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Abstract

Accurate typhoon track forecasting is crucial for early system warn-
ing and disaster response. While Transformer-based models have
demonstrated strong performance in modeling the temporal dynam-
ics of dense trajectories of humans and vehicles in smart cities, they
usually lack access to broader contextual knowledge that enhances
the forecasting reliability of sparse meteorological trajectories, such
as typhoon tracks. To address this challenge, we propose Typho-
Former, a novel framework that incorporates natural language
descriptions as auxiliary prompts to improve typhoon trajectory
forecasting. For each time step, we use Large Language Model (LLM)
to generate concise textual descriptions based on the numerical
attributes recorded in the North Atlantic hurricane database. The
language descriptions capture high-level meteorological semantics
and are embedded as auxiliary special tokens prepended to the nu-
merical time series input. By integrating both textual and sequential
information within a unified Transformer encoder, TyphoFormer
enables the model to leverage contextual cues that are otherwise
inaccessible through numerical features alone. Extensive experi-
ments are conducted on HURDAT?2 benchmark, results show that
our TyphoFormer consistently outperforms other state-of-the-art
baseline methods, particularly under challenging scenarios involv-
ing nonlinear path shifts and limited historical observations.
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1 Introduction

Typhoons and hurricanes pose significant threats to coastal re-
gions, causing devastating damage to infrastructure, ecosystems,
and human lives [9, 12]. The southeastern United States, especially
Florida, is facing increasingly frequent and intense storms [8, 14].
For instance, Hurricane IAN in 2022 resulted in over 150 fatalities
and an estimated $113 billion in economic losses, making it one
of the costliest hurricanes in U.S. history [2, 14]. With the rise of
sea surface temperatures and the evolution of climate patterns,
accurate typhoon trajectory forecasting has become more critical
than ever for emergency planning, resource allocation, and early
evacuation [13]. Reliable predictions of storm movement not only
support disaster mitigation efforts but also enable authorities to
issue timely warnings, minimizing potential casualties and disrup-
tion [18]. In light of the substantial socio-economic impact of such
extreme weather events, there is a growing demand for advanced,
data-driven forecasting methods that can complement or enhance
traditional meteorological models.

Existing approaches for typhoon track forecasting generally fall
into two main categories: (I) time series modeling methods and
(II) physics-based numerical models. To address the need for
data-driven forecasting, a growing body of work has explored mod-
eling typhoon tracks as temporal sequences using deep learning
techniques [15]. These methods treat the storm’s historical positions
and attributes as a time series and aim to predict its future trajec-
tory based on learned temporal patterns using deep learning-based
methods. Early approaches employed recurrent neural network
(RNN)-based architectures such as LSTM, GRU, and their variants
to capture sequential dependencies in storm movement [11, 16].
More recent advances have leveraged Transformer-based archi-
tectures, such as InFormer [19] and AutoFormer [17], which offer
improved long-range modeling capabilities and greater scalability
for sequence forecasting. While these models excel in learning from
past trajectory data, they lack an awareness of external contextual
information, such as meteorological semantics or high-level event
dynamics, that may further enhance predictive accuracy.

As a basic tool in traditional meteorological analysis, physics-
based numerical models are also widely used in operational typhoon
forecasting [5, 7]. Numerical models simulate atmospheric dynam-
ics by solving complex partial differential equations derived from
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physical laws [1], such as the Navier-Stokes Equations [10] and

Boundary Layer Structure Modeling [6]. Prominent forecasting

systems, including the Global Forecast System (GFS) [4] and Clima-

tology and Persistence Model [7], use large-scale initial conditions,
such as pressure fields, wind vectors, and sea surface temperatures,
to estimate future storm trajectories. While these models offer phys-
ical interpretability and have been used for decades, they require
gigantic computational resources (e.g., supercomputing center) and
are sensitive to initial condition uncertainties. Furthermore, their
performance may degrade in data-sparse regions or during rapidly

evolving storm phases, where high-resolution input data are lim-

ited or delayed. As a result, complementary deep learning and

data-driven techniques have been increasingly explored to address
these limitations inherent in traditional approaches.

Despite the aforementioned significant advancements, research
on typhoon track prediction still faces several critical challenges.
First, existing time series models often rely solely on numerical
input features and fail to incorporate higher-level semantic knowl-
edge that could enhance forecast reasoning. Second, most approaches
lack interpretability and contextual awareness, limiting their ro-
bustness in complex or data-sparse scenarios. Third, physics-based
models, while grounded in atmospheric theory, are computation-
ally expensive and sensitive to initialization errors, making them
difficult to scale in real-time applications. Different from exist-
ing works, we propose a novel framework that integrates natural
language prompts generated from numerical meteorological data
into a Transformer-based forecasting model. By embedding these
LLM-derived textual descriptions as auxiliary tokens, our approach
provides rich contextual guidance that complements the numerical
trajectory input and improves prediction accuracy under uncer-
tainty. Our contributions are summarized as follows:

e A natural language-augmented Transformer framework is pro-
posed for accurate typhoon track forecasting, which integrates
LLM-generated textual descriptions into the modeling of sparse
spatial-temporal typhoon trajectories.

o We design PGF mechanism to realize effective embed then fuse
the LLM-based textual prompts with meteorological records, en-
abling the model to incorporate semantic prior knowledge.

o Detailed experiments on HURDAT? dataset demonstrate that our
TyphoFormer! achieves improved accuracy over state-of-the-art
baseline methods, especially in challenging prediction scenarios.

2 Methodology

We encode both structured meteorological features and textual de-
scriptions into a unified Transformer-based architecture, enabling
the model to capture both temporal dynamics and contextual knowl-
edge. The overall model architecture is illustrated in Figure 1.

2.1 Trajectory Data and Problem Formulation

We formulate typhoon track forecasting as a sequence prediction
task over spatiotemporal meteorological data. Specifically, each
typhoon trajectory is represented as a multivariate time series,
where each time step includes numerical features such as times-
tamp, latitude, longitude, maximum sustained wind speed, and
central pressure. Let a single typhoon trajectory be represented as

Thttps://github.com/LabRAI/TyphoFormer
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a sequence of records: X = {x1,x2,...,xT}, where x; € R4 denotes
the meteorological feature vector at time step ¢, and d is the fea-
ture dimension. Our objective is to predict the next geographical
position (e.g., latitude and longitude) of the typhoon at T + 1 step,
given the historical observations. This task can be formulated as:
741 = f¢, (x1,X2,...,XT), where f¢ (+) is the forecasting model, and
741 € R? is the predicted coordinates.
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Figure 1: The overall model architecture of TyphoFormer.

2.2 Language Contextual Prompt Generation

To enhance the model’s contextual understanding of meteorological
dynamics, we generate natural language descriptions (referred to as
semantic prompts) for each time step in the trajectory data. Unlike
conventional approaches that rely solely on structured numerical
inputs, our method introduces a textual layer of information that
captures the same data in a human-readable, semantically coherent
format. These prompts are automatically generated using a GPT-4
through API-based batch inference. Given a single line record from
the trajectory dataset, such as:

20241010, 0030, L, HU, 27.4N, 82.6W, 100, 958, 180,
170, 110, 220, 60, 60, 70, 90, 30, 30, 30, 30, 20
which corresponds to a position in Hurricane MILTON at 00:30 UTC
on 10/10/2024, the following natural language prompt is produced:

At 00:30 UTC on October 10, 2024, Hurricane MILTON (AL142024) was located
at 27.4°N, 82.6°W. The storm had maximum sustained winds of 100 knots and a
central pressure of 958 hPa. The radius of 34-knot winds extended 180 km in the
northeast quadrant, 170 km in the southeast, 110 km in the southwest, and 220 km
in the northwest. Meanwhile, the radius of 50-knot winds reached 60 km in both
the northeast and southeast, and 70 km and 90 km in the southwest and northwest
quadrants, respectively. For 64-knot hurricane-force winds, the extent was 30 km
in all four quadrants. The radius of the eye was estimated at 20 km.

These natural language prompts encode meteorological knowledge
in a compact form that would otherwise require explicit domain
understanding. By providing a semantic summary of each state,
they serve as high-level guidance to assist the forecasting model in
interpreting patterns and trends within the trajectory. All prompts
are generated offline using the GPT-4 API and cached for train-
ing and evaluation. This step introduces minimal computational
overhead and significantly enriches the input representation.

2.3 Text Embedding and Feature Fusion

To integrate semantically rich natural language prompts into the
forecasting model, we first encode each textual description into
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a dense sequence of embeddings using a pretrained language en-
coder. Specifically, we employ BERT to convert each prompt into
a sequence £ = {p1,p2,...,pm}, where each token embedding
pm € R?. Meanwhile, the structured time series input is denoted as
X = {x1,%2,...,x7}, with each x; € R4 representing multivariate
meteorological features at time step ¢.

Instead of directly concatenating these two modalities, we in-
troduce a Prompt-aware Gating Fusion (PGF) mechanism to
adaptively fuse the prompt information into the temporal sequence.
First, we compute a condensed prompt representation by averaging
the token embeddings:pmean = 1\_1/1 ng:l Pm- Then, for each time
step t, we compute a gated fusion vector:

Xt = 0(Wy[Xt; Pmean] + bg) @ Xt + (1 = 0(-)) © Pmean (1)

where Wy € RZdXd, bg IS Rd, and o is the sigmoid function. The
fused input sequence becomes: Z = {X1,X2,...,XT}.

Z e RT%d i5 then fed into a Transformer encoder, which learns
long-range dependencies and temporal patterns. PGF mechanism
allows the model to selectively modulate the influence of the prompt
across different time steps, depending on local signal strength and
relevance. Compared to naive concatenation, PGF facilitates more
controlled and informative integration of textual context, enhancing
the model’s ability to reason over sparse or ambiguous trajectories.

2.4 Forecasting Head and Training

After encoding the fused input sequence with the Transformer
encoder, we obtain a sequence of contextualized representations
{hy,hy,...,hr}. We then employ an Autoregressive decoder to gen-
erate future trajectory coordinates iteratively. At each decoding
step, the input consists of the previous predicted output concate-
nated with hr, allowing the decoder to leverage both context and
short-term dependencies. The model is trained by minimizing the
Mean Squared Error (MSE) between predicted and ground-truth
coordinates. Formally, it learns a mapping f : ht — y741, where
yT+1 is the predicted latitude and longitude.

3 Experiments

Dataset. Experiments are carried on the well-known HURDAT?2
dataset, which is the official North Atlantic hurricane database main-
tained by the U.S. National Hurricane Center. It provides detailed
6-hour records of tropical cyclones, including 22 critical meteoro-
logical features. Each typhoon event is recorded as a chronological
sequence. We use the records from year 2004 to 2021 for training,
while the data samples from 2022 to 2024 are used for testing.

Evaluation metrics. We use the commonly adopted prediction
criteria Mean Absolute Error (MAE) and a task-specific criteria—
Spherical Distance Error (AR). AR measures the geospatial distance
between the prediction and the ground-truth trajectories, which is
calculated as: AR = ARe-arccos(sin ¢p sin ¢,+cos ¢p cos ¢, cos(dp—
Ar)), where Re = 6371km is the Earth’s radius, (¢p, 4p) and (¢r, Ar)
are the predicted / ground-truth latitude and longitude, respectively.
Baseline methods. We compare our TyphoFormer? against two
categories of baselines. The first category is the classical numerical
equation-based models, we choose the representative (I) CLIPER
(Climatology and Persistence Model) [7], which extrapolates storm

Zhttps://github.com/LabRAI/TyphoFormer
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trajectories using historical patterns and persistence assumptions.
The second category is time-series forecasting models, including re-
current models like (IIT) LSTM and (IV) GRU, as well as Transformer-
based or MLP-based advanced architectures like (V) Informer [19],
(VI) Autoformer [17], and (VII) TSMixer [3]. These baselines pro-
vide a diverse comparison across classical statistical models and
advanced deep learning frameworks.

3.1 Main Results

Table 1: Performance Comparison of Various Methods.

The best values are in bold font, the second-best values are indicated with underlining.

Models MAE (All) AR (km) (All)

6h 12h 18h 24h  6h  12h  18h  24h
CLIPER 0.235 0275 0310 0368 34.265 42205 51.632 58.268
GRU 0367 0.405 0.493 0.640 50.480 69.397 90.875 103.894
LSTM 0392 0431 0583 0.828 46.096 71365 95.412 112.663
Informer 0.289 0318 0392 0483 37.592 46435 56.433 76.684
Autoformer  0.263 0.286 0.357 0433 39.836 47.183 63.775 70.862
TSMixer 0.214 0.268 0.297 0353 35720 45265 50330 62.910
TyphoFormer 0.188 0.242 0.261 0.312 31.539 38.084 42.435 49.562
Models MAE (2024) AR (km) (2024)

6h 12h 18h 24h  6h  12h  18h  24h
CLIPER 0.221 0.269 0.294 0361 33.915 44.542 48580 57.642
GRU 0359 0394 0491 0.632 49.674 70357 92.542 105.114
LSTM 0388 0.422 0.587 0.835 44.203 69.051 94.555 109.108
Informer 0290 0316 0395 0487 37.843 48791 57.445 78.497
Autoformer ~ 0.257 0.284 0.358 0435 39.128 46.085 65.039 72.827
TSMixer 0.228 0.265 0305 0.347 35148 43935 52.501 63.118

TyphoFormer 0.185 0.241 0.263 0.317 31.274 37.934 42.973 50.881

GRU —— AutoFormer —=#— TyphoFormer
— LSTM Informer + - Start point
\/’ CLIPER —o— Ground Truth X End point

TSMixer
i g

Figure 2: Trajectory forecasting performance among all the
methods on hurricane MILTON 2024.

We report the performance of TyphoFormer and various baseline
methods on typhoon track prediction in Table 1, using both Mean
Absolute Error (MAE) and great-circle distance error (AR) across
four prediction horizons (6h, 12h, 18h, 24h). Results are reported on
the full dataset (top) and on the 2024 subset (bottom). Overall, Ty-
phoFormer consistently outperforms all baselines across all metrics
and time horizons. Compared with the classical statistical model
CLIPER and numerical forecast proxy NCEP, our model yields sig-
nificantly lower MAE and AR, especially at longer horizons (e.g.,
achieving a 24h MAE of 0.312 and AR of 49.56 km vs. CLIPER’s
0.368 and 58.27 km, respectively). This demonstrates the advantage
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of incorporating contextual knowledge through natural language-
guided fusion. Among the deep learning baselines, TyphoFormer
surpasses both recurrent models (GRU, LSTM) and Transformer-
based architectures (Informer, Autoformer, TSMixer). Notably, our
model shows the most stable performance across different forecast
steps, with minimal degradation over longer horizons. For instance,
the 24h AR of TyphoFormer (49.56 km) is substantially lower than
that of Informer (76.68 km) and Autoformer (70.86 km), indicating
better spatial generalization. The improvements persist on the 2024
test year, confirming that TyphoFormer generalizes well to recent,
unseen typhoon events. These results highlight the effectiveness of
our method in leveraging language-augmented prior knowledge
for robust typhoon trajectory forecasting.

3.2 Case study on Hurricane MILTON

Hurricane MILTON is developed in the Gulf of Mexico and made
landfall in Florida in 2024 (see Figure 2). Notably, TyphoFormer
achieves superior spatial fidelity across the entire storm path, espe-
cially in three critical segments where many baselines exhibit sig-
nificant deviations: (1) Early recurvature in the Gulf of Mexico:
In the initial west-to-east drift across the central Gulf, TyphoFormer
correctly anticipates the cyclone’s gentle northward bend around
longitude 90°W, closely aligning with the observed dynamics. In
contrast, Informer and CLIPER incorrectly maintain a more zonal
trajectory, overshooting westward before eventually turning north.
This suggests that TyphoFormer benefits from prompt-informed
inductive priors that enhance recognition of subtle early steering
shifts. (2) Florida landfall and curvature east of 85°W: The
most critical test of trajectory fidelity occurs near the landfall point.
TyphoFormer precisely captures both the timing and curvature of
the landfall arc over Florida’s western coast. In contrast, LSTM
and GRU underestimate the curvature, producing flatter tracks that
result in eastward positional bias post-landfall. These models tend
to smooth transitions excessively, failing to model the nonlinear
influence of land-sea friction and subtropical ridge interactions. (3)
Post-landfall drift into the Atlantic: After crossing the Florida
peninsula, TyphoFormer continues to trace the observed north-
eastward drift offshore with minimal divergence. Informer and
Autoformer begin to diverge more drastically in this segment, due
to error accumulation and limited ability to represent mesoscale
dynamics once the storm enters the open Atlantic. TyphoFormer’s
attention-based structure with fused language conditioning con-
tributes to its resilience in such dynamically uncertain regimes.

4 Conclusions

In this work, we present a novel typhoon trajectory forecasting
framework named TyphoFormer, which integrates natural language
prompts with time series modeling. By leveraging LLMs to gener-
ate semantically informative descriptions from raw meteorological
records, and fusing these textual embeddings with numerical tra-
jectory inputs through a prompt-aware Transformer encoder, our
approach introduces a new paradigm for enriching data-driven
prediction with contextual knowledge. Extensive experiments on
HURDAT?2 benchmark demonstrate that TyphoFormer consistently
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outperforms other state-of-the-art baselines, particularly in long-
range and complex track scenarios. The findings highlight the po-
tential of language-enhanced forecasting models in improving the
accuracy and interpretability of meteorological prediction tasks.
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