded for woman says smile some that professor at once busy
Trans(un) to o he had been him to bring aaia with all his
Prompt it tries to one side only smile when you but while giving
LSTM(prompted) make of his wife king of him thing they must never
Trans(prompted) me horse the wilderness ~ will have me the greater i

Table 3: Examples of generated sequences. The boundary marker is replaced with blank space for the ease of
reading. We show the generations with the temperature = 1.0 as examples

unprompted_LSTM
prompted_LSTM
unprompted_Transformer
prompted_Transformer

type/token

childadultood ind crp train 0.3 0.6 0.8 1.0 15

Figure 8: Type/token ratios in different datasets

stem from the large proportion of missing words,
which might not necessarily be compensated by the
amount of OOV words.

A.3 Fitted vocabulary growth curves

The figures below show the fitted sigmoid curves
across different consitions
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