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ABSTRACT

Deep neural networks rely on backpropagation (BP) for optimization, but its strictly
sequential backward pass hinders parallelism and scalability. Direct Feedback
Alignment (DFA) has been proposed as a promising approach for parallel learning
of deep neural networks, relying on fixed random projections to enable layer-wise
parallel updates, but fails on deep convolutional networks, and performs poorly
on modern transformer architectures. We introduce GrAPE (Gradient-Aligned
Projected Error), a hybrid feedback-alignment method that (i) estimates rank-1
Jacobians via forward-mode JVPs and (ii) aligns each layer’s feedback matrix
by minimizing a local cosine-alignment loss. To curb drift in very deep models,
GrAPE performs infrequent BP anchor steps on a single mini-batch, preserving
mostly parallel updates. We prove positive expected alignment from the forward-
gradient estimator and invoke Zoutendijk-style arguments to guarantee convergence
to stationary points. Empirically, GrAPE consistently outperforms prior alternatives
to BP, enabling the training of modern architectures, closing a large fraction of the
gap to BP while retaining layer-parallel updates for the vast majority of steps.

1 INTRODUCTION

Backpropagation (BP) (Rumelhart et al., 1986) remains the de facto standard for training deep
networks. However, its memory footprint and energy cost have become critical bottlenecks as
architectures deepen and scale up. In particular, two properties of the BP impede the development of
parallel training methods: the weight symmetry between the forward and backward pass, and the
sequential propagation of the error. These two properties also clash with biological plausibility. In
this paper, we deliberately set aside the biological concerns to focus on non-sequential alternatives to
BP. A rich literature has mainly explored two independent axes of relaxation:

Randomized feedback (Feedback Alignment, FA (Lillicrap et al., 2016), Direct FA, DFA (Nøkland,
2016), etc.) replaces transposed weights by fixed or adaptive random matrices, but suffers from
misalignment on deep or convolutional layers (Bartunov et al., 2018; Moskovitz et al., 2018; Launay
et al., 2019). Adaptive variants using weight mirroring (Akrout et al., 2019) can approach BP
performance, remaining sequential, however, offering limited practical advantages.

Forward-gradient and forward-only methods (Silver et al., 2021; Baydin et al., 2022; Hinton, 2022;
Dellaferrera & Kreiman, 2022) replace the backward pass by Jacobian-vector products or a second
“perturbed” forward pass, at the cost of high variance and limited scaling to modern architectures.

Our work extends the first axis, starting from the following observation: fixed random feedback
matrices often lose positive cosine similarity with true gradients in deep and structured layers (Nøk-
land, 2016; Refinetti et al., 2021). As a consequence, this kind of feedback fails to decrease the loss
function. We therefore introduce a lightweight and data-driven correction using forward gradient
estimates. With this alignment, we combine the efficiency of randomized feedback with the statistical
guarantees of forward-gradient estimates, augmenting them with an occasional BP calibration step to
reduce inherent variance in very deep networks. Our core contributions are:

1. Gradient-guided feedback. We introduce GrAPE (Gradient Aligned Projected Error), which
computes a local cosine-alignment loss with cheap forward-gradient estimates. This realigns
the feedback matrix of each layer towards the true gradient prior to the parallel DFA update.
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2. Leveraging the properties of the forward gradient, our algorithm exhibits statistical guaran-
tees for optimization, while prior methods only rely on empirical results.

3. Occasional BP calibration. To further mitigate drift in very deep or highly structured
networks, we apply a true BP step to a single mini-batch every T epochs, using its exact
gradient to realign the weights without halting parallel training.

4. Scalability. We show for the first time that a DFA-style method can train VGG-16, ResNet-
20/56 and Transformer models, narrowing the performance gap with full BP.

The paper is organized as follows: in Section 2 we briefly recall the necessary background and
notation (a more detailed survey can be found in the Appendix). Section 3 describes the GrAPE
algorithm and the occasional BP calibration strategy. Section 4 reports empirical results.

2 BACKGROUND AND RELATED WORKS

Let f(x; θ) be a feed-forward neural network with L layers, where x ≡ h0 is the input and θ =
{Wl}Ll=1 is the set of parameters. Each layer computes al = Wlhl−1 followed by a non-linearity
hl = σl(al), encompassing both linear and convolutional operations. The output is ŷ = hL. Given
a loss function L(ŷ, y), the goal of backpropagation (BP) is to compute gradients ∇Ll = ∂L/∂al
recursively, starting from the output layer. The corresponding weight update is:

δWl =

{
−η∇LL h⊤

L−1 if l = L

−η δal h⊤
l−1 if l < L, with δal = (W⊤

l+1δal+1)⊙ σ′
l(al)

(1)

This algorithm is by construction sequential: the update at layer l depends on the backpropagation of
errors through all subsequent layers. This reliance on weight symmetry and stepwise computation
hinders parallelism. As state-of-the-art networks attain increasing size and depth, alternative methods
that allow non-symmetric error transmission and enable parallelized training have emerged (see
Figure 1).

2.1 LEARNING WITH RANDOM FEEDBACK

Feedback Alignment (FA) proposes a biologically inspired alternative to backpropagation by
replacing transposed weights with fixed random feedback matrices Bl (Lillicrap et al., 2016). The
error is still propagated sequentially, but independently of the forward weights (Wl):

δal = (Blδal+1)⊙ σ′
l(al), with δaL = (BL∇LL)⊙ σ′

L(aL)

This removes the weight symmetry constraint, aligning better with biological learning (Lillicrap
et al., 2020) but fails to scale to convolutional networks (Bartunov et al., 2018; Moskovitz et al.,
2018). Adaptive variants using weight mirroring (Akrout et al., 2019) can however approach BP
performance, but remain sequential and thus offer limited practical advantages.

Direct Feedback Alignment (DFA) (Nøkland, 2016) removes the need for sequential error propaga-
tion by projecting the output error directly to each hidden layer:

δal = (Bl∇LL)⊙ σ′
l(al), ∀l ∈ [1, L] (2)

This enables parallel updates but remains limited on complex architectures like CNNs and Transform-
ers. Attempts to mitigate this include adaptive feedback (e.g., weight mirroring (Akrout et al., 2019))
or architectural variants like DRTP (Frenkel et al., 2021), falling short behind BP on large-scale tasks.

Launay et al. (2020) applied DFA to Transformers using either block-wise (‘macro’) or layer-
wise (‘micro’) feedback, yet BP remains necessary within attention layers. Our method builds
on this approach by providing more informative feedback signals, complementing the internal
backpropagation still required within attention blocks.

The effectiveness of FA and DFA relies on the alignment between feedback vectors and true gradients
as shown by Nøkland (2016); Refinetti et al. (2021). A sufficient condition for descent is thus:
∀l ∈ [1, L], cos(ωl) =

∇L⊤
l Bl

∥∇Ll∥·∥Bl∥ > 0. This reflects the classical Zoutendijk condition (Nocedal
& Wright, 1999), highlighting the importance of alignment for convergence (as detailed in the
Appendix).

2
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Figure 1: Overview of error propagation schemes, adapted from Dellaferrera & Kreiman (2022). (a)
BP, (b) FA, (c) DFA, (d) forward-only methods (PEPITA, Forward-Forward), (e) GrAPE.
Green arrows indicate forward paths; orange ones error signals and blue ones forward gradient
estimates Ji,a. Learned weights are denoted Wl, and layer-specific feedback weights as Bl.

2.2 FORWARD-ONLY CALCULATIONS

Forward-only methods aim to completely bypass the backward pass. For instance in PEPITA
(Dellaferrera & Kreiman, 2022) or Forward-Forward (Hinton, 2022), a double forward pass provides
a surrogate error signal via a perturbed forward step: δWl = (hl−herr

l )⊙(herr
l−1

⊤), herr
0 = x−Fe

Forward Gradient (FG) methods (Silver et al., 2021; Baydin et al., 2022) use forward-mode
automatic differentiation (FwAD) to obtain unbiased gradient estimates via directional (Jaco-
bian–vector) derivatives along a random direction u, removing the need for an explicit backward
pass: ∇L · u = limδ→0

L(θ+δu)−L(θ)
δ . While unbiased in theory, sampling in parameter space is

inefficient for large models. Ren et al. (2022) address this by perturbing neuron activations instead of
weights, significantly reducing variance and cost as activation space is usually much smaller than
weight space. Additional improvements use local auxiliary losses (Fournier et al., 2023), requiring
however BP to train the auxiliary models.
FwAD methods parallel the standard forward pass and can be implemented via dual numbers. Despite
some runtime overhead (43% w.r.t. a simple forward with a naive implementation (Baydin et al.,
2022)), optimized frameworks (e.g., PyTorch FwAD, JAX) promise broader applicability.

3 GRADIENT ALIGNED PROJECTED ERROR (GRAPE)

Here, we introduce GrAPE (Gradient-Aligned Projected Error). This method leverages the lightweight
forward-gradient estimates to align the feedback matrices with the true Jacobians. This alignment is
motivated by the Zoutendijk theorem and helps ensuring convergence, enabling scalable training of
complex architectures on various tasks. We summarize the overall procedure in Algorithm 1.

3.1 LIMITATIONS OF FIXED RANDOM FEEDBACK MATRICES

In line-search methods, the update direction must align as closely as possible with the true negative
gradient. DFA uses a fixed “feedback” direction in place of −∇L, but cannot measure or correct
the angle between its update and the actual descent direction. In convolutional layers, for example,
the linear transformation can be represented by a block-Toeplitz matrix (d’Ascoli et al., 2019).
Reproducing such a structure with a single, fixed, randomly sampled feedback matrix is impossible,
as discussed by Refinetti et al. (2021). This explains why Launay et al. (2019) found that vanilla
DFA often fails on convolutional networks: the convolutional weights cannot correctly capture the
projected error if the feedback direction is misaligned with the true gradient. However, if we align
the feedback projections with the associated gradients, this limitation can be overcome.

3
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3.2 ALIGNMENT WITH FORWARD GRADIENTS: STATISTICAL GUARANTEES

Alignment lower bound Consider the Jacobian matrix Jl = ∂ŷ
∂hl
∈ Rdout×nl , the perturbation

p ∼ N (0, Inl
) and the Jacobian–vector product Jl p ∈ Rdout . An unbiased rank-1 approximation of

Jl is then Ĵl =
(
Jl p

)
pT ∈ Rdout×nl . We then define the per-column cosine similarity between its

k-th column Ĵ (k)
l = pk

(
Jl p

)
, and the true k-th column (Jl):,k = Jl ek, with ek a basis vector:

coskl =

(
Jl p

)⊤
(Jl ek)

∥Jl p∥ ∥Jl ek∥
, k = 1, . . . , nl (3)

and take the average: cos
(
Jl, Ĵl

)
= 1

nl

∑nl

k=1 cos
k
l . Since p ∼ N (0, Inl

), we have E
[
∥Jlp∥2

]
=

∥Jl∥2F and E
[
∥p∥2

]
= nl, with E[∥p∥] ≤ √nl. Moreover, a universal bound holds: E

[
∥Jlp∥

]
≥√

2
π ∥Jl∥2, since for any unit u we have ∥x∥ ≥ |u⊤x|, and choosing u as the top left singular vector

of Jl gives u⊤Jlp ∼ N
(
0, ∥Jl∥22

)
and E|u⊤Jlp| =

√
2/π ∥Jl∥2. Combining these yields:

E
[
cos
(
Jl, Ĵl

)]
≥
√

2

π nl

∥Jl∥2
∥Jl∥F

. (4)

Thus the expected column-wise alignment is strictly positive. With a batch of B i.i.d. perturba-
tions, averaging the rank-1 estimates reduces variance at rate O(1/B); hence the empirical cosine
concentrates around equation 4 at rate O(1/

√
B) (App. A.4).

Zoutendijk theorem In standard optimization theory, the Zoutendijk theorem guarantees convergence
if each search direction is parallel (or close) to an unbiased gradient estimate1. Hence, we propose
first to update each feedback matrix with respect to the corresponding estimated Jacobian Ĵl, then
apply the usual DFA weight update (Equation 2). By Zoutendijk’s theorem, convergence to a
stationary point is guaranteed when search directions form a descent direction and step sizes satisfy
Goldstein/strong Wolfe conditions.2 In our setting, the per-layer cosine with the estimated Jacobian,
is a sufficient local condition that heuristically supports global descent when combined across layers:

∀l ∈ [1, L], cos(ωl) =
1

nl

nl∑
k=1

coskl =
1

nl

nl∑
k=1

(Jl p)⊤ bk
l

∥Jl p∥ ∥bk
l ∥

> 0. (5)

In practice, for each layer we can choose to do a perturbation either in the weight space (as explained
above) or in the activation space (Ren et al., 2022). Since the variance and cosine of the estimator
depend directly on the dimension of the perturbations, we pick the space with the lowest dimension.
Although usually the weight space is of much higher dimension than the activity space, it is not the
case for the first layers of a deep convolutional network for instance.

3.3 LEARNING RULE AND ALGORITHM

We first define a local alignment loss: Lalign(Bl) = 1 − cos
(
ωl

)
, where cos(ωl) is the average

column-wise cosine similarity between the estimated Jacobian Ĵl and the feedback matrix Bl defined
in Equation 5. We update Bl by one gradient step on Lalign:

Bl ← Bl − ηBl
∇Bl
Lalign(Bl), ηBl

> 0, (6)
and then normalize columns to enforce purely directional alignment, Bl[:, k] ← Bl[:, k]/(∥Bl[:
, k]∥+ ε) with ε>0 for numerical stability (cf. Nøkland, 2016). This local step uses only forward-
mode JVPs; no BP is required. It is worth noting that a single batched JVP per layer adds roughly a
forward-pass-like cost and does not scale with the number of parameters. Furthermore, our rank-1
jacobian estimate yields non-trivial expected cosine with the true Jacobian and concentrates as
dimension grows (see Appendix A.4). We found one alignment step per batch sufficient in practice;
additional steps offered no gain. Finally, with this refined Bl we perform the parallel update:

δal =
(
Bl∇LL

)
⊙ σ′

l(al), δWl = −η δal h⊤
l−1.

1Provided that the step size meets Goldstein or strong Wolfe conditions, which are typically enforced by
standard learning-rate schedules (Nocedal & Wright, 1999).

2We follow standard schedules that approximate these conditions in stochastic settings (Nocedal & Wright,
1999).
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3.4 SPARSE BP CALIBRATION ON A SINGLE MINI BATCH

In order to counteract the increased variance of our forward-gradient estimates in high dimensions,
we additionally inject a true BP step on a single mini-batch, using its exact gradients to re-anchor
all Wl with minimal interruption of the parallel update flow. Let T denote the number of epochs
between two such BP calibration steps. Currently, we select the calibration mini batch uniformly
at random; a promising extension would be to apply active-learning strategies to pick the most
informative examples for each BP calibration step, for example with uncertainty sampling or core-set
selection (Settles, 2009; Sener & Savarese, 2017).

The amortized per-epoch overhead of a single-mini-batch calibration is ≈ 1/N of an epoch (O(N +
1/T ) vs O(N) steps). For typical N ≫ 1, this is small in practice, though realized wall-clock gains
depend on implementation and are not reported here.

Appendix C provides a compact FLOPs and critical-path accounting of BP, DFA, and
GrAPE—covering forward+JVP overhead, per-layer projection/alignment, and the 1

T calibration term.
These costs describe arithmetic work and dependency structure; wall-clock performance depends on
kernels, fusion, and scheduling and is left to future work.

Algorithm 1 GrAPE
Require: Layers 1, . . . , L, weights {Wl}, feedbacks {Bl}, BP-interval T , epochs E, batch size B,

learning rates η, ηB
1: Forward pass & JVPs: choose perturbation pl in the smaller of activation/weight space; run a

single forward trace carrying duals
2: for epoch = 1 to E do
3: for all minibatch (X,Y ) of size B do
4: 1) Forward pass & JVPs: choose perturbation pl in smaller of activation/weight space
5: h0 ← X
6: for l = 1 to L do
7: al ←Wl hl−1, hl ← σl(al), gl ← JVP(f, hl, pl) via forward-mode AD
8: Ĵl ← gl p

T
l (rank-1 estimate)

9: end for
10: 2) Feedback refinement:
11: for l = 1 to L do
12: compute per-column cosines: c̄l = 1

nl

∑nl

k=1 cos
(
Bl[:, k], Ĵl[:, k]

)
13: Lalign ← 1− c̄l
14: Bl ← Bl − ηB ∇Bl

Lalign

15: for k = 1 to nl do
16: Bl[:, k]← Bl[:, k]/∥Bl[:, k]∥
17: end for
18: end for
19: 3) DFA-style weight update:
20: ∇LL ← ∂L/∂aL
21: for all l ∈ [1, L] do
22: Parallel projection (via equation 2): δal = (Bl∇LL)⊙ σ′

l(al)
23: Weight update: δWl ← −η δal hT

l−1 Wl ←Wl + δWl

24: end for
25: 4) Occasional BP calibration:
26: if epoch mod T = 0 then
27: Sample one small minibatch
28: Perform one full BP pass on it
29: Update {Wl} by standard gradient descent
30: end if
31: end for
32: end for

5
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4 EMPIRICAL EVALUATION

We evaluate GrAPE in a variety of settings, with shallow and deep image classification models, as well
as transformers for language modeling. We empirically show that GrAPE consistently outperforms
DFA and other methods, even without BP calibration. Introducing the occasional calibration step
improves both DFA and GrAPE, and brings GrAPE much closer to BP.
A crucial requirement for any BP alternative is rigorous implementation and evaluation under the same
settings as BP. Since these methods are still nascent, fair and reproducible comparisons are essential.
Although FDFA (Bacho & Chu, 2024) also combines random feedback with forward-mode AD, it
does not, to our knowledge, provide an optimization-theoretic convergence argument. Our attempts
to reproduce their reported numbers across CIFAR-100 settings did not match the paper’s figures
using the authors’ code or a BioTorch reimplementation; details are provided in the Appendix A.5.

4.1 EXPERIMENTAL SETTING

We implement our method in Biotorch (Sanfiz & Akrout, 2021) to ensure full transparency and to
leverage its existing feedback-alignment and forward-mode hooks. Although GrAPE is inherently
layer-parallel, current deep-learning frameworks serialize gradient updates, we do not report realized
layer-parallel wall-clock gains as these are deferred to future purpose-built kernels. To sidestep this,
we tap directly into PyTorch’s low-level conv2d_input, conv2d_weight, conv2d_bias
from the torch.nn.grad and the JVP routines from FwAD, ensuring correct gradient estimates
in convolutional layers without any backward pass. All experiments were conducted on a server
equipped with two NVIDIA A100 GPUs. We test our method on the following setups:

Shallow architectures We first validate on a 3-layer MLP (hidden size 1024) and a LeNet-5–style
CNN across MNIST, CIFAR-10, and CIFAR-100. Baselines follow the strongest BP-free comparators
in Srinivasan et al. (2023): FA, DFA, DRTP (Frenkel et al., 2021) and PEPITA (Dellaferrera &
Kreiman, 2022) with the recommended variance-reduction tweaks from Srinivasan et al. (2023).
Consistent with prior reports, DRTP/PEPITA do not scale to deep CNNs, hence we exclude them
from AlexNet/VGG/ResNet tables. The results are reported Table 1.

Deeper convnets with BP calibration Next, we tackle AlexNet and VGG-16 on CIFAR-100 –
architectures on which vanilla DFA catastrophically fails (Launay et al., 2019). Here we inject one
backpropagation update on a randomly selected mini-batch every T epochs (for both GrAPE and
DFA as a "calibrated" control). Surprisingly, this sparse BP step alone recovers a large fraction of
DFA’s gap with BP and allows GrAPE to attain really close performance when compared to BP. The
results are reported in Table 2 and Figure 2.

Modern architectures with BP calibration Finally, we scale to a Transformer-Base on WikiText-
103, following exactly the protocols of Launay et al. (2020). We adopt macro (one feedback per
encoder block) and micro (one per sub-layer) feedback approaches, replacing each fixed feedback by
a learned one via the same local cosine-alignment, with no change to forward or attention internals;
BP inside attention layers remains as in Launay et al. (2020), depending on the specific setting.

We also scale to deep networks such as ResNet-20/56 on CIFAR-100 per canonical practice in He et al.
(2016) and also on Tiny ImageNet, using it as a compute-efficient proxy that preserves ImageNet-like
statistics, mirroring full-ImageNet trends (Shleifer & Prokop, 2019).

Once again on these deep network, we apply a BP calibration step on a single mini batch every T
epochs to both GrAPE and DFA. We report averages over 10 independent runs of each method’s best
checkpoint, with standard deviations to reflect stability. The results are reported in Tables 3 and 4.
All hyper-parameters (learning rates, schedulers, etc.) are detailed in the Supplementary Material,
and our complete codebase (including the calibrated-DFA variant) will be released upon publication.

4.2 RESULTS ANALYSIS

Shallow architectures (Table 1) In our preliminary small-scale experiments on a 3-layer MLP
(hidden size 1024) and a LeNet-5–style CNN across MNIST, CIFAR-10 and CIFAR-100 (Table 1),
vanilla GrAPE surpasses every other method – FA, DFA, DRTP and PEPITA – without any BP
calibration. This shows that in low-dimensional or shallow settings, GrAPE’s forward-gradient
estimates are sufficiently accurate to drive learning effectively without full backpropagation updates.

6
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Table 1: Performances of a shallow convolutional network (CNN) and a 3 layer Multi Layer Per-
ceptron (MLP) trained on the MNIST and CIFAR10 datasets with different learning algorithms (in
percentages).

Method Parallelizable MNIST CIFAR10 CIFAR100

MLP CNN MLP CNN MLP CNN

BP No 98.73± 0.04 99.03± 0.02 54.09± 0.14 74.66± 0.08 28.18± 0.45 44.22± 0.19

FA No 98.36± 0.04 98.7± 0.07 52.18± 0.15 71.05± 0.18 24.54± 0.22 35± 0.27
DRTP Yes 95.7± 0.12 98.5± 0.17 47.55± 0.12 64.73± 0.62 18.63± 0.43 30.54± 0.12
DFA Yes 98.21± 0.07 98.6± 0.04 51.32± 0.32 69.34± 0.4 22.44± 0.23 34.53± 0.42
PEPITA Yes 98.01± 0.08 NA 52.01± 0.13 NA 21.87± 0.25 NA
GrAPE (ours) Yes 98.53± 0.02 98.8± 0.01 53.4± 0.04 73.1± 0.23 26.22± 0.33 38.0± 0.31

Table 2: Performances of AlexNet and VGG-16 models trained on CIFAR-100 with different learning
algorithms.

Method AlexNet VGG-16

BP 64.61± 0.29 70.33± 0.61

DFA 42.59± 0.34 1.00± 0.00
DFA + calibration (T = 1) 49.37± 0.16 29.40± 0.82

GrAPE 45.45± 0.20 32.40± 0.32
GrAPE + calibration (T = 1) 62.63± 0.52 56.93± 0.11

AlexNet and VGG-16 (Table 2 and Figure 2) BP achieves the highest accuracies, with 64.6%± 0.3
on AlexNet and 70.3%± 0.6 on VGG-16. Uncalibrated DFA performs poorly (only 42.6%± 0.3 on
AlexNet and 1.0% on VGG-16). Introducing one BP calibration per epoch (T = 1) boosts DFA by
over 6 points on AlexNet and nearly 30 points on VGG-16. GrAPE without calibration starts higher
(45.5%± 0.2 on AlexNet, 32.4%± 0.3 on VGG-16), but with T = 1 it almost matches BP, reaching
62.6%± 0.5 and 56.9%± 0.1, closely trailing the BP curve in Figure 2.

ResNet-20 and ResNet-56 (Table 3) On CIFAR-100 with ResNet-20, uncalibrated DFA achieves
only 20.9%± 0.2 and GrAPE 24.3%± 0.4, compared to BP’s 68.7%± 0.1. A single BP calibration
every epoch (T = 1) elevates DFA to 59.8%±0.6 and GrAPE to 64.8%±0.6, closing most of the gap
with BP. As T increases to 5, 10, and 50 epochs, both methods gradually lose accuracy, highlighting
the need for frequent calibration. Similar trends hold for ResNet-56 and on Tiny ImageNet: GrAPE
with T = 1 consistently outperforms calibrated DFA and approaches BP performance.

Transformer-Base on WikiText-103 (Table 4) For the language modeling task, uncalibrated DFA
yields perplexities of 52.0 (Macro) and 93.3 (Micro), while GrAPE starts at 42.3 and 81.1. With
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Figure 2: Accuracy vs. calibration interval T for AlexNet (left) and VGG-16 (right) on CIFAR-100.
T = number of epochs between two BP calibration steps (i.e., one calibration every T epochs). We
compare BP, DFA, DFA + calibration (T ), GrAPE, and GrAPE + calibration (T ).

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Performance (%) on ResNet-20 and ResNet-56, for CIFAR-100 and Tiny ImageNet. Here,
T specifies the number of epochs between BP updates on a randomly selected mini batch.

Method T ResNet-20 ResNet-56

CIFAR-100 Tiny ImageNet CIFAR-100 Tiny ImageNet

BP 68.72± 0.14 51.66± 0.74 71.42± 0.60 56.86± 0.83
DFA 20.94± 0.19 14.18± 0.11 24.29± 0.41 15.31± 0.05
GrAPE (ours) 24.28± 0.36 18.63± 0.37 29.33± 0.63 20.15± 0.12

DFA + calibration

1 59.80± 0.55 46.13± 0.29 62.43± 0.15 48.39± 0.48
5 55.28± 0.22 43.56± 0.57 61.40± 0.81 47.00± 0.34

10 53.79± 0.29 44.21± 0.22 60.29± 0.40 46.92± 0.26
50 30.06± 0.93 20.78± 0.71 53.91± 0.54 22.83± 0.78

GrAPE + calibration

1 64.82± 0.55 48.96± 0.21 66.92± 0.26 51.68± 0.48
5 63.09± 0.53 45.17± 0.17 65.92± 0.62 49.02± 0.73

10 61.15± 0.21 44.44± 0.28 65.75± 0.59 47.72± 0.21
50 36.79± 0.62 22.15± 0.58 56.47± 0.54 24.40± 0.47

Table 4: Best validation perplexity after 20 epochs of a Transformer trained on WikiText-103 (lower
is better). T specifies the number of epochs between BP updates on a randomly selected mini batch.

BP DFA GrAPE DFA + calibration GrAPE + calibration

T 1 5 10 1 5 10

Macro 29.8 52.0 42.3 42.7 48.2 50.1 33.1 37.8 40.4
Micro 93.3 81.1 78.8 87.9 90.5 67.3 73.7 78.2

T = 1, DFA improves to 42.7/78.8, but GrAPE reaches 33.1/67.3, cutting its gap with BP (29.8)
by nearly half. Calibration intervals of 5 and 10 epochs result in progressively worse perplexities,
confirming that frequent BP injections are key to maintaining model quality.

Across all architectures and tasks, periodic BP calibration on a single random batch effectively bridges
most of the performance gap between approximate methods (DFA, GrAPE) and full backpropagation.
In particular, GrAPE with T = 1 matches BP performance very closely while retaining a significantly
lower computational cost.

Critical role of periodic BP calibration All experiments indicate that regularly performing one BP
can greatly improve the training of both DFA and GrAPE. It seems particularly critical for larger and
deeper models (e.g. VGG-16, Transformers and ResNets). One potential reason is that the variance
of the forward gradient grows linearly with the hidden dimension: larger models lead to more noisy
gradient estimates, which makes training more unstable.

However, ablation studies with no calibration steps show that the GrAPE learning rule with adaptive
feedback matrices is fundamentally better than DFA. In some cases, GrAPE with no calibration even
outperforms DFA with calibration – for instance in the VGG-16 and Transformer experiments. With
matching calibration frequencies, GrAPE also consistently outperforms DFA.

5 DISCUSSION AND LIMITATIONS

Our empirical results demonstrate that GrAPE achieves state-of-the-art performance among feedback-
alignment variants in shallow models (Table 1), and recovers the majority of BP’s accuracy on deep
convnets with at most a single BP calibration per epoch (Tables 2, 3). Furthermore, this BP calibration
step yields substantial perplexity gains on Transformers (Table 4). Nonetheless, several important
caveats remain. First of all, because our BioTorch-based prototype serializes updates, we do not
report realized layer-parallel wall-clock gains: these are deferred to future purpose-built kernels.
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Necessity and cost of BP calibration While vanilla GrAPE suffices for low-dimensional / shallow
settings, deep or wide networks depend critically on periodic BP updates: calibration frequency
T = 1 consistently outperforms T > 1, but even a single-batch BP step might incur nontrivial
overhead compared to fully local methods. Designing adaptive or event-driven calibration schedules
– triggered by alignment metrics rather than fixed epochs – could reduce this cost, as well as an
advanced mechanism to select the samples contained in the considered batch.

This calibration can be interpreted in a federated-learning analogy: each layer’s GrAPE update plays
the role of independent “local training” on edge devices, using only cheap, parallelizable forward-
gradient corrections; the occasional full BP calibration then acts like a central-server aggregation step,
collecting the current model state, computing an exact gradient “global update,” and redistributing
the realigned weights back to all devices. In this way, we retain fully parallel local updates most of
the time, yet periodically synchronize via a trusted central pass to ensure that all feedback matrices
stay coherently aligned across the entire network.

Variance in forward-mode estimates Our Jacobian estimate Ĵl = (Jl p) pT , p ∼ N (0, I), is
unbiased but exhibits a variance proportional to the model dimension (Section 4). In wide layers,
the alignment signal may collapse and noise dominates, necessitating frequent calibration steps and
reducing the impact of vanilla GrAPE. Future work could explore multiple perturbation directions at
each forward or lightweight local losses (as in (Fournier et al., 2023)) to reduce variance. However,
these would be at the expense of additional computation.

Convergence guarantees Our theoretical analysis, based on Zoutendijk’s theorem, ensures only
convergence to stationary points. In deep nonconvex landscapes, this leaves open the risk of saddle-
point or poor-quality minima. Incorporating low-cost second-order information (e.g. diagonal Hessian
approximations via forward-mode AD) may strengthen convergence toward high-quality minima.

Architectural generality We validated GrAPE on multiple types of networks without designing
adapted shapes for the feedback matrices. Imposing structures on the feedback matrices to respect
the inherent composition of the Jacobians (for example block-diagonal for convolutions) could be a
promising avenue to reduce reliance on BP calibration and further close the gap with full BP.

In summary, GrAPE moves us closer to truly parallel, local learning methods, but fully matching BP
on large-scale, modern architectures will require advances in variance reduction, adaptive calibration,
and architecture-aware feedback design.

6 CONCLUSION

We have presented GrAPE, a novel feedback-alignment algorithm that replaces the conventional
backward pass with parallelizable feedback projections, aligned with the gradient direction. By
computing cheap rank-1 Jacobian approximations during the forward pass and injecting occasional
backpropagation updates, GrAPE combines the parallelism of forward-only methods with an accuracy
close to that of standard backpropagation.

Our empirical evaluation confirms that in shallow settings, such as a small MLP and LeNet-5–style
CNN on MNIST and CIFAR, GrAPE already outperforms all existing feedback-alignment variants
without any BP calibration. More importantly, on deep convolutional networks (AlexNet, VGG-16,
ResNet-20/56) and a Transformer-Base model, a backpropagation step per epoch on a single batch is
sufficient to recover nearly the same accuracy or perplexity as standard BP, closing most of the gap
that purely local methods leave behind.

Although these results bring us significantly closer to truly parallel learning, several avenues remain
to fully match BP on large, modern architectures. First, adaptive calibration strategies could reduce
the overhead of intermittent BP steps. Second, variance-reduction techniques may further stabilize
training in very wide layers. Finally, extending GrAPE’s feedback projections to exploit the specific
structure of the considered layers could also help to narrow the remaining performance gap without
relying on frequent BP resets.

By uniting forward-mode gradient estimates with targeted backpropagation corrections, GrAPE lays
the groundwork for scalable, parallel and efficient training of deep neural networks.
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A DETAILED RELATED WORK

A.1 LEARNING WITH RANDOM FEEDBACK

Feedback Alignment (FA) introduces a paradigm-shifting and biologically plausible alternative
to gradient backpropagation (Lillicrap et al., 2016). At the core of this method, random feedback
matrices simplify the weight update process and break the symmetry. FA sequentially multiplies the
output error by the random feedback matrices in order to obtain the error at each layer, which is in
turn used to update the weights. The random matrices replace the transpose of the weights in the
original backpropagation equation. However, the sequential aspect of the update remains, as the error
is still propagated from layer to layer through the random feedback projections. With Bl the fixed
random feedback matrix of the l-th layer, the update can be computed as follows:

δaL = (BLe)⊙ σ′
L(aL), with

δal = (Blδal+1)⊙ σ′
l(al), ∀l ∈ [1, L− 1].

This method draws its inspiration from biological neural networks, which do not exhibit symmet-
ric weight transport during learning (Lillicrap et al., 2020), making this learning paradigm more
biologically plausible.

Direct Feedback Alignment (DFA) Nøkland (2016) goes one step further: during training, the
error signal is directly projected from the output layer to all hidden layers without modification or
intermediate calculations. With this additional simplification, the updates can be easily parallelized:

∀l ∈ [1, L], δal = (Ble)⊙ σ′
l(al). (7)

FA and DFA have been shown to perform reasonably well on certain tasks and architectures, especially
when considering its profound shift from the backpropagation method. While they do not consistently
outperform or even compete with backpropagation, their simplicity along with biological plausibility
stimulate research to scale up their use, as well as exploration to understand their key limitations.
Bartunov et al. (2018) for example, show empirically that FA variants perform significantly worse on
CIFAR-10 and ImageNet than BP, for convolutional networks in particular.

This is further analyzed by Launay et al. (2019) in which they exhibit a bottleneck effect that prevents
learning in narrow layers, especially in the case of convolutional networks. As a workaround, some
variants of FA showed promising performances on deep CNNs (Moskovitz et al., 2018). A seminal
work by Akrout et al. (2019) for instance used weight mirroring to adapt the feedback matrices
during training, matching BP performances. However these approaches stay sequential, and similar
approaches to DFA with target projection, such as DRTP (Frenkel et al., 2021), do not compete with
BP on more complex convolutional networks.

It has also been empirically verified (Launay et al., 2020) that learning under synaptic asymmetry
with DFA is possible even with Transformers (Vaswani et al., 2017). In this particular work, the
training of the Transformer with DFA is done according to two settings: the ‘macro’ setting in which
the feedback is applied after every encoder block and the ‘micro’ setting, in which it is done after
every layer in those blocks. As explained by Launay et al. (2020) in Appendix D, backpropagation
through the attention mechanism itself still happens even in the ’micro’ setting, meaning that the
training process still relies on BP within transformer layers without reaching the same perplexity
levels as full BP training.

In their papers, Nøkland (2016) and Refinetti et al. (2021) analyze the underlying dynamics in the
FA-like algorithms to better explain their ability and inability to learn. A key lesson is that the angle
between the update and the true gradient must be lower than ±π/2. Equivalently, if we denote ωl

this angle, and Bl the l-th layer’s feedback matrix, the following inequality must hold:

∀l ∈ [1, L], cos(ωl) =
∇Ll

TBle

∥∇Ll∥ · ∥Ble∥
> 0

We recognize a particular case of the Zoutendijk theorem (Nocedal & Wright, 1999), which ensures
global convergence when the search direction makes an angle with the steepest descent direction
bounded away from π/2. This theorem requires that the step length satisfies either the Goldstein or
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strong Wolfe conditions, and this is typically the case with standard learning rates. However, let us
stress that the considered convergence is towards local minima and stationary points.

As previously mentioned, the recent work of (Akrout et al., 2019) revisits the idea to learn the
feedback by emulating a Kolen-Pollack algorithm (Kolen & Pollack, 1994) or with an estimate of the
transpose matrix. This idea facilitates the learning process of FA while reducing the angles ωl. This
first attempt clearly shows that adaptive feedback matrices enable the learning of networks on which
FA previously failed. It also emphasizes the importance of Zoutendijk’s theorem, even though the
sequential learning process inherited from the FA still inhibits the potential improvements.

A.2 FORWARD ONLY CALCULATIONS

A promising avenue toward backward-free training is the double-forward approach, in which two
forward passes are used: the first forward pass updates an auxiliary or feedback mechanism, while the
second forward pass computes the weight updates. The recent paper (Srinivasan et al., 2023) follows
this trend and exhibits similarities between two forward-only frameworks, Forward-Forward and
PEPITA (Hinton, 2022; Dellaferrera & Kreiman, 2022). They also show that such algorithms can be
approximated by a form of feedback alignment with adaptive feedback (AF) weights, modulated by
the upstream network weights. The PEPITA learning rule essentially is: δWl = (hl−herr

l )⊙(herr
l−1

T ),
with herr

0 = x− Fe, where F can be viewed as a feedback mapping on the input. Srinivasan et al.
(2023) showed that PEPITA implements a feedback-alignment learning algorithm with an adaptive
feedback matrix that depends on the forward weights when F is computed with weight mirroring.
Although promising, this method fails to scale to networks deeper than 5 layers.

Forward Gradient (FG), introduced by Silver et al. (2021) and Baydin et al. (2022) employs
Forward-Mode Automatic Differentiation (FwAD) as proposed in Margossian (2019) to estimate
gradients solely through forward passes. Focusing on these forward calculations, recent works explore
unbiased estimations of the gradients, thanks to directional derivatives (Fournier et al., 2023; Baydin
et al., 2022). These gradients are then used to update the weights like in standard BP, without needing
an explicit backward pass. The essential idea in FG descent is that given a direction vector u ∈ Rm,
computing the Jacobian-vector product (JVP) of the gradient of the loss along u gives the gradient of
the loss function according the direction given by u. This is defined as:

∇Lu ≡ lim
δ→0

L(θ + δ u)− L(θ)
δ

,

at the parameter point θ. This is used to estimate partial derivatives of the loss with respect to subsets
of parameters or activations, along random directions.

Although Baydin et al. (2022) showed that sampling the perturbations u in the weight space can
provide unbiased gradient estimates, Ren et al. (2022) revealed poor scalability when the number
of parameters is large. To address this, they proposed to draw perturbations in the activation space,
inspired by Le Cun et al. (1988) and Widrow & Lehr (1990). Since the total number of neurons n
is usually much smaller than the total count of parameters, sampling ul ∈ Rnl for each layer l can
substantially reduce both the cost and variance of gradient estimation.

However, recent advances (Fournier et al., 2023) show that in modern settings, even variance-reducing
techniques with local losses do not allow to reach performance on-par with standard backpropagation.

A.3 REMINDERS ON ZOUTENDIJK’S THEOREM

Let f : Rn → R be a twice continuously differentiable function, bounded below on Rn. Consider
the iteration

xk+1 = xk + αkpk,

where each pk is a descent direction (i.e. ∇f(xk)
⊤pk < 0) and the step length αk > 0 satisfies the

Wolfe conditions:

f(xk + αkpk) ≤ f(xk) + c1 αk∇f(xk)
⊤pk, 0 < c1 < c2 < 1, (8)

∇f(xk + αkpk)
⊤pk ≥ c2∇f(xk)

⊤pk. (9)
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Theorem A.1 (Zoutendijk). Under these assumptions, the series
∞∑
k=0

cos2θk
∥∥∇f(xk)

∥∥2, where cos θk =
−∇f(xk)

⊤pk
∥∇f(xk)∥ ∥pk∥

,

converges. In particular,
lim inf
k→∞

∥∇f(xk)∥ = 0.

Sketch of Proof. Starting from the decrease guaranteed by the Armijo condition equation 8 and
invoking the curvature condition equation 9, one shows (see Nocedal & Wright (1999), Chapter 3)
that there exists a constant M > 0 such that

αk

(
−∇f(xk)

⊤pk
)
≥ M cos2θk

∥∥∇f(xk)
∥∥2.

Summing over k then yields the claimed convergence of the series.

Zoutendijk’s theorem thus states that if each search direction pk remains positively aligned with the
negative gradient, i.e.∇f(xk)

⊤pk < 0, and the step lengths αk > 0 satisfy the Wolfe conditions
equation 8–equation 9, then

∑∞
k=0 cos

2θk ∥∇f(xk)∥2 <∞, which in turn implies

lim inf
k→∞

∥∇f(xk)∥ = 0.

A.4 SCALING LAWS AND CONCENTRATION FOR FORWARD–GRADIENT ESTIMATES

Recall that if p ∼ N (0, Id) then ∥p∥ ∼ χd with

E
[
∥p∥

]
=
√
2
Γ
(
d+1
2

)
Γ
(
d
2

) , E
[
∥p∥2

]
= d, Var

(
∥p∥

)
= d− E

[
∥p∥

]2
.

In particular, as d → ∞, E∥p∥ =
√
2d/π (1 + o(1)) and Var(∥p∥) = Θ(1), so ∥p∥ concentrates

sharply around
√
2d/π.

Similarly, let X = Jlp with p ∼ N (0, Inl
) and covariance Σ = JlJ⊤

l . For any unit u, ∥X∥ ≥
|u⊤X|, hence

E∥X∥ ≥ sup
∥u∥=1

E|u⊤X| =
√

2
π sup

∥u∥=1

√
u⊤Σu =

√
2
π ∥Jl∥2. (A.1)

This spectral–norm bound is universal. In addition, by a standard extremal–covariance argument
(concavity on the PSD trace-simplex), one obtains

E∥X∥ ≥
√

2
π

∥Jl∥F√
r

, r := rank(JlJ⊤
l ) ≤ dout, (A.2)

with equality in the rank-1 case; when r = 1 this reduces to E∥X∥ =
√

2/π ∥Jl∥F .

Combining equation A.1 with E∥p∥ ≤ √nl yields

E
[
cos
(
Jl, Ĵl

)]
≥
√

2

π nl

∥Jl∥2
∥Jl∥F

,

and, in the rank-1 case, the simpler
√

2/(πnl) form. For the batched estimator built by averaging B
independent rank-1 estimates, the variance of the empirical cosine decreases as O(1/B); in particular,
by standard sub-Gaussian concentration for Lipschitz functionals of Gaussians,

P

(∣∣∣∣∣ 1B
B∑
i=1

cos
(
Jl, Ĵl(pi)

)
− E

[
cos
(
Jl, Ĵl(p)

)]∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
−cB t2

)
,

for some absolute constant c > 0 depending on dimensions and condition numbers of Jl. Equiva-
lently,

Std

[
1

B

B∑
i=1

cos
(
Jl, Ĵl(pi)

)]
= O

(
1√
B

)
.
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A.5 FDFA REPRODUCTION DETAILS

We deliberately excluded Bacho & Chu (2024) because our attempts to reproduce their results
revealed multiple inconsistencies:

• On AlexNet (CIFAR-100), their code yields 55.03%± 0.16 accuracy over 10 runs, instead
of the 57.27%± 0.11 they report.

• Their DFA baseline (from the Webster et al. (2020) code) achieves 48.03%± 0.61, yet they
report only 35.75%± 0.58. This discrepancy appears to arise from applying batch–norm
exclusively to FDFA.

• Re-implementing their method in BioTorch with their hyperparameters gives no improve-
ment over standard DFA (33.59% for FDFA vs. 42.59% for DFA).

• Finally, integrating GrAPE into their code gives 60.35%± 0.26 on AlexNet (no augmen-
tation), essentially matching BP, which conflicts with the known gap between BP and
DFA-style methods.

Collectively, these points suggest unintended reliance on backpropagation in their pipeline and
cherry-picked reporting, undermining reproducibility and justifying our decision to omit FDFA from
our baselines.

Novelty of GrAPE. While previous works combine DFA with forward-mode AD, GrAPE is the first
to:

• derive feedback updates from a cosine-similarity alignment loss grounded in Zoutendijk’s
theorem (guaranteeing descent in expectation),

• demonstrate scalability to deep architectures (VGG, ResNet, Transformers) with rigorous
empirical validation,

• provide both theoretical convergence guarantees and extensive, reproducible benchmarks
using verified implementations (e.g. BioTorch).

While we are open to citing FDFA in future versions for completeness, we believe that its omission
in the present submission is fully justified and does not diminish the novelty or relevance of our
contribution.

B FEEDBACK MATRICES UPDATE DETAILS

In the main paper, the local cosine alignment loss Lalign for each feedback matrix Bl is minimized
through a global gradient step. However, since each of the nl columns contribute independently to
the sum of cosines, we could write the gradient descent column by column. Specifically, for each k,
we minimize the single-term

[
1− cos(bk

l , j
k
l )
]
, scaled by 1/nl. Let ηBl

> 0 be the learning rate for
layer l. Then the per-column update can be written as:

bk
l ← bk

l −
ηBl

nl
∇bk

l

[
1− cos

(
bk
l , j

k
l

)]
, k = 1, . . . , nl.

We recall that ∇x cos(x,y) =
y

∥x∥∥y∥ −
(x⊤y)x
∥x∥3 ∥y∥ , the gradient of

[
1− cos(x,y)

]
is its negative.

Each column bk
l is thus updated as:

bk
l ← bk

l −
ηBl

nl

[
−∇bk

l
cos(bk

l , j
k
l )
]

= bk
l +

ηBl

nl

[ jkl
∥bk

l ∥ ∥jkl ∥
−
(
bl⊤
k jkl

)
bk
l

∥bk
l ∥3 ∥jkl ∥

]
. (10)

Applying this update for each k=1, . . . , nl increases the mean columnwise cosine and thus aligns Bl

with Ĵl. Because there are no cross-terms coupling different columns in Lalign, these two approaches
give the same result. We then renormalize each column bk

l after this step to keep norms bounded.
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C FLOPS AND CRITICAL-PATH ANALYSIS

Throughout this subsection we adopt the standard GEMM view, modeling each layer’s compute as a
(batched) matrix-matrix multiply after the usual reshapes/lowering, which yields simple, comparable
FLOP counts.

Setup and notation. Let the network have layers ℓ = 1, . . . , L. Denote by

F ≜
L∑

ℓ=1

O
(
nℓ−1 nℓ

)
the FLOPs of one mini-batch forward pass under the GEMM view (for conv layers this corresponds
to the lowered GEMM). Let dout be the output dimensionality, and define the per-layer costs:

Cproj
ℓ = O

(
nℓ dout

)
(feedback projection), Calign

ℓ = O
(
nℓ dout

)
(local alignment update on Bℓ).

We model a single Jacobian–vector product (JVP) as an overhead of α times the layer’s forward cost;
writing a layer-averaged ᾱ gives a total forward+JVP factor (1 + ᾱ).

Backpropagation (BP).

F batch
BP =

L∑
ℓ=1

(
O
(
nℓ−1nℓ

)
+ O

(
nℓ−1nℓ

))
≈ (1 + β)F, (11)

where the backward-to-forward ratio β is typically in the range of 2 depending on layer type and
implementation. The backward sweep is sequential across layers on the critical path.

Direct Feedback Alignment (DFA).

F batch
DFA = F +

L∑
ℓ=1

Cproj
ℓ = F + O

(
dout

∑
ℓ

nℓ

)
. (12)

The forward is sequential across layers; the per-layer projections are layer-local and may be launched
in parallel, so their contribution to the critical path is maxℓ C

proj
ℓ .

GrAPE (alignment-only).

F batch
GrAPE = (1 + ᾱ)F +

L∑
ℓ=1

Cproj
ℓ +

L∑
ℓ=1

Calign
ℓ = (1 + ᾱ)F + O

(
dout

∑
ℓ

nℓ

)
. (13)

Here one JVP per layer runs during the forward trace (scaling the forward path by (1+ ᾱ)). Projection
and alignment are layer-local and parallelizable, contributing maxℓ

(
Cproj

ℓ + Calign
ℓ

)
to the critical

path.

GrAPE with calibration every T epochs. A single BP mini-batch is added per T epochs. If an
epoch contains Nb mini-batches, the amortized per-epoch overhead is

F epoch
GrAPE+Cal = Nb · F batch

GrAPE +
1

T
F batch
BP (i.e., 1

TNb
of an epoch in units of mini-batches).

(14)

Rule-of-thumb comparison (per mini-batch). If Cbwd
ℓ ≈ Cfwd

ℓ and Cproj
ℓ +Calign

ℓ ≪∑
j O(nj−1nj), then

F batch
BP ≳ 2F, F batch

GrAPE ≈ (1 + ᾱ)F + lower-order terms in dout

∑
ℓ

nℓ.

Practical JVP overhead. Here α denotes the JVP overhead relative to a forward pass: the JVP
alone costs αF , so the combined forward+JVP cost is (1 + α)F . On modern GPUs with fused
dual-number implementations, we typically observe α ≈ 0.8–1.3, hence

forward+JVP ≈ (1 + α)F ∈ [ 1.8F, 2.3F ].
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Transformers (macro/micro). For macro (per-block) and micro (per sub-layer) variants, Cproj
ℓ

and Calign
ℓ apply at the chosen granularity. Between calibrations, the multi-head attention backward

chain is bypassed; GrAPE’s JVPs run in the forward trace, while block/sub-layer projection and
alignment remain parallelizable.

Arithmetic bound The expressions above capture arithmetic work and dependency structure;
realized wall-clock depends on kernels, fusion, memory bandwidth, and scheduling. Under an
idealized critical-path model where (i) BP’s backward cost is about twice the forward cost (i.e., β≈2
so BP takes (1 + β)F ≈3F ), (ii) GrAPE’s per-layer projection/alignment are fully overlapped across
layers, and (iii) fused dual-number JVPs yield α≈0.8–1.3, the arithmetic critical-path ratio is

BP critical path
GrAPE critical path

≈ 1 + β

1 + α
∈ 3

[ 1.8, 2.3 ]
= [ 1.3, 1.7 ].

We therefore view 1.3–1.7× as an optimistic arithmetic upper bound (not a measured wall-clock
speedup). Establishing realized parallel speedups is left to future work.

D EXPERIMENTAL DETAILS

As mentioned earlier, we base most of our experiments on the Biotorch open source library. While
the experiments on Transformer use exactly the same hyper parameters as in Launay et al. (2020), the
other experiments are set with a specific set of tuned hyperparameters for each method. For GrAPE,
we set the optimizer of the local updates to SGD with 0.9 momentum with learning rate 0.01. The BP
calibration steps are conducted on batch of size 128, with SGD with 0.9 momentum and learning
rate 0.01. We train AlexNet and VGG-16 for 100 epochs with a 128 batch size. The Resnets are
trained for 200 epochs with a 128 batch size. If SGD is used, default 0.9 momentum was applied.
The specific used hyper-parameters are :

AlexNet VGG16 ResNet-20 ResNet-56

BP DFA GrAPE BP DFA GrAPE BP DFA GrAPE BP DFA GrAPE

Optimizer Adam Adam Adam SGD SGD Adam SGD Adam Adam SGD Adam Adam
LR 0.001 0.0001 0.0001 0.1 0.001 0.0001 0.1 0.001 0.01 0.1 0.01 0.0005
LR decay 0.1 0.1 0.2 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2
Milestones [40, 80] same same [50, 75] [30, 60, 90] [30, 60, 90] [60, 120, 160] same same [60, 120, 160] same same
Weight decay 0.0001 0.0001 0.0001 0.0005 0.0001 0.0001 0.0005 0.0001 0.0001 0.0005 0.0001 0.0005

Table 5: Hyperparameter settings for deep networks on CIFAR-100 and TinyImageNet: AlexNet,
VGG16, ResNet-20, and ResNet-56.
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