
Autonomous Workflow for Multimodal Fine-Grained Training Assistants
Towards Mixed Reality

Anonymous ACL submission

Abstract

Autonomous artificial intelligence (AI) agents001
have emerged as promising protocols for au-002
tomatically understanding the language-based003
environment, particularly with the exponen-004
tial development of large language models005
(LLMs). However, a fine-grained, comprehen-006
sive understanding of multimodal environments007
remains under-explored. This work designs008
an autonomous workflow tailored for integrat-009
ing AI agents seamlessly into extended real-010
ity (XR) applications for fine-grained training.011
We present a demonstration of a multimodal012
fine-grained training assistant for LEGO brick013
assembly in a pilot XR environment. Specifi-014
cally, we design a cerebral language agent that015
integrates LLM with memory, planning, and in-016
teraction with XR tools and a vision-language017
agent, enabling agents to decide their actions018
based on past experiences. Furthermore, we019
introduce LEGO-MRTA, a multimodal fine-020
grained assembly dialogue dataset synthesized021
automatically in the workflow served by a com-022
mercial LLM. This dataset comprises multi-023
modal instruction manuals, conversations, XR024
responses, and vision question answering. Last,025
we present several prevailing open-resource026
LLMs as benchmarks, assessing their perfor-027
mance with and without fine-tuning on the pro-028
posed dataset. We anticipate that the broader029
impact of this workflow will advance the de-030
velopment of smarter assistants for seamless031
user interaction in XR environments, fostering032
research in both AI and HCI communities.033

1 Introduction034

The advent of “Industry 4.0”, centered on the con-035

cept of smart manufacturing, presents a landscape036

with both opportunities and challenges for enhanc-037

ing production efficiency (Goel and Gupta, 2020;038

Bécue et al., 2021; Jan et al., 2023). Training as-039

sistance for automating and accelerating industrial040

1https://www.youtube.com/watch?v=KkZKL3aKMJs

(a) Industrial Car Assembly.

(b) LEGO Brick Assembly. We illustrate several use cases in
the demo of BrickDream. 1

Figure 1: Examples of fine-grained assembly in XR
systems.

assembly is in huge demand across various man- 041

ufacturing applications, such as furniture manu- 042

facturing (You et al., 2022), industrial product as- 043

sembly (Funk et al., 2017), and car assembly (Bel- 044

lalouna et al., 2020). 045

Mixed reality (MR), encompassing both virtual 046

reality (VR) and augmented reality (AR), spans a 047

spectrum from fully real environments to “matrix- 048

like” virtual environments, showing promise for 049

industrial manufacturing assembly tasks (Gavish 050

et al., 2015; Stender et al., 2021; Butaslac et al., 051

2022). These multimodal, interactive, user-centric 052

environments provide a solution for trainees who 053

experience significant cognitive workload for train- 054

ing (Hou and Wang, 2013; Botto et al., 2020; Dalim 055

et al., 2020). However, the assistance of a senior 056

person as a trainer is required, either in person or 057

remotely (Fidalgo et al., 2023). 058

To advance intelligent virtual assistants, tradi- 059
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Figure 2: The proposed autonomous workflow, involving an AI agent interacting with a MR application. The AI
agent comprises a core cerebral language agent, which interacts with a vision-language agent to interpret multimodal
context into metadata, which can be utilized by the cerebral language agent iteratively. The MR application
seamlessly interacts with AI agents by serving functions as external tools.

tional work leverages natural language process-060

ing (NLP) techniques (Li and Yang, 2021; Li et al.,061

2021, 2022; Colabianchi et al., 2023) and rein-062

forcement learning (Sloan et al., 2022) to promote063

human-machine interactions. LLMs, as the new era064

of prevalent NLP techniques, have been observed065

to elicit diverse interaction patterns across tasks,066

demonstrating its versatility and feasibility (Mah-067

mood et al., 2023). However, (i) tailoring assistant068

services by grounding interactions; and (ii) under-069

standing users’ situated multimodal contexts re-070

main challenging and under-explored (Dong et al.,071

2023).072

To this end, we introduce an autonomous work-073

flow (see Figure 2) tailored for seamlessly integrat-074

ing AI agents into XR applications for fine-grained075

training. We present a demonstration of a multi-076

modal fine-grained training assistant within a toy077

XR application for LEGO brick assembly. Specif-078

ically, we design a cerebral language agent that079

integrates LLM with memory, planning, and in-080

teraction with XR serving functional tools and a081

vision-language agent, enabling agents to decide082

their actions based on experiences. Then, we in-083

troduce LEGO-MRTA, a multimodal fine-grained084

assembly dataset synthesized automatically by a085

commercial LLM. This dataset comprises 65 mul-086

timodal instruction manuals, 1,423 conversations087

with vision question answering, serving usages of088

18 functional tools in an XR environment. Addi-089

tionally, several prevailing open-resource LLMs090

are presented as benchmarks, assessing their per-091

formance with and without fine-tuning on the pro- 092

posed dataset. Furthermore, we anticipate that the 093

broader impact of this workflow will advance the 094

development of smarter assistants for seamless user 095

interaction in XR environments, fostering research 096

in both AI and HCI communities. 097

We summarize our contributions as follows: 098

• We design a workflow, which seamlessly inte- 099

grates autonomous AI agents for fine-grained 100

assembly assistance in an XR demonstration. 101

• We create a multimodal manual-grounded fine- 102

grained assembly conversation dataset in the XR 103

context. 104

• We assess several open-resource LLMs as bench- 105

marks, evaluating their performance with and 106

without fine-tuning on the proposed dataset. 107

2 Related Work 108

For thoroughness, we provide preliminaries con- 109

cerning multimodal datasets and virtual dialogue 110

assistants within the realm of mixed reality (MR). 111

2.1 Multimodal Datasets towards MR 112

Traditional multimodal datasets focus on the inter- 113

actions with sensor data (Patrik et al., 2018) be- 114

tween human-human or human-robot, and only 115

a few of them provide small-scale task-oriented 116

dialogues, such as OFAI-MMTD (Schreitter and 117

Krenn, 2016) and (Kontogiorgos et al., 2018), and 118

Chinese Whispers (Dimosthenis et al., 2020). Scan- 119

Scribe (Zhu et al., 2023b) releases a 3D scene-text 120

pairs dataset for 3D vision and text alignment learn- 121
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Domain #Conv. #Utt. #Token #AvgUtt. #AvgToken

MDC Minecraft building 509 15,926 113,116 30.7 7.9 (Architect) / 2.9 (Builder)
CerealBar Instruction following 1,202 23,979 3,641 19.9 14.0 (Instructor) / 8.5 (Follower)
CVDN Navigation 2,050 12,361 2,223 6.0 33.5 (Navigators) / 48.1 (Oracles)
TEACH Household 3,215 45,000 3,429 13.7 5.7 (Commander) / 3.8 (Follower)

LEGO-ARTA LEGO Assembly 1,423 35,131 7,173 24.8 26.6 (Trainer) / 12.7 (Trainee)

Table 1: Comparison of dialogue datasets towards MR.

ing. HoloAssistant (Wang et al., 2023c) provides a122

dataset containing 350 unique instructor-performer123

pairs with AR metadata to perceive, reason, and124

interact in the physical world. However, the con-125

versations are not publicly available.126

Recent studies have concentrated on multimodal127

datasets with conversations. MDC (Narayan-Chen128

et al., 2019) presents a collection of 509 human-129

human conversations in the Minecraft VR games.130

CerealBar (Suhr et al., 2019) creates 1,202 human-131

to-human conversations that map user instructions132

to system actions in a situated VR game environ-133

ment. CVDN (Thomason et al., 2020) collects134

2,050 human-robot conversations on Amazon Me-135

chanical Turk for improving parsing and perception136

for natural language commands. Teach (Padmaku-137

mar et al., 2022) builds over 3,000 human–human,138

interactive dialogues to complete household tasks139

in the simulation.140

Different from those aforementioned datasets,141

LEGO-MRTA gathers 1,423 human-human natural142

conversations between trainers and trainees. Un-143

like robotic commands, the length of utterances is144

relatively longer. Furthermore, these conversations145

are generated by grounding both on an instruction146

manual and responses from an XR, ensuring that147

the simulated conversations closely resemble natu-148

ral human language. We compare the statistics of149

the above datasets in Table 1.150

2.2 Virtual Dialogue Assistants for MR151

Conventional efforts focus on creating virtual assis-152

tants for human-machine interactions using NLP153

techniques (Li and Yang, 2021; Li et al., 2021,154

2022; Colabianchi et al., 2023) and reinforcement155

learning (Sloan et al., 2022). LLMs, represent-156

ing the forefront of contemporary NLP techniques,157

hold tremendous promise for advancing towards158

the next generation of intelligent assistants (Naveed159

et al., 2023). The recent remarkable achieve-160

ments of LLMs have spurred a growing interest161

in utilizing them to address a variety of complex162

tasks (Zhang et al., 2023), with particular atten-163

tion being drawn to LLM-augmented autonomous164

agents (Yao et al., 2022; Huang et al., 2022; Shinn 165

et al., 2023; Madaan et al., 2023). 166

Autonomous agents expand the capabilities of 167

LLMs into sequential action execution, demonstrat- 168

ing their proficiency in interacting with environ- 169

ments and addressing complex tasks through data 170

collection (Wang et al., 2023b; Liu et al., 2023). 171

A crucial aspect of this advancement relies on the 172

capacity of LLMs to generate and interpret im- 173

ages, enabling them to access visual content and 174

provide inputs, thereby integrating with mixed real- 175

ity (MR) environments (Oyanagi et al., 2023; Wei 176

et al., 2024). Regarding skill training, autonomous 177

agents and LLMs can create immersive learning 178

experiences that blend virtual and physical environ- 179

ments. For instance, students can utilize them to 180

explore workflows and concepts in a more interac- 181

tive and engaging manner (Gong et al., 2023; Li 182

et al., 2024). In the context of MR serving as a sand- 183

box (Li et al., 2023b) for LLMs and autonomous 184

agents, the relationship is mutually beneficial. MR 185

offers a secure (Naihin et al., 2023), adaptable, and 186

regulated setting for training models. Together, 187

LLMs, autonomous agents, and MR hold the poten- 188

tial to revolutionize our interaction with the digital 189

world (Xu et al., 2023). 190

The convergence of LLMs, autonomous agents, 191

and MR presents both excitement and challenges. 192

As MR training experiences become more realis- 193

tic and personalized, they demand greater amounts 194

of data, encompassing detailed information about 195

trainees’ behaviors, preferences, and interactions. 196

Ensuring the availability and reusability of this data 197

poses a significant challenge. Overall, our work- 198

flow aims to enhance MR training experiences by 199

facilitating more natural language interactions, gen- 200

erating precise 3D models of real-world objects (Li 201

et al., 2023a), and fostering dynamic and inter- 202

active experiences. While challenges remain (Xi 203

et al., 2023; Ayache et al., 2023), the potential of 204

this powerful technological fusion offers numerous 205

exciting possibilities that could revolutionize per- 206

sonalization in virtual experiences. This entails the 207

development of dedicated workflows and datasets. 208
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3 Fine-grained Training Workflow209

In this section, we describe the proposed workflow210

(See Figure 2) that advances AI agents towards XR211

guided fine-grained training.212

3.1 Definition of Fine-Grained Training213

In the context of fine-grained training, we antici-214

pate the ability to (i) accurately follow professional215

training instructions documented in an instruction216

manual and; (ii) be sensitive to detailed visual infor-217

mation, ultimately for complex industrial assembly218

tasks, as illustrated in Figure 1 (a).219

We define the following two roles during a train-220

ing session:221

• User: A human trainee who aims to acquire ex-222

pertise and will work on fine-grained assembly223

tasks through interaction with the XR environ-224

ment.225

• Assistant: A virtual AI agent who will be able226

to assist the trainees in training and respond to227

their inquiries. It offers support with (i) a con-228

versation agent that replies to trainees’ requests229

and provides guidance grounded in the instruc-230

tion manual; (ii) an interface for users to interact231

with XR environment; and (iii) a vision-language232

agent that understands and transmits users’ visual233

context to language.234

3.2 Autonomous AI Agent235

We design the autonomous AI agent with a chain236

of two agents, namely (i) a cerebral language agent237

that serves to reply to trainees’ requests, provide238

guidance, interact with XR and the vision-language239

agent; and (ii) a vision-language agent that under-240

stands and transmits users’ visual context to lan-241

guage, which is then utilized by the cerebral lan-242

guage agent for planning.243

3.2.1 Cerebral Language Agent244

Inspired by the concept of LLM-powered au-245

tonomous agents (Wang et al., 2023b), we develop246

a cerebral language agent that incorporates an LLM247

with memory, planning, and functional tools that248

can interact with XR application, thereby enabling249

agents to make decisions regarding their actions250

based on past experiences. It can handle multi-251

modal inputs, such as instruction manuals, histor-252

ical conversations, and metadata within XR envi-253

ronments, and subsequently generate actions (i.e.,254

responses or API calls for the XR application). The255

scope of responsibility of the agent is defined in256

a system prompt (See P2, Table 5, Appendix A) 257

Notably, it is able to alleviate the challenges (See 258

§1): (i) it tailors assistant services by seamlessly 259

interaction with XR applications to discover the 260

business needs gradually; (ii) it interacts with a vi- 261

sion-language agent (See §3.2.2), which facilitates 262

the capability of understanding the multimodal con- 263

text in XR environments. 264

3.2.2 Vision-Language Agent 265

The vision-language agent’s mission is to bridge 266

the gap between understanding visual context and 267

language, enabling effective utilization by the cere- 268

bral language agent (See §3.2.1) to conduct com- 269

prehensive planning for global optimization. Its 270

core is the vision-language model (VLM) which 271

is a task-driven large model that transmits vision 272

input into language output needed by specific tasks. 273

In the context of LEGO assembly training, we 274

observe two distinct patterns in LEGO instruction 275

manuals (See an example in Figure 3) and define 276

the following two tasks: (T1) Object detection. 277

Given an image or a sequence of images as input, 278

the objective is to predict the position of an ob- 279

ject requested in a query and generate output in 280

the format of “<Object> <Xleft> <Ytop> <Xright> 281

<Ybottom>”. For example, during assembly step 282

2, the AI trainer might direct the trainee, “Please 283

gather the earth blue pair of legs and the silver 284

metallic upper part of the body.” In response, the 285

trainee may ask, “Is this the one?” The vision-lan- 286

guage agent is tasked with recognizing the object 287

the trainee is referring to. (T2) Assembly state 288

detection. Given an image or a sequence of im- 289

ages as input, the objective is to identify if the 290

current assembly state matches the reference state 291

provided in the instruction manual. For example, 292

during assembly step 3, the vision-language agent 293

is responsible for assisting the user’s request, such 294

as “Am I assembling them correctly?” 295

3.3 Pilot XR Application Design 296

We design an XR application as a pilot to show intu- 297

itive demonstration. First, we utilized a commercial 298

LLM to generate candidate user requirements using 299

the prompt (See P1, Table 5, Appendix A) as input. 300

Then, we brainstormed and discussed the generated 301

user requirements within a group of researchers 302

and developers and finalized 7 user requirements 303

(See Table 6, Appendix A) and 18 serving func- 304

tional tools (See Table 2). We develop standard 305

application programming interfaces (APIs) to en- 306
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Figure 3: An example of LEGO instruction manual. It
consists of a summary section at the beginning followed
by three sequential instruction steps. Each step includes
textual instructions paired with corresponding images
to guide the assembly process.

able seamless interactions between functions in XR307

application and AI agent.308

4 Dataset Creation309

In this section, we introduce how to use the pro-310

posed workflow (§3) to create a multimodal dia-311

logue dataset in XR environment.312

4.1 Instruction Manual Crawling313

We crawled 65 multimodal instruction manuals for314

fine-grained training from LEGO official website2.315

A manual provides illustrated images and textural316

instructions on how to use, operate, assemble, and317

install a LEGO brick set. The key sections of an318

instruction manual include: (i) a summary that319

describes the general information, such as topics320

and candidate parts for assembly. It is followed321

by (ii) a sequence of multimodal step instructions.322

Each step contains a set of textual instructions and323

2https://legoaudioinstructions.com/
instructions

an illustration by image. Key functional phrases 324

such as theme entities are highlighted in textual 325

instructions. Here we show an example of a LEGO 326

instruction manual in Figure 3. 327

4.2 Tool Response Generation 328

First, we use the crawled instruction manuals and 329

the well-designed prompt template to produce 330

prompts as an LLM input to generate user func- 331

tional requirements and decide the serving func- 332

tional tools. Then, we randomly choose up to 6 333

tools for each conversation session and record the 334

simulated responses generated from templates. 335

4.3 VLM-based QA Construction 336

First, we use the step instruction to construct a 337

query, containing a special token (“[detection]”) for 338

the object detection task and a single instruction in 339

a step. Second, we employ a query and the aligned 340

image as inputs for MiniGPT-v2 (Chen et al., 2023; 341

Zhu et al., 2023a), generating inference output as 342

an answer of the query in the format of “<Object> 343

<Xleft> <Ytop> <Xright> <Ybottom>”. Last, we 344

iterate through all instruction steps in a conver- 345

sation session, repeating the above two steps to 346

construct vision question answering (VQA) pairs. 347

4.4 Multimodal Context-Aware Conversation 348

Generation 349

We generate conversations grounded on both the 350

instruction manual and tool responses using a com- 351

mercial LLM. First, we reconstruct full instruction 352

manuals with a summary and 10 step instructions 353

because the average number of steps per manual 354

is 215.3, which is quite long. This may limit the 355

input tokens of an LLM and potentially distract the 356

LLM with less grounding capability. Second, we 357

instantiate the designed prompt template (See P3, 358

Table 5, Appendix A) with the chunked instruction 359

manuals. Last, we utilize a commercial LLM as the 360

core of the proposed workflow to generate the con- 361

versations. Specifically, the system prompt informs 362

the language agent about its responsibilities. The 363

query prompt is used for each round of requests to 364

generate a conversation. The historical rounds of 365

requests are tracked by memory. 366

4.5 Dataset Statistics 367

We report the statistics of instruction manuals (See 368

Table 3) and conversations (See Table 1). 369

We obtain 65 instruction manuals as ground- 370

ing to lead a commercial LLM to generate 1,423 371
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Tool Name Description
StartAssemble Initiate the assembly process.
NextStep Move to the next assembly step.
FrontStep Go back to the previous assembly step.
Explode Trigger an explosion for detailed viewing.
Recover Restore the initial state of AR objects after explosion.
FinishedVideo End the assembly process and show a video of the assembled LEGO bricks.
ReShow Repeat the current assembly step.
Enlarge Enlarge or zoom out the current object.
Shrink Shrink or zoom in the current object.
GoToStep Go to the given assembly step number.
Rotate Rotate the current object to a direction (“Up”, “Down”, “Left”, “Right”, “None”).
ShowPieces Show all candidate LEGO pieces to be assembled.
HighlightCorrectComponents Highlight correct attachment points and components.
GetCurrentStep Get the number of the current step.
GetRemainingStep Get the number of the remaining steps.
CheckStepStatusVR Check if the current step in Unity is accomplished correctly or not.
APICallObjectRecognitionAR Call the VLM agent to identify LEGO pieces based on the provided video streaming

data from AR glasses and highlight the recognized pieces in the AR environment.
APICallCheckStepStatusAR Call the VLM agent to determine if the current assembly step is completed correctly or

not, using the provided video streaming data from AR glasses as input.

Table 2: Descriptions of serving tools in the pilot XR application.

LEGO-ARTA Instruction Manual

#Manual 65
#InstructionStep 13,994
#Token 8,676
#Theme entity 2,412
#AvgInstructionStep 215.3
#AvgConversation 28.3
Modalities Text, Image

Table 3: Statistics of instruction manuals in the LEGO-
MRTA dataset.

human-human natural conversations between train-372

ers and trainees. Each instruction manual can make373

28.3 on average. Theoretically, the amount of con-374

versations can be enlarged by multiple times of375

requests. However, we focus on showcasing how376

to create meaningful datasets automatically. We377

construct 26,405 context-response pairs from gener-378

ated conversations and VQA pairs as data samples.379

The average length is 107 tokens for the context and380

145 tokens for the response utterance. We utilize381

21.1k samples for fine-tuning open-resource LLMs382

to enhance the instruction-following capability and383

evaluate their performance on 5.25k test samples.384

Compared with existing datasets, LEGO-MRTA385

ensures that the simulated conversations closely386

resemble natural human language because of the387

design of the simulation method.388

5 Experimental Setup 389

5.1 LLM Benchmarks 390

We consider several prevailing 7B open-source 391

decoder-only LLMs as benchmarks, considering 392

privacy concerns associated with fine-grained train- 393

ing in manufacturing. 394

• BLOOM (Le Scao et al., 2022) is pretrained on 395

the multilingual ROOTS corpus, offering multi- 396

lingual capabilities for various natural language 397

processing tasks. 398

• Falcon-instruct (Almazrouei et al., 2023) is pre- 399

trained on a large corpus of RefinedWeb data and 400

fine-tuned on mixed chat and instruct datasets. 401

• Llama2-Chat (Touvron et al., 2023) is a pre- 402

trained and fine-tuned generative text model op- 403

timized specifically for dialogue tasks, ensuring 404

high-quality conversational responses. 405

• Vicuna1.5 (Zheng et al., 2023) is a chat assistant 406

derived by fine-tuning Llama 2 on user-shared 407

conversations collected from ShareGPT. 408

• OpenChat3.5 (Wang et al., 2023a) is a chat 409

model fine-tuned with the C-RLFT strategy on 410

mixed-quality data, achieving performance com- 411

parable to larger models like ChatGPT. 412

• XVERSE3 is a versatile model supporting 8k 413

context length, ideal for longer multi-round dia- 414

logues, knowledge question-answering, and sum- 415

marization tasks, trained on a diverse dataset of 416

3https://github.com/xverse-ai/XVERSE-7B/blob/
main/README_EN.md
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Model BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L ToolACC (%) ThemeACC (%)

PEFT (LoRA) /wo /w /wo /w /wo /w /wo /w /wo /w /wo /w

BLOOM 2.88 54.07 20.49 61.91 6.50 49.52 3.78 58.63 49.62 77.86 26.30 64.61
Falcon 5.38 10.30 8.68 11.33 4.25 7.41 5.11 10.20 22.79 17.65 12.66 10.81
Llama2-Chat 10.23 30.53 18.59 40.65 7.41 25.48 10.59 32.91 21.37 55.73 47.20 55.51
Vicuna1.5 14.11 54.71 29.30 62.64 14.21 50.47 15.48 59.36 52.67 78.12 69.69 66.79
OpenChat3.5 22.00 6.94 29.70 34.51 15.69 23.69 22.50 11.36 51.97 74.02 58.19 81.90
XVERSE 22.42 53.55 28.45 61.54 14.31 49.77 22.39 58.03 49.62 83.97 57.53 71.10
BlueLM 22.72 55.69 30.40 63.52 14.98 51.58 23.76 60.35 48.15 82.22 47.51 68.08
Qwen 24.82 59.78 31.44 66.95 17.69 55.95 25.66 64.26 45.71 77.14 54.96 71.17
Mistral 25.87 54.17 33.32 62.07 17.99 49.40 26.32 58.62 49.62 78.20 54.80 66.65

Table 4: Benchmarking LLMs on LEGO-MRTA dataset, without (/wo) and with (/w) parameter-efficient fine-
tuning (PEFT) using low rank adaption (LoRA). The bold font indicates the highest score in each column. The
underline indicates the performance decrease after fine-tuning.

2.6 trillion tokens.417

• BlueLM-Chat4 is a large-scale language model418

optimized for chat tasks, offering improved con-419

text understanding.420

• Qwen-Chat (Bai et al., 2023) is a chat model421

that fine-tunes the pretrained Qwen model using422

human alignment techniques.423

• Mistral-Instruct (Jiang et al., 2023) is a fine-424

tuned version of the Mistral-7B-v0.1, specifically425

tailored for instruction-based tasks using publicly426

available conversation datasets.427

5.2 Evaluation Metrics428

We evaluate the performance in terms of both429

overlap (BLUE-n, ROUGE-n) and informativeness430

(ToolACC, ThemeACC):431

• BLUE-n measures precision, which measures432

the ratio of n-grams in the generated responses433

that match those in the reference responses. We434

consider n = 4.435

• ROUGE-n measures recall, which calculates the436

ratio of n-grams in the reference responses that437

are captured by the generated responses. Here we438

consider n = 1, 2, L and L denotes the number439

of longest common subsequences.440

• ToolACC is defined as the ratio of correctly men-441

tioned entities by the generated responses, com-442

pared to the reference response, from a list of443

serving tools.444

• ThemeACC is defined as the ratio of correctly445

mentioned entities compared to the reference re-446

sponse, from a list of theme entities obtained447

from the instruction manual.448

4https://huggingface.co/vivo-ai/
BlueLM-7B-Chat

5.3 Implementation Details 449

The implementation of the workflow is based on 450

Langchain.5 The “gpt-3.5-turbo-16k-0613” is used 451

as the commercial LLM for generating data, e.g., 452

conversations, user requirements, and serving func- 453

tions. The MiniGPT4-v26 is used as the VLM to 454

detect the object, followed by simple rules to gen- 455

erate VQAs. 456

We use LoRA to conduct PEFT 7B open-source 457

LLMs with the proposed dataset based on frame- 458

work (Hiyouga, 2023). Specifically, the maximum 459

sequence length is 1024 and the learning rate is 460

5e-05. The model is trained for 3 epochs with a 461

per-device batch size of 4, and accumulated gradi- 462

ents every 4 steps. A cosine learning rate scheduler 463

is employed, with a maximum gradient norm of 464

1.0. We log results every 5 steps and save model 465

checkpoints every 100 steps. Warm-up steps are set 466

to 0. LoRA is used with a rank of 8 and a dropout 467

rate of 0.1 for regularization. All experiments are 468

run on NVIDIA A100 SXM4 40GB GPUs. 469

6 Outcomes 470

6.1 Evaluation on Benchmark LLMs 471

Table 4 shows the performance on 9 prevailing 472

open-source LLMs, without and with fine-tuning 473

on the LEGO-MRTA dataset. 474

First, after fine-tuning, the performance of all 475

models dramatically improved in terms of all met- 476

rics, except for the results that are underlined. This 477

demonstrates the feasibility and effectiveness of 478

tailoring LLM for fine-grained training in XR en- 479

vironments. In addition, this shows the proposed 480

5https://python.langchain.com/docs/get_
started/introduction

6https://github.com/Vision-CAIR/MiniGPT-4
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An example of generated conversation

19

Figure 4: An example of the generated conversation (left) and the grounding step instructions (right).

LEGO-MRTA dataset contains distinct character-481

istics that have not been captured by the existing482

publicly available datasets.483

Second, there exists a trade-off between over-484

lap and informativeness evaluation. For example,485

for metrics concerning overlap, Qwen consistently486

achieves the highest scores; while the informative-487

ness is inferior to best models, i.e., ToolACC is488

6.83% lower than that of XVERSE, ThemeACC489

10.73% lower than that of OpenChat3.5.490

Third, the choice of backbone LLMs inherently491

impacts the performance of both overlap and infor-492

mativeness. We compute the standard deviation for493

each metric over all models to gauge the variability494

in performance scores: BLEU-4 (19.60), ROUGE-495

1 (17.79), ROUGE-2 (16.02), ROUGE-L (20.64),496

ToolACC (19.85), and ThemeACC (19.19).497

6.2 Case Study498

Figure 4 shows an example to intuitively verify the499

feasibility of generating conversation based on an500

instruction manual. As highlighted in the trainer’s501

utterance, “Place the upper body on the legs”, this502

accurately conveys the instruction from the manual503

in a human-like manner. The generated conversa-504

tion is feasible at instruction-following capability.505

Figure 5 illustrates an example demonstrating506

the feasibility of constructing queries based on in-507

structions from a manual to accurately request po-508

sitions in a multimodal context. We transferred the509

generated position and highlighted a frame with510

markers. We observed that the prediction was rel-511

atively accurate. Additionally, another aspect we512

observe that needs improvement in the future is the513

redundant output from the VLM.514

7 Discussion of Broader Impact515

The research presented in this paper offers a fully516

new environment to advance how workers are517

trained and get help by using MR technologies.518

By integrating AI assistants into MR environments,519

An example of VQA

20

< Xleft >< Ytop ><Wright >< Ybottom >

24%

30%

45%

67%

Figure 5: An example of VQAs (lower) and the ground-
ing step instructions (upper).

workers can tackle complex tasks more effectively. 520

This innovation not only enhances worker produc- 521

tivity but also reduces training costs for companies, 522

as it eliminates the need for expert instructors to be 523

physically present for employee training sessions. 524

8 Conclusion 525

In this work, we introduce an autonomous work- 526

flow to develop smarter multimodal fine-grained 527

training assistants in XR environment. Specifically, 528

we have designed a cerebral language agent that 529

integrates LLM with memory, planning, and inter- 530

action with XR tools, along with a vision-language 531

agent. This seamless integration enables agents to 532

make decisions based on past experiences, thereby 533

addressing the challenge of tailoring assistant ser- 534

vices through grounded interactions. We have de- 535

signed a vision-language agent to better understand 536

users’ situated multimodal contexts. Notably, we 537

have created a dataset for fine-grained training in 538

XR. We have compared the performance of open- 539

resource LLMs before and after fine-tuning using 540

this dataset. We aim to facilitate the development 541

of smarter assistants for seamless user interaction, 542

fostering research in AI and HCI communities. 543

Reproducibility 544

We release resources including the source code and 545

dataset at https://anonyous_link. 546
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Limitations547

The generation of user requirements and the dataset548

relies solely on the simulation process. This work-549

flow serves as a fast solution to verify the concept550

of a LLM agent aiding in a specific use case, such551

as a LEGO assembly assistant. However, we ac-552

knowledge that the study user requirements are553

valuable and needed to build up user-centric AI554

agents and XR applications. Besides, the demon-555

stration codes do not optimize LLM and VLM si-556

multaneously, potentially leading to suboptimal557

outcomes. We have only assessed LLMs as bench-558

marks. However, we have not conducted separate559

assessments of the influence on the vision-language560

agent and user experience in MR. We plan to ex-561

plore these aspects in future work.562

Ethics Statement563

We realize that there are risks in developing a large564

language model for users, so it is necessary to pay565

attention to the ethical issues. Therefore, we use the566

open-resourced LLMs as benchmarks and consider567

user-centric points: A user will first be provided an568

explanation of what will be happening during their569

XR training experience. Users will then be pro-570

vided with relevant consent forms to sign, and after571

signing they will be fitted with the HoloLens 2 and572

the training scenario will begin. After launching573

the application, the user will be greeted by the vir-574

tual assistant and prompted to confirm they would575

like to begin training. After confirming, the user576

will then be asked by the virtual assistant which577

difficulty level they would like to be trained on.578
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A Appendix 861

A.1 Prompt templates 862

A.2 Generated user requirements 863

A.3 Qualitative analysis of the dataset 864

The collective results as seen in the figure (6) il- 865

lustrates that our simulated model has practical 866

assistance capabilities as summarized below: 867
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(P1) Prompt template for user requirement generation

[Task description]
You are an AI agent who acts as a Unity developer for AR applications. Your role is to analyze users’ functional needs based on
the manuals and then develop the corresponding functions in an AR training system. Note that is not for visually impaired users,
but for trainees who are visually healthy and able to wear HoloLen2 AR glasses.
Here are samples of manuals:
[Manuals]

(P2) Prompt template for conversation generation

1. System prompt
[Task description]
Brief version: The task is to generate multiple turns of conversations and called tools between the trainer (assistant) and
trainee (user) grounded on the task-specific guidelines and tools in LEGO XR application.
Full version: The trainer aims to teach the trainee how to accomplish the assembly task based on the task-specific guidelines,
supported by an XR application. Specifically, the trainee is wearing AR glasses to see both VR environment and real world.
The trainee knows nothing about the guidelines before trainer’s guidance. For each step, the trainee must ask at least one deep-
dive question, or request a troublesome issue if he or she cannot follow the guide, or call tools from XR application and learn
how to use those tools; the trainer must answer the question, assist the trainee, show them the responses to the execution of the
tools. At the end of a conversation, first, the trainer must ask if the trainee has accomplished the task and the trainee must tell
if the trainee can accomplish the task; second, the trainer must ask how is user experiences, and the trainee provide feedback
on the user experience. You must add a section title to separate which key point in the guideline in the generated conversation
and generate until the final step of the guidelines.
[Tool description as shown in Table 2]

2. Query prompt
[Task description (Brief version)]
[Summary and step instructions in a manual]
Imagine some trainee’s utterances have the intent of using the tools with the following responses:
[Tool responses]

LEGO Assembly Assistant prompt (P3)

You are a helpful AI assistant who aims to train the user how to assemble a LEGO car in XR immersive system.
Extended Reality (XR) directs to the assortment of Virtual Reality (VR), Augmented Reality (AR), and Mixed Reality (MR).
Please make sure you complete the objective above with the following rules:
(1) The user is a trainee who is wearing HoloLen 2 glasses and is able to see XR environments in real-time.
(2) You are able to call Unity functions in the LEGO AR application.
(3) You are able to obtain HoloLens 2 Sensor Streaming data.
(4) Alert if the user asks you something outside of the LEGO assembly task but do not give overconfident answers.
Your task is to answer the user’s questions and assist the user in understanding how to complete the LEGO assembly task in XR.

Table 5: Prompt templates used in this work.

User requirement Description

3D Model Interaction Create 3D models of the LEGO pieces and the Monster Truck assembly. Trainees can
interact with these 3D models using hand gestures and voice commands, making it easier to
understand the assembly process.

Step-by-Step Guidance Display step-by-step instructions directly in the trainees’ field of view. This can include both
visual instructions and written or spoken guidance.

Real-Time Feedback Provide real-time feedback to trainees as they assemble the LEGO set. Use AR to highlight
the correct attachment points and components, and indicate when they’ve completed a step
correctly.

Object Recognition Implement object recognition so that HoloLens 2 can identify LEGO pieces and highlight
them when trainees look at them. This can help trainees quickly find the right pieces.

Progress Tracking Keep track of trainees’ progress and provide them with an overview of the steps they have
completed and those remaining. This can help them stay organized and motivated.

Troubleshooting Assistance Include a troubleshooting mode that guides trainees through common problems and solutions
they might encounter during the assembly.

Data Logging Collect data on trainees’ performance and interaction with the AR training system to analyze
their progress and make improvements to the training process.

Table 6: User requirements of the XR training system.

Realistic simulation. LEGO is a well known868

block building concept. The dataset simulates vari-869

ous real-world scenarios encountered during LEGO870

assembly tasks. By replicating factors such as piece 871

variability, environmental conditions, and assembly 872

constraints, the dataset provides a realistic training 873
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(a) Instruction tokens. (b) Theme entities. (c) Conversation tokens. (d) VQA tokens.

Figure 6: Distribution of top 60 frequent tokens in the above four parts: (a) instructions, (b) entities in the manual,
(c) conversations, and (b) VQAs. The x-axis denotes frequency and the y-axis denotes tokens in four parts of the
LEGO-MRTA dataset.

environment for machine learning models. This874

realism enhances the model’s ability to generalize875

to unseen situations, ensuring reliable performance876

in diverse assembly settings.877

Diversity in task difficulty. From simple struc-878

tures to intricate designs, the dataset exposes the879

model to diverse assembly scenarios, enabling it880

to learn robust representations of LEGO building881

principles. This diversity fosters adaptability in the882

model, empowering it to tackle simple to difficult883

or probably novel assembly tasks with confidence884

and efficiency.885

Transfer learning to other tasks. The dataset886

is structured to facilitate transfer learning, allow-887

ing knowledge and representations learned from888

one assembly task to be applied to related tasks889

or domains. By leveraging pre-trained models or890

features learned from similar assembly tasks, ma-891

chine learning models can bootstrap their learning892

process on new assembly tasks. This transfer learn- 893

ing capability accelerates model adaptation to new 894

environments and tasks, reducing the need for ex- 895

tensive retraining and improving overall training 896

efficiency. 897

A.3.1 Instruction tokens (Figure 6a) 898

Analyzing the provided instruction tokens, we can 899

derive several factors that contribute to the usability 900

and effectiveness of our simulated dataset for XR 901

training and assembly training: 902

• Clear instructional guidance. Tokens like “Put,” 903

“Find,” “Collect,” and “Open” provide clear and 904

concise instructions for performing various as- 905

sembly tasks. These instructions guide users 906

through the assembly process step-by-step, en- 907

suring clarity and direction in the training envi- 908

ronment. 909

• Spatial orientation and manipulation. Tokens 910

such as “front,” “right,” “left,” “horizontally,” and 911
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“vertically” offer spatial orientation cues, help-912

ing users understand the spatial relationships be-913

tween LEGO components and how to manipulate914

them during assembly. This spatial awareness en-915

hances users’ ability to accurately position and916

align LEGO pieces.917

• Feedback and assistance. Tokens like “help”918

and “response” indicate provisions for feedback919

and assistance within the training environment.920

Offering assistance and feedback helps users trou-921

bleshoot issues, learn from mistakes, and im-922

prove their assembly skills over time, enhancing923

the learning experience.924

• Multimodal learning: The inclusion of tokens925

like “Audio Instructions” suggests the incorpora-926

tion of multimodal learning techniques within the927

training environment. Integrating audio instruc-928

tions alongside visual cues enhances usability929

by catering to different learning styles and pref-930

erences, making the training experience more931

accessible and engaging for users.932

• Adaptive learning. Tokens such as “current”933

and “previous” imply a dynamic learning envi-934

ronment where users can track their progress and935

revisit previous steps if needed. Adaptive learn-936

ing features enhance usability by allowing users937

to learn at their own pace, review concepts as938

needed, and progress through the training mate-939

rial in a structured manner.940

• Interactive learning environment.: The pres-941

ence of tokens like “conversations” and “trainer”942

indicates an interactive learning environment943

where users can engage in dialogue and receive944

guidance from trainers or virtual assistants. In-945

teractivity enhances usability by promoting en-946

gagement, collaboration, and active participation947

in the learning process, leading to more effective948

skill acquisition and retention.949

The instruction tokens in our simulated dataset in-950

dicate clear guidance, and spatial orientation cues951

within an interactive learning environment.952

A.3.2 Theme entities (Figure 6b)953

Based on the theme entities provided, we can an-954

alyze the relevance of these tokens to the learning955

process:956

• Part identification. Tokens such as “plate 1x2,”957

“plate 2x4,” and “brick 1x1” provide specific iden-958

tifiers for different LEGO parts commonly used959

in assembly tasks. By including a variety of part960

identifiers, the dataset facilitates part recognition961

and identification, enabling the model to learn the962

characteristics and properties of each component. 963

• Spatial orientation and configuration. Tokens 964

like “head,” “upper body,” and “feet” suggest the 965

inclusion of assembly instructions related to spa- 966

tial orientation and configuration of LEGO struc- 967

tures. Understanding the spatial arrangement of 968

components is essential for accurate assembly, 969

and these tokens help the model grasp the hierar- 970

chical structure of assemblies and the placement 971

of parts within them. 972

• Assembly techniques. Tokens such as “can be 973

tricky” and “structure upside down“ hint at the 974

inclusion of assembly techniques and strategies 975

within the dataset. Learning various assembly 976

techniques is crucial for efficiently building com- 977

plex structures, and these tokens provide guid- 978

ance on overcoming challenges and optimizing 979

assembly processes. 980

• Component variations. Tokens like “round 981

plate 1x1,” “flat tile 2x4,” and “grille tile 1x2“ 982

introduce variations of standard LEGO compo- 983

nents, reflecting the diversity of parts encoun- 984

tered in real-world assembly scenarios. By in- 985

cluding a range of component variations, the 986

dataset prepares the model to handle different 987

types of parts and adapt to varying assembly re- 988

quirements. 989

• Accessory identification. Tokens such as “pair 990

of legs,” “tire,” and “hair” denote accessory 991

pieces commonly used in LEGO constructions, 992

adding realism and complexity to assembly tasks. 993

Recognizing and incorporating accessory pieces 994

is essential for creating realistic and detailed mod- 995

els, and these tokens help the model understand 996

the role of accessories in assembly. 997

• Quality control and correctness. Tokens like 998

“correct sticker” and “correct bag” emphasize 999

the importance of quality control and correct- 1000

ness in assembly tasks. Ensuring that the correct 1001

parts are used in the right context is essential for 1002

achieving accurate and high-quality assemblies, 1003

and these tokens highlight the need for attention 1004

to detail and accuracy in the assembly process. 1005

• Structural components. Tokens such as “shaft,” 1006

“structure upside down,” and “roof tile” suggest 1007

the inclusion of structural components and build- 1008

ing techniques within the dataset. Understanding 1009

the role of structural components and mastering 1010

advanced building techniques is critical for creat- 1011

ing stable and aesthetically pleasing assemblies, 1012

and these tokens provide guidance on construct- 1013
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ing sturdy and well-balanced structures.1014

The theme entities included in our simulated1015

dataset provide a realistic representation of the as-1016

sembly tasks by encompassing part identification,1017

spatial orientation, assembly techniques, compo-1018

nent variations, accessory recognition, quality con-1019

trol, and structural components, the dataset equips1020

the model with the knowledge and skills necessary1021

to effectively assemble LEGO structures in virtual1022

environments.1023

A.3.3 Conversation Tokens (Figure 6c)1024

We can infer several aspects that contribute to the1025

usability and effectiveness of our simulated dataset1026

for conversations during training and assembly1027

training:1028

• Role identification. The presence of “Trainer”1029

and “Trainee” tokens indicates a clear distinction1030

between the roles of the instructor guiding the1031

training session and the learner receiving instruc-1032

tions. This role identification fosters clarity and1033

structure in the conversation, ensuring effective1034

communication between the trainer and trainee1035

entities.1036

• Instructional guidance. Tokens such as “step,”1037

“plate,” “use,” and “find” suggest the provision1038

of instructional guidance within the conversation.1039

The trainer entity likely provides step-by-step1040

instructions and prompts to the trainee, guiding1041

them through the assembly process and facilitat-1042

ing learning in a structured manner.1043

• Interactive dialogue. The conversation tokens1044

include interactive dialogue cues such as “Let’s,”1045

“Yes, let’s,” and “Thank you!” These cues fos-1046

ter engagement and collaboration between the1047

trainer and trainee entities, creating a supportive1048

and interactive learning atmosphere conducive to1049

effective learning and skill development.1050

• Feedback and encouragement. Tokens like1051

“Great!” and “Alright” suggest the inclusion of1052

positive feedback and encouragement within the1053

conversation. Positive reinforcement enhances1054

motivation and engagement, encouraging active1055

participation and fostering a positive learning ex-1056

perience for the trainee.1057

• Error handling and assistance. The presence1058

of tokens like “check,” “help,” and “completed”1059

indicates provisions for error handling and assis-1060

tance within the conversation. The trainer entity1061

likely offers guidance and support to the trainee1062

in identifying and correcting errors, ensuring a1063

constructive learning process and facilitating skill1064

development. 1065

• Spatial orientation and task management. To- 1066

kens such as “right,” “left,” “back,” and “steps” 1067

provide spatial orientation cues and references 1068

to assembly tasks. This spatial orientation fa- 1069

cilitates effective communication of assembly 1070

instructions and task management between the 1071

trainer and trainee entities, ensuring accurate 1072

placement and alignment of LEGO components 1073

during assembly. 1074

The conversation tokens provide instructional guid- 1075

ance, facilitate interactive dialogue, offer feedback 1076

and encouragement, handle errors, and provide spa- 1077

tial orientation cues for task management. 1078

A.3.4 VQA Tokens (Figure 6d) 1079

Analyzing the provided tokens from the vision lan- 1080

guage model, we can identify several factors con- 1081

tributing to its usability and effectiveness: 1082

• Object recognition. Tokens such as “plate,” 1083

“brick,” “tile,” and “knob” represent common 1084

LEGO elements that users encounter during as- 1085

sembly tasks. By including these tokens, the 1086

dataset enables the vision language model to rec- 1087

ognize and identify various LEGO components 1088

accurately, facilitating object recognition and un- 1089

derstanding in XR training environments. 1090

• Color detection. Tokens like “bright,” “grey,” 1091

“white,” and “blue” provide color descriptors for 1092

different LEGO pieces. Incorporating color in- 1093

formation allows the vision language model to 1094

detect and differentiate between LEGO compo- 1095

nents based on their color, enhancing the model’s 1096

ability to interpret and analyze assembly scenes 1097

accurately. 1098

• Shape recognition. Tokens such as “round,” 1099

“flat,” “roof,” and “connector” describe the shapes 1100

and configurations of LEGO elements. By in- 1101

cluding shape descriptors, the dataset enables the 1102

vision language model to recognize and classify 1103

different types of LEGO pieces based on their 1104

shapes, facilitating shape recognition and classi- 1105

fication in XR training environments. 1106

• Size specification. Tokens like “1x2,” “2x2,” and 1107

“1x1” specify the sizes and dimensions of LEGO 1108

elements. Incorporating size information allows 1109

the vision language model to understand the scale 1110

and proportions of LEGO components within 1111

assembly scenes, aiding in size estimation and 1112

spatial reasoning during XR training tasks. 1113

• Material and texture. Tokens such as “smooth,” 1114

“nougat,” and “transparent” describe the materi- 1115
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als and textures of LEGO elements. Including1116

material and texture descriptors enables the vi-1117

sion language model to identify and distinguish1118

between different surface finishes and textures,1119

enhancing its ability to recognize and character-1120

ize LEGO components accurately.1121

• Part relationships. Tokens like “side,” “top,”1122

and “bottom” provide spatial relationship cues1123

between LEGO elements. By including part re-1124

lationship descriptors, the dataset enables the vi-1125

sion language model to understand the spatial1126

arrangement and orientation of LEGO compo-1127

nents within assembly scenes, facilitating the in-1128

terpretation of complex assembly structures and1129

configurations.1130

• Visual context understanding. Tokens such as1131

“image” and “shows” suggest the inclusion of vi-1132

sual context information within the dataset. Pro-1133

viding visual context cues enables the vision lan-1134

guage model to interpret and analyze assembly1135

scenes holistically, incorporating visual informa-1136

tion to enhance its understanding of the surround-1137

ing environment and improve object recognition1138

accuracy.1139

Our simulated dataset successfully provides ob-1140

ject recognition, color detection, shape recognition,1141

size specification, material and texture character-1142

ization, part relationships, and visual context un-1143

derstanding. Altogether, these tokens contribute1144

to the usability and effectiveness of the training1145

environment by providing clear guidance, realis-1146

tic representation of components and challenges,1147

interactive dialogue, and enhanced vision under-1148

standing. These elements collectively enhance the1149

learning experience and skill development in XR1150

assembly tasks.1151

A.3.5 Called Tools (Figure 7)1152

As shown in Figure 7, we plot the distribution1153

of the number of tools invoked in the generated1154

conversations. The most frequently called and es-1155

sential functional tools are those related to pro-1156

cess control: “NextStep” (57.02%), “StartAssem-1157

ble” (4.58%), “CheckStepStatusVR” (4.28%), “Go-1158

ToStep” (2.44%), “GetRemainingStep” (1.90%),1159

“GetCurrentStep” (1.78%), “1.31%”. This indi-1160

cates that users prioritize adherence to the assembly1161

procedure during the fine-grained assembly task.1162

Functional tools related to user interactions are also1163

significant, for example, “HighlightCorrectCompo-1164

nents” (4.64%).1165

Figure 7: Distribution of called tools in conversations.

A.4 Engineering details in the workflow 1166

Figure 8: Information flow.
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