

000 001 SCALING DIRECT FEEDBACK LEARNING WITH THEO- 002 RETICAL GUARANTEES 003

004
005 **Anonymous authors**
006 Paper under double-blind review
007
008

009 ABSTRACT 010

011 Deep neural networks rely on backpropagation (BP) for optimization, but its strictly
012 sequential backward pass hinders parallelism and scalability. Direct Feedback
013 Alignment (DFA) has been proposed as a promising approach for parallel learning
014 of deep neural networks, relying on fixed random projections to enable layer-wise
015 parallel updates, but fails on deep convolutional networks, and performs poorly
016 on modern transformer architectures. We introduce GrAPE (Gradient-Aligned
017 Projected Error), a hybrid feedback-alignment method that (i) estimates rank-1
018 Jacobians via forward-mode JVPs and (ii) aligns each layer’s feedback matrix
019 by minimizing a local cosine-alignment loss. To curb drift in very deep models,
020 GrAPE performs infrequent BP anchor steps on a single mini-batch, preserving
021 mostly parallel updates. We show that the forward-gradient estimator has strictly
022 positive expected cosine with the true Jacobian and, inspired by Zoutendijk-style
023 arguments, derive a convergence-in-expectation result under a positive expected-
024 cosine condition. Empirically, GrAPE consistently outperforms prior alternatives
025 to BP, enabling the training of modern architectures, closing a large fraction of the
026 gap to BP while retaining layer-parallel updates for the vast majority of steps.
027

028 1 INTRODUCTION

029 Backpropagation (BP) (Rumelhart et al., 1986) remains the de facto standard for training deep
030 networks. However, its memory footprint and energy cost have become critical bottlenecks as
031 architectures deepen and scale up. In particular, two properties of the BP impede the development of
032 parallel training methods: the weight symmetry between the forward and backward pass, and the
033 sequential propagation of the error. These two properties also clash with biological plausibility. In
034 this paper, we deliberately set aside the biological concerns to focus on non-sequential alternatives to
035 BP. A rich literature has mainly explored two independent axes of relaxation:

036 **Randomized feedback** (Feedback Alignment, FA (Lillicrap et al., 2016), Direct FA, DFA (Nøkland,
037 2016), etc.) replaces transposed weights by fixed or adaptive random matrices, but suffers from
038 misalignment on deep or convolutional layers (Bartunov et al., 2018; Moskovitz et al., 2018; Launay
039 et al., 2019). Adaptive variants using weight mirroring (Akrout et al., 2019) can approach BP
040 performance, remaining sequential, however, offering limited practical advantages.

041 **Forward-gradient and forward-only** methods (Silver et al., 2021; Baydin et al., 2022; Hinton, 2022;
042 Dellafererra & Kreiman, 2022) replace the backward pass by Jacobian-vector products or a second
043 “perturbed” forward pass, at the cost of high variance and limited scaling to modern architectures.

044 Our work extends the first axis, starting from the following observation: fixed random feedback
045 matrices often lose positive cosine similarity with true gradients in deep and structured layers (Nøk-
046 land, 2016; Refinetti et al., 2021). As a consequence, this kind of feedback fails to decrease the loss
047 function. We therefore introduce a lightweight and data-driven correction using forward gradient
048 estimates. With this alignment, we combine the efficiency of randomized feedback with the statistical
049 guarantees of forward-gradient estimates, augmenting them with an occasional BP calibration step to
050 reduce inherent variance in very deep networks. Our core contributions are:

051 1. *Gradient-guided feedback.* We introduce **GrAPE** (Gradient Aligned Projected Error), which
052 computes a local cosine-alignment loss with cheap forward-gradient estimates. This realigns
053 the feedback matrix of each layer towards the true gradient prior to the parallel DFA update.

054

055 2. Leveraging forward-mode gradients, we derive a positive expected alignment bound for our

056 rank-1 Jacobian estimator and a standard convergence-in-expectation result under a positive

057 expected-cosine condition, while prior methods only rely on empirical results.

058 3. *Occasional BP calibration.* To further mitigate drift in very deep or highly structured

059 networks, we apply a true BP step to a single mini-batch every T epochs, using its exact

060 gradient to realign the weights. This yields a hybrid two-timescale scheme in which most

061 updates are layer-parallel GrAPE steps, interleaved with sparse BP synchronizations.

062 4. *Scalability.* We show for the first time that a DFA-style method can train VGG-16, ResNet-

063 20/56 and Transformer models, narrowing the performance gap with full BP.

064 The paper is organized as follows: in Section 2 we briefly recall the necessary background and

065 notation (a more detailed survey can be found in the Appendix). Section 3 describes the GrAPE

066 algorithm and the occasional BP calibration strategy. Section 4 reports empirical results.

067 2 BACKGROUND AND RELATED WORKS

068 Let $f(x; \theta)$ be a feed-forward neural network with L layers, where $x \equiv h_0$ is the input and $\theta =$

069 $\{W_l\}_{l=1}^L$ is the set of parameters. Each layer computes $a_l = W_l h_{l-1}$ followed by a non-linearity

070 $h_l = \sigma_l(a_l)$, encompassing both linear and convolutional operations. The output is $\hat{y} = h_L$. Given

071 a loss function $\mathcal{L}(\hat{y}, y)$, the goal of backpropagation (BP) is to compute gradients $\nabla \mathcal{L}_l = \partial \mathcal{L} / \partial a_l$

072 recursively, starting from the output layer. The corresponding weight update is:

$$073 \delta W_l = \begin{cases} -\eta \nabla \mathcal{L}_L h_{L-1}^\top & \text{if } l = L \\ -\eta \delta a_l h_{l-1}^\top & \text{if } l < L, \end{cases} \quad \text{with } \delta a_l = (W_{l+1}^\top \delta a_{l+1}) \odot \sigma'_l(a_l) \quad (1)$$

074 This algorithm is by construction sequential: the update at layer l depends on the backpropagation of

075 errors through all subsequent layers. This reliance on weight symmetry and stepwise computation

076 hinders parallelism. As architectures attain increasing size and depth, alternative methods that allow

077 non-symmetric error transmission and enable parallelized training have emerged (see Figure 1).

078 2.1 LEARNING WITH RANDOM FEEDBACK

079 **Feedback Alignment (FA)** proposes a biologically inspired alternative to backpropagation by

080 replacing transposed weights with fixed random feedback matrices B_l (Lillicrap et al., 2016). The

081 error is still propagated sequentially, but independently of the forward weights (W_l):

$$082 \delta a_l = (B_l \delta a_{l+1}) \odot \sigma'_l(a_l), \quad \text{with } \delta a_L = (B_L \nabla \mathcal{L}_L) \odot \sigma'_L(a_L)$$

083 This removes the weight symmetry constraint, aligning better with biological learning (Lillicrap

084 et al., 2020) but fails to scale to convolutional networks (Bartunov et al., 2018; Moskovitz et al.,

085 2018). Adaptive variants using weight mirroring (Akrout et al., 2019) can however approach BP

086 performance, but remain sequential and thus offer limited practical advantages.

087 **Direct Feedback Alignment (DFA)** (Nøkland, 2016) removes the need for sequential error propagation

088 by projecting the output error directly to each hidden layer:

$$089 \delta a_l = (B_l \nabla \mathcal{L}_L) \odot \sigma'_l(a_l), \quad \forall l \in [1, L] \quad (2)$$

090 This enables parallel updates but remains limited on complex architectures like CNNs and Transform-

091 ers. Attempts to mitigate this include adaptive feedback (e.g., weight mirroring (Akrout et al., 2019))

092 or architectural variants like DRTP (Frenkel et al., 2021), falling short behind BP on large-scale tasks.

093 Launay et al. (2020) applied DFA to Transformers using either block-wise ('macro') or layer-

094 wise ('micro') feedback, yet BP remains necessary within attention layers. Our method builds

095 on this approach by providing more informative feedback signals, complementing the internal

096 backpropagation still required within attention blocks.

097 The effectiveness of FA and DFA relies on the alignment between feedback vectors and true gradients

098 as shown by Nøkland (2016); Refinetti et al. (2021). A sufficient condition for descent is thus:

099 $\forall l \in [1, L], \cos(\omega_l) = \frac{\nabla \mathcal{L}_l^\top B_l}{\|\nabla \mathcal{L}_l\| \cdot \|B_l\|} > 0$. This reflects the classical Zoutendijk condition (Nocedal

100 & Wright, 1999), highlighting the importance of alignment for descent and convergence in classical

101 deterministic line-search methods (see Appendix A.3).

Figure 1: Overview of error propagation schemes, adapted from Dellaferreira & Kreiman (2022). (a) BP, (b) FA, (c) DFA, (d) forward-only methods (PEPITA, Forward-Forward), (e) GrAPE. Green arrows indicate forward paths; orange ones error signals and blue ones forward gradient estimates $\mathcal{J}_{l,a}$. Learned weights are denoted W_l , and layer-specific feedback weights as B_l .

2.2 FORWARD-ONLY CALCULATIONS

Forward-only methods aim to completely bypass the backward pass. For instance in PEPITA (Dellaferreira & Kreiman, 2022) or Forward-Forward (Hinton, 2022), a *double forward pass* provides a surrogate error signal via a perturbed forward step: $\delta W_l = (h_l - h_l^{err}) \odot (h_{l-1}^{err})^\top$, $h_0^{err} = x - Fe$

Forward Gradient (FG) methods (Silver et al., 2021; Baydin et al., 2022) use forward-mode automatic differentiation (FwAD) to obtain unbiased gradient estimates via directional (Jacobian–vector) derivatives along a random direction \mathbf{u} , removing the need for an explicit backward pass: $\nabla \mathcal{L} \cdot \mathbf{u} = \lim_{\delta \rightarrow 0} \frac{\mathcal{L}(\theta + \delta \mathbf{u}) - \mathcal{L}(\theta)}{\delta}$. While unbiased in theory, sampling in parameter space is inefficient for large models. Ren et al. (2022) address this by perturbing neuron activations instead of weights, significantly reducing variance and cost as activation space is usually much smaller than weight space. Additional improvements use local auxiliary losses (Fournier et al., 2023), requiring however BP to train the auxiliary models.

FwAD methods parallel the standard forward pass and can be implemented via dual numbers. Despite some runtime overhead (43% w.r.t. a simple forward with a naive implementation (Baydin et al., 2022)), optimized frameworks (e.g., PyTorch FwAD, JAX) promise broader applicability.

Other recent local learning rules also exploit forward computations without relying on FA/DFA-style feedback pathways. Nøkland & Eidnes (2019) attach shallow local classifiers and similarity-based objectives to each hidden layer, computing layerwise gradients from these auxiliary losses in a strictly feedforward manner (with an optional FA-based variant), while Apolinario et al. (2025) propose a rule that drives each layer to align its activations with fixed periodic basis vectors using a local cross-entropy loss. In both cases, learning signals are generated from local forward computations and do not rely on separate feedback matrices B_l or on backpropagated errors from the global task loss.

While these methods can reach reasonable performance on relatively shallow or compact architectures, their reported accuracies typically remain below backpropagation on deeper models, and they have not yet been demonstrated at scale on modern Transformer-style networks. GrAPE is complementary: it also leverages forward-mode information, but uses JVP-based rank-1 Jacobian estimates to explicitly learn feedback matrices that approximate true gradient directions for DFA-style updates.

3 GRADIENT ALIGNED PROJECTED ERROR (GRAPE)

Here, we introduce GrAPE (Gradient-Aligned Projected Error). This method leverages the lightweight forward-gradient estimates to align the feedback matrices with the true Jacobians. This alignment is motivated by the Zoutendijk theorem and helps ensuring convergence, enabling scalable training of complex architectures on various tasks. We summarize the overall procedure in Algorithm 1.

162
163

3.1 LIMITATIONS OF FIXED RANDOM FEEDBACK MATRICES

164
165
166
167
168
169
170
171
172

In line-search methods, the update direction must align as closely as possible with the true negative gradient. DFA uses a fixed “feedback” direction in place of $-\nabla \mathcal{L}$, but cannot measure or correct the angle between its update and the actual descent direction. In convolutional layers, for example, the linear transformation can be represented by a block-Toeplitz matrix (d’Ascoli et al., 2019). Reproducing such a structure with a single, fixed, randomly sampled feedback matrix is impossible, as discussed by Refinetti et al. (2021). This explains why Launay et al. (2019) found that vanilla DFA often fails on convolutional networks: the convolutional weights cannot correctly capture the projected error if the feedback direction is misaligned with the true gradient. However, if we *align* the feedback projections with the associated gradients, this limitation can be overcome.

173
174
175

Beyond fixed random feedback, early weight-mirroring schemes (Akrout et al., 2019) already showed that it is possible in principle to adapt feedback weights to approximate W_l^\top in FA, albeit in a fundamentally sequential setting tied to the forward weights.

176
177
178
179
180
181
182
183

Subsequent DFA-style approaches (Webster et al., 2021; Bacho & Chu, 2024) extend this idea, either by using a Kolen–Pollack–type learning rule to adapt feedback weights or by tracking BP updates through auxiliary forward passes and momentum. Roy et al. (2025) “unlock” SVD-space by optimizing a composite set of 5 local losses, including a cosine-like term, to align feedback with forward singular vectors. While these methods can substantially improve feedback alignment and sometimes recover BP-level accuracy, they either inherit the sequential nature of FA, rely on complex SVD-based or multi-term loss machinery, or, in the case of FDFA, raise reproducibility questions as discussed in Appendix A.4.

184
185
186
187
188
189
190

None of them exploit forward-mode JVPs to obtain a simple, analytically tractable global alignment guarantee. GrAPE takes a different route: it uses JVP-based rank-1 Jacobian estimates and a single cosine loss to learn feedback matrices that are both amenable to layer-parallel DFA-style execution and analytically linked to the true Jacobians through a positive expected Frobenius cosine bound. Together with infrequent BP steps on a single mini-batch, GrAPE demonstrates in our experiments scaling to deeper CNNs and Transformer architectures where vanilla DFA and related methods have historically struggled.

191
192

3.2 ALIGNMENT WITH FORWARD GRADIENTS: STATISTICAL GUARANTEES

193
194
195
196

Alignment lower bound Consider the Jacobian matrix $\mathcal{J}_l = \frac{\partial \hat{y}}{\partial \mathbf{h}_l} \in \mathbb{R}^{d_{\text{out}} \times n_l}$, the perturbation $\mathbf{p} \sim \mathcal{N}(0, I_{n_l})$ and the Jacobian–vector product $\mathcal{J}_l \mathbf{p} \in \mathbb{R}^{d_{\text{out}}}$. An *unbiased* rank-1 approximation of \mathcal{J}_l is then $\widehat{\mathcal{J}}_l = (\mathcal{J}_l \mathbf{p}) \mathbf{p}^\top \in \mathbb{R}^{d_{\text{out}} \times n_l}$. We measure alignment via the Frobenius cosine

197
198
199

$$\cos_F(\mathcal{J}_l, \widehat{\mathcal{J}}_l) = \frac{\langle \mathcal{J}_l, \widehat{\mathcal{J}}_l \rangle_F}{\|\mathcal{J}_l\|_F \|\widehat{\mathcal{J}}_l\|_F}, \quad \langle A, B \rangle_F := \text{Tr}(A^\top B). \quad (3)$$

200
201
202
203
204
205

Because $\mathbf{p} \sim \mathcal{N}(0, I_{n_l})$, we can write $\mathbf{p} = r \mathbf{s}$ with \mathbf{s} uniform on the unit sphere and independent of $r = \|\mathbf{p}\|$. A direct computation shows $\cos_F(\mathcal{J}_l, \widehat{\mathcal{J}}_l) = \frac{\|\mathcal{J}_l \mathbf{s}\|}{\|\mathcal{J}_l\|_F}$, so $\mathbb{E}[\cos_F(\mathcal{J}_l, \widehat{\mathcal{J}}_l)] = \frac{1}{\|\mathcal{J}_l\|_F} \mathbb{E}_{\mathbf{s}} \|\mathcal{J}_l \mathbf{s}\|$. Projecting onto the top singular direction of \mathcal{J}_l and using a standard bound on the first coordinate of a uniform sphere point (Appendix B) yields

206
207
208

$$\mathbb{E}[\cos_F(\mathcal{J}_l, \widehat{\mathcal{J}}_l)] \geq \sqrt{\frac{2}{\pi n_l}} \frac{\|\mathcal{J}_l\|_2}{\|\mathcal{J}_l\|_F}, \quad (4)$$

209
210
211

which is strictly positive for $\mathcal{J}_l \neq 0$. For the batched estimator (average of B independent rank-1 estimates), Gaussian concentration implies that the empirical Frobenius cosine concentrates around equation 4 at rate $O(1/\sqrt{B})$ (Appendix B).

212
213
214
215

Beyond this layerwise alignment bound, Appendix B.4 recalls a standard stochastic-approximation result (Theorem B.1) showing that, under usual step-size conditions, a positive expected cosine between the update direction and the true gradient is sufficient for convergence to stationarity in expectation. GrAPE is designed so that its JVP-based estimator and alignment loss encourage precisely such a positive expected-cosine condition at the layer level.

Zoutendijk theorem In classical smooth deterministic optimization, the Zoutendijk theorem states that if each search direction forms an angle uniformly bounded away from $\pi/2$ with the negative gradient and the step sizes satisfy Goldstein or strong Wolfe conditions (typically enforced by line-search; see Nocedal & Wright, 1999), then the gradient norm converges to zero and the iterates approach a stationary point. In our context, we view Zoutendijk primarily as a *conceptual lens* motivating cosine-based alignment: our JVP-based estimator yields a strictly positive expected Frobenius cosine between \mathcal{J}_l and $\widehat{\mathcal{J}}_l$ (Eq. 4), and standard stochastic-approximation results (Theorem B.1 in Appendix B.4) show that a positive expected cosine between the update direction and the true gradient is sufficient for convergence to stationarity in expectation under usual step-size conditions.

Concretely, we update each feedback matrix with respect to the corresponding estimated $\widehat{\mathcal{J}}_l$, before applying the DFA weight update (Equation 2). Here, the per-layer cosine with the estimated Jacobian is a sufficient *local* condition that heuristically supports global descent when combined across layers:

$$\forall l \in [1, L], \cos(\bar{\omega}_l) := \cos_F(B_l, \widehat{\mathcal{J}}_l) = \frac{\langle B_l, \widehat{\mathcal{J}}_l \rangle_F}{\|B_l\|_F \|\widehat{\mathcal{J}}_l\|_F} > 0, \quad (5)$$

In Appendix B.5, we further show via a simple Frobenius cosine composition lemma (Lemma B.2) that whenever $\cos_F(B_\ell, \widehat{\mathcal{J}}_\ell)$ and $\cos_F(\widehat{\mathcal{J}}_\ell, \mathcal{J}_\ell)$ are both bounded below, then so is $\cos_F(B_\ell, \mathcal{J}_\ell)$, so misalignment does not compound arbitrarily across these two sources of noise. In practice, we use the empirical average of per-column cosines \bar{c}_l as a proxy for the Frobenius cosine $\cos_F(B_l, \widehat{\mathcal{J}}_l)$: as detailed in Appendix C, \cos_F is a weighted average of these columnwise cosines, and after column normalization of B_l and our JVP construction, the weights are close to uniform, so \bar{c}_l is a convenient scalar summary of layerwise alignment.

In practice, for each layer we can choose to do a perturbation either in the weight space (as explained above) or in the activation space (Ren et al., 2022). Since the variance and cosine of the estimator depend directly on the dimension of the perturbations, we pick the space with the lowest dimension. Although usually the weight space is of much higher dimension than the activity space, this is not the case for the first layers of a deep convolutional network, for instance.

3.3 LEARNING RULE AND ALGORITHM

We first define a local *alignment loss*: $\mathcal{L}_{\text{align}}(B_l) = 1 - \cos(\bar{\omega}_l)$, where $\cos(\bar{\omega}_l)$ is defined in Equation 5. We update B_l by one gradient step on $\mathcal{L}_{\text{align}}$:

$$B_l \leftarrow B_l - \eta_{B_l} \nabla_{B_l} \mathcal{L}_{\text{align}}(B_l), \quad \eta_{B_l} > 0, \quad (6)$$

and then normalize columns to enforce purely directional alignment, $B_l[:, k] \leftarrow B_l[:, k]/(\|B_l[:, k]\| + \varepsilon)$ with $\varepsilon > 0$ for numerical stability (cf. Nøkland, 2016).

This local step uses only forward-mode JVPs and no BP is required. It is worth noting that a single batched JVP per layer adds roughly a forward-pass-like cost and does not scale with the number of parameters. Furthermore, our rank-1 Jacobian estimate has a strictly positive expected Frobenius cosine with the true Jacobian and concentrates as the batch size grows (Appendix B). We found one alignment step per batch sufficient in practice; additional steps offered no gain.

Finally, with this refined B_l we perform the parallel update:

$$\delta a_l = (B_l \nabla \mathcal{L}_L) \odot \sigma'_l(a_l), \quad \delta W_l = -\eta \delta a_l h_{l-1}^\top.$$

3.4 SPARSE BP CALIBRATION ON A SINGLE MINI BATCH

In order to counteract the increased variance of our forward-gradient estimates in high dimensions, we additionally inject a true BP step on a single mini-batch, using its exact gradients to re-anchor all W_l with minimal interruption of the parallel update flow. Let T denote the number of epochs between two such BP calibration steps. Currently, we select the calibration mini batch uniformly at random; a promising extension would be to apply active-learning strategies to pick the most informative examples for each BP calibration step, for example with uncertainty sampling or core-set selection (Settles, 2009; Sener & Savarese, 2017).

The amortized per-epoch overhead of a single-mini-batch calibration is $\approx 1/(TN_b)$ of an epoch in units of mini-batches ($\mathcal{O}(N_b + 1/T)$ vs. $\mathcal{O}(N_b)$ steps). For typical $N_b \gg 1$, this is small in practice. Appendix D provides a compact FLOPs and critical-path accounting of BP, DFA, and GrAPE—covering forward+JVP overhead, per-layer projection/alignment, and the $\frac{1}{T}$ calibration term—together with preliminary timing results on a small transformer. A full study of optimized parallel kernels is left to future work.

Algorithm 1 GrAPE

4 EMPIRICAL EVALUATION

We evaluate GrAPE in a variety of settings, with shallow and deep image classification models, as well as transformers for language modeling. We empirically show that GrAPE consistently outperforms DFA and other methods, even without BP calibration. Introducing the occasional calibration step improves both DFA and GrAPE, and brings GrAPE much closer to BP.

A crucial requirement for any BP alternative is rigorous implementation and evaluation under the same settings as BP. Since these methods are still nascent, fair and reproducible comparisons are essential. Although FDFA (Bacho & Chu, 2024) also combines random feedback with forward-mode AD, it does not, to our knowledge, provide an optimization-theoretic convergence argument. Our attempts to reproduce their reported numbers across CIFAR-100 settings did not match the paper’s figures using the authors’ code or a BioTorch reimplementation; details are provided in the Appendix A.4.

324
 325 Table 1: Performances of a shallow convolutional network (CNN) and a 3 layer Multi Layer Per-
 326 ceptron (MLP) trained on the MNIST and CIFAR10 datasets with different learning algorithms (in
 327 percentages).

328 Method	329 Parallelizable	330 MNIST		331 CIFAR10		332 CIFAR100	
		333 MLP	334 CNN	335 MLP	336 CNN	337 MLP	338 CNN
339 BP	340 No	341 98.73 ± 0.04	342 99.03 ± 0.02	343 54.09 ± 0.14	344 74.66 ± 0.08	345 28.18 ± 0.45	346 44.22 ± 0.19
347 FA	348 No	349 98.36 ± 0.04	350 98.7 ± 0.07	351 52.18 ± 0.15	352 71.05 ± 0.18	353 24.54 ± 0.22	354 35 ± 0.27
355 DRTP	356 Yes	357 95.7 ± 0.12	358 98.5 ± 0.17	359 47.55 ± 0.12	360 64.73 ± 0.62	361 18.63 ± 0.43	362 30.54 ± 0.12
363 DFA	364 Yes	365 98.21 ± 0.07	366 98.6 ± 0.04	367 51.32 ± 0.32	368 69.34 ± 0.4	369 22.44 ± 0.23	370 34.53 ± 0.42
371 PEPITA	372 Yes	373 98.01 ± 0.08	374 NA	375 52.01 ± 0.13	376 NA	377 21.87 ± 0.25	378 NA
379 GrAPE (ours)	380 Yes	381 98.53 ± 0.02	382 98.8 ± 0.01	383 53.4 ± 0.04	384 73.1 ± 0.23	385 26.22 ± 0.33	386 38.0 ± 0.31

335 336 4.1 EXPERIMENTAL SETTING

337 We implement our method in Biotorch (Sanfiz & Akrout, 2021) to ensure full transparency and to
 338 leverage its existing feedback-alignment and forward-mode hooks. All hyper-parameters (learning
 339 rates, schedulers, etc.) are detailed in the Appendix E, and our complete codebase (including the
 340 calibrated-DFA variant) will be released upon publication. In our current Biotorch implementation,
 341 computations are largely serialized on a single GPU and we do not yet exploit true layer-parallel
 342 scheduling. We chose Biotorch to ensure a fair comparison with existing baselines and a standardized
 343 way of benchmarking our method within the same framework. In this regime, GrAPE incurs a modest
 344 6–20% wall-clock overhead per training step compared to DFA or BP, depending on architecture and
 345 dataset, due to the extra forward-mode JVPs and local alignment updates.

346 To complement backward hooks in convolutions, we use PyTorch’s low-level `conv2d_input`,
 347 `conv2d_weight`, `conv2d_bias` from `torch.nn.grad` and the JVP routines from FwAD, en-
 348 suring correct gradient estimates in convolutional layers without any backward pass. All experiments
 349 were conducted on a NVIDIA A100 GPU. We test our method on the following setups:

350 **Shallow architectures.** We first validate on a 3-layer MLP (hidden size 1024) and a LeNet-5–style
 351 CNN across MNIST, CIFAR-10, and CIFAR-100. Baselines follow the strongest BP-free comparators
 352 in Srinivasan et al. (2023): FA, DFA, DRTP (Frenkel et al., 2021) and PEPITA (Dellaferreira &
 353 Kreiman, 2022) with the recommended variance-reduction tweaks from Srinivasan et al. (2023).
 354 Consistent with prior reports, DRTP/PEPITA do not scale to deep CNNs, hence we exclude them
 355 from AlexNet/VGG/ResNet tables. The results are reported Table 1.

356 **Deeper convnets with BP calibration.** Next, we tackle AlexNet and VGG-16 on CIFAR-100 –
 357 architectures on which vanilla DFA catastrophically fails (Launay et al., 2019). Here we inject one
 358 backpropagation update on a randomly selected mini-batch every T epochs (for both GrAPE and
 359 DFA as a “calibrated” control). Surprisingly, this sparse BP step alone recovers a large fraction of
 360 DFA’s gap with BP and allows GrAPE to attain really close performance when compared to BP. The
 361 results are reported in Table 2 and Figure 2.

362 **Cost of BP calibration.** In all calibrated settings, a BP step consists of a single full backward pass on
 363 one mini-batch every T epochs. On CIFAR-100 with ResNet-20 and batch size 256, this corresponds
 364 to one calibration batch out of ≈ 195 per epoch; for $T = 1$ this is about 0.5% of the backward passes
 365 used by standard BP, and for larger T the overhead is reduced proportionally. Thus, even at $T = 1$
 366 the calibration cost is negligible compared to the bulk of GrAPE or DFA updates.

367 **Modern architectures with BP calibration.** Finally, we scale to a Transformer-Base on WikiText-
 368 103, following exactly the protocols of Launay et al. (2020). We adopt macro (one feedback per
 369 encoder block) and micro (one per sub-layer) feedback approaches, replacing each fixed feedback by
 370 a learned one via the same local cosine-alignment, with no change to forward or attention internals;
 371 BP inside attention layers remains as in Launay et al. (2020), depending on the specific setting. We
 372 also scale to deep networks such as ResNet-20/56 on CIFAR-100 per canonical practice in He et al.
 373 (2016) and also on Tiny ImageNet, using it as a compute-efficient proxy that preserves ImageNet-like
 374 statistics, mirroring full-ImageNet trends (Shleifer & Prokop, 2019). Once again on these deep
 375 network, we apply a BP calibration step on a single mini batch every T epochs to both GrAPE and
 376 DFA. We report averages over 10 independent runs of each method’s best checkpoint, with standard
 377 deviations to reflect stability. The results are reported in Tables 3 and 4.

378
 379 Table 2: Performances of AlexNet and VGG-16 models trained on CIFAR-100 with different learning
 380 algorithms.

Method	AlexNet	VGG-16
BP	64.61 ± 0.29	70.33 ± 0.61
DFA	42.59 ± 0.34	1.00 ± 0.00
DFA + calibration ($T = 1$)	49.37 ± 0.16	29.40 ± 0.82
GrAPE	45.45 ± 0.20	32.40 ± 0.32
GrAPE + calibration ($T = 1$)	62.63 ± 0.52	56.93 ± 0.11

381
 382
 383
 384
 385
 386
 387
 388
 389
Potential gains under layer parallelism. To probe the potential gains under actual layer parallelism,
 390 we also implemented a small prototype on a Transformer with hidden size 128, depths 2/4/8, batch
 391 size 256 and sequence length 64 on a single NVIDIA A100. Using Python-level CUDA streams and
 392 a simple double-forward trick to compute JVPs (duplicating the batch and perturbing the duplicate
 393 to compute JVPs), the mean time per batch was roughly three times lower for GrAPE versus BP
 394 (Table 5 in Appendix D). These numbers are conservative (no kernel fusion or custom kernels), but
 395 they illustrate that once layer-parallelism is exploited, GrAPE can reduce wall-clock time relative to
 396 sequential BP, especially at larger depths.
 397

398
 399 Table 3: Performance (%) on ResNet-20 and ResNet-56, for CIFAR-100 and Tiny ImageNet. Here,
 400 T specifies the number of epochs between BP updates on a randomly selected mini batch.

Method	T	ResNet-20		ResNet-56	
		CIFAR-100	Tiny ImageNet	CIFAR-100	Tiny ImageNet
BP		68.72 ± 0.14	51.66 ± 0.74	71.42 ± 0.60	56.86 ± 0.83
DFA		20.94 ± 0.19	14.18 ± 0.11	24.29 ± 0.41	15.31 ± 0.05
GrAPE (ours)		24.28 ± 0.36	18.63 ± 0.37	29.33 ± 0.63	20.15 ± 0.12
DFA + calibration	1	59.80 ± 0.55	46.13 ± 0.29	62.43 ± 0.15	48.39 ± 0.48
	5	55.28 ± 0.22	43.56 ± 0.57	61.40 ± 0.81	47.00 ± 0.34
	10	53.79 ± 0.29	44.21 ± 0.22	60.29 ± 0.40	46.92 ± 0.26
	50	30.06 ± 0.93	20.78 ± 0.71	53.91 ± 0.54	22.83 ± 0.78
GrAPE + calibration	1	64.82 ± 0.55	48.96 ± 0.21	66.92 ± 0.26	51.68 ± 0.48
	5	63.09 ± 0.53	45.17 ± 0.17	65.92 ± 0.62	49.02 ± 0.73
	10	61.15 ± 0.21	44.44 ± 0.28	65.75 ± 0.59	47.72 ± 0.21
	50	36.79 ± 0.62	22.15 ± 0.58	56.47 ± 0.54	24.40 ± 0.47

432
 433 Figure 2: Accuracy vs. calibration interval T for AlexNet (left) and VGG-16 (right) on CIFAR-100.
 434 T = number of epochs between two BP calibration steps (i.e., one calibration every T epochs). We
 435 compare BP, DFA, DFA + calibration (T), GrAPE, and GrAPE + calibration (T).

432
 433 Table 4: Best validation perplexity after 20 epochs of a Transformer trained on WikiText-103 (lower
 434 is better). T specifies the number of epochs between BP updates on a randomly selected mini batch.

T	BP	DFA	GrAPE	DFA + calibration			GrAPE + calibration		
				1	5	10	1	5	10
Macro	29.8	52.0	42.3	42.7	48.2	50.1	33.1	37.8	40.4
Micro		93.3	81.1	78.8	87.9	90.5	67.3	73.7	78.2

442 4.2 RESULTS ANALYSIS

443
444 Shallow architectures (Table 1) In our preliminary small-scale experiments on a 3-layer MLP
 445 (hidden size 1024) and a LeNet-5-style CNN across MNIST, CIFAR-10 and CIFAR-100 (Table 1),
 446 vanilla GrAPE surpasses every other method – FA, DFA, DRTP and PEPITA – without any BP
 447 calibration. This shows that in low-dimensional or shallow settings, GrAPE’s forward-gradient
 448 estimates are sufficiently accurate to drive learning effectively without full backpropagation updates.
 449

450 **AlexNet and VGG-16 (Table 2 and Figure 2)** BP achieves the highest accuracies, with $64.6\% \pm 0.3$
 451 on AlexNet and $70.3\% \pm 0.6$ on VGG-16. Uncalibrated DFA performs poorly (only $42.6\% \pm 0.3$ on
 452 AlexNet and 1.0% on VGG-16). Introducing one BP calibration per epoch ($T = 1$) boosts DFA by
 453 over 6 points on AlexNet and nearly 30 points on VGG-16. GrAPE without calibration starts higher
 454 ($45.5\% \pm 0.2$ on AlexNet, $32.4\% \pm 0.3$ on VGG-16), but with $T = 1$ it almost matches BP, reaching
 455 $62.6\% \pm 0.5$ and $56.9\% \pm 0.1$, closely trailing the BP curve in Figure 2.
 456

457 **458 ResNet-20 and ResNet-56 (Table 3)** On CIFAR-100 with ResNet-20, uncalibrated DFA achieves
 459 only $20.9\% \pm 0.2$ and GrAPE $24.3\% \pm 0.4$, compared to BP’s $68.7\% \pm 0.1$. A single BP calibration
 460 every epoch ($T = 1$) elevates DFA to $59.8\% \pm 0.6$ and GrAPE to $64.8\% \pm 0.6$, closing most of the gap
 461 with BP. As T increases to 5, 10, and 50 epochs, both methods gradually lose accuracy, highlighting
 462 the need for frequent calibration. Similar trends hold for ResNet-56 and on Tiny ImageNet: GrAPE
 463 with $T = 1$ consistently outperforms calibrated DFA and approaches BP performance.
 464

465 **466 Transformer-Base on WikiText-103 (Table 4)** For the language modeling task, uncalibrated DFA
 467 yields perplexities of 52.0 (Macro) and 93.3 (Micro), while GrAPE starts at 42.3 and 81.1. With
 468 $T = 1$, DFA improves to 42.7/78.8, but GrAPE reaches 33.1/67.3, cutting its gap with BP (29.8)
 469 by nearly half. Calibration intervals of 5 and 10 epochs result in progressively worse perplexities,
 470 confirming that frequent BP injections are key to maintaining model quality.
 471

472 **473 Critical role of periodic BP calibration** All experiments indicate that regularly performing one BP
 474 can greatly improve the training of both DFA and GrAPE. It seems particularly critical for larger and
 475 deeper models (e.g. VGG-16, Transformers and ResNets). One potential reason is that the variance
 476 of the forward gradient grows linearly with the hidden dimension: larger models lead to more noisy
 477 gradient estimates, which makes training more unstable. However, ablation studies with no calibration
 478 steps show that the GrAPE learning rule with adaptive feedback matrices is fundamentally better than
 479 DFA. In some cases (eg. Transformer, VGG-16), GrAPE with no calibration even outperforms DFA
 480 with calibration. With matching calibration frequencies, GrAPE also consistently outperforms DFA.
 481

482 Across all architectures and tasks, periodic BP calibration on a single random batch effectively bridges
 483 most of the performance gap between approximate methods (DFA, GrAPE) and full backpropagation.
 484 In particular, GrAPE with $T = 1$ matches BP performance very closely while relying on update rules
 485 with a shorter arithmetic critical path than sequential BP; in our current serialized implementation
 486 this manifests as a modest 6–20% per-step overhead, but simple layer-parallel prototypes already
 487 show potential wall-clock speedups at larger depths (Table 5).
 488

489 5 DISCUSSION AND LIMITATIONS

490 Our empirical results demonstrate that GrAPE achieves state-of-the-art performance among feedback-
 491 alignment variants in shallow models (Table 1), and recovers the majority of BP’s accuracy on deep
 492 convnets with at most a single BP calibration per epoch (Tables 2, 3). Furthermore, this BP calibration
 493 step yields substantial perplexity gains on Transformers (Table 4). Nonetheless, several important
 494

486 caveats remain. First of all, because our BioTorch-based prototype serializes updates, we do not
 487 report realized layer-parallel wall-clock gains: these are deferred to future purpose-built kernels.
 488

489 **Necessity and cost of BP calibration** While vanilla GrAPE suffices for low-dimensional / shallow
 490 settings, deep or wide networks depend critically on periodic BP updates: calibration frequency
 491 $T = 1$ consistently outperforms $T > 1$, but even a single-batch BP step might incur nontrivial
 492 overhead compared to fully local methods. Designing adaptive or event-driven calibration schedules
 493 – triggered by alignment metrics rather than fixed epochs – could reduce this cost, as well as an
 494 advanced mechanism to select the samples contained in the considered batch.
 495

496 This calibration can be interpreted in a federated-learning analogy: each layer’s GrAPE update plays
 497 the role of independent “local training” on edge devices, using only cheap, parallelizable forward-
 498 gradient corrections; the occasional full BP calibration then acts like a central-server aggregation step,
 499 collecting the current model state, computing an exact gradient “global update,” and redistributing
 500 the realigned weights back to all devices. In this way, we retain fully parallel local updates most of
 501 the time, yet periodically synchronize via a trusted central pass to ensure that all feedback matrices
 502 stay coherently aligned across the entire network.
 503

504 **Variance in forward-mode estimates** Our Jacobian estimate $\hat{\mathcal{J}}_l = (\mathcal{J}_l p) p^T$, $p \sim \mathcal{N}(0, I)$, is
 505 unbiased but exhibits a variance proportional to the model dimension (Section 4). In wide layers,
 506 the alignment signal may collapse and noise dominates, necessitating frequent calibration steps and
 507 reducing the impact of vanilla GrAPE. Future work could explore multiple perturbation directions at
 508 each forward or lightweight local losses (as in (Fournier et al., 2023)) to reduce variance. However,
 509 these would be at the expense of additional computation.
 510

511 **Convergence guarantees** Our theoretical analysis, based on Zoutendijk’s theorem, ensures only
 512 convergence to stationary points. In deep nonconvex landscapes, this leaves open the risk of saddle-
 513 point or poor-quality minima. Incorporating low-cost second-order information (e.g. diagonal Hessian
 514 approximations via forward-mode AD) may strengthen convergence toward high-quality minima.
 515

516 **Architectural generality** We validated GrAPE on multiple types of networks without designing
 517 adapted shapes for the feedback matrices. Imposing structures on the feedback matrices to respect
 518 the inherent composition of the Jacobians (for example block-diagonal for convolutions) could be a
 519 promising avenue to reduce reliance on BP calibration and further close the gap with full BP.
 520

521 In summary, GrAPE moves us closer to truly parallel, local learning methods, but fully matching BP
 522 on large-scale, modern architectures will require advances in variance reduction, adaptive calibration,
 523 and architecture-aware feedback design.
 524

525 6 CONCLUSION

526 We have presented GrAPE, a novel feedback-alignment algorithm that replaces the conventional
 527 backward pass with parallelizable feedback projections, aligned with the gradient direction. By
 528 computing cheap rank-1 Jacobian approximations during the forward pass and injecting occasional
 529 backpropagation updates, GrAPE combines the parallelism of forward-only methods with an accuracy
 530 close to that of standard backpropagation.
 531

532 Our empirical evaluation confirms that in shallow settings, GrAPE already outperforms all existing
 533 feedback-alignment variants without any BP calibration. More importantly, on deep convolutional
 534 and residual networks and on a Transformer-Base model, a backpropagation step per epoch on a
 535 single batch is sufficient to recover nearly the same accuracy or perplexity as standard BP, closing
 536 most of the gap that purely local methods leave behind.
 537

538 Although these results bring us significantly closer to truly parallel learning, several avenues remain
 539 to fully match BP on large, modern architectures. First, adaptive calibration strategies could reduce
 540 the overhead of intermittent BP steps. Second, variance-reduction techniques may further stabilize
 541 training in very wide layers. Finally, extending GrAPE’s feedback projections to exploit the specific
 542 structure of the considered layers could also help to narrow the remaining performance gap without
 543 relying on frequent BP resets.
 544

545 By uniting forward-mode gradient estimates with targeted backpropagation corrections, GrAPE lays
 546 the groundwork for scalable, parallel and efficient training of deep neural networks.
 547

540 REFERENCES
541

542 Mohamed Akroud, Collin Wilson, Peter Humphreys, Timothy Lillicrap, and Douglas B Tweed. Deep
543 learning without weight transport. *Advances in neural information processing systems*, 32, 2019.

544 Marco PE Apolinario, Arani Roy, and Kaushik Roy. Lls: local learning rule for deep neural networks
545 inspired by neural activity synchronization. In *2025 IEEE/CVF Winter Conference on Applications
546 of Computer Vision (WACV)*, pp. 7807–7816. IEEE, 2025.

547 Florian Bacho and Dominique Chu. Low-variance forward gradients using direct feedback alignment
548 and momentum. *Neural Networks*, 169:572–583, 2024.

549 Sergey Bartunov, Adam Santoro, Blake Richards, Luke Marris, Geoffrey E Hinton, and Timothy Lilli-
550 crap. Assessing the scalability of biologically-motivated deep learning algorithms and architectures.
551 *Advances in neural information processing systems*, 31, 2018.

552 Atilim Güneş Baydin, Barak A Pearlmutter, Don Syme, Frank Wood, and Philip Torr. Gradients
553 without backpropagation. *arXiv preprint arXiv:2202.08587*, 2022.

554 Stéphane d’Ascoli, Levent Sagun, Giulio Biroli, and Joan Bruna. Finding the needle in the haystack
555 with convolutions: on the benefits of architectural bias. *Advances in Neural Information Processing
556 Systems*, 32, 2019.

557 Giorgia Dellafererra and Gabriel Kreiman. Error-driven input modulation: solving the credit assign-
558 ment problem without a backward pass. In *International Conference on Machine Learning*, pp.
559 4937–4955. PMLR, 2022.

560 Louis Fournier, Stéphane Rivaud, Eugene Belilovsky, Michael Eickenberg, and Edouard Oyallon.
561 Can forward gradient match backpropagation? In *International Conference on Machine Learning*,
562 pp. 10249–10264. PMLR, 2023.

563 Charlotte Frenkel, Martin Lefebvre, and David Bol. Learning without feedback: Fixed random
564 learning signals allow for feedforward training of deep neural networks. *Frontiers in neuroscience*,
565 15:629892, 2021.

566 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
567 recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*,
568 pp. 770–778, 2016.

569 Geoffrey Hinton. The forward-forward algorithm: Some preliminary investigations. *arXiv preprint
570 arXiv:2212.13345*, 2022.

571 John F Kolen and Jordan B Pollack. Backpropagation without weight transport. In *Proceedings of
572 1994 IEEE International Conference on Neural Networks (ICNN’94)*, volume 3, pp. 1375–1380.
573 IEEE, 1994.

574 Julien Launay, Iacopo Poli, and Florent Krzakala. Principled training of neural networks with direct
575 feedback alignment. *arXiv preprint arXiv:1906.04554*, 2019.

576 Julien Launay, Iacopo Poli, François Boniface, and Florent Krzakala. Direct feedback alignment
577 scales to modern deep learning tasks and architectures. *Advances in neural information processing
578 systems*, 33:9346–9360, 2020.

579 Yann Le Cun, Conrad Galland, and Geoffrey E Hinton. Gemini: gradient estimation through matrix
580 inversion after noise injection. *Advances in neural information processing systems*, 1, 1988.

581 Timothy P Lillicrap, Daniel Cownden, Douglas B Tweed, and Colin J Akerman. Random synaptic
582 feedback weights support error backpropagation for deep learning. *Nature communications*, 7(1):
583 13276, 2016.

584 Timothy P Lillicrap, Adam Santoro, Luke Marris, Colin J Akerman, and Geoffrey Hinton. Backprop-
585 agation and the brain. *Nature Reviews Neuroscience*, 21(6):335–346, 2020.

586 Charles C Margossian. A review of automatic differentiation and its efficient implementation. *Wiley
587 interdisciplinary reviews: data mining and knowledge discovery*, 9(4):e1305, 2019.

594 Theodore H Moskovitz, Nicholas A Roy, and Jonathan W Pillow. A comparison of deep learning and
 595 linear-nonlinear cascade approaches to neural encoding. *BioRxiv*, pp. 463422, 2018.
 596

597 J Nocedal and SJ Wright. Numerical optimization springer-verlag. *New York*, 1999.
 598

599 Arild Nøkland. Direct feedback alignment provides learning in deep neural networks. *Advances in
 600 neural information processing systems*, 29, 2016.

601 Arild Nøkland and Lars Hiller Eidnes. Training neural networks with local error signals. In
 602 *International conference on machine learning*, pp. 4839–4850. PMLR, 2019.

603 Maria Refinetti, Stéphane d’Ascoli, Ruben Ohana, and Sebastian Goldt. Align, then memorise: the
 604 dynamics of learning with feedback alignment. In *International Conference on Machine Learning*,
 605 pp. 8925–8935. PMLR, 2021.

606

607 Mengye Ren, Simon Kornblith, Renjie Liao, and Geoffrey Hinton. Scaling forward gradient with
 608 local losses. *arXiv preprint arXiv:2210.03310*, 2022.

609 Arani Roy, Marco Paul E. Apolinario, Shristi Das Biswas, and Kaushik Roy. Unlocking SVD-space
 610 for feedback aligned local training, 2025. URL <https://openreview.net/forum?id=8Agcic0csh>.
 611

612 David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning representations by back-
 613 propagating errors. *Nature*, 323:533–536, 1986. URL <https://api.semanticscholar.org/CorpusID:205001834>.
 614

615 Albert Jiménez Sanfiz and Mohamed Akrout. Benchmarking the accuracy and robustness of feedback
 616 alignment algorithms, 2021.

617

618 Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-set
 619 approach. *arXiv preprint arXiv:1708.00489*, 2017.

620

621 Burr Settles. Active learning literature survey. 2009.

622

623 Sam Shleifer and Eric Prokop. Using small proxy datasets to accelerate hyperparameter search. *arXiv
 624 preprint arXiv:1906.04887*, 2019.

625

626 David Silver, Anirudh Goyal, Ivo Danihelka, Matteo Hessel, and Hado van Hasselt. Learning by
 627 directional gradient descent. In *International Conference on Learning Representations*, 2021.

628

629 Ravi Francesco Srinivasan, Francesca Mignacco, Martino Sorbaro, Maria Refinetti, Avi Cooper,
 630 Gabriel Kreiman, and Giorgia DellaFerrera. Forward learning with top-down feedback: Empirical
 631 and analytical characterization. *arXiv preprint arXiv:2302.05440*, 2023.

632

633 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
 634 Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural information processing
 635 systems*, 30, 2017.

636

637 Matthew Bailey Webster, Jonghyun Choi, and changwook Ahn. Learning the connections in direct
 638 feedback alignment, 2021. URL <https://openreview.net/forum?id=zgGmAx9ZcY>.
 639

640

641 Bernard Widrow and Michael A Lehr. 30 years of adaptive neural networks: perceptron, madaline,
 642 and backpropagation. *Proceedings of the IEEE*, 78(9):1415–1442, 1990.
 643

644

645

646

647

648 A DETAILED RELATED WORK
649650 A.1 LEARNING WITH RANDOM FEEDBACK
651

652 **Feedback Alignment (FA)** introduces a paradigm-shifting and biologically plausible alternative
653 to gradient backpropagation (Lillicrap et al., 2016). At the core of this method, random feedback
654 matrices simplify the weight update process and break the symmetry. FA sequentially multiplies the
655 output error by the random feedback matrices in order to obtain the error at each layer, which is in
656 turn used to update the weights. The random matrices replace the transpose of the weights in the
657 original backpropagation equation. However, the sequential aspect of the update remains, as the error
658 is still propagated from layer to layer through the random feedback projections. With B_l the fixed
659 random feedback matrix of the l -th layer, the update can be computed as follows:
660

$$\delta a_L = (B_L e) \odot \sigma'_L(a_L), \text{ with}$$

$$\delta a_l = (B_l \delta a_{l+1}) \odot \sigma'_l(a_l), \quad \forall l \in [1, L-1].$$

663 This method draws its inspiration from biological neural networks, which do not exhibit symmetric
664 weight transport during learning (Lillicrap et al., 2020), making this learning paradigm more
665 biologically plausible.
666

667 **Direct Feedback Alignment (DFA)** Nøkland (2016) goes one step further: during training, the
668 error signal is directly projected from the output layer to all hidden layers without modification or
669 intermediate calculations. With this additional simplification, the updates can be easily parallelized:
670

$$\forall l \in [1, L], \delta a_l = (B_l e) \odot \sigma'_l(a_l). \quad (7)$$

672 FA and DFA have been shown to perform reasonably well on certain tasks and architectures, especially
673 when considering its profound shift from the backpropagation method. While they do not consistently
674 outperform or even compete with backpropagation, their simplicity along with biological plausibility
675 stimulate research to scale up their use, as well as exploration to understand their key limitations.
676 Bartunov et al. (2018) for example, show empirically that FA variants perform significantly worse on
677 CIFAR-10 and ImageNet than BP, for convolutional networks in particular.
678

679 This is further analyzed by Launay et al. (2019) in which they exhibit a bottleneck effect that prevents
680 learning in narrow layers, especially in the case of convolutional networks. As a workaround, some
681 variants of FA showed promising performances on deep CNNs (Moskovitz et al., 2018). A seminal
682 work by Akroud et al. (2019) for instance used weight mirroring to adapt the feedback matrices
683 during training, matching BP performances. However these approaches stay sequential, and similar
684 approaches to DFA with target projection, such as DRTP (Frenkel et al., 2021), do not compete with
685 BP on more complex convolutional networks.
686

687 It has also been empirically verified (Launay et al., 2020) that learning under synaptic asymmetry
688 with DFA is possible even with Transformers (Vaswani et al., 2017). In this particular work, the
689 training of the Transformer with DFA is done according to two settings: the ‘macro’ setting in which
690 the feedback is applied after every encoder block and the ‘micro’ setting, in which it is done after
691 every layer in those blocks. As explained by Launay et al. (2020) in Appendix D, backpropagation
692 through the attention mechanism itself still happens even in the ‘micro’ setting, meaning that the
693 training process still relies on BP within transformer layers without reaching the same perplexity
694 levels as full BP training.
695

696 In their papers, Nøkland (2016) and Refinetti et al. (2021) analyze the underlying dynamics in the
697 FA-like algorithms to better explain their ability and inability to learn. A key lesson is that the angle
698 between the update and the true gradient must be lower than $\pm\pi/2$. Equivalently, if we denote ω_l
699 this angle, and B_l the l -th layer’s feedback matrix, the following inequality must hold:
700

$$701 \forall l \in [1, L], \quad \cos(\omega_l) = \frac{\nabla \mathcal{L}_l^T B_l e}{\|\nabla \mathcal{L}_l\| \cdot \|B_l e\|} > 0$$

702 We recognize a particular case of the Zoutendijk theorem (Nocedal & Wright, 1999), which ensures
703 global convergence when the search direction makes an angle with the steepest descent direction
704 bounded away from $\pi/2$. This theorem requires that the step length satisfies either the Goldstein or
705

702 strong Wolfe conditions, and this is typically the case with standard learning rates. However, let us
 703 stress that the considered convergence is towards local minima and stationary points.
 704

705 As previously mentioned, the recent work of (Akrout et al., 2019) revisits the idea to learn the
 706 feedback by emulating a Kolen-Pollack algorithm (Kolen & Pollack, 1994) or with an estimate of the
 707 transpose matrix. This idea facilitates the learning process of FA while reducing the angles ω_l . This
 708 first attempt clearly shows that adaptive feedback matrices enable the learning of networks on which
 709 FA previously failed. It also emphasizes the importance of Zoutendijk’s theorem, even though the
 710 sequential learning process inherited from the FA still inhibits the potential improvements.
 711

712 A.2 FORWARD ONLY CALCULATIONS

713 A promising avenue toward *backward-free* training is the *double-forward* approach, in which two
 714 forward passes are used: the *first* forward pass updates an auxiliary or feedback mechanism, while the
 715 *second* forward pass computes the weight updates. The recent paper (Srinivasan et al., 2023) follows
 716 this trend and exhibits similarities between two forward-only frameworks, Forward-Forward and
 717 PEPITA (Hinton, 2022; Dellaferreira & Kreiman, 2022). They also show that such algorithms can be
 718 approximated by a form of feedback alignment with adaptive feedback (AF) weights, modulated by
 719 the upstream network weights. The PEPITA learning rule essentially is: $\delta W_l = (h_l - h_l^{err}) \odot (h_{l-1}^{err T})$,
 720 with $h_0^{err} = x - Fe$, where F can be viewed as a feedback mapping on the input. Srinivasan et al.
 721 (2023) showed that PEPITA implements a feedback-alignment learning algorithm with an adaptive
 722 feedback matrix that depends on the forward weights when F is computed with weight mirroring.
 723 Although promising, this method fails to scale to networks deeper than 5 layers.
 724

725 **Forward Gradient (FG)**, introduced by Silver et al. (2021) and Baydin et al. (2022) employs
 726 Forward-Mode Automatic Differentiation (FwAD) as proposed in Margossian (2019) to estimate
 727 gradients solely through forward passes. Focusing on these forward calculations, recent works explore
 728 unbiased estimations of the gradients, thanks to directional derivatives (Fournier et al., 2023; Baydin
 729 et al., 2022). These gradients are then used to update the weights like in standard BP, without needing
 730 an explicit backward pass. The essential idea in FG descent is that given a direction vector $\mathbf{u} \in \mathbb{R}^m$,
 731 computing the Jacobian-vector product (JVP) of the gradient of the loss along \mathbf{u} gives the gradient of
 732 the loss function according the direction given by \mathbf{u} . This is defined as:
 733

$$\nabla \mathcal{L} \mathbf{u} \equiv \lim_{\delta \rightarrow 0} \frac{\mathcal{L}(\theta + \delta \mathbf{u}) - \mathcal{L}(\theta)}{\delta},$$

734 at the parameter point θ . This is used to estimate partial derivatives of the loss with respect to subsets
 735 of parameters or activations, along random directions.
 736

737 Although Baydin et al. (2022) showed that sampling the perturbations \mathbf{u} in the weight space can
 738 provide unbiased gradient estimates, Ren et al. (2022) revealed poor scalability when the number
 739 of parameters is large. To address this, they proposed to draw perturbations in the activation space,
 740 inspired by Le Cun et al. (1988) and Widrow & Lehr (1990). Since the total number of neurons n
 741 is usually much smaller than the total count of parameters, sampling $\mathbf{u}_l \in \mathbb{R}^{n_l}$ for each layer l can
 742 substantially reduce both the cost and variance of gradient estimation.
 743

744 However, recent advances (Fournier et al., 2023) show that in modern settings, even variance-reducing
 745 techniques with local losses do not allow to reach performance on-par with standard backpropagation.
 746

747 A.3 REMINDERS ON ZOUTENDIJK’S THEOREM

748 Let $f : \mathbb{R}^n \rightarrow \mathbb{R}$ be a twice continuously differentiable function, bounded below on \mathbb{R}^n . Consider
 749 the iteration

$$x_{k+1} = x_k + \alpha_k p_k,$$

750 where each p_k is a descent direction (i.e. $\nabla f(x_k)^\top p_k < 0$) and the step length $\alpha_k > 0$ satisfies the
 751 Wolfe conditions:
 752

$$f(x_k + \alpha_k p_k) \leq f(x_k) + c_1 \alpha_k \nabla f(x_k)^\top p_k, \quad 0 < c_1 < c_2 < 1, \quad (8)$$

$$\nabla f(x_k + \alpha_k p_k)^\top p_k \geq c_2 \nabla f(x_k)^\top p_k. \quad (9)$$

756 **Theorem A.1** (Zoutendijk). *Under these assumptions, the series*

$$758 \quad \sum_{k=0}^{\infty} \cos^2 \theta_k \|\nabla f(x_k)\|^2, \quad \text{where} \quad \cos \theta_k = \frac{-\nabla f(x_k)^{\top} p_k}{\|\nabla f(x_k)\| \|p_k\|},$$

760 *converges. In particular,*

$$761 \quad \liminf_{k \rightarrow \infty} \|\nabla f(x_k)\| = 0.$$

763 *Sketch of Proof.* Starting from the decrease guaranteed by the Armijo condition equation 8 and
764 invoking the curvature condition equation 9, one shows (see Nocedal & Wright (1999), Chapter 3)
765 that there exists a constant $M > 0$ such that

$$766 \quad \alpha_k (-\nabla f(x_k)^{\top} p_k) \geq M \cos^2 \theta_k \|\nabla f(x_k)\|^2.$$

768 Summing over k then yields the claimed convergence of the series. \square

769 Zoutendijk’s theorem thus states that if each search direction p_k remains positively aligned with the
770 negative gradient, i.e. $\nabla f(x_k)^{\top} p_k < 0$, and the step lengths $\alpha_k > 0$ satisfy the Wolfe conditions
771 equation 8–equation 9, then $\sum_{k=0}^{\infty} \cos^2 \theta_k \|\nabla f(x_k)\|^2 < \infty$, which in turn implies

$$772 \quad \liminf_{k \rightarrow \infty} \|\nabla f(x_k)\| = 0.$$

775 A.4 FDFA REPRODUCTION DETAILS

776 We deliberately excluded Bacho & Chu (2024) because our attempts to reproduce their results
777 revealed multiple inconsistencies:

- 779 • On AlexNet (CIFAR-100), their code yields $55.03\% \pm 0.16$ accuracy over 10 runs, instead
780 of the $57.27\% \pm 0.11$ they report.
- 781 • Their DFA baseline (from the Webster et al. (2021) code) achieves $48.03\% \pm 0.61$, yet they
782 report only $35.75\% \pm 0.58$. This discrepancy appears to arise from applying batch-norm
783 exclusively to FDFA.
- 784 • Re-implementing their method in BioTorch with their hyperparameters gives no improve-
785 ment over standard DFA (33.59% for FDFA vs. 42.59% for DFA).
- 786 • Finally, integrating GrAPE into their code gives $60.35\% \pm 0.26$ on AlexNet (no augmen-
787 tation), essentially matching BP, which conflicts with the known gap between BP and
788 DFA-style methods.

789 Collectively, these points suggest unintended reliance on backpropagation in their pipeline and
790 cherry-picked reporting, undermining reproducibility and justifying our decision to omit FDFA from
791 our baselines.

792 **Novelty of GrAPE.** While previous works combine DFA with forward-mode AD, GrAPE is the first
793 to:

- 794 • derive feedback updates from a *cosine-similarity alignment loss* grounded in Zoutendijk’s
795 theorem (guaranteeing descent in expectation),
- 796 • demonstrate scalability to deep architectures (VGG, ResNet, Transformers) with rigorous
797 empirical validation,
- 798 • provide both theoretical convergence guarantees and extensive, reproducible benchmarks
799 using verified implementations (e.g. BioTorch).

800 While we are open to citing FDFA in future versions for completeness, we believe that its omission
801 in the present submission is fully justified and does not diminish the novelty or relevance of our
802 contribution.

804 B FORWARD-GRADIENT ESTIMATOR: FROBENIUS COSINE AND 805 CONCENTRATION

807 In this appendix we justify the lower bound on the expected Frobenius cosine between the true
808 Jacobian \mathcal{J}_l and its rank-1 estimator $\hat{\mathcal{J}}_l = (\mathcal{J}_l \mathbf{p}) \mathbf{p}^{\top}$, where $\mathbf{p} \sim \mathcal{N}(0, I_{n_l})$, together with an
809 $O(1/\sqrt{B})$ concentration rate for the batched estimator.

810 B.1 REPRESENTATION VIA THE SPHERE
811812 Let $\mathbf{p} \sim \mathcal{N}(0, I_{n_l})$. We write
813

814
$$\mathbf{p} = r \mathbf{s}, \quad r := \|\mathbf{p}\|, \quad \mathbf{s} := \mathbf{p}/\|\mathbf{p}\|.$$

815

816 It is classical that \mathbf{s} is uniform on the unit sphere S^{n_l-1} and independent of r . For the rank-1 estimator
817 $\widehat{\mathcal{J}}_l = (\mathcal{J}_l \mathbf{p}) \mathbf{p}^\top$, a straightforward computation shows that the Frobenius cosine satisfies
818

819
$$\cos_F(\mathcal{J}_l, \widehat{\mathcal{J}}_l) = \frac{\langle \mathcal{J}_l, \widehat{\mathcal{J}}_l \rangle_F}{\|\mathcal{J}_l\|_F \|\widehat{\mathcal{J}}_l\|_F} = \frac{\|\mathcal{J}_l \mathbf{p}\|}{\|\mathcal{J}_l\|_F \|\mathbf{p}\|} = \frac{\|\mathcal{J}_l \mathbf{s}\|}{\|\mathcal{J}_l\|_F},$$

820

821 so that
822

823
$$\mathbb{E}[\cos_F(\mathcal{J}_l, \widehat{\mathcal{J}}_l)] = \frac{1}{\|\mathcal{J}_l\|_F} \mathbb{E}_{\mathbf{s}} \|\mathcal{J}_l \mathbf{s}\|, \quad \mathbf{s} \sim \text{Unif}(S^{n_l-1}). \quad (10)$$

824 B.2 LOWER BOUND VIA THE TOP SINGULAR VECTOR
825826 Let the singular value decomposition of \mathcal{J}_l be $\mathcal{J}_l = U \Sigma V^\top$, and denote by $\sigma_{\max} = \|\mathcal{J}_l\|_2$ the largest
827 singular value, with associated right singular vector \mathbf{v}_1 and left singular vector \mathbf{u}_1 . For any unit
828 vector \mathbf{u} and any x , $\|x\| \geq |\mathbf{u}^\top x|$; choosing $\mathbf{u} = \mathbf{u}_1$ yields

829
$$\|\mathcal{J}_l \mathbf{s}\| \geq |\mathbf{u}_1^\top \mathcal{J}_l \mathbf{s}| = |\sigma_{\max} \mathbf{v}_1^\top \mathbf{s}| = \|\mathcal{J}_l\|_2 |\mathbf{v}_1^\top \mathbf{s}|.$$

830

831 Taking expectations over \mathbf{s} gives
832

833
$$\mathbb{E}_{\mathbf{s}} \|\mathcal{J}_l \mathbf{s}\| \geq \|\mathcal{J}_l\|_2 \mathbb{E}_{\mathbf{s}} |\mathbf{v}_1^\top \mathbf{s}|.$$

834 By rotational invariance of the uniform distribution on the sphere, the scalar $\mathbf{v}_1^\top \mathbf{s}$ has the same
835 distribution as the first coordinate s_1 of $\mathbf{s} \sim \text{Unif}(S^{n_l-1})$. Hence
836

837
$$\mathbb{E}_{\mathbf{s}} \|\mathcal{J}_l \mathbf{s}\| \geq \|\mathcal{J}_l\|_2 \mathbb{E} |s_1|.$$

838

839 A standard computation (properties of the spherical distribution) shows that
840

841
$$\mathbb{E} |s_1| = \frac{\Gamma(\frac{n_l}{2})}{\sqrt{\pi} \Gamma(\frac{n_l+1}{2})}.$$

842

843 Using classical bounds on ratios of Gamma functions (Gautschi's inequality) one obtains, for all
844 $n_l \geq 2$,
845

846
$$\mathbb{E} |s_1| \geq \sqrt{\frac{2}{\pi n_l}}. \quad (11)$$

847

848 Combining this with the previous inequality yields
849

850
$$\mathbb{E}_{\mathbf{s}} \|\mathcal{J}_l \mathbf{s}\| \geq \sqrt{\frac{2}{\pi n_l}} \|\mathcal{J}_l\|_2. \quad (12)$$

851

852 Substituting equation 12 into equation 10 yields the lower bound used in the main text:
853

854
$$\mathbb{E}[\cos_F(\mathcal{J}_l, \widehat{\mathcal{J}}_l)] = \frac{1}{\|\mathcal{J}_l\|_F} \mathbb{E}_{\mathbf{s}} \|\mathcal{J}_l \mathbf{s}\| \geq \sqrt{\frac{2}{\pi n_l}} \frac{\|\mathcal{J}_l\|_2}{\|\mathcal{J}_l\|_F}, \quad (13)$$

855

856 which is strictly positive whenever $\mathcal{J}_l \neq 0$.
857858 B.3 BATCHED ESTIMATOR AND CONCENTRATION
859860 Consider the batched estimator obtained by averaging B independent rank-1 estimates based on
861 $\mathbf{p}_1, \dots, \mathbf{p}_B \sim \mathcal{N}(0, I_{n_l})$:

862
$$\widehat{\mathcal{J}}_l^{(B)} := \frac{1}{B} \sum_{i=1}^B (\mathcal{J}_l \mathbf{p}_i) \mathbf{p}_i^\top, \quad C_i := \cos_F(\mathcal{J}_l, \widehat{\mathcal{J}}_l(\mathbf{p}_i)).$$

863

864 We are interested in the empirical mean
 865

866
$$\bar{C}_B := \frac{1}{B} \sum_{i=1}^B C_i.$$

 867
 868

869 The map $\mathbf{p} \mapsto C(\mathbf{p}) := \cos_F(\mathcal{J}_l, \hat{\mathcal{J}}_l(\mathbf{p}))$ is a smooth, bounded function of \mathbf{p} and is Lipschitz with
 870 respect to \mathbf{p} with a constant depending only on \mathcal{J}_l . By standard concentration results for Lipschitz
 871 functionals of Gaussian vectors, there exists a constant $c > 0$ (depending on the dimension and
 872 condition numbers of \mathcal{J}_l) such that for all $t > 0$,
 873

874
$$\mathbb{P}(|\bar{C}_B - \mathbb{E}C(\mathbf{p})| \geq t) \leq 2 \exp(-cBt^2).$$

 875

876 Equivalently,
 877

878
$$\text{Std}(\bar{C}_B) = O\left(\frac{1}{\sqrt{B}}\right),$$

 879

880 so the empirical Frobenius cosine concentrates around its expectation at rate $O(1/\sqrt{B})$.
 881

882 B.4 CONVERGENCE UNDER POSITIVE EXPECTED COSINE

883 We recall a standard stochastic-approximation result tailored to our setting.

884 **Theorem B.1** (Convergence under positive expected cosine). *Let $L : \mathbb{R}^d \rightarrow \mathbb{R}$ be differentiable,
 885 bounded below, with L_g -Lipschitz gradient. Consider*

886
$$\theta_{t+1} = \theta_t - \eta_t d_t, \quad g_t := \nabla L(\theta_t),$$

 887

888 where (\mathcal{F}_t) is the natural filtration and the step sizes satisfy

889
$$\eta_t > 0, \quad \sum_{t=0}^{\infty} \eta_t = \infty, \quad \sum_{t=0}^{\infty} \eta_t^2 < \infty.$$

 890
 891

892 Assume there exist constants $\kappa > 0$, $C < \infty$, $\sigma^2 < \infty$ such that, for all t ,
 893

894
$$\mathbb{E}[\langle g_t, d_t \rangle | \mathcal{F}_t] \geq \kappa \|g_t\|^2, \tag{14}$$

 895

896
$$\mathbb{E}[\|d_t\|^2 | \mathcal{F}_t] \leq C \|g_t\|^2 + \sigma^2. \tag{15}$$

897 Then

898
$$\sum_{t=0}^{\infty} \eta_t \mathbb{E}\|g_t\|^2 < \infty \quad \text{and} \quad \liminf_{t \rightarrow \infty} \mathbb{E}\|g_t\| = 0.$$

 899
 900

901 **In particular, the iterates converge to stationarity in expectation.**

902 *Proof.* Since L has L_g -Lipschitz gradient, the standard descent lemma gives, for all $\theta, \theta' \in \mathbb{R}^d$,
 903

904
$$L(\theta') \leq L(\theta) + \langle \nabla L(\theta), \theta' - \theta \rangle + \frac{L_g}{2} \|\theta' - \theta\|^2.$$

 905

906 Apply this with $\theta = \theta_t$ and $\theta' = \theta_{t+1} = \theta_t - \eta_t d_t$:
 907

908
$$\begin{aligned} L(\theta_{t+1}) &\leq L(\theta_t) + \langle \nabla L(\theta_t), -\eta_t d_t \rangle + \frac{L_g}{2} \eta_t^2 \|d_t\|^2 \\ 909 &= L(\theta_t) - \eta_t \langle g_t, d_t \rangle + \frac{L_g}{2} \eta_t^2 \|d_t\|^2. \end{aligned}$$

 910
 911

912 Taking conditional expectation w.r.t. the filtration \mathcal{F}_t ,
 913

914
$$\mathbb{E}[L(\theta_{t+1}) | \mathcal{F}_t] \leq L(\theta_t) - \eta_t \mathbb{E}[\langle g_t, d_t \rangle | \mathcal{F}_t] + \frac{L_g}{2} \eta_t^2 \mathbb{E}[\|d_t\|^2 | \mathcal{F}_t].$$

 915

916 Using the two assumptions
 917

918
$$\mathbb{E}[\langle g_t, d_t \rangle | \mathcal{F}_t] \geq \kappa \|g_t\|^2, \quad \mathbb{E}[\|d_t\|^2 | \mathcal{F}_t] \leq C \|g_t\|^2 + \sigma^2,$$

918 we obtain
 919

$$\begin{aligned} 920 \quad \mathbb{E}[L(\theta_{t+1}) | \mathcal{F}_t] &\leq L(\theta_t) - \eta_t \kappa \|g_t\|^2 + \frac{L_g}{2} \eta_t^2 (C \|g_t\|^2 + \sigma^2) \\ 921 \\ 922 &= L(\theta_t) - \left(\kappa - \frac{L_g C}{2} \eta_t\right) \eta_t \|g_t\|^2 + \frac{L_g \sigma^2}{2} \eta_t^2. \\ 923 \end{aligned}$$

924 Because $\sum_t \eta_t^2 < \infty$, we have $\eta_t \rightarrow 0$ as $t \rightarrow \infty$. Hence there exists an index t_0 such that for all
 925 $t \geq t_0$,

$$926 \quad \kappa - \frac{L_g C}{2} \eta_t \geq \frac{\kappa}{2}. \\ 927$$

928 For $t \geq t_0$, this yields
 929

$$930 \quad \mathbb{E}[L(\theta_{t+1}) | \mathcal{F}_t] \leq L(\theta_t) - \frac{\kappa}{2} \eta_t \|g_t\|^2 + \frac{L_g \sigma^2}{2} \eta_t^2. \quad (16) \\ 931 \\ 932$$

933 Now take the full expectation of equation 16 and use the tower property $\mathbb{E} \mathbb{E}[\cdot | \mathcal{F}_t] = \mathbb{E}[\cdot]$:
 934

$$935 \quad \mathbb{E}L(\theta_{t+1}) \leq \mathbb{E}L(\theta_t) - \frac{\kappa}{2} \eta_t \mathbb{E}\|g_t\|^2 + \frac{L_g \sigma^2}{2} \eta_t^2, \quad t \geq t_0. \\ 936$$

937 Rearranging,
 938

$$939 \quad \frac{\kappa}{2} \eta_t \mathbb{E}\|g_t\|^2 \leq \mathbb{E}L(\theta_t) - \mathbb{E}L(\theta_{t+1}) + \frac{L_g \sigma^2}{2} \eta_t^2. \\ 940$$

941 Sum this inequality from $t = t_0$ to T :

$$\begin{aligned} 942 \quad \frac{\kappa}{2} \sum_{t=t_0}^T \eta_t \mathbb{E}\|g_t\|^2 &\leq \sum_{t=t_0}^T (\mathbb{E}L(\theta_t) - \mathbb{E}L(\theta_{t+1})) + \frac{L_g \sigma^2}{2} \sum_{t=t_0}^T \eta_t^2 \\ 943 \\ 944 &= \mathbb{E}L(\theta_{t_0}) - \mathbb{E}L(\theta_{T+1}) + \frac{L_g \sigma^2}{2} \sum_{t=t_0}^T \eta_t^2. \\ 945 \\ 946 \\ 947 \\ 948 \end{aligned}$$

949 By assumption, L is bounded below, say $L(\theta) \geq L_*$ for all θ . Therefore $\mathbb{E}L(\theta_{T+1}) \geq L_*$, and we
 950 obtain

$$951 \quad \frac{\kappa}{2} \sum_{t=t_0}^T \eta_t \mathbb{E}\|g_t\|^2 \leq \mathbb{E}L(\theta_{t_0}) - L_* + \frac{L_g \sigma^2}{2} \sum_{t=t_0}^T \eta_t^2. \\ 952 \\ 953$$

954 Letting $T \rightarrow \infty$ and using $\sum_t \eta_t^2 < \infty$ yields
 955

$$956 \quad \sum_{t=t_0}^{\infty} \eta_t \mathbb{E}\|g_t\|^2 < \infty. \\ 957$$

958 Adding the finite partial sum over $t < t_0$ shows that
 959

$$960 \quad \sum_{t=0}^{\infty} \eta_t \mathbb{E}\|g_t\|^2 < \infty. \\ 961 \\ 962$$

963 It remains to show that this implies $\liminf_{t \rightarrow \infty} \mathbb{E}\|g_t\| = 0$. Suppose, for contradiction, that there
 964 exists $\varepsilon > 0$ and t_1 such that $\mathbb{E}\|g_t\| \geq \varepsilon$ for all $t \geq t_1$. Then $\mathbb{E}\|g_t\|^2 \geq \varepsilon^2$ for all $t \geq t_1$, and
 965 therefore

$$966 \quad \sum_{t=t_1}^{\infty} \eta_t \mathbb{E}\|g_t\|^2 \geq \varepsilon^2 \sum_{t=t_1}^{\infty} \eta_t. \\ 967 \\ 968$$

969 By assumption, $\sum_{t=0}^{\infty} \eta_t = \infty$, so the right-hand side diverges, contradicting the finiteness of
 970 $\sum_t \eta_t \mathbb{E}\|g_t\|^2$. Hence we must have $\liminf_{t \rightarrow \infty} \mathbb{E}\|g_t\| = 0$.
 971

972 This establishes the claimed convergence to stationarity in expectation. \square

972 B.5 A COMPOSITION BOUND FOR FROBENIUS COSINES
973974 We quantify how noise in the JVP estimator and imperfect learning of B_ℓ interact.
975976 **Lemma B.2** (Frobenius cosine composition). *Let $B_\ell, \hat{J}_\ell, J_\ell \in \mathbb{R}^{m \times n}$ be nonzero and define*
977

978
$$\cos_F(A, B) := \frac{\langle A, B \rangle_F}{\|A\|_F \|B\|_F}, \quad \langle A, B \rangle_F := \text{Tr}(A^\top B).$$

979 Then
980

981
$$\cos_F(B_\ell, J_\ell) \geq \cos_F(B_\ell, \hat{J}_\ell) \cos_F(\hat{J}_\ell, J_\ell) - \sqrt{1 - \cos_F^2(B_\ell, \hat{J}_\ell)} \sqrt{1 - \cos_F^2(\hat{J}_\ell, J_\ell)}.$$

982 Consequently, if $\cos_F(B_\ell, \hat{J}_\ell) \geq \alpha_0$ and $\cos_F(\hat{J}_\ell, J_\ell) \geq \beta_0$, then
983

984
$$\cos_F(B_\ell, J_\ell) \geq \gamma_0(\alpha_0, \beta_0) := \alpha_0 \beta_0 - \sqrt{1 - \alpha_0^2} \sqrt{1 - \beta_0^2}.$$

985 *Proof.* Let \mathcal{H} be a real Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and induced norm $\|\cdot\|$. In our application,
986 \mathcal{H} is the space of matrices with the Frobenius inner product $\langle A, B \rangle_F = \text{Tr}(A^\top B)$, but the argument
987 holds for any Hilbert space.
988989 Let $u, w, v \in \mathcal{H}$ be unit vectors:
990

991
$$\|u\| = \|w\| = \|v\| = 1.$$

992 Define
993

994
$$\alpha := \langle u, w \rangle, \quad \beta := \langle w, v \rangle, \quad c := \langle u, v \rangle.$$

995 By Cauchy–Schwarz, $|\alpha|, |\beta|, |c| \leq 1$.
996997 Consider the 3×3 Gram matrix of (u, w, v) :
998

999
$$G := \begin{pmatrix} \langle u, u \rangle & \langle u, w \rangle & \langle u, v \rangle \\ \langle w, u \rangle & \langle w, w \rangle & \langle w, v \rangle \\ \langle v, u \rangle & \langle v, w \rangle & \langle v, v \rangle \end{pmatrix} = \begin{pmatrix} 1 & \alpha & c \\ \alpha & 1 & \beta \\ c & \beta & 1 \end{pmatrix}.$$

1000 Since G is a Gram matrix, it is positive semidefinite (PSD), hence $\det(G) \geq 0$.
10011002 We compute the determinant explicitly. A direct calculation yields
1003

1004
$$\begin{aligned} \det(G) &= \begin{vmatrix} 1 & \alpha & c \\ \alpha & 1 & \beta \\ c & \beta & 1 \end{vmatrix} \\ &= -\alpha^2 + 2\alpha\beta c - \beta^2 - c^2 + 1 \\ &= -(c^2 - 2\alpha\beta c + (\alpha^2 + \beta^2 - 1)). \end{aligned}$$

1005 The constraint $\det(G) \geq 0$ is therefore equivalent to
1006

1007
$$c^2 - 2\alpha\beta c + (\alpha^2 + \beta^2 - 1) \leq 0.$$

1008 We view the left-hand side as a quadratic polynomial in c ,
1009

1010
$$q(c) := c^2 - 2\alpha\beta c + (\alpha^2 + \beta^2 - 1).$$

1011 Since the coefficient of c^2 is $1 > 0$, the inequality $q(c) \leq 0$ means that c lies between the two (real)
1012 roots of q . Compute the discriminant:
1013

1014
$$\begin{aligned} \Delta &= (-2\alpha\beta)^2 - 4(\alpha^2 + \beta^2 - 1) \\ &= 4\alpha^2\beta^2 - 4(\alpha^2 + \beta^2 - 1) \\ &= 4(\alpha^2\beta^2 - \alpha^2 - \beta^2 + 1) \\ &= 4(1 - \alpha^2 - \beta^2 + \alpha^2\beta^2) \\ &= 4(1 - \alpha^2)(1 - \beta^2). \end{aligned}$$

1015 Since $|\alpha|, |\beta| \leq 1$, we have $1 - \alpha^2 \geq 0$ and $1 - \beta^2 \geq 0$, so $\Delta \geq 0$ as expected. The roots of q are
1016

1017
$$c_{\pm} = \alpha\beta \pm \sqrt{(1 - \alpha^2)(1 - \beta^2)}.$$

1026 The inequality $q(c) \leq 0$ therefore implies
 1027

$$c_- \leq c \leq c_+,$$

1029 i.e.

$$\alpha\beta - \sqrt{(1-\alpha^2)(1-\beta^2)} \leq c \leq \alpha\beta + \sqrt{(1-\alpha^2)(1-\beta^2)}.$$

1030 In particular, we obtain the desired lower bound
 1031

$$c \geq \alpha\beta - \sqrt{1-\alpha^2} \sqrt{1-\beta^2}.$$

1032 We now instantiate this with Frobenius-normalized matrices. Let $B_\ell, \hat{J}_\ell, J_\ell \in \mathbb{R}^{m \times n}$ be nonzero, and
 1033 define
 1034

$$u := \frac{B_\ell}{\|B_\ell\|_F}, \quad w := \frac{\hat{J}_\ell}{\|\hat{J}_\ell\|_F}, \quad v := \frac{J_\ell}{\|J_\ell\|_F},$$

1035 viewed as elements of the Frobenius inner-product space. Then
 1036

$$\alpha = \langle u, w \rangle_F = \cos_F(B_\ell, \hat{J}_\ell), \quad \beta = \langle w, v \rangle_F = \cos_F(\hat{J}_\ell, J_\ell), \quad c = \langle u, v \rangle_F = \cos_F(B_\ell, J_\ell),$$

1037 and the bound above reads
 1038

$$\cos_F(B_\ell, J_\ell) \geq \cos_F(B_\ell, \hat{J}_\ell) \cos_F(\hat{J}_\ell, J_\ell) - \sqrt{1 - \cos_F^2(B_\ell, \hat{J}_\ell)} \sqrt{1 - \cos_F^2(\hat{J}_\ell, J_\ell)}.$$

1039 This is exactly the claimed inequality. The “ $\gamma_0(\alpha_0, \beta_0)$ ” form in the lemma statement follows by
 1040 substituting lower bounds α_0, β_0 for the two intermediate cosines. \square
 1041

1042 C FEEDBACK MATRICES UPDATE DETAILS

1043 In the main paper, the theoretical alignment measure between a feedback matrix B_l and the JVP-based
 1044 Jacobian estimator $\hat{\mathcal{J}}_l$ is the Frobenius cosine
 1045

$$\cos_F(B_l, \hat{\mathcal{J}}_l) = \frac{\langle B_l, \hat{\mathcal{J}}_l \rangle_F}{\|B_l\|_F \|\hat{\mathcal{J}}_l\|_F}, \quad \langle A, B \rangle_F := \text{Tr}(A^\top B).$$

1046 Writing $B_l = [\mathbf{b}_l^1, \dots, \mathbf{b}_l^{n_l}]$ and $\hat{\mathcal{J}}_l = [\mathbf{j}_l^1, \dots, \mathbf{j}_l^{n_l}]$, we can express this as
 1047

$$\cos_F(B_l, \hat{\mathcal{J}}_l) = \frac{\sum_{k=1}^{n_l} \mathbf{b}_l^{k\top} \mathbf{j}_l^k}{\sqrt{\sum_{k=1}^{n_l} \|\mathbf{b}_l^k\|^2} \sqrt{\sum_{k=1}^{n_l} \|\mathbf{j}_l^k\|^2}} = \sum_{k=1}^{n_l} w_k \cos(\mathbf{b}_l^k, \mathbf{j}_l^k),$$

1048 where
 1049

$$\cos(\mathbf{b}_l^k, \mathbf{j}_l^k) = \frac{\mathbf{b}_l^{k\top} \mathbf{j}_l^k}{\|\mathbf{b}_l^k\| \|\mathbf{j}_l^k\|} \quad \text{and} \quad w_k = \frac{\|\mathbf{b}_l^k\| \|\mathbf{j}_l^k\|}{\|B_l\|_F \|\hat{\mathcal{J}}_l\|_F}, \quad \sum_{k=1}^{n_l} w_k = 1.$$

1050 Thus the Frobenius cosine is a *weighted* average of the columnwise cosines, with weights proportional
 1051 to the product of column norms. In our implementation we normalize the columns of B_l after each
 1052 alignment step, and $\hat{\mathcal{J}}_l$ has columns of the form $\mathbf{j}_l^k = p_k g_l$ (with p_k a scalar component of the
 1053 Gaussian perturbation and g_l a common JVP), so the $\|\mathbf{j}_l^k\|$ differ mainly through $|p_k|$. Since these
 1054 scalars are i.i.d. and concentrate around their mean, the weights w_k do not vary dramatically across
 1055 k , and the *unweighted* average of per-column cosines provides a simple and effective proxy for
 1056 $\cos_F(B_l, \hat{\mathcal{J}}_l)$.
 1057

1058 In practice, we therefore minimize the local cosine alignment loss $\mathcal{L}_{\text{align}}(B_l) = 1 - \bar{c}_l$, where
 1059

$$\bar{c}_l = \frac{1}{n_l} \sum_{k=1}^{n_l} \cos(\mathbf{b}_l^k, \mathbf{j}_l^k)$$

1060 is the empirical mean of per-column cosines. This loss coincides with the Frobenius cosine up to the
 1061 weighting discussed above, and is cheaper to compute while still encouraging layerwise alignment.
 1062

Because $\mathcal{L}_{\text{align}}$ decomposes as a sum over columns, the gradient can be written column by column. Specifically, for each k we minimize the single-term contribution $[1 - \cos(\mathbf{b}_l^k, \mathbf{j}_l^k)]$, scaled by $1/n_l$. Let $\eta_{B_l} > 0$ be the learning rate for layer l . Then the per-column update can be written as

$$\mathbf{b}_l^k \leftarrow \mathbf{b}_l^k - \frac{\eta_{B_l}}{n_l} \nabla_{\mathbf{b}_l^k} [1 - \cos(\mathbf{b}_l^k, \mathbf{j}_l^k)], \quad k = 1, \dots, n_l.$$

We recall that $\nabla_{\mathbf{x}} \cos(\mathbf{x}, \mathbf{y}) = \frac{\mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|} - \frac{(\mathbf{x}^\top \mathbf{y}) \mathbf{x}}{\|\mathbf{x}\|^3 \|\mathbf{y}\|}$, so the gradient of $[1 - \cos(\mathbf{x}, \mathbf{y})]$ is its negative. Each column \mathbf{b}_l^k is thus updated as:

$$\begin{aligned} \mathbf{b}_l^k &\leftarrow \mathbf{b}_l^k - \frac{\eta_{B_l}}{n_l} [-\nabla_{\mathbf{b}_l^k} \cos(\mathbf{b}_l^k, \mathbf{j}_l^k)] \\ &= \mathbf{b}_l^k + \frac{\eta_{B_l}}{n_l} \left[\frac{\mathbf{j}_l^k}{\|\mathbf{b}_l^k\| \|\mathbf{j}_l^k\|} - \frac{(\mathbf{b}_l^{k\top} \mathbf{j}_l^k) \mathbf{b}_l^k}{\|\mathbf{b}_l^k\|^3 \|\mathbf{j}_l^k\|} \right]. \end{aligned} \quad (17)$$

Applying this update for each $k = 1, \dots, n_l$ increases the mean columnwise cosine and thus aligns B_l with $\hat{\mathcal{J}}_l$. Because $\mathcal{L}_{\text{align}}$ decomposes as a sum of per-column terms, updating all columns in parallel is equivalent to taking a gradient step on $\mathcal{L}_{\text{align}}$ as a whole. We then renormalize each column \mathbf{b}_l^k after this step to keep norms bounded and maintain the interpretation of the cosine as a purely directional alignment measure.

D FLOPS, CRITICAL-PATH AND TIME ANALYSIS

D.1 FLOPS AND CRITICAL-PATH ANALYSIS

Throughout this subsection we adopt the standard *GEMM view*, modeling each layer’s compute as a (batched) matrix-matrix multiply after the usual reshapes/lowering, which yields simple, comparable FLOP counts.

Setup and notation. Let the network have layers $\ell = 1, \dots, L$. Denote by

$$F \triangleq \sum_{\ell=1}^L O(n_{\ell-1} n_\ell)$$

the FLOPs of one *mini-batch* forward pass under the GEMM view (for conv layers this corresponds to the lowered GEMM). Let d_{out} be the output dimensionality, and define the per-layer costs:

$$C_\ell^{\text{proj}} = O(n_\ell d_{\text{out}}) \quad (\text{feedback projection}), \quad C_\ell^{\text{align}} = O(n_\ell d_{\text{out}}) \quad (\text{local alignment update on } B_\ell).$$

We model a single Jacobian–vector product (JVP) as an *overhead* of α times the layer’s forward cost; writing a layer-averaged $\bar{\alpha}$ gives a total forward+JVP factor $(1 + \bar{\alpha})$.

Backpropagation (BP).

$$F_{\text{BP}}^{\text{batch}} = \sum_{\ell=1}^L (O(n_{\ell-1} n_\ell) + O(n_{\ell-1} n_\ell)) \approx (1 + \beta) F, \quad (18)$$

where the backward-to-forward ratio β is typically in the range of 2 depending on layer type and implementation. The backward sweep is *sequential* across layers on the critical path.

Direct Feedback Alignment (DFA).

$$F_{\text{DFA}}^{\text{batch}} = F + \sum_{\ell=1}^L C_\ell^{\text{proj}} = F + O(d_{\text{out}} \sum_\ell n_\ell). \quad (19)$$

The forward is sequential across layers; the per-layer projections are *layer-local* and may be launched in parallel, so their contribution to the critical path is $\max_\ell C_\ell^{\text{proj}}$.

1134 **GrAPE (alignment-only).**
 1135

1136
$$F_{\text{GrAPE}}^{\text{batch}} = (1 + \bar{\alpha}) F + \sum_{\ell=1}^L C_{\ell}^{\text{proj}} + \sum_{\ell=1}^L C_{\ell}^{\text{align}} = (1 + \bar{\alpha}) F + O\left(d_{\text{out}} \sum_{\ell} n_{\ell}\right). \quad (20)$$

 1137

1139 Here one JVP per layer runs *during* the forward trace (scaling the forward path by $(1 + \bar{\alpha})$). Projection
 1140 and alignment are layer-local and parallelizable, contributing $\max_{\ell}(C_{\ell}^{\text{proj}} + C_{\ell}^{\text{align}})$ to the critical
 1141 path.

1142
 1143 **GrAPE with calibration every T epochs.** A single BP mini-batch is added per T epochs. If an
 1144 epoch contains N_b mini-batches, the amortized *per-epoch* overhead is

1145
$$F_{\text{GrAPE+Cal}}^{\text{epoch}} = N_b \cdot F_{\text{GrAPE}}^{\text{batch}} + \frac{1}{T} F_{\text{BP}}^{\text{batch}} \quad (\text{i.e., } \frac{1}{TN_b} \text{ of an epoch in units of mini-batches}). \quad (21)$$

 1146

1147
 1149 **Rule-of-thumb comparison (per mini-batch).** If $C_{\ell}^{\text{bwd}} \approx C_{\ell}^{\text{fwd}}$ and $C_{\ell}^{\text{proj}} + C_{\ell}^{\text{align}} \ll$
 1150 $\sum_j O(n_{j-1} n_j)$, then
 1151

1152
$$F_{\text{BP}}^{\text{batch}} \gtrsim 2F, \quad F_{\text{GrAPE}}^{\text{batch}} \approx (1 + \bar{\alpha}) F + \text{lower-order terms in } d_{\text{out}} \sum_{\ell} n_{\ell}.$$

 1153

1154
 1155 **Practical JVP overhead.** Here α denotes the JVP *overhead relative to a forward pass*: the JVP
 1156 alone costs αF , so the combined forward+JVP cost is $(1 + \alpha)F$. On modern GPUs with *fused*
 1157 *dual-number* implementations, we typically observe $\alpha \approx 0.8\text{--}1.3$, hence

1158
$$\text{forward+JVP} \approx (1 + \alpha)F \in [1.8F, 2.3F].$$

 1159

1160
 1161 **Transformers (macro/micro).** For macro (per-block) and micro (per sub-layer) variants, C_{ℓ}^{proj}
 1162 and C_{ℓ}^{align} apply at the chosen granularity. Between calibrations, the multi-head attention backward
 1163 chain is bypassed; GrAPE’s JVPs run in the forward trace, while block/sub-layer projection and
 1164 alignment remain parallelizable.

1165
 1166 **Arithmetic bound** The expressions above capture arithmetic work and dependency structure;
 1167 realized wall-clock depends on kernels, fusion, memory bandwidth, and scheduling. Under an
 1168 *idealized* critical-path model where (i) BP’s backward cost is about twice the forward cost (i.e., $\beta \approx 2$
 1169 so BP takes $(1 + \beta)F \approx 3F$), (ii) GrAPE’s per-layer projection/alignment are fully overlapped across
 1170 layers, and (iii) fused dual-number JVPs yield $\alpha \approx 0.8\text{--}1.3$, the *arithmetic* critical-path ratio is

1171
$$\frac{\text{BP critical path}}{\text{GrAPE critical path}} \approx \frac{1 + \beta}{1 + \alpha} \in \frac{3}{[1.8, 2.3]} = [1.3, 1.7].$$

 1172

1173 We therefore view 1.3–1.7× as an *optimistic arithmetic upper bound* (not a measured wall-clock
 1174 speedup). Establishing realized parallel speedups is left to future work.

1175
 1176 **D.2 PRELIMINARY TIMING EXPERIMENT**

1177
 1178 To complement the arithmetic and critical-path analysis above, we implemented a small proof-of-
 1179 concept layer-parallel prototype on a Transformer with hidden size 128 (batch size 256, sequence
 1180 length 64) on a single NVIDIA A100. We use Python-level CUDA streams and a simple double-
 1181 forward trick to compute JVPs, while BP is run in the usual fully sequential manner. This implemen-
 1182 tation does not use kernel fusion or custom CUDA kernels, so the numbers below should be viewed
 1183 as conservative.

1184
 1185 **E EXPERIMENTAL DETAILS**

1186
 1187 As mentioned earlier, we base most of our experiments on the Biotorch open source library. While
 1188 the experiments on Transformer use exactly the same hyper parameters as in Launay et al. (2020), the

1188

1189 Table 5: Mean per-batch runtime (ms) for a small Transformer (hidden size 128, batch size 256,
1190 sequence length 64) on a single A100, comparing sequential BP and a layer-parallel GrAPE prototype
1191 using Python-level CUDA streams.

1192	Depth	BP (ms)	GrAPE (ms)
1193	2	9.1	3.0
1194	4	17.5	6.2
1195	8	35.8	12.1

1196

1197

1198 other experiments are set with a specific set of tuned hyperparameters for each method. For GrAPE,
 1199 we set the optimizer of the local updates to SGD with 0.9 momentum with learning rate 0.01. The BP
 1200 calibration steps are conducted on batch of size 128, with SGD with 0.9 momentum and learning
 1201 rate 0.01. We train AlexNet and VGG-16 for 100 epochs with a 128 batch size. The Resnets are
 1202 trained for 200 epochs with a 128 batch size. If SGD is used, default 0.9 momentum was applied.
 1203 The specific used hyper-parameters are :

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

	AlexNet			VGG16			ResNet-20			ResNet-56		
	BP	DFA	GrAPE	BP	DFA	GrAPE	BP	DFA	GrAPE	BP	DFA	GrAPE
Optimizer	Adam	Adam	Adam	SGD	SGD	Adam	SGD	Adam	Adam	SGD	Adam	Adam
LR	0.001	0.0001	0.0001	0.1	0.001	0.0001	0.1	0.001	0.01	0.1	0.01	0.0005
LR decay	0.1	0.1	0.2	0.1	0.1	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Milestones	[40, 80]	same	same	[50, 75]	[30, 60, 90]	[30, 60, 90]	[60, 120, 160]	same	same	[60, 120, 160]	same	same
Weight decay	0.0001	0.0001	0.0001	0.0005	0.0001	0.0001	0.0005	0.0001	0.0001	0.0005	0.0001	0.0005

1210 Table 6: Hyperparameter settings for deep networks on CIFAR-100 and TinyImageNet: AlexNet,
1211 VGG16, ResNet-20, and ResNet-56.