Under review as a conference paper at ICLR 2026

SCALING DIRECT FEEDBACK LEARNING WITH THEO-
RETICAL GUARANTEES

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep neural networks rely on backpropagation (BP) for optimization, but its strictly
sequential backward pass hinders parallelism and scalability. Direct Feedback
Alignment (DFA) has been proposed as a promising approach for parallel learning
of deep neural networks, relying on fixed random projections to enable layer-wise
parallel updates, but fails on deep convolutional networks, and performs poorly
on modern transformer architectures. We introduce GrAPE (Gradient-Aligned
Projected Error), a hybrid feedback-alignment method that (i) estimates rank-1
Jacobians via forward-mode JVPs and (ii) aligns each layer’s feedback matrix
by minimizing a local cosine-alignment loss. To curb drift in very deep models,
GrAPE performs infrequent BP anchor steps on a single mini-batch, preserving
mostly parallel updates. We show that the forward-gradient estimator has strictly
positive expected cosine with the true Jacobian and, inspired by Zoutendijk-style
arguments, derive a convergence-in-expectation result under a positive expected-
cosine condition. Empirically, GrAPE consistently outperforms prior alternatives
to BP, enabling the training of modern architectures, closing a large fraction of the
gap to BP while retaining layer-parallel updates for the vast majority of steps.

1 INTRODUCTION

Backpropagation (BP) (Rumelhart et al., [1986) remains the de facto standard for training deep
networks. However, its memory footprint and energy cost have become critical bottlenecks as
architectures deepen and scale up. In particular, two properties of the BP impede the development of
parallel training methods: the weight symmetry between the forward and backward pass, and the
sequential propagation of the error. These two properties also clash with biological plausibility. In
this paper, we deliberately set aside the biological concerns to focus on non-sequential alternatives to
BP. A rich literature has mainly explored two independent axes of relaxation:

Randomized feedback (Feedback Alignment, FA (Lillicrap et al.,[2016), Direct FA, DFA (Ngkland),
2016), etc.) replaces transposed weights by fixed or adaptive random matrices, but suffers from
misalignment on deep or convolutional layers (Bartunov et al.| [2018; |Moskovitz et al., 2018} [Launay
et al.l |2019). Adaptive variants using weight mirroring (Akrout et al.| [2019) can approach BP
performance, remaining sequential, however, offering limited practical advantages.

Forward-gradient and forward-only methods (Silver et al., 2021} Baydin et al., 2022} Hinton| |2022;
Dellaferrera & Kreiman, [2022) replace the backward pass by Jacobian-vector products or a second
“perturbed” forward pass, at the cost of high variance and limited scaling to modern architectures.

Our work extends the first axis, starting from the following observation: fixed random feedback
matrices often lose positive cosine similarity with true gradients in deep and structured layers (Ngk+
land, |2016; [Refinetti et al., 2021)). As a consequence, this kind of feedback fails to decrease the loss
function. We therefore introduce a lightweight and data-driven correction using forward gradient
estimates. With this alignment, we combine the efficiency of randomized feedback with the statistical
guarantees of forward-gradient estimates, augmenting them with an occasional BP calibration step to
reduce inherent variance in very deep networks. Our core contributions are:

1. Gradient-guided feedback. We introduce GrAPE (Gradient Aligned Projected Error), which
computes a local cosine-alignment loss with cheap forward-gradient estimates. This realigns
the feedback matrix of each layer towards the true gradient prior to the parallel DFA update.

Under review as a conference paper at ICLR 2026

2. Leveraging forward-mode gradients, we derive a positive expected alignment bound for our
rank-1 Jacobian estimator and a standard convergence-in-expectation result under a positive
expected-cosine condition, while prior methods only rely on empirical results.

3. Occasional BP calibration. To further mitigate drift in very deep or highly structured
networks, we apply a true BP step to a single mini-batch every T epochs, using its exact
gradient to realign the weights. This yields a hybrid two-timescale scheme in which most
updates are layer-parallel GrAPE steps, interleaved with sparse BP synchronizations.

4. Scalability. We show for the first time that a DFA-style method can train VGG-16, ResNet-
20/56 and Transformer models, narrowing the performance gap with full BP.

The paper is organized as follows: in Section [2] we briefly recall the necessary background and
notation (a more detailed survey can be found in the Appendix). Section [3|describes the GrAPE
algorithm and the occasional BP calibration strategy. Section @] reports empirical results.

2 BACKGROUND AND RELATED WORKS

Let f(x;0) be a feed-forward neural network with L layers, where = hg is the input and § =
{W,};~, is the set of parameters. Each layer computes a; = W;h;_; followed by a non-linearity
h; = oy(a;), encompassing both linear and convolutional operations. The output is § = hy,. Given
a loss function £(7, y), the goal of backpropagation (BP) is to compute gradients V.L; = 9L/dq,
recursively, starting from the output layer. The corresponding weight update is:

_ T =
5m={ nVLLh] , ifl=1L o

—ndah] ifl <L, with da; = (W} 6a141) ® of(ar)

This algorithm is by construction sequential: the update at layer [depends on the backpropagation of
errors through all subsequent layers. This reliance on weight symmetry and stepwise computation
hinders parallelism. As architectures attain increasing size and depth, alternative methods that allow
non-symmetric error transmission and enable parallelized training have emerged (see Figure|[T).

2.1 LEARNING WITH RANDOM FEEDBACK

Feedback Alignment (FA) proposes a biologically inspired alternative to backpropagation by
replacing transposed weights with fixed random feedback matrices B; (Lillicrap et al.,2016). The
error is still propagated sequentially, but independently of the forward weights (17/;):

da; = (Bidaji1) ® o)(a;), withday, = (BLVLL) ® o7 (ar)
This removes the weight symmetry constraint, aligning better with biological learning (Lillicrap
et al.| 2020) but fails to scale to convolutional networks (Bartunov et al.l 2018; Moskovitz et al.|
2018). Adaptive variants using weight mirroring (Akrout et al.| 2019) can however approach BP
performance, but remain sequential and thus offer limited practical advantages.

Direct Feedback Alignment (DFA) (Ngkland, 2016) removes the need for sequential error propaga-
tion by projecting the output error directly to each hidden layer:

(50,1 = (BZV,CL) GJZ(al), vl e [].,L})
This enables parallel updates but remains limited on complex architectures like CNNs and Transform-

ers. Attempts to mitigate this include adaptive feedback (e.g., weight mirroring (Akrout et al.| [2019))
or architectural variants like DRTP (Frenkel et al., |2021)), falling short behind BP on large-scale tasks.

Launay et al.| (2020) applied DFA to Transformers using either block-wise (‘macro’) or layer-
wise (‘micro’) feedback, yet BP remains necessary within attention layers. Our method builds
on this approach by providing more informative feedback signals, complementing the internal
backpropagation still required within attention blocks.

The effectiveness of FA and DFA relies on the alignment between feedback vectors and true gradients
as shown by [Ngkland (2016); Refinetti et al.| (2021)). A sufficient condition for descent is thus:

|
Vie[l,L], cos(w)= % > 0. This reflects the classical Zoutendijk condition (Nocedal
& Wright, [1999), highlighting the importance of alignment for descent and convergence in classical

deterministic line-search methods (see Appendix[A.3).

Under review as a conference paper at ICLR 2026

OulpulLayer{OOOO] [OOOO] [OOOO]

WsI WsI W

senstar (OO O0O) [OO0O00O) [OOOO])

W, W{ W,
mme (O000] [0OO0O0O) [0O0O0)
Wy WlI Wy
miwer (O0O00] [OOO00] [OO00O0)
1/ 1/ ,/ Tetean =T (Pepita) Tmod = & — Fe

(Forward-Forward) @ mod = Tney

Figure 1: Overview of error propagation schemes, adapted from |Dellaferrera & Kreiman|(2022). (a)
BP, (b) FA, (c) DFA, (d) forward-only methods (PEPITA, Forward-Forward), (¢) GrAPE.

Green arrows indicate forward paths; orange ones error signals and blue ones forward gradient
estimates J; ,. Learned weights are denoted W;, and layer-specific feedback weights as B;.

2.2 FORWARD-ONLY CALCULATIONS

Forward-only methods aim to completely bypass the backward pass. For instance in PEPITA
(Dellaferrera & Kreiman, [2022)) or Forward-Forward (Hinton, [2022), a double forward pass provides

a surrogate error signal via a perturbed forward step: 0W; = (h;—h$"™ YO (b 1), hg" = z— Fe

Forward Gradient (FG) methods (Silver et al., 2021} Baydin et al.l [2022) use forward-mode
automatic differentiation (FwAD) to obtain unbiased gradient estimates via directional (Jaco-
bian—vector) derivatives along a random direction u, removing the need for an explicit backward
pass: VL - u = limg_,o w. While unbiased in theory, sampling in parameter space is
inefficient for large models. [Ren et al.| (2022)) address this by perturbing neuron activations instead of
weights, significantly reducing variance and cost as activation space is usually much smaller than
weight space. Additional improvements use local auxiliary losses (Fournier et al., [2023)), requiring
however BP to train the auxiliary models.

FwAD methods parallel the standard forward pass and can be implemented via dual numbers. Despite
some runtime overhead (43% w.r.t. a simple forward with a naive implementation (Baydin et al.,
2022)), optimized frameworks (e.g., PyTorch FwAD, JAX) promise broader applicability.

Other recent local learning rules also exploit forward computations without relying on FA/DFA-style
feedback pathways. Ngkland & Eidnes|(2019) attach shallow local classifiers and similarity-based
objectives to each hidden layer, computing layerwise gradients from these auxiliary losses in a strictly
feedforward manner (with an optional FA-based variant), while |Apolinario et al.| (2025) propose
a rule that drives each layer to align its activations with fixed periodic basis vectors using a local
cross-entropy loss. In both cases, learning signals are generated from local forward computations and
do not rely on separate feedback matrices B; or on backpropagated errors from the global task loss.

While these methods can reach reasonable performance on relatively shallow or compact architectures,
their reported accuracies typically remain below backpropagation on deeper models, and they have not
yet been demonstrated at scale on modern Transformer-style networks. GrAPE is complementary: it
also leverages forward-mode information, but uses JVP-based rank-1 Jacobian estimates to explicitly
learn feedback matrices that approximate true gradient directions for DFA-style updates.

3 GRADIENT ALIGNED PROJECTED ERROR (GRAPE)

Here, we introduce GrAPE (Gradient-Aligned Projected Error). This method leverages the lightweight
forward-gradient estimates to align the feedback matrices with the true Jacobians. This alignment is
motivated by the Zoutendijk theorem and helps ensuring convergence, enabling scalable training of
complex architectures on various tasks. We summarize the overall procedure in Algorithm [T}

Under review as a conference paper at ICLR 2026

3.1 LIMITATIONS OF FIXED RANDOM FEEDBACK MATRICES

In line-search methods, the update direction must align as closely as possible with the true negative
gradient. DFA uses a fixed “feedback” direction in place of —V L, but cannot measure or correct
the angle between its update and the actual descent direction. In convolutional layers, for example,
the linear transformation can be represented by a block-Toeplitz matrix (d’Ascoli et al.l [2019).
Reproducing such a structure with a single, fixed, randomly sampled feedback matrix is impossible,
as discussed by Refinetti et al.|(2021). This explains why |[Launay et al.|(2019) found that vanilla
DFA often fails on convolutional networks: the convolutional weights cannot correctly capture the
projected error if the feedback direction is misaligned with the true gradient. However, if we align
the feedback projections with the associated gradients, this limitation can be overcome.

Beyond fixed random feedback, early weight-mirroring schemes (Akrout et al.|[2019) already showed
that it is possible in principle to adapt feedback weights to approximate 1,' in FA, albeit in a
fundamentally sequential setting tied to the forward weights.

Subsequent DFA-style approaches (Webster et al., 2021; [Bacho & Chu, [2024) extend this idea,
either by using a Kolen—Pollack—type learning rule to adapt feedback weights or by tracking BP
updates through auxiliary forward passes and momentum. [Roy et al.| (2025) “unlock” SVD-space
by optimizing a composite set of 5 local losses, including a cosine-like term, to align feedback with
forward singular vectors. While these methods can substantially improve feedback alignment and
sometimes recover BP-level accuracy, they either inherit the sequential nature of FA, rely on complex
SVD-based or multi-term loss machinery, or, in the case of FDFA, raise reproducibility questions as
discussed in Appendix [A.4]

None of them exploit forward-mode JVPs to obtain a simple, analytically tractable global alignment
guarantee. GrAPE takes a different route: it uses JVP-based rank-1 Jacobian estimates and a single
cosine loss to learn feedback matrices that are both amenable to layer-parallel DFA-style execution
and analytically linked to the true Jacobians through a positive expected Frobenius cosine bound.
Together with infrequent BP steps on a single mini-batch, GrAPE demonstrates in our experiments
scaling to deeper CNNs and Transformer architectures where vanilla DFA and related methods have
historically struggled.

3.2 ALIGNMENT WITH FORWARD GRADIENTS: STATISTICAL GUARANTEES

Alignment lower bound Consider the Jacobian matrix J; = g—lfl € RdoutXm the perturbation
p ~ N(0, I,,,) and the Jacobian—vector product J; p € R%ut. An unbiased rank-1 approximation of

J; is then J; = (Jl p) p' € RouwX™ We measure alignment via the Frobenius cosine

(T, T F

— A, B)p :=Tr(ATB). 3)
e Gl B =TAB)

cosp (i, i) =

Because p ~ N(0,I,,), we can write p = 7s with s uniform on the unit sphere and indepen-
dent of r = ||p||. A direct computation shows cosg (7, fl) = I‘\|:771l|7£’ SO]E{cosF (71, jl)} =
m Es || J;s]|. Projecting onto the top singular direction of J; and using a standard bound on the

first coordinate of a uniform sphere point (Appendix [B)) yields

2 7l

mny |JillF’

E|cosr(i 71)| >)
which is strictly positive for J; # 0. For the batched estimator (average of B independent rank-1
estimates), Gaussian concentration implies that the empirical Frobenius cosine concentrates around

equation E at rate O(1/+/B) (Appendix .

Beyond this layerwise alignment bound, Appendix [B.4]recalls a standard stochastic-approximation
result (Theorem showing that, under usual step-size conditions, a positive expected cosine
between the update direction and the true gradient is sufficient for convergence to stationarity in
expectation. GrAPE is designed so that its JVP-based estimator and alignment loss encourage
precisely such a positive expected-cosine condition at the layer level.

Under review as a conference paper at ICLR 2026

Zoutendijk theorem In classical smooth deterministic optimization, the Zoutendijk theorem states
that if each search direction forms an angle uniformly bounded away from 7/2 with the negative
gradient and the step sizes satisfy Goldstein or strong Wolfe conditions (typically enforced by line-
search; see |[Nocedal & Wright| |[1999)), then the gradient norm converges to zero and the iterates
approach a stationary point. In our context, we view Zoutendijk primarily as a conceptual lens moti-
vating cosine-based alignment: our JVP-based estimator yields a strictly positive expected Frobenius
cosine between J; and fl (Eq. @), and standard stochastic-approximation results (Theoremin
Appendix [B.4) show that a positive expected cosine between the update direction and the true gradient
is sufficient for convergence to stationarity in expectation under usual step-size conditions.

Concretely, we update each feedback matrix with respect to the corresponding estimated jl, before
applying the DFA weight update (Equation[2). Here, the per-layer cosine with the estimated Jacobian
is a sufficient local condition that heuristically supports global descent when combined across layers:

Vi e [1, L], cos(w;) = cosF(Bl,fl) _ _(Bud)e > 0, 5)

IBill7 |7l

In Appendix [B.5] we further show via a simple Frobenius cosine composition lemma (Lemma[B.2)
that whenever cosp(By, J¢) and cosg(J¢, Je) are both bounded below, then so is cosg(By, J¢), s0
misalignment does not compound arbitrarily across these two sources of noise. In practice, we use
the empirical average of per-column cosines ¢; as a proxy for the Frobenius cosine cosp (B, jl) as
detailed in Appendix [C} cosr is a weighted average of these columnwise cosines, and after column
normalization of B; and our JVP construction, the weights are close to uniform, so ¢; is a convenient
scalar summary of layerwise alignment.

In practice, for each layer we can choose to do a perturbation either in the weight space (as explained
above) or in the activation space (Ren et al., 2022). Since the variance and cosine of the estimator
depend directly on the dimension of the perturbations, we pick the space with the lowest dimension.
Although usually the weight space is of much higher dimension than the activity space, this is not the
case for the first layers of a deep convolutional network, for instance.

3.3 LEARNING RULE AND ALGORITHM

We first define a local alignment loss: Lajign(B1) = 1 — cos(w;), where cos(@;) is defined in
EquationE} We update B; by one gradient step on Ljjign:
B <~ B — B, sz £a1igH(Bl)a nB, > 0, (6)

and then normalize columns to enforce purely directional alignment, B;[:, k] < B[, k]/(|| Bi[:
, k]|l 4+ €) with € > 0 for numerical stability (cf. Ngkland, 2016).

This local step uses only forward-mode JVPs and no BP is required. It is worth noting that a single
batched JVP per layer adds roughly a forward-pass-like cost and does not scale with the number of
parameters. Furthermore, our rank-1 Jacobian estimate has a strictly positive expected Frobenius
cosine with the true Jacobian and concentrates as the batch size grows (Appendix [B). We found one
alignment step per batch sufficient in practice; additional steps offered no gain.

Finally, with this refined B; we perform the parallel update:
da; = (BIVLL) ©oj(a), SW, = —néday h]_,.

3.4 SPARSE BP CALIBRATION ON A SINGLE MINI BATCH

In order to counteract the increased variance of our forward-gradient estimates in high dimensions,
we additionally inject a true BP step on a single mini-batch, using its exact gradients to re-anchor
all W; with minimal interruption of the parallel update flow. Let T" denote the number of epochs
between two such BP calibration steps. Currently, we select the calibration mini batch uniformly
at random; a promising extension would be to apply active-learning strategies to pick the most
informative examples for each BP calibration step, for example with uncertainty sampling or core-set
selection (Settles, [2009; Sener & Savarese, [2017).

Under review as a conference paper at ICLR 2026

The amortized per-epoch overhead of a single-mini-batch calibration is ~ 1/(T'N}) of an epoch
in units of mini-batches (O(Ny 4+ 1/T) vs. O(Ny) steps). For typical N, > 1, this is small in
practice. Appendix [D] provides a compact FLOPs and critical-path accounting of BP, DFA, and
GrAPE——covering forward+JVP overhead, per-layer projection/alignment, and the % calibration
term—together with preliminary timing results on a small transformer. A full study of optimized
parallel kernels is left to future work.

Algorithm 1 GrAPE

Require: Layers 1,..., L, weights {W;}, feedbacks { B, }, BP-interval T, epochs F, batch size B,
learning rates 1, np
1: Forward pass & JVPs: choose perturbation p; in the smaller of activation/weight space; run a
single forward trace carrying duals

2: for epoch=1to E do
3 for all minibatch (X,Y") of size B do
4 1) Forward pass & JVPs: choose perturbation p; in smaller of activation/weight space
5: hg +— X
6 for! =1to Ldo
7 a; < Wihi—1, h; O’l(ag), g1 < JVP(f, hy, pl) via forward-mode AD
8 Ji gt (rank-1 estimate)
9: end for

10: 2) Feedback refinement:

11: for/=1to L do R

12: compute per-column cosines: ¢; = n% Sk cos(Bils k], Jil: K))
13: Latign < 1—1¢

14: B; < B; — 1B VB, Lalign

15: for k = 1ton; do

16: By[:, k] < B[, k]/|| Bi[:, K]l

17: end for

18: end for

19: 3) DFA-style weight update:

20: VL <—8£/8aL

21: foralll € [1,L] do

22: Parallel projection (via equation2): da; = (B/VLL) ® o] (a;)

23: Weight update: W, < —ndq, hﬁl Wy < W, + 6W,;

24: end for

25: end for

26: 4) Occasional BP calibration:

27: if epoch mod 7" = 0 then

28: Sample one small minibatch

29: Perform one full BP pass on it

30: Update {W;} by standard gradient descent

31: end if

32: end for

4 EMPIRICAL EVALUATION

We evaluate GrAPE in a variety of settings, with shallow and deep image classification models, as well
as transformers for language modeling. We empirically show that GrAPE consistently outperforms
DFA and other methods, even without BP calibration. Introducing the occasional calibration step
improves both DFA and GrAPE, and brings GrAPE much closer to BP.

A crucial requirement for any BP alternative is rigorous implementation and evaluation under the same
settings as BP. Since these methods are still nascent, fair and reproducible comparisons are essential.
Although FDFA (Bacho & Chu,|2024) also combines random feedback with forward-mode AD, it
does not, to our knowledge, provide an optimization-theoretic convergence argument. Our attempts
to reproduce their reported numbers across CIFAR-100 settings did not match the paper’s figures
using the authors’ code or a BioTorch reimplementation; details are provided in the Appendix

Under review as a conference paper at ICLR 2026

Table 1: Performances of a shallow convolutional network (CNN) and a 3 layer Multi Layer Per-
ceptron (MLP) trained on the MNIST and CIFAR10 datasets with different learning algorithms (in

percentages).

Method Parallelizable MNIST CIFARI0 CIFAR100

MLP CNN MLP CNN MLP CNN
BP No 98.734+0.04 99.03£0.02 54.09+0.14 74.66+0.08 28.18+0.45 44.22+0.19
FA No 98.36 £0.04 98.7+£0.07 52.18+0.15 71.05+0.18 24.54+0.22 35+0.27
DRTP Yes 9574012 98.5+0.17 4755+0.12 64.734+0.62 18.63+0.43 30.54+0.12
DFA Yes 98.21+£0.07 98.6+0.04 51.32+£0.32 69.34+0.4 22444023 34.53£0.42
PEPITA Yes 98.01 4 0.08 NA 52.01+0.13 NA 21.87+0.25 NA
GrAPE (ours) Yes 98.53+£0.02 98.8+0.01 53.4+0.04 73.1+0.23 26.22+0.33 38.0+0.31

4.1 EXPERIMENTAL SETTING

We implement our method in Biotorch (Sanfiz & Akrout, 2021) to ensure full transparency and to
leverage its existing feedback-alignment and forward-mode hooks. All hyper-parameters (learning
rates, schedulers, etc.) are detailed in the Appendix [E] and our complete codebase (including the
calibrated-DFA variant) will be released upon publication. In our current Biotorch implementation,
computations are largely serialized on a single GPU and we do not yet exploit true layer-parallel
scheduling. We chose Biotorch to ensure a fair comparison with existing baselines and a standardized
way of benchmarking our method within the same framework. In this regime, GrAPE incurs a modest
6-20% wall-clock overhead per training step compared to DFA or BP, depending on architecture and
dataset, due to the extra forward-mode JVPs and local alignment updates.

To complement backward hooks in convolutions, we use PyTorch’s low-level conv2d_input,
conv2d_weight, conv2d_bias from torch.nn.grad and the JVP routines from FwAD, en-
suring correct gradient estimates in convolutional layers without any backward pass. All experiments
were conducted on a NVIDIA A100 GPU. We test our method on the following setups:

Shallow architectures. We first validate on a 3-layer MLP (hidden size 1024) and a LeNet-5—style
CNN across MNIST, CIFAR-10, and CIFAR-100. Baselines follow the strongest BP-free comparators
in [Srinivasan et al.| (2023)): FA, DFA, DRTP (Frenkel et al., [2021) and PEPITA (Dellaferrera &
Kreiman, [2022)) with the recommended variance-reduction tweaks from [Srinivasan et al.| (2023)).
Consistent with prior reports, DRTP/PEPITA do not scale to deep CNNs, hence we exclude them
from AlexNet/VGG/ResNet tables. The results are reported Table I]

Deeper convnets with BP calibration. Next, we tackle AlexNet and VGG-16 on CIFAR-100 —
architectures on which vanilla DFA catastrophically fails (Launay et al.,[2019). Here we inject one
backpropagation update on a randomly selected mini-batch every T epochs (for both GrAPE and
DFA as a "calibrated" control). Surprisingly, this sparse BP step alone recovers a large fraction of
DFA’s gap with BP and allows GrAPE to attain really close performance when compared to BP. The
results are reported in Table [2]and Figure [2]

Cost of BP calibration. In all calibrated settings, a BP step consists of a single full backward pass on
one mini-batch every 1" epochs. On CIFAR-100 with ResNet-20 and batch size 256, this corresponds
to one calibration batch out of = 195 per epoch; for T' = 1 this is about 0.5% of the backward passes
used by standard BP, and for larger 7" the overhead is reduced proportionally. Thus, even at 7' =1
the calibration cost is negligible compared to the bulk of GrAPE or DFA updates.

Modern architectures with BP calibration. Finally, we scale to a Transformer-Base on WikiText-
103, following exactly the protocols of [Launay et al.| (2020). We adopt macro (one feedback per
encoder block) and micro (one per sub-layer) feedback approaches, replacing each fixed feedback by
a learned one via the same local cosine-alignment, with no change to forward or attention internals;
BP inside attention layers remains as in|Launay et al.| (2020), depending on the specific setting. We
also scale to deep networks such as ResNet-20/56 on CIFAR-100 per canonical practice in He et al.
(2016)) and also on Tiny ImageNet, using it as a compute-efficient proxy that preserves ImageNet-like
statistics, mirroring full-ImageNet trends (Shleifer & Prokopl 2019). Once again on these deep
network, we apply a BP calibration step on a single mini batch every 7" epochs to both GrAPE and
DFA. We report averages over 10 independent runs of each method’s best checkpoint, with standard
deviations to reflect stability. The results are reported in Tables [3|and

Under review as a conference paper at ICLR 2026

Table 2: Performances of AlexNet and VGG-16 models trained on CIFAR-100 with different learning
algorithms.

Method AlexNet VGG-16

BP 64.61 £0.29 70.33 £0.61
DFA 42.59 £ 0.34 1.00 + 0.00
DFA + calibration (7' = 1) 49.37 £0.16 29.40 £ 0.82
GrAPE 45.45+0.20 32.40 £0.32
GrAPE + calibration (I'=1) 62.63 +0.52 56.93 +0.11

Potential gains under layer parallelism. To probe the potential gains under actual layer parallelism,
we also implemented a small prototype on a Transformer with hidden size 128, depths 2/4/8, batch
size 256 and sequence length 64 on a single NVIDIA A100. Using Python-level CUDA streams and
a simple double-forward trick to compute JVPs (duplicating the batch and perturbing the duplicate
to compute JVPs), the mean time per batch was roughly three times lower for GrAPE versus BP
(Table[5]in Appendix [D). These numbers are conservative (no kernel fusion or custom kernels), but
they illustrate that once layer-parallelism is exploited, GrAPE can reduce wall-clock time relative to
sequential BP, especially at larger depths.

Table 3: Performance (%) on ResNet-20 and ResNet-56, for CIFAR-100 and Tiny ImageNet. Here,
T specifies the number of epochs between BP updates on a randomly selected mini batch.

Method T ResNet-20 ResNet-56
CIFAR-100 Tiny ImageNet = CIFAR-100 Tiny ImageNet
BP 68.72 +0.14 51.66 £ 0.74 71.42 + 0.60 56.86 £ 0.83
DFA 20.94 +0.19 14.18 £0.11 24.29 4+ 0.41 15.31 £ 0.05
GrAPE (ours) 24.28 +0.36 18.63 £ 0.37 29.33 £ 0.63 20.15 £ 0.12
1 59.80 + 0.55 46.13 £0.29 62.43 £0.15 48.39 +0.48
DFA + calibration 5 55.28 +0.22 43.56 £0.57 61.40 £ 0.81 47.00 £0.34
10 53.79£0.29 44.21 £0.22 60.29 £ 0.40 46.92 £ 0.26
50 30.06 £0.93 20.78 £ 0.71 53.91 + 0.54 22.83 £0.78
1 64.824+0.55 4896+0.21 66.92+0.26 51.68 +0.48
5 63.09 + 0.53 45.17 £0.17 65.92 £+ 0.62 49.02 £0.73
GrAPE + calibration 10 61.15+£0.21 44.44 +0.28 65.75 £ 0.59 47.72 £0.21
50 36.79 +0.62 22.15+0.58 56.47 + 0.54 24.40 +0.47
100 100
- BP I DFA + calibration
80 80 —-= DFA [l GrAPE
g 60 g 60
2 2
<% 40 :E 40+
20 20
1 5 10 50 Never 1 5 10 50 Never
T T

Figure 2: Accuracy vs. calibration interval 1" for AlexNet (left) and VGG-16 (right) on CIFAR-100.
T = number of epochs between two BP calibration steps (i.e., one calibration every 7" epochs). We
compare BP, DFA, DFA + calibration (T"), GrAPE, and GrAPE + calibration (7).

Under review as a conference paper at ICLR 2026

Table 4: Best validation perplexity after 20 epochs of a Transformer trained on WikiText-103 (lower
is better). T specifies the number of epochs between BP updates on a randomly selected mini batch.

BP DFA GrAPE DFA + calibration GrAPE + calibration

T 1 5 10 1 5 10
Macro 2938 52.0 423 427 482 50.1 331 378 40.4
Micro ’ 93.3 81.1 78.8 879 905 673 73.7 78.2

4.2 RESULTS ANALYSIS

Shallow architectures (Table [T) In our preliminary small-scale experiments on a 3-layer MLP
(hidden size 1024) and a LeNet-5—style CNN across MNIST, CIFAR-10 and CIFAR-100 (Table ,
vanilla GrAPE surpasses every other method — FA, DFA, DRTP and PEPITA — without any BP
calibration. This shows that in low-dimensional or shallow settings, GrAPE’s forward-gradient
estimates are sufficiently accurate to drive learning effectively without full backpropagation updates.

AlexNet and VGG-16 (Table 2] and Figure[2) BP achieves the highest accuracies, with 64.6% =+ 0.3
on AlexNet and 70.3% =+ 0.6 on VGG-16. Uncalibrated DFA performs poorly (only 42.6% + 0.3 on
AlexNet and 1.0% on VGG-16). Introducing one BP calibration per epoch (7" = 1) boosts DFA by
over 6 points on AlexNet and nearly 30 points on VGG-16. GrAPE without calibration starts higher
(45.5% =+ 0.2 on AlexNet, 32.4% =+ 0.3 on VGG-16), but with T = 1 it almost matches BP, reaching
62.6% = 0.5 and 56.9% = 0.1, closely trailing the BP curve in Figure 2}

ResNet-20 and ResNet-56 (TableE]) On CIFAR-100 with ResNet-20, uncalibrated DFA achieves
only 20.9% = 0.2 and GrAPE 24.3% =+ 0.4, compared to BP’s 68.7% =+ 0.1. A single BP calibration
every epoch (' = 1) elevates DFA to 59.8% 0.6 and GrAPE to 64.8% =-0.6, closing most of the gap
with BP. As T increases to 5, 10, and 50 epochs, both methods gradually lose accuracy, highlighting
the need for frequent calibration. Similar trends hold for ResNet-56 and on Tiny ImageNet: GrAPE
with 7' = 1 consistently outperforms calibrated DFA and approaches BP performance.

Transformer-Base on WikiText-103 (Table[d) For the language modeling task, uncalibrated DFA
yields perplexities of 52.0 (Macro) and 93.3 (Micro), while GrAPE starts at 42.3 and 81.1. With
T = 1, DFA improves to 42.7/78.8, but GrAPE reaches 33.1/67.3, cutting its gap with BP (29.8)
by nearly half. Calibration intervals of 5 and 10 epochs result in progressively worse perplexities,
confirming that frequent BP injections are key to maintaining model quality.

Critical role of periodic BP calibration All experiments indicate that regularly performing one BP
can greatly improve the training of both DFA and GrAPE. It seems particularly critical for larger and
deeper models (e.g. VGG-16, Transformers and ResNets). One potential reason is that the variance
of the forward gradient grows linearly with the hidden dimension: larger models lead to more noisy
gradient estimates, which makes training more unstable. However, ablation studies with no calibration
steps show that the GrAPE learning rule with adaptive feedback matrices is fundamentally better than
DFA. In some cases (eg. Transformer, VGG-16), GrAPE with no calibration even outperforms DFA
with calibration. With matching calibration frequencies, GrAPE also consistently outperforms DFA.

Across all architectures and tasks, periodic BP calibration on a single random batch effectively bridges
most of the performance gap between approximate methods (DFA, GrAPE) and full backpropagation.
In particular, GrAPE with T' = 1 matches BP performance very closely while relying on update rules
with a shorter arithmetic critical path than sequential BP; in our current serialized implementation
this manifests as a modest 6-20% per-step overhead, but simple layer-parallel prototypes already
show potential wall-clock speedups at larger depths (Table 3).

5 DISCUSSION AND LIMITATIONS

Our empirical results demonstrate that GrAPE achieves state-of-the-art performance among feedback-
alignment variants in shallow models (Table[I)), and recovers the majority of BP’s accuracy on deep
convnets with at most a single BP calibration per epoch (Tables 2} [3). Furthermore, this BP calibration
step yields substantial perplexity gains on Transformers (Table [4). Nonetheless, several important

Under review as a conference paper at ICLR 2026

caveats remain. First of all, because our BioTorch-based prototype serializes updates, we do not
report realized layer-parallel wall-clock gains: these are deferred to future purpose-built kernels.

Necessity and cost of BP calibration While vanilla GrAPE suffices for low-dimensional / shallow
settings, deep or wide networks depend critically on periodic BP updates: calibration frequency
T = 1 consistently outperforms 7" > 1, but even a single-batch BP step might incur nontrivial
overhead compared to fully local methods. Designing adaptive or event-driven calibration schedules
— triggered by alignment metrics rather than fixed epochs — could reduce this cost, as well as an
advanced mechanism to select the samples contained in the considered batch.

This calibration can be interpreted in a federated-learning analogy: each layer’s GrAPE update plays
the role of independent “local training” on edge devices, using only cheap, parallelizable forward-
gradient corrections; the occasional full BP calibration then acts like a central-server aggregation step,
collecting the current model state, computing an exact gradient “global update,” and redistributing
the realigned weights back to all devices. In this way, we retain fully parallel local updates most of
the time, yet periodically synchronize via a trusted central pass to ensure that all feedback matrices
stay coherently aligned across the entire network.

Variance in forward-mode estimates Our Jacobian estimate J, = (Jip)p", p~ N(0,I),is
unbiased but exhibits a variance proportional to the model dimension (Section[d). In wide layers,
the alignment signal may collapse and noise dominates, necessitating frequent calibration steps and
reducing the impact of vanilla GrAPE. Future work could explore multiple perturbation directions at
each forward or lightweight local losses (as in (Fournier et al.,|2023)) to reduce variance. However,
these would be at the expense of additional computation.

Convergence guarantees Our theoretical analysis, based on Zoutendijk’s theorem, ensures only
convergence to stationary points. In deep nonconvex landscapes, this leaves open the risk of saddle-
point or poor-quality minima. Incorporating low-cost second-order information (e.g. diagonal Hessian
approximations via forward-mode AD) may strengthen convergence toward high-quality minima.

Architectural generality We validated GrAPE on multiple types of networks without designing
adapted shapes for the feedback matrices. Imposing structures on the feedback matrices to respect
the inherent composition of the Jacobians (for example block-diagonal for convolutions) could be a
promising avenue to reduce reliance on BP calibration and further close the gap with full BP.

In summary, GrAPE moves us closer to truly parallel, local learning methods, but fully matching BP
on large-scale, modern architectures will require advances in variance reduction, adaptive calibration,
and architecture-aware feedback design.

6 CONCLUSION

We have presented GrAPE, a novel feedback-alignment algorithm that replaces the conventional
backward pass with parallelizable feedback projections, aligned with the gradient direction. By
computing cheap rank-1 Jacobian approximations during the forward pass and injecting occasional
backpropagation updates, GrAPE combines the parallelism of forward-only methods with an accuracy
close to that of standard backpropagation.

Our empirical evaluation confirms that in shallow settings, GrAPE already outperforms all existing
feedback-alignment variants without any BP calibration. More importantly, on deep convolutional
and residual networks and on a Transformer-Base model, a backpropagation step per epoch on a
single batch is sufficient to recover nearly the same accuracy or perplexity as standard BP, closing
most of the gap that purely local methods leave behind.

Although these results bring us significantly closer to truly parallel learning, several avenues remain
to fully match BP on large, modern architectures. First, adaptive calibration strategies could reduce
the overhead of intermittent BP steps. Second, variance-reduction techniques may further stabilize
training in very wide layers. Finally, extending GrAPE’s feedback projections to exploit the specific
structure of the considered layers could also help to narrow the remaining performance gap without
relying on frequent BP resets.

By uniting forward-mode gradient estimates with targeted backpropagation corrections, GrAPE lays
the groundwork for scalable, parallel and efficient training of deep neural networks.

10

Under review as a conference paper at ICLR 2026

REFERENCES

Mohamed Akrout, Collin Wilson, Peter Humphreys, Timothy Lillicrap, and Douglas B Tweed. Deep
learning without weight transport. Advances in neural information processing systems, 32, 2019.

Marco PE Apolinario, Arani Roy, and Kaushik Roy. Lls: local learning rule for deep neural networks
inspired by neural activity synchronization. In 2025 IEEE/CVF Winter Conference on Applications
of Computer Vision (WACV), pp. 7807-7816. IEEE, 2025.

Florian Bacho and Dominique Chu. Low-variance forward gradients using direct feedback alignment
and momentum. Neural Networks, 169:572-583, 2024.

Sergey Bartunov, Adam Santoro, Blake Richards, Luke Marris, Geoffrey E Hinton, and Timothy Lilli-
crap. Assessing the scalability of biologically-motivated deep learning algorithms and architectures.
Advances in neural information processing systems, 31, 2018.

Atllim Giines Baydin, Barak A Pearlmutter, Don Syme, Frank Wood, and Philip Torr. Gradients
without backpropagation. arXiv preprint arXiv:2202.08587, 2022.

Stéphane d’ Ascoli, Levent Sagun, Giulio Biroli, and Joan Bruna. Finding the needle in the haystack
with convolutions: on the benefits of architectural bias. Advances in Neural Information Processing
Systems, 32, 2019.

Giorgia Dellaferrera and Gabriel Kreiman. Error-driven input modulation: solving the credit assign-
ment problem without a backward pass. In International Conference on Machine Learning, pp.
4937-4955. PMLR, 2022.

Louis Fournier, Stéphane Rivaud, Eugene Belilovsky, Michael Eickenberg, and Edouard Oyallon.
Can forward gradient match backpropagation? In International Conference on Machine Learning,
pp. 10249-10264. PMLR, 2023.

Charlotte Frenkel, Martin Lefebvre, and David Bol. Learning without feedback: Fixed random
learning signals allow for feedforward training of deep neural networks. Frontiers in neuroscience,
15:629892, 2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770-778, 2016.

Geoffrey Hinton. The forward-forward algorithm: Some preliminary investigations. arXiv preprint
arXiv:2212.13345, 2022.

John F Kolen and Jordan B Pollack. Backpropagation without weight transport. In Proceedings of
1994 IEEE International Conference on Neural Networks (ICNN’94), volume 3, pp. 1375-1380.
1IEEE, 1994.

Julien Launay, Iacopo Poli, and Florent Krzakala. Principled training of neural networks with direct
feedback alignment. arXiv preprint arXiv:1906.04554, 2019.

Julien Launay, Iacopo Poli, Frangois Boniface, and Florent Krzakala. Direct feedback alignment
scales to modern deep learning tasks and architectures. Advances in neural information processing
systems, 33:9346-9360, 2020.

Yann Le Cun, Conrad Galland, and Geoffrey E Hinton. Gemini: gradient estimation through matrix
inversion after noise injection. Advances in neural information processing systems, 1, 1988.

Timothy P Lillicrap, Daniel Cownden, Douglas B Tweed, and Colin J Akerman. Random synaptic
feedback weights support error backpropagation for deep learning. Nature communications, 7(1):
13276, 2016.

Timothy P Lillicrap, Adam Santoro, Luke Marris, Colin J Akerman, and Geoffrey Hinton. Backprop-
agation and the brain. Nature Reviews Neuroscience, 21(6):335-346, 2020.

Charles C Margossian. A review of automatic differentiation and its efficient implementation. Wiley
interdisciplinary reviews: data mining and knowledge discovery, 9(4):e1305, 2019.

11

Under review as a conference paper at ICLR 2026

Theodore H Moskovitz, Nicholas A Roy, and Jonathan W Pillow. A comparison of deep learning and
linear-nonlinear cascade approaches to neural encoding. BioRxiv, pp. 463422, 2018.

J Nocedal and SJ Wright. Numerical optimization springer-verlag. New York, 1999.

Arild Ngkland. Direct feedback alignment provides learning in deep neural networks. Advances in
neural information processing systems, 29, 2016.

Arild Ngkland and Lars Hiller Eidnes. Training neural networks with local error signals. In
International conference on machine learning, pp. 4839-4850. PMLR, 2019.

Maria Refinetti, Stéphane d’ Ascoli, Ruben Ohana, and Sebastian Goldt. Align, then memorise: the
dynamics of learning with feedback alignment. In International Conference on Machine Learning,
pp- 8925-8935. PMLR, 2021.

Mengye Ren, Simon Kornblith, Renjie Liao, and Geoffrey Hinton. Scaling forward gradient with
local losses. arXiv preprint arXiv:2210.03310, 2022.

Arani Roy, Marco Paul E. Apolinario, Shristi Das Biswas, and Kaushik Roy. Unlocking SVD-space
for feedback aligned local training, 2025. URL https://openreview.net/forum?id=
8AgcicOcsh.

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning representations by back-
propagating errors. Nature, 323:533-536, 1986. URL https://api.semanticscholar,
org/CorpusID:205001834.

Albert Jiménez Sanfiz and Mohamed Akrout. Benchmarking the accuracy and robustness of feedback
alignment algorithms, 2021.

Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-set
approach. arXiv preprint arXiv:1708.00489, 2017.

Burr Settles. Active learning literature survey. 2009.

Sam Shleifer and Eric Prokop. Using small proxy datasets to accelerate hyperparameter search. arXiv
preprint arXiv:1906.04887, 2019.

David Silver, Anirudh Goyal, Ivo Danihelka, Matteo Hessel, and Hado van Hasselt. Learning by
directional gradient descent. In International Conference on Learning Representations, 2021.

Ravi Francesco Srinivasan, Francesca Mignacco, Martino Sorbaro, Maria Refinetti, Avi Cooper,
Gabriel Kreiman, and Giorgia Dellaferrera. Forward learning with top-down feedback: Empirical
and analytical characterization. arXiv preprint arXiv:2302.05440, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Matthew Bailey Webster, Jonghyun Choi, and changwook Ahn. Learning the connections in direct
feedback alignment, 2021. URL https://openreview.net/forum?id=zgGmAx9ZcY.

Bernard Widrow and Michael A Lehr. 30 years of adaptive neural networks: perceptron, madaline,
and backpropagation. Proceedings of the IEEE, 78(9):1415-1442, 1990.

12

https://openreview.net/forum?id=8Agcic0csh
https://openreview.net/forum?id=8Agcic0csh
https://api.semanticscholar.org/CorpusID:205001834
https://api.semanticscholar.org/CorpusID:205001834
https://openreview.net/forum?id=zgGmAx9ZcY

Under review as a conference paper at ICLR 2026

A DETAILED RELATED WORK

A.1 LEARNING WITH RANDOM FEEDBACK

Feedback Alignment (FA) introduces a paradigm-shifting and biologically plausible alternative
to gradient backpropagation (Lillicrap et al., 2016)). At the core of this method, random feedback
matrices simplify the weight update process and break the symmetry. FA sequentially multiplies the
output error by the random feedback matrices in order to obtain the error at each layer, which is in
turn used to update the weights. The random matrices replace the transpose of the weights in the
original backpropagation equation. However, the sequential aspect of the update remains, as the error
is still propagated from layer to layer through the random feedback projections. With B; the fixed
random feedback matrix of the [-th layer, the update can be computed as follows:

dar, = (Bre) ® o (ar), with
da; = (Bidar1) © oj(ar), VI E([1,L—1].

This method draws its inspiration from biological neural networks, which do not exhibit symmet-
ric weight transport during learning (Lillicrap et al., 2020), making this learning paradigm more
biologically plausible.

Direct Feedback Alignment (DFA) Ngkland| (2016)) goes one step further: during training, the
error signal is directly projected from the output layer to all hidden layers without modification or
intermediate calculations. With this additional simplification, the updates can be easily parallelized:

Vi € [1,L],da; = (Be) ® o)(ay). @)

FA and DFA have been shown to perform reasonably well on certain tasks and architectures, especially
when considering its profound shift from the backpropagation method. While they do not consistently
outperform or even compete with backpropagation, their simplicity along with biological plausibility
stimulate research to scale up their use, as well as exploration to understand their key limitations.
Bartunov et al.| (2018)) for example, show empirically that FA variants perform significantly worse on
CIFAR-10 and ImageNet than BP, for convolutional networks in particular.

This is further analyzed by |Launay et al.[{(2019) in which they exhibit a bottleneck effect that prevents
learning in narrow layers, especially in the case of convolutional networks. As a workaround, some
variants of FA showed promising performances on deep CNNs (Moskovitz et al., 2018). A seminal
work by |Akrout et al.| (2019) for instance used weight mirroring to adapt the feedback matrices
during training, matching BP performances. However these approaches stay sequential, and similar
approaches to DFA with target projection, such as DRTP (Frenkel et al.,2021), do not compete with
BP on more complex convolutional networks.

It has also been empirically verified (Launay et al.||2020) that learning under synaptic asymmetry
with DFA is possible even with Transformers (Vaswani et al., [2017). In this particular work, the
training of the Transformer with DFA is done according to two settings: the ‘macro’ setting in which
the feedback is applied after every encoder block and the ‘micro’ setting, in which it is done after
every layer in those blocks. As explained by |[Launay et al.|(2020) in Appendix D, backpropagation
through the attention mechanism itself still happens even in the *micro’ setting, meaning that the
training process still relies on BP within transformer layers without reaching the same perplexity
levels as full BP training.

In their papers, Ngkland|(2016) and Refinetti et al.|(2021)) analyze the underlying dynamics in the
FA-like algorithms to better explain their ability and inability to learn. A key lesson is that the angle
between the update and the true gradient must be lower than +7 /2. Equivalently, if we denote w;
this angle, and B; the I-th layer’s feedback matrix, the following inequality must hold:

VﬁzTBle
Vel L), cos(w) = 17

We recognize a particular case of the Zoutendijk theorem (Nocedal & Wright, |1999)), which ensures
global convergence when the search direction makes an angle with the steepest descent direction
bounded away from 7 /2. This theorem requires that the step length satisfies either the Goldstein or

13

Under review as a conference paper at ICLR 2026

strong Wolfe conditions, and this is typically the case with standard learning rates. However, let us
stress that the considered convergence is towards local minima and stationary points.

As previously mentioned, the recent work of (Akrout et al., 2019) revisits the idea to learn the
feedback by emulating a Kolen-Pollack algorithm (Kolen & Pollackl [1994) or with an estimate of the
transpose matrix. This idea facilitates the learning process of FA while reducing the angles w;. This
first attempt clearly shows that adaptive feedback matrices enable the learning of networks on which
FA previously failed. It also emphasizes the importance of Zoutendijk’s theorem, even though the
sequential learning process inherited from the FA still inhibits the potential improvements.

A.2 FORWARD ONLY CALCULATIONS

A promising avenue toward backward-free training is the double-forward approach, in which two
forward passes are used: the first forward pass updates an auxiliary or feedback mechanism, while the
second forward pass computes the weight updates. The recent paper (Srinivasan et al.,|2023)) follows
this trend and exhibits similarities between two forward-only frameworks, Forward-Forward and
PEPITA (Hintonl, 2022} |Dellaferrera & Kreiman, [2022). They also show that such algorithms can be
approximated by a form of feedback alignment with adaptive feedback (AF) weights, modulated by
the upstream network weights. The PEPITA learning rule essentially is: W, = (h;—h{™) (h{™),
with h§"™ = & — F'e, where I’ can be viewed as a feedback mapping on the input. |Srinivasan et al.
(2023) showed that PEPITA implements a feedback-alignment learning algorithm with an adaptive
feedback matrix that depends on the forward weights when F' is computed with weight mirroring.
Although promising, this method fails to scale to networks deeper than 5 layers.

Forward Gradient (FG), introduced by |Silver et al.| (2021) and |[Baydin et al.| (2022) employs
Forward-Mode Automatic Differentiation (FwAD) as proposed in|Margossian| (2019)) to estimate
gradients solely through forward passes. Focusing on these forward calculations, recent works explore
unbiased estimations of the gradients, thanks to directional derivatives (Fournier et al.| 2023} [Baydin
et al.,|2022). These gradients are then used to update the weights like in standard BP, without needing
an explicit backward pass. The essential idea in FG descent is that given a direction vector u € R™,
computing the Jacobian-vector product (JVP) of the gradient of the loss along u gives the gradient of
the loss function according the direction given by u. This is defined as:

e < (A fg(e),
§—0)

at the parameter point 6. This is used to estimate partial derivatives of the loss with respect to subsets
of parameters or activations, along random directions.

Although Baydin et al.|(2022) showed that sampling the perturbations u in the weight space can
provide unbiased gradient estimates, Ren et al.[(2022) revealed poor scalability when the number
of parameters is large. To address this, they proposed to draw perturbations in the activation space,
inspired by |Le Cun et al.|(1988) and Widrow & Lehr|(1990). Since the total number of neurons n
is usually much smaller than the total count of parameters, sampling u; € R™ for each layer [can
substantially reduce both the cost and variance of gradient estimation.

However, recent advances (Fournier et al., 2023)) show that in modern settings, even variance-reducing
techniques with local losses do not allow to reach performance on-par with standard backpropagation.

A.3 REMINDERS ON ZOUTENDIJK’S THEOREM

Let f : R™ — R be a twice continuously differentiable function, bounded below on R™. Consider
the iteration

Tk4+1 = Tk + Qg Pk,

where each py, is a descent direction (i.e. V f(zx) " pr < 0) and the step length v, > 0 satisfies the
Wolfe conditions:

Flan + owpr) < flar) +eron Vi(ze) o, 0<e <ex <1, ®)
Vf(wx + arpr) pr > 2 VI(xr) pr.)

14

Under review as a conference paper at ICLR 2026

Theorem A.1 (Zoutendijk). Under these assumptions, the series

Z cos?0y, HVf(xk)
k=0

—V (k)
IV f @)l]l

2
||, where cosf =

converges. In particular,
liminf |V f(zx)| = 0.
k—o0

Sketch of Proof. Starting from the decrease guaranteed by the Armijo condition equation [§] and
invoking the curvature condition equation 9] one shows (see[Nocedal & Wright|(1999), Chapter 3)
that there exists a constant M > 0 such that

g (fo(:Ek)Tpk.) > M cos®6y, ||Vf(xk)
Summing over k then yields the claimed convergence of the series. O

I

Zoutendijk’s theorem thus states that if each search direction p; remains positively aligned with the
negative gradient, i.e.V f(x) "pr < 0, and the step lengths oy, > 0 satisfy the Wolfe conditions
equation equation@ then "o cos?0y, ||V f(x)||* < oo, which in turn implies

liminf |V f(zg)]| = 0.
k—o0

A.4 FDFA REPRODUCTION DETAILS

We deliberately excluded [Bacho & Chul (2024) because our attempts to reproduce their results
revealed multiple inconsistencies:

* On AlexNet (CIFAR-100), their code yields 55.03% =+ 0.16 accuracy over 10 runs, instead
of the 57.27% + 0.11 they report.

¢ Their DFA baseline (from the Webster et al.|(2021) code) achieves 48.03% =+ 0.61, yet they
report only 35.75% =+ 0.58. This discrepancy appears to arise from applying batch—norm
exclusively to FDFA.

* Re-implementing their method in BioTorch with their hyperparameters gives no improve-
ment over standard DFA (33.59% for FDFA vs. 42.59% for DFA).

* Finally, integrating GrAPE into their code gives 60.35% =+ 0.26 on AlexNet (no augmen-
tation), essentially matching BP, which conflicts with the known gap between BP and
DFA-style methods.

Collectively, these points suggest unintended reliance on backpropagation in their pipeline and
cherry-picked reporting, undermining reproducibility and justifying our decision to omit FDFA from
our baselines.

Novelty of GrAPE. While previous works combine DFA with forward-mode AD, GrAPE is the first
to:

* derive feedback updates from a cosine-similarity alignment loss grounded in Zoutendijk’s
theorem (guaranteeing descent in expectation),

* demonstrate scalability to deep architectures (VGG, ResNet, Transformers) with rigorous
empirical validation,

* provide both theoretical convergence guarantees and extensive, reproducible benchmarks
using verified implementations (e.g. BioTorch).

While we are open to citing FDFA in future versions for completeness, we believe that its omission
in the present submission is fully justified and does not diminish the novelty or relevance of our
contribution.

B FORWARD-GRADIENT ESTIMATOR: FROBENIUS COSINE AND
CONCENTRATION

In this appendix we justify the lower bound on the expected Frobenius cosine between the true
Jacobian J; and its rank-1 estimator J;, = (J;p)p ', where p ~ N(0,I,,), together with an
O(1/+/B) concentration rate for the batched estimator.

15

Under review as a conference paper at ICLR 2026

B.1 REPRESENTATION VIA THE SPHERE
Let p ~ N(0, I,,,). We write
p=rs, r:=|[pl, s=p/pl.

It is classical that s is uniform on the unit sphere S™ ~! and independent of 7. For the rank-1 estimator
J = (Jip)p ', a straightforward computation shows that the Frobenius cosine satisfies
(T, Ji)F [7pll 7]l

Ccos j,j = -~ = = ;
r (. J1) 1Tl 1T NTle el ~ [70r

so that

|:COSF($, Jl)} Es||Jisl|, s ~ Unif(S™~1). (10)

IIJH

B.2 LOWER BOUND VIA THE TOP SINGULAR VECTOR

Let the singular value decomposition of J; be J; = ULV T, and denote by onax = || 71]|2 the largest
singular value, with associated right singular vector v; and left singular vector u;. For any unit
vector u and any z, ||z|| > |u' z|; choosing u = u; yields

17l = [u] Tis| = [owmax vi's| = [Tl [v{s|-

Taking expectations over s gives

Es||Zisll > [[71ll2 Es|vy's].

By rotational invariance of the uniform distribution on the sphere, the scalar v s has the same
distribution as the first coordinate s1 of s ~ Unif(S™~!). Hence

Es|| sl = [7ill2 Elsal.

A standard computation (properties of the spherical distribution) shows that

(2
IE:‘51| = (Qn)Jrl .
VAL(#57)
Using classical bounds on ratios of Gamma functions (Gautschi’s inequality) one obtains, for all
n 2 2,

2
Els;| > 1/ —. (11)

™y
Combining this with the previous inequality yields

2
Es[|Tisll =) — 17]l2- (12)
™y

Substituting equation[I2]into equation@]yields the lower bound used in the main text:

[[72l2

|7

E[cosr (71, 71) | = E.|Jis| > (13)

IIJ ¥y
which is strictly positive whenever 7; # 0.
B.3 BATCHED ESTIMATOR AND CONCENTRATION

Consider the batched estimator obtained by averaging B independent rank-1 estimates based on
Pi,---,PB NN(O,Inl)Z

7m =

B
Z (Jipi)p; Ci = COSF(%aj\l(pi))'

Do \

16

Under review as a conference paper at ICLR 2026

We are interested in the empirical mean

oo

1 B
63 = ZOL
i=1

The map p — C(p) := cosp (T, Ji(p)) is a smooth, bounded function of p and is Lipschitz with
respect to p with a constant depending only on J;. By standard concentration results for Lipschitz
functionals of Gaussian vectors, there exists a constant ¢ > 0 (depending on the dimension and
condition numbers of 7;) such that for all ¢ > 0,

P(’éB —EC(p)’ > t) < 2exp(—th2).
Equivalently,

Std(Cy) = o(jg) ,

so the empirical Frobenius cosine concentrates around its expectation at rate O(1/v/ B).
B.4 CONVERGENCE UNDER POSITIVE EXPECTED COSINE

We recall a standard stochastic-approximation result tailored to our setting.

Theorem B.1 (Convergence under positive expected cosine). Let L : R? — R be differentiable,
bounded below, with L-Lipschitz gradient. Consider

Or 41 = 0; — nedy, gt ‘= VL(et),

where (F) is the natural filtration and the step sizes satisfy

[e's) 00
T]t>07 ZUtZOO, 2771&2<OO
t=0 t=0

Assume there exist constants k > 0, C < 0o, 02 < 0o such that, for all t,

E[(gs, di) | Fi] > 6llgel?, (14)
E[lld:|1* | Fi] < Cllgell* + o> (15)

Then
(oo}
> mE|gl? < oo and lim inf E|g; | = 0.

In particular, the iterates tcjizverge to stationarity in expectation.
Proof. Since L has L4-Lipschitz gradient, the standard descent lemma gives, for all ¢, ¢ € R4,

L(0") < L(9) +(VL(9),0' —6) + % o' — 0|
Apply this with = 6, and 0/ = 0,11 = 0; — nid;:

L(0i41) < L(0y) + (VL(0;), —nedy) + % i N del|®

= L(0) — neloedi) + 22 0]
Taking conditional expectation w.r.t. the filtration F%,
E[L(0us1) | 7] < L0 — neEl{gedi) | 7] + 2 n? B[] | 7]

Using the two assumptions

]E[<gt7dt> \]:t] > llgell?,]E[”dt”2 \]:t] < Cllgel* + o2,

17

Under review as a conference paper at ICLR 2026

we obtain

L
E[L(0141) | Fi] < L(0:) — mesllgel® + 757 i (Cllgel” + o®)

C LO’2
= L(0) — (= 257 0) mellgnl* + =5 .

Because >, n? < oo, we have 1, — 0 as ¢ — oo. Hence there exists an index o such that for all
t 2 to,

L,C S K
K — —.
2 =3
For t > 1y, this yields
K L,o?
E[L(Oi11) | Fe] < L(6:) — 3 nellgel)® + gT n;. (16)

Now take the full expectation of equation|16|and use the tower property EE|[- | 7] = E[-]:

K L,o?
EL(0:41) < EL(0:) — 5 Ellg:|* + 92 n;, t > tp.

Rearranging,
2

K L,o
577t]E||9t||2 < EL(0;) — EL(0¢41) + g2 e

Sum this inequality from ¢t = ¢g to T":

T T T
K Lyo?
5> mElgl® < Y0 (BL®) ~ EL(B) + =5 Y n?
t=tg t=tg t=to
L,o?)
= EL(0y,) — EL(0741) + 92 tzt n?.
=to

By assumption, L is bounded below, say L(0) > L, for all . Therefore EL(611) > Ly, and we
obtain

Ko 2 L902 d 2
5 ZmEllgtH < EL(0y,) — L. + Zm-
t=to

2
t=to

Letting 7" — oo and using) _, n? < oo yields

(o]
Z ne Ellgel|* < oo.

t=to

Adding the finite partial sum over ¢ < ¢, shows that

Zﬁt Ellg||* < oo.
=0

It remains to show that this implies lim inf;_, . E||g:|| = 0. Suppose, for contradiction, that there
exists € > 0 and t; such that E||g;|| > ¢ for all t > ¢;. Then E||g;||> > &2 for all ¢t > ¢;, and

therefore
S mElgll® = &2 me

t=t1 t=t1

By assumption, . 7: = 00, so the right-hand side diverges, contradicting the finiteness of
>, 1:E||g¢]|?. Hence we must have lim inf;_, » E||g:|| = 0.

This establishes the claimed convergence to stationarity in expectation. [

18

Under review as a conference paper at ICLR 2026

B.5 A COMPOSITION BOUND FOR FROBENIUS COSINES

We quantify how noise in the JVP estimator and imperfect learning of B, interact.
Lemma B.2 (Frobenius cosine composition). Let By, jg, Jo € R™*™ be nonzero and define
(4, B)r

cosr (A B) = Bl

(A,B)p := Tr(AT B).

Then

cosp(By, Jy) > cosp(By, Jy) cosp(Jy, Jy) — \/1 — cos(By, Jo) \/1 — cos%(jg, Jo).

Consequently, if cosp(By, jg) > g and COSF(jg, Je) > Bo, then

cosp(Be, Je) > vo(ao, Bo) == aofo — /1 —af /1 - 3.

Proof. Let H be areal Hilbert space with inner product (-, -) and induced normjr{ ||. In our application,
‘H is the space of matrices with the Frobenius inner product (A, B) p = Tr(A' B), but the argument
holds for any Hilbert space.

Let u, w,v € H be unit vectors:
lull = llwl = llv]| = 1.
Define
a = (u,w), B = (w,v), ¢ = (u,v).

By Cauchy-Schwarz, |/, |8], |¢|] < 1.
Consider the 3 x 3 Gram matrix of (u, w, v):

(uyuy (u,w) (u,v) 1 a ¢

G:= ((w,u) (w, w) (w,v)) = (a 1 5)

(v,u) (v,w) (v, v) c p 1

Since G is a Gram matrix, it is positive semidefinite (PSD), hence det(G) > 0.

We compute the determinant explicitly. A direct calculation yields

1 a c
det(G) =|a 1 S
c p 1

=—-a?+2afBc—p* -2 +1
= —(c® = 2aBc+ (& + 5% = 1)).
The constraint det(G) > 0 is therefore equivalent to
c® —2afc+ (a* + 8% 1) < 0.
We view the left-hand side as a quadratic polynomial in ¢,
q(c) :=c* —2afc+ (a® + 5% - 1).

Since the coefficient of ¢ is 1 > 0, the inequality ¢(c) < 0 means that ¢ lies between the two (real)
roots of ¢g. Compute the discriminant:

A= (—2aB)? —4(a®+ B> 1)
= 40282 — 4(a? + B2 - 1)
= 4(a?82 — o? — B2 +1)
= 4(1 —a?-p%+ a252)
=4(1 - a?)(1 - B?).
Since |/, |8] < 1,wehave 1 —a? > 0and 1 — 3% > 0,s0 A > 0 as expected. The roots of q are

cr =aB£ /(11— a2)(l-p2).

19

Under review as a conference paper at ICLR 2026

The inequality g(c) < 0 therefore implies

IN
o
IN

c— C+,

i.e.

A
A

af —y/(1—-a?)(1-p%) < c < af+/(1-a?)(1-p%).

In particular, we obtain the desired lower bound
c > af—+vV1-—a?2+1- 32

‘We now instantiate this with Frobenius-normalized matrices. Let By, jg, Jy € R™*"™ be nonzero, and
define

By Jo Jo
= W= — v =
1BellF’ | Jell 7 el "
viewed as elements of the Frobenius inner-product space. Then

o= (u,w)p = cosp(By, Jp), B = (w,v)p=cosp(Jo,Js), ¢= (u,v)p =cosp(By,Jp),

and the bound above reads

cosp(By, Jy) > cosp(By, Jy) cosp(Je, Jp) — \/1 — cos2(By, Jy) \/1 — cos(Jg, Jp).

This is exactly the claimed inequality. The “yo (v, 3p)” form in the lemma statement follows by
substituting lower bounds «y, 3y for the two intermediate cosines. L]

C FEEDBACK MATRICES UPDATE DETAILS

In the main paper, the theoretical alignment measure between a feedback matrix B; and the JVP-based
Jacobian estimator .7 is the Frobenius cosine

. B. 7
COSp (Bl,jl) = M, (A,B)p = Tr(ATB).
|BullF |7
Writing B; = [b},...,b}"] and T = lil,...,J;""], we can express this as
bET ik m
COSF Bl,jl L 7Zwkcos(bf,jf),
T bt T A
where
b j; b (137 S
cos(bf,jf) =Ll and wp=—"t"Lt wy = 1.
b7 137 |BillF |7 7 ;

Thus the Frobenius cosine is a weighted average of the columnwise cosines, with weights proportional
to the product of colur/r\m norms. In our implementation we normalize the columns of B; after each
alignment step, and .7; has columns of the form jf = pi g1 (with pg a scalar component of the
Gaussian perturbation and g; a common JVP), so the ||jF|| differ mainly through |py|. Since these
scalars are i.i.d. and concentrate around their mean, the weights wy, do not vary dramatically across
k, and the unweighted average of per-column cosines provides a simple and effective proxy for

cosp (B, Ji)-
In practice, we therefore minimize the local cosine alignment loss Calign(Bz) =1 — ¢;, where

ny

cos b
m Z l 7.]l

is the empirical mean of per-column cosines. This loss coincides with the Frobenius cosine up to the
weighting discussed above, and is cheaper to compute while still encouraging layerwise alignment.

20

Under review as a conference paper at ICLR 2026

Because La1ign decomposes as a sum over columns, the gradient can be written column by column.
Specifically, for each £ we minimize the single-term contribution [1 — cos(bf, .]f)} , scaled by 1/n;.
Let np, > 0 be the learning rate for layer [. Then the per-column update can be written as

bf « bF — %Vb;c[lfcos(bf,jf)}, k=1,...,n.
ny

We recall that Vi cos(x,y) = 57 — ”(::HTQ'”);], so the gradient of [1 — cos(x,y)] is its negative.
Each column b} is thus updated as:

bl ¢ bf — [Vyp cos(bf jf)]

= bf + 2] it (ki) bf} (17)
me BEIGE 17l 157
Applying this update for each k = 1, ..., n; increases the mean columnwise cosine and thus aligns

B, with J;. Because L,jign decomposes as a sum of per-column terms, updating all columns in
parallel is equivalent to taking a gradient step on L,ign as a whole. We then renormalize each column

bf after this step to keep norms bounded and maintain the interpretation of the cosine as a purely
directional alignment measure.

D FLOPS, CRITICAL-PATH AND TIME ANALYSIS

D.1 FLOPS AND CRITICAL-PATH ANALYSIS
Throughout this subsection we adopt the standard GEMM view, modeling each layer’s compute as a

(batched) matrix-matrix multiply after the usual reshapes/lowering, which yields simple, comparable
FLOP counts.

Setup and notation. Let the network have layers £ = 1,..., L. Denote by

L
F é Z O(ng_l ng)
£=1

the FLOPs of one mini-batch forward pass under the GEMM view (for conv layers this corresponds
to the lowered GEMM). Let d,, be the output dimensionality, and define the per-layer costs:

Cfmj = O(ng dom) (feedback projection), C’?hgn = O(ng dom) (local alignment update on By).

We model a single Jacobian—vector product (JVP) as an overhead of « times the layer’s forward cost;
writing a layer-averaged & gives a total forward+JVP factor (1 + @).

Backpropagation (BP).

L
Fhaeh _ Z(o(w_m) + O(ng_lng)) ~ (1+B)F, (18)
=1

where the backward-to-forward ratio 3 is typically in the range of 2 depending on layer type and
implementation. The backward sweep is sequential across layers on the critical path.

Direct Feedback Alignment (DFA).
L .
Fheh = F 4+ 300 = F o+ O(dau Y me)- (19)
(=1 ‘

The forward is sequential across layers; the per-layer projections are layer-local and may be launched
in parallel, so their contribution to the critical path is max, C}".

21

Under review as a conference paper at ICLR 2026

GrAPE (alignment-only).

L L
FEihe = 1L+ @) F + 3P + 30" = (146) F + O(dou Y ne). (20)

=1 =1 ¢
Here one JVP per layer runs during the forward trace (scaling the forward path by (14 &)). Projection

and alignment are layer-local and parallelizable, contributing max, (C} rol 4 C?Hgn) to the critical
path.

GrAPE with calibration every 7" epochs. A single BP mini-batch is added per T" epochs. If an
epoch contains NV, mini-batches, the amortized per-epoch overhead is

1
epoch _ batch batch . 1
Foiareica = No- Fooare + = Fep (i.e., 7, of an epoch in units of mini-batches).

T
21

Rule-of-thumb comparison (per mini-batch). If CP¥d ~ O and CPl402"" «
>_; O(nj—1n;), then

Fhateh > op Fhatch ~ (14 @) F + lower-order terms in dou[an.
¢

Practical JVP overhead. Here a denotes the JVP overhead relative to a forward pass: the JVP
alone costs «F’, so the combined forward+JVP cost is (1 + a)F. On modern GPUs with fused
dual-number implementations, we typically observe o ~ 0.8-1.3, hence

forward+JVP ~ (1+«)F € [1.8F, 2.3F].

Transformers (macro/micro). For macro (per-block) and micro (per sub-layer) variants, C’E roj

and C?Hgn apply at the chosen granularity. Between calibrations, the multi-head attention backward
chain is bypassed; GrAPE’s JVPs run in the forward trace, while block/sub-layer projection and
alignment remain parallelizable.

Arithmetic bound The expressions above capture arithmetic work and dependency structure;
realized wall-clock depends on kernels, fusion, memory bandwidth, and scheduling. Under an
idealized critical-path model where (i) BP’s backward cost is about twice the forward cost (i.e., S~ 2
so BP takes (1 + 8)F'~3F), (ii) GrAPE’s per-layer projection/alignment are fully overlapped across
layers, and (iii) fused dual-number JVPs yield o~ 0.8—1.3, the arithmetic critical-path ratio is

BP critical path 1+ 7 c 3
GrAPE critical path ~ 1+« [1.8, 2.3]

= [1.3, 1.7].

We therefore view 1.3—1.7x as an optimistic arithmetic upper bound (not a measured wall-clock
speedup). Establishing realized parallel speedups is left to future work.

D.2 PRELIMINARY TIMING EXPERIMENT

To complement the arithmetic and critical-path analysis above, we implemented a small proof-of-
concept layer-parallel prototype on a Transformer with hidden size 128 (batch size 256, sequence
length 64) on a single NVIDIA A100. We use Python-level CUDA streams and a simple double-
forward trick to compute JVPs, while BP is run in the usual fully sequential manner. This implemen-
tation does not use kernel fusion or custom CUDA Kkernels, so the numbers below should be viewed
as conservative.

E EXPERIMENTAL DETAILS

As mentioned earlier, we base most of our experiments on the Biotorch open source library. While
the experiments on Transformer use exactly the same hyper parameters as in Launay et al.|(2020), the

22

Under review as a conference paper at ICLR 2026

Table 5: Mean per-batch runtime (ms) for a small Transformer (hidden size 128, batch size 256,
sequence length 64) on a single A100, comparing sequential BP and a layer-parallel GrAPE prototype
using Python-level CUDA streams.

Depth BP (ms) GrAPE (ms)

2 9.1 3.0
4 17.5 6.2
8 35.8 12.1

other experiments are set with a specific set of tuned hyperparameters for each method. For GrAPE,
we set the optimizer of the local updates to SGD with 0.9 momentum with learning rate 0.01. The BP
calibration steps are conducted on batch of size 128, with SGD with 0.9 momentum and learning
rate 0.01. We train AlexNet and VGG-16 for 100 epochs with a 128 batch size. The Resnets are
trained for 200 epochs with a 128 batch size. If SGD is used, default 0.9 momentum was applied.
The specific used hyper-parameters are :

AlexNet VGGI16 ResNet-20 ResNet-56
BP DFA GrAPE BP DFA GrAPE BP DFA GrAPE BP DFA GrAPE
Optimizer Adam Adam Adam SGD SGD Adam SGD Adam Adam SGD Adam Adam
LR 0.001 0.0001 0.0001 0.1 0.001 0.0001 0.1 0.001 0.01 0.1 0.01 0.0005
LR decay 0.1 0.1 0.2 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2
Milestones [40,80] same same [50,75] [30,60,90] [30,60,90] [60,120,160] same same [60, 120, 160] same same
Weight decay ~ 0.0001 0.0001 0.0001 0.0005 0.0001 0.0001 0.0005 0.0001 0.0001 0.0005 0.0001 0.0005

Table 6: Hyperparameter settings for deep networks on CIFAR-100 and TinyImageNet: AlexNet,
VGG16, ResNet-20, and ResNet-56.

23

	Introduction
	Background and Related Works
	Learning with Random Feedback
	Forward-Only Calculations

	Gradient Aligned Projected Error (GrAPE)
	Limitations of Fixed Random Feedback Matrices
	Alignment with Forward Gradients: Statistical Guarantees
	Learning Rule and Algorithm
	Sparse BP calibration on a single mini batch

	Empirical Evaluation
	Experimental Setting
	Results Analysis

	Discussion and Limitations
	Conclusion
	Detailed Related Work
	Learning with Random Feedback
	Forward only calculations
	Reminders on Zoutendijk's theorem
	FDFA Reproduction Details

	Forward-gradient estimator: Frobenius cosine and concentration
	Representation via the sphere
	Lower bound via the top singular vector
	Batched estimator and concentration
	Convergence under positive expected cosine
	A composition bound for Frobenius cosines

	Feedback Matrices Update Details
	FLOPs, Critical-Path and Time Analysis
	FLOPs and Critical-Path Analysis
	Preliminary timing experiment

	Experimental Details

