
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SAMPLING-GUIDED HETEROGENEOUS GRAPH NEURAL
NETWORK WITH TEMPORAL SMOOTHING FOR SCAL-
ABLE LONGITUDINAL DATA IMPUTATION

Anonymous authors
Paper under double-blind review

ABSTRACT

In this paper, we propose a novel framework, the Sampling-guided Heterogeneous
Graph Neural Network (SHT-GNN), to effectively tackle the challenge of miss-
ing data imputation in longitudinal studies. Unlike traditional methods, which
often require extensive preprocessing to handle irregular or inconsistent missing
data, our approach accommodates arbitrary missing data patterns while maintain-
ing computational efficiency. SHT-GNN models both observations and covariates
as distinct node types, connecting observation nodes at successive time points
through subject-specific longitudinal subnetworks, while covariate-observation
interactions are represented by attributed edges within bipartite graphs. By lever-
aging subject-wise mini-batch sampling and a multi-layer temporal smoothing
mechanism, SHT-GNN efficiently scales to large datasets, while effectively learning
node representations and imputing missing data. Extensive experiments on both
synthetic and real-world datasets, including the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) dataset, demonstrate that SHT-GNN significantly outperforms
existing imputation methods, even with high missing data rates (e.g., 80%). The
empirical results highlight SHT-GNN’s robust imputation capabilities and superior
performance, particularly in the context of complex, large-scale longitudinal data.

1 INTRODUCTION

With the advancement of data collection and analysis techniques, longitudinal data has gained
increasing importance across various scientific fields, such as biomedical science, economics, and
e-commerce (Pekarčı́k et al., 2022; Sadowski et al., 2021; Mundo et al., 2021). Observation schedules
in longitudinal studies vary widely as some follow regular intervals for each subject while others
follow irregular patterns. For example, clinical visits scheduled every two months represent a regular
observation schedule, whereas follow-ups at 6 months, 1 year, and 2 years post-treatment is an
irregular schedule. Additionally, observation schedules may be either consistent or inconsistent across
different subjects—some studies may impose uniform intervals for all participants, while others allow
for variability due to individual health conditions or other circumstances.

Imputation of missing values poses a major challenge in longitudinal data analysis, both from
theoretical and practical standpoints (Daniels & Hogan, 2008; Little & Rubin, 2019). In fact, in
complex longitudinal data analysis, such as those in neuroimaging or electronic health record studies,
patient follow-up data is collected over time, often resulting in missing values across variables
(cross-sectional missingness) and across time (longitudinal missingness). Ideally, as illustrated in
Figure 1, each subject would have observations taken at consistent intervals, with an equal number of
observations per subject, and each observation would contain fully observed covariates and response
variable. However, when missing data arises at specific time points, this misalignment of observations
across time can occur. Furthermore, the absence of entire observations at certain time steps can
transform regular observation schedules into irregular ones and consistent schedules into inconsistent
ones, significantly complicating longitudinal data analysis.

Given the frequent occurrence of missing measurements in studies with extensive data collection,
addressing the missingness of both covariates and response variables is crucial for accurate predictions
of the target response variable. For instance, in Alzheimer’s disease research, the prediction of key
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Figure 1: The ideal format of longitudinal data without missing (left); The regularly and consistently
observed longitudinal data with missing in covariate variables and response variable (middle). And
the irregular and inconsistent observation schedule in longitudinal data due to missing data (right).

.

biomarkers often relies on incomplete datasets to assess disease progression. Despite methodological
advancements, managing missing data in longitudinal studies presents several ongoing challenges.
Firstly, how can we effectively model longitudinal data that is irregularly and inconsistently observed?
Secondly, how can we design a cohesive forward pass process for data imputation that accommodates
varied observation schedules across subjects? Thirdly, how can we accurately predict target response
values in the presence of missing covariate data and seamlessly integrate this process into model
training? Fourthly, in the context of large-scale longitudinal studies, how can we ensure the scalability
of the missing data imputation method?

In this paper, we address the key challenges by introducing the Sampling-guided Heterogeneous
Graph Neural Network (SHT-GNN). Unlike traditional imputation methods, our GNN leverages
scalable modeling of complex data structures to effectively learn from irregular and inconsistent
longitudinal observations. Our SHT-GNN incorporates three key innovations:

1. We handle longitudinal data by sharing trainable parameters across sampled graphs con-
structed from subject-wise mini-batches. This sampling-guided process ensures scalability
for massive longitudinal datasets.

2. Subject-wise longitudinal subnetworks are constructed by connecting adjacent observations
with directed edges, while covariate values are transformed into attributed edges, linking
observation nodes with covariate nodes. This structure allows SHT-GNN to flexibly model
longitudinal data under arbitrary missing data conditions.

3. We introduce a temporal smoothing mechanism across observations for each subject using a
multi-layer longitudinal subnetwork. The novel MADGap statistic controls the smoothness
within the subnetwork, balancing temporal smoothing with the specificity of observation
node representations.

We conducted extensive experiments on both real data and synthetic data. The results demonstrate
that SHT-GNN consistently achieves state-of-the-art performance across different temporal charac-
teristics and performs exceptionally well even under high missing rates for both covariates and
response variable. Furthermore, we applied the proposed SHT-GNN model to the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) dataset to predict the critical biomarker Aβ42/40. SHT-GNN’s
strong performance in predicting Aβ42/40 is confirmed through validation with ground truth data
and in downstream analyses. Additionally, we conduct extensive ablation studies, demonstrating
the longitudinal network’s ability to perform temporal smoothing through multi-layer longitudinal
subnetworks and the critical role of MADGap in guaranteeing variance between observations.

2 RELATED WORK

2.1 STATISTICAL IMPUTATION METHODS

Statistical methods for imputing missing values in longitudinal data are often derived from multiple
imputation techniques originally developed for cross-sectional data. For example, the 3D-MICE
method extends the MICE (Multivariate Imputation by Chained Equations) framework to account
for both cross-sectional and longitudinal dependencies in data (Luo et al., 2018). Some methods
like trajectory mean and last observation carried forward (LOCF) leverage the time-series nature
for missing data imputation (Lane, 2008). However, these basic models often fail to capture the
complex, nonlinear spatio-temporal dependencies inherent in longitudinal data and lack the scalability
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to manage both continuous and discrete covariates simultaneously. The multi-directional multivariate
time series (MD-MTS) method seeks to address these limitations by integrating temporal and cross-
sectional covariates into a unified imputation framework through extensive feature engineering (Xu
et al., 2020). A notable limitation of MD-MTS is its reliance on manually crafted features can be
labor-intensive and prone to errors. To overcome such challenges, the time-aware dual-cross-visit (TA-
DualCV) method leverages both longitudinal dependencies and covariate correlations using Gibbs
sampling for imputation (Gao et al., 2022). Nonetheless, when applied to large-scale longitudinal
datasets with numerous repeated observations, those methods involving chained equations and Gibbs
sampling can become computationally expensive.

2.2 MACHINE LEARNING IMPUTATION METHODS

Machine learning methods for imputing missing values in longitudinal data have primarily utilized
recurrent neural networks (RNNs) and their advanced variants, such as long short-term memory
(LSTM) networks and gated recurrent units (GRUs). BRITS, for example, leverages bidirectional
LSTMs to capture both longitudinal and cross-sectional dependencies by utilizing past and future
trends (Cao et al., 2018). Similarly, NAOMI employs a recursive divide-and-conquer approach with
bidirectional RNNs to handle missing data imputation (Woillez et al., 2019). CATSI enhances this
by combining bidirectional LSTMs with a context vector to account for patient-specific temporal
dynamics (Kazijevs & Samad, 2023). A significant limitation of all RNN-based methods, however,
is their reliance on consistent time step lengths across different subjects, often requiring padding
or truncation to achieve this uniformity. When applied to large datasets, where the number of
observations can vary greatly between subjects, padding and truncation may lead to excessive and
inefficient computations due to the presence of numerous invalid time steps. Beyond RNN-based
approaches, the GP-VAE model integrates deep variational autoencoders with Gaussian processes to
address missing data in time series. However, the computational complexity of Gaussian processes,
which scales at O(N3), introduces significant computational bottlenecks when processing large-scale
longitudinal data (Fortuin et al., 2020).

2.3 GRAPH-BASED IMPUTATION METHODS

Numerous advanced graph-based methods have been developed for data imputation tasks (Zhang
& Chen, 2019; Li et al., 2021; Zhang et al., 2023). However, these methods face limitations when
handling mixed discrete and continuous features and often fail to capture the temporal dependencies
inherent in longitudinal data. For example, RAINDROP employs a graph-guided network to handle
irregularly observed time series with varying intervals, effectively addressing missing data imputation
and outperforming other methods in downstream prediction tasks (Zhang et al., 2021). Similarly,
TGNN4I, which integrates GNNs with gated recurrent units, has shown strong performance in
imputing missing data for longitudinal graph data (Oskarsson et al., 2023). Despite their strengths,
both RAINDROP and TGNN4I rely on predefined node connections within graph datasets, limiting
their applicability to longitudinal tabular data where such connections between subjects do not
inherently exist. Additionally, GRAPE demonstrated success using a bipartite graph for feature
imputation, but its edge size increases linearly with the number of observations, posing scalability
challenges (You et al., 2020). IGRM (Zhong et al., 2023), an extension of GRAPE, constructs a
friend network among sample nodes to capture similarities and improve imputation. However, IGRM
requires continuous updating of a fully connected graph among all samples, making it computationally
expensive and lacking scalability for large-scale longitudinal data.

3 PROBLEM FORMULATION

In the longitudinal data structure depicted in Figure 1, the observed variables are divided into
two categories: covariates and the response variable. Assume there are n subjects, with the k-th
subject having nk observations measured. The total number of observations across all subjects is
N =

∑n
k=1 nk. Typically, the set of observed covariates varies across observations in longitudinal

studies. For simplicity, we denote the complete set of covariates that can potentially be observed as
X = {x1, . . . , xp}, where p represents the total number of covariates. Any missing values within
this set are treated as missing data. The covariate data for all observations can thus be represented
as a matrix D = (Dil) ∈ RN×p, where l ∈ {1, . . . , p} and i =

∑j−1
k=1 nk + m indexes the m-th
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Figure 2: The flow chart for Sampling-guided Heterogeneous Graph Neural Network.

observation of the j-th subject. Similarly, the response variable for all observations is denoted as
Y = (Yi) ∈ RN×1. Given the presence of missing data, we introduce a mask matrix for the covariate
data MO = (MO

il ) ∈ {0, 1}N×p, where Dil is observed if MO
il = 1. Likewise, the mask matrix for

the response variable is denoted by MY = (MY
i ) ∈ {0, 1}N×1, where the value of Yi is observed

if MY
i = 1. Within this irregular or inconsistent longitudinal data structure as depicted in Figure

1, the goal is to predict the response variable Yi for all i where MY
i = 0, leveraging the available

observation information despite missingness.

4 METHOD

We propose SHT-GNN to address the challenges of missing data in irregular or inconsistent longi-
tudinal data mentioned in Section 1. SHT-GNN models the observations and covariates as nodes,
connecting them with attributed edges that represent the observed covariate values. Additionally,
it employs specially designed longitudinal subnetworks to perform temporal smoothing among
observations within the same subject. Initially, observations in longitudinal data can be represented
as a graph GL(VO, EOO) with subject-wise longitudinal subnetworks, where the observation node
set VO = {u1, u2, . . . , uN} represents all observations. The observation nodes that belong to the
same subject form their own independent longitudinal subnetwork. In each longitudinal subnetwork,
observation nodes at adjacent time points are connected by directed edges. The directed edge set
in GL is denoted as EOO = {(ui, ui′ , ei→i′)|ui, ui′ ∈ VO, S(ui) = S(ui′), ui ≺ ui′}, where S(u)
denotes the subject that observation u belong to, and ui ≺ ui′ represents ui is the direct predecessor
of ui′ in terms of time.

In irregularly and inconsistently observed longitudinal observation data, each observation may have
measured different covariates. SHT-GNN establishes a covariate node set VC = {v1, v2, . . . , vp},
and construct edges between observation nodes and covariate nodes to represent the observed
covariate values. The longitudinal data matrix D ∈ RN×p and the missing indicator matrix MO ∈
{0, 1}N×p can be represented as a bipartite graph GB = (V, EOC). The undirected edge set EOC ={
(ui, vl, euivl)|ui ∈ VO, vl ∈ VC ,M

O
il = 1

}
, where the edge feature euivl takes the value of the

corresponding feature euivl = Dil. Then a longitudinal dataset can be represented as the union of one
undirected bipartite graph and multiple subject-wise longitudinal subnetworks: G(V, E) = GB∪GL =
G(VO ∪ VC , EOO ∪ EOC). After constructing SHT-GNN, the task of response variable prediction
under missing covariate imputation can be represented as learning the mapping: Yi = [f(G)]i by
minimizing the difference between Yi and Ŷi, for all i where MY

i = 1.

4.1 LEARNING IN SAMPLING-GUIDED HETEROGENEOUS GRAPH NEURAL NETWORK

4.1.1 SUBJECT-WISE MINI-BATCH SAMPLING

It is evident that the spatial complexity of graph G(V, E) increases with the number of subjects. When
working with longitudinal data, it is common to encounter a large number of repeated observations or
subjects. When dealing with millions or even tens of millions of observations, directly training a huge
graph composed of all subjects is impractical and inefficient (You et al., 2020; Zhong et al., 2023).
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SHT-GNN performs subject-wise mini-batch sampling at the beginning of each training phase. The
corresponding graph is then constructed based on the sampled subjects for the current training phase.
In SHT-GNN, the graphs associated with each training phase share the same trainable parameters.

Specifically, assume there are n subjects, represented by the subject set S = {1, 2, . . . , n}, where
the k-th subject corresponds to an observation set Ok. Across all observation sets, there are a
total of N observations. At the beginning of each training phase, s subjects are randomly sampled
from n subjects to form a subject-wise mini-batch S0 = Sample(S, s), yielding the corresponding
observation-wish mini-batch Os =

⋃
k∈S0

Ok. The observations in Os are then employed to construct
the graph Gs = (Vs, Es), where Vs = VOs ∪ VC , with VOs = {ui|i ∈ Os}. The edge set Es is
constructed within Vs according to the definitions provided above. Assuming the trainable parameters
in SHT-GNN are denoted by θ, and the loss function under input graph Ginput is L(Ginput, θ). The
parameter learning process on the sampled graph in each sampling phase can be expressed as:

θ(t+1) = θ(t) − ηt∇θLS0(Gs, θ
(t)), (1)

where LS0
(Gs, θ

(t)) represents the loss function obtained from the forward pass in graph Gs, and
ηt represents the learning rate. Here the forward pass in Gs begins with inductive learning within a
multi-layer bipartite graph to derive representations of observation and covariate nodes. Afterward,
temporal smoothing is conducted within the longitudinal subnetwork of each subject.

4.1.2 INDUCTIVE LEARNING IN MULTI-LAYER BIPARTITE GRAPH

In SHT-GNN, all the information from the observed data is derived from the attributed edges connect-
ing observation nodes and covariate nodes. The representations of all nodes need to be inductively
learned from these edges. Inspired by GraphSAGE, which is a variant of GNNs known for its strong
inductive learning capabilities. SHT-GNN modifies GraphSAGE architecture by introducing edge
embeddings in the bipartite graph. At the l-th layer in GB , the message generation function takes the
concatenation of the embedding of the source node h

(l−1)
v and the edge embedding e

(l−1)
uv as input:

m(l)
v = AGGl

(
σ
(
P(l) · CONCAT(h(l−1)

u , e(l−1)
uv )

)
| ∀u ∈ N (v, Es)

)
∀v ∈ Vs, (2)

where AGGl is message aggregation function for all node, σ is the non-linearity activation function,
P(l) is the trainable weight matrix and N is the node neighborhood function. Subsequently, all
nodes update their embeddings based on the concatenation of aggregated messages and their local
representations:

h(l)
v = σ

(
Q(l) · CONCAT(h(l−1)

v ,m(l)
v )
)

∀v ∈ Vs, (3)

where Q(l) is the trainable weight matrix. Subsequently, the edge embeddings are then updated based
on the updated node embeddings at both ends of each edge:

e(l)uv = σ
(
W(l) · CONCAT(e(l−1)

uv ,h(l−1)
u ,h(l−1)

v )
)

∀euv ∈ Es, (4)

where W(l) is the trainable weight matrix.

4.1.3 TEMPORAL SMOOTHING IN MULTI-LAYER LONGITUDINAL SUBNETWORKS

Temporal smoothing is a crucial technique in the imputation of longitudinal data because it leverages
the temporal correlation within the observations. After L layers of inductive learning in the bipartite
graph, SHT-GNN innovatively performs temporal smoothing through K layers of message passing
and representation updates within the subject-wise longitudinal subnetworks. At the k-th layer of
each subject-wise longitudinal subnetwork, the message passing function for observations ui to ui′

takes the source node embedding h
(L+k)
ui and the edge weight w(L+k)

ui→ui′ as input:

m(L+k)
ui→ui′

= h(L+k)
ui

· w(L+k)
ui→ui′

, where S(ui) = S(ui′), ui ≺ ui′ ,∀ui, ui′ ∈ VOs
, (5)

in which S(u) denotes the subject that observation u belong to and ui ≺ ui′ represents that ui is the
direct predecessor of ui′ in terms of time. For each pair of message passing described in (5), the
target observation node ui′ updates its representation as follows:

h(L+k+1)
ui

= σ
(
U(L+k) · CONCAT(h(L+k)

ui′
, m(L+k)

ui→ui′
)
)
, (6)
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Figure 3: The variation of information in the representation of observation nodes during multi-layer
message passing and representation updates for temporal smoothing within longitudinal subnetworks.

where UL+k is the trainable parameter matrix for embedding updates. In (5), the weight for edges
connecting observation nodes needs to be calculated and updated during training. The edge weight is
computed as follows:

w(L+k)
ui→ui′

= Dui→ui′ · Jui→ui′ · Cos
(
h(L+k)
ui

,h(L+k)
ui′

)
. (7)

Here, Dui→ui′ represents the time decay weight in SHT-GNN. When facing irregular observa-
tion schedules in longitudinal data, the time interval between observations ui and ui′ is not fixed.
We employ exponential decay functions to compute the time decay weights in (7). We define

Dui→ui′ = exp

(
−|T (ui)− T (ui′)|

∆max

)
(8) and Jui→ui′ = γ − |A ∩ B|

|B|
. (9)

In (8), T (u) represents the time step associated with observation u, and ∆max represents the longest
time interval between adjacent observations for the current subject. We further introduce the Jaccard
distance between the sets of observed covariates in the weight calculation for message passing.
Suppose the covariate sets observed by hui and hui′ are denoted as A and B, respectively. As shown
in (9), a larger Jui→ui′ implies that observation ui contains more covariates that are not observed
in observation ui′ , and γ is a hyperparameter constant for preventing the weights from becoming
zero. Therefore, hui′ need to borrow more information from hui

. Beyond the time decay weight and
Jaccard distance, the strength of message passing for a specific observation hui′ from its immediate
predecessor hui

is intuitively determined by the similarity between the currently observed covariates
of hui

and hui′ . SHT-GNN then introduces the cosine similarity between hui
and hui′ in the edge

weight as discribed in (7).

Intuitions on why longitudinal subnetworks work. In the SHT-GNN, multi-layer message passing
and representation updates within longitudinal subnetworks enable observations from the same subject
to leverage information from previous time steps. As shown in Figure 3, in a two-layer longitudinal
subnetwork, assume there are time-ordered observations ut1 , ut2 , ut3andut4 . The message passing
and representation update in the first layer allow utm to directly draw information from utm−1

.
Subsequently, while the temporal smoothing in the second layer enable utm to indirectly capture
information from utm−2 via the representation of utm−1 . This iterative process can be extended with
additional layers, allowing observation nodes to integrate information from progressively earlier time
steps, thereby complete temporal smoothing in subject-wise longitudinal subnetworks.

4.1.4 COVARIATE IMPUTATION IN SHT-GNN

After conducting L layers of inductive learning on the bipartite graph and K layers of temporal
smoothing within longitudinal subnetworks, edge-level predictions are made at the (L+K)-th layer:

D̂il = Oimpute

(
CONCAT(h(L+K)

ui
,h(L+K)

vl
)
)

∀ui ∈ VOs
, vl ∈ VF ,

where Oimpute is a multilayer perceptron (MLP). Here, D̂il represents the imputation output for the
l-th covariate for the i-th observation.

4.1.5 RESPONSE VARIABLE PREDICTION

Finally, we complete the prediction of the response variable based on the imputed covariates:

Ŷi = Opredict

(
CONCAT(D̂i1, D̂i2, ..., D̂ip)

)
∀ui ∈ VOs

,

where Opredict is a multilayer perceptron and Ŷi represents the predicted response.

6
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4.1.6 LOSS FUNCTION FOR SHT-GNN

In both the response variable prediction and covariate imputation tasks, the loss function takes the
following form:

Loss = MSE − λ · MADGap.

Here, MSE = (
∑N

i=1 M
Y
i )−1

∑N
i=1 M

Y
i · (Ŷi − Yi)

2, where MY
i is the missing indicator. MADGap

(Mean Average Distance Gap) is a statistical measure used to quantify the degree of over-smoothing
in GNNs (Chen et al., 2020). A large MADGap value indicates that the node receives more useful
information than noise. In SHT-GNN, the multi-layer longitudinal subnetwork between observation
nodes represents the process of temporal smoothing. However, multi-layer message passing can
lead to over-smoothing, causing the embedding representations of different observations within the
same subject to become overly similar. SHT-GNN addresses this by maximizing MADGap to mitigate
over-smoothing in the GNN. MADGap is defined for individual nodes as follows:

MADGap = MADremote − MADneighbour.

In SHT-GNN, for the k-th subject’s subnetwork with nk time ordered observations {u1, u2, ..., unk
},

MADGap is calculated as:

MADGapk =
1

nk

nk∑
m=1

1m>2 ·

(
1

m− 2

m−2∑
m′=1

Cos(hum′ ,hum
)− Cos(hum

,hum−1
)

)
.

Here 1
m−2

∑m−2
m′=1 Cos(hum ,hum′ ) denotes the similarity between the representations of the m-

th observation and its past ancestor observation nodes in the longitudinal subnetwork, where
Cos(hum

,hum′ ) represents the cosine similarity between hum
and hum′ . Then for all n subjects:

MADGap =
1

n

n∑
k=1

[
1

nk

nk∑
m=1

1m>2 ·

(
1

m− 2

m−2∑
m′=1

Cos(hum′ ,hum
)− Cos(hum

,hum−1
)

)]
.

5 EXPERIMENT

5.1 BASELINES

We consider eight baseline methods as follows. 1. Mean (Huque et al., 2018): imputes missing values
using the covariate-wise mean. 2. Copy-mean Last Observation Carried Forward (LOCF) (Jahangiri
et al., 2023): first imputes using the LOCF, then refines the results based on the population’s mean
trajectory. 3. Multivariate Imputation by Chained Equations (MICE)(Van Buuren & Groothuis-
Oudshoorn, 2011): employs multiple regressions to model each missing value conditioned on other
observed covariate values. 4. 3D-MICE (Kazijevs & Samad, 2023): combines MICE and Gaussian
processes for longitudinal data imputation. 5. GRAPE: handles feature imputation through graph
representation learning. (You et al., 2020) 6. CASTI (Yin et al., 2020): handles missing data in
longitudinal data by employing bidirectional LSTM and MLPs. 7. IGRM (Zhong et al., 2023):
enhances feature imputation by leveraging the similarity between observations. 8. Transformer (Zeng
et al., 2023): handles missing data imputation in time series with self-attention mechanism. 9. GP-
VAE (Fortuin et al., 2020): enhances data imputation with Gaussian Process Variational Autoencoder.
10. CTA (Wi et al., 2024): enhances feature imputation via continuous-time Autoencoders.

5.2 EXPERIMENT ON SYNTHETIC DATA SIMULATED FROM REAL DATA

Real data introduction. To comprehensively evaluate the performance of various methods on
longitudinal data with diverse temporal characteristics, we first conduct experiments using synthetic
data simulated from real-world datasets. We selected the longitudinal behavior modeling (GLOBEM)
dataset as the basis for our synthetic data. The GLOBEM dataset is an extensive, multi-year collection
derived from mobile and wearable sensing technologies. It contains data from 497 unique subjects,
with over 50,000 observations and more than 2,000 covariates, including phone usage, Bluetooth
scans, physical activity, and sleep patterns. For simulating synthetic datasets, all covariate values are
sampled directly from the original data. Since the GLOBEM dataset does not include a predefined
response variable, we simulate response values based on the observed covariates to construct complete
synthetic datasets.

7
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Response Variable simulation based on real data. In line with common assumptions in longitudinal
data studies, when simulating the response values for the m-th observation of the k-th subject, assume
the response value Yi, where i =

∑j−1
k=1 nk +m, lies within the t-th temporal smoothing window.

For simplicity of expression, denote it as Y t
km, which is assumed to follow a normal distribution

N(µt
k, σ

t
k
2
). Then µt

k and σt
k
2 respectively represent the mean and variance of the response variable

for the t-th temporal smoothing window for the k-th subject. In practice, suppose the k-th subject
has nk observations within the time step set T = {1, . . . , nk}. We first divide T into W temporal
smoothing windows. For the m-th observation, which occurs within the t-th temporal smoothing
window, the response value Y t

km is modeled as follows: Y t
km = µt

k + ϵkm, where µt
k represents

the mean response value for the k-th subject within the t-th temporal smoothing window, and ϵkm
denotes the random fluctuations for the m-th observation.

Response variable simulation execution. In our experiment, we run multiple random trials under a
set of fixed parameters, reporting the average performance of all methods across these trials. In each
random trial, we first randomly select p dimensions from the 2000 covariates in the GLOBEM dataset,
denoted as X = {x1, x2, ..., xp}. We then simulate the response values for each observation based on
a specified model f(X) = f(x1, x2, ..., xp), which incorporates both linear and nonlinear elements.
The details about two different specified models f(X) are provided in Appendix A.1. According to
the longitudinal effect model Y t

km = µt
k + ϵkm described above, we first impute the mean value of

the response variable for observations belonging to the same subject and within the same temporal
smoothing window. Next, random fluctuations ϵkm are sampled from the distribution N(0, ϵ) and
incorporated into the formula Y t

km = µt
k + ϵkm to simulate the final response values.

Experimental Procedure. After obtaining complete synthetic datasets, we first split all subjects
into a training set and a test set according to ratio r. By extracting the observations of all subjects,
we obtain the covariate matrix Dtrain ∈ RNtrain×p and response vector Ytrain ∈ RNtrain for training, as
well as Dtest ∈ RNtest×p and Ytest ∈ RNtest for testing. We respectively generate missing indicator
matrices Mtrain and Mtest for Dtrain and Dtest according to the missing ratio rX , along with the missing
indicator vector Vtrain for Ytrain based on rY . For all methods, we employ {Dtrain

il |M train
il = 1} and

{Y train
i |V train

i = 1} as input for training. In the testing phase, we use {Dtest
il |M test

il = 1} as input to
predict all missing response values {Ŷ test

i |V test
i = 0}. Finally, we evaluate the response variable using

root mean square error (RMSE) between Y test
i and Ŷ test

i for all i under V test
i = 0.

SHT-GNN configurations. We train SHT-GNN for 20 sampling phases with a sampling size of 200.
For each sampled graph, we run 1500 training epochs using the Adam optimizer with a learning rate
of 0.001(Kingma & Ba, 2024). We employ a three-layer bipartite graph and two-layer longitudinal
subnetworks for all subjects. We use the ReLU activation function as the non-linear activation
function. The dimensions of both node embeddings and edge embeddings are set to 32. The message
aggregation function AGGl is implemented as a mean pooling function MEAN(·). Both Oimpute

and Opredict are implemented as multi-layer perceptrons (MLP) with 32 hidden units. The λ in loss
function is set to 0.001.

Baseline implementation. For Dicision Tree, GRAPE and IGRM, we directly conduct response
prediction under missing covariate matrix. For other baselines, as no end-to-end response prediction
approach is available, we first perform covariate imputation using the baselines, followed by utilizing
a Multilayer Perceptron (MLP) as the prediction model. To ensure a fair comparison, we apply the
same dimensional settings for these MLPs as those used in SHT-GNN.

Results in medium-dimensional covariates and moderate missing ratios. Following the experi-
mental procedure described earlier, we set the covariate dimension p to 50. For the window size w and
the variance of random fluctuation σ(ϵ), we use the parameter combinations {w = 3, σ(ϵ) = 0.1},
{w = 5, σ(ϵ) = 0.1}, and {w = 7, σ(ϵ) = 0.2}. For each configuration, we first split the subjects
with a test ratio of r = 0.2, then apply two missing ratio settings to the covariate matrix and response
vector: {rX = 0.3, rY = 0.3} and {rX = 0.3, rY = 0.5}. We run All methods for 5 random
trials per setting, and report the average RMSE along with its standard deviation for the response
prediction on the test set. As shown in Table 1, SHT-GNN outperforms all baselines across all settings,
achieving an average reduction of 17.5% in prediction RMSE compared to the best baseline. Across
all methods, performance noticeably decline as the temporal smoothing window size and variance
increase, particularly for LOCF, Decision Tree, and IGRM. This indicates that the various temporal
smoothing characteristics in longitudinal data pose significant challenges for these methods. By
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Table 1: Performance comparison with different methods under varying temporal smoothing window
sizes and covariate missing ratios. All RMSE values are 0.1 of the actual values.

Missing ratio rX = 0.3, rY = 0.3 rX = 0.3, rY = 0.5

Window size
Variance

w = 3
σ = 0.1

w = 5
σ = 0.15

w = 7
σ = 0.2

w = 3
σ = 0.1

w = 5
σ = 0.15

w = 7
σ = 0.2

Mean 0.693±0.009 0.826±0.011 0.936±0.011 0.820±0.012 0.833±0.012 1.051±0.016
LOCF 0.786±0.021 0.813±0.017 0.903±0.028 0.772±0.024 0.787±0.018 0.920±0.021
MICE 0.724±0.051 0.851±0.042 0.978±0.038 0.825±0.051 0.863±0.052 0.920±0.041

3D MICE 0.689±0.031 0.753±0.037 0.847±0.029 0.741±0.035 0.785±0.037 0.883±0.021
GRAPE 0.671±0.013 0.786±0.020 0.865±0.034 0.765±0.013 0.799±0.027 0.935±0.037
CATSI 0.701±0.034 0.732±0.026 0.832±0.023 0.749±0.047 0.748±0.038 0.885±0.027
IGRM 0.682±0.015 0.768±0.011 0.874±0.013 0.786±0.034 0.831±0.020 0.928±0.012

GP-VAE 0.733±0.011 0.793±0.018 0.851±0.021 0.731±0.023 0.769±0.025 0.933±0.030
Transformer 0.611±0.022 0.691±0.023 0.791±0.013 0.678±0.013 0.718±0.019 0.873±0.021

CTA 0.581±0.010 0.678±0.010 0.778±0.019 0.653±0.015 0.673±0.013 0.835±0.019
Our Method 0.552±0.011 0.650±0.014 0.759±0.018 0.623±0.013 0.653±0.018 0.818±0.020

integrating inductive learning with temporal smoothing, SHT-GNN demonstrate stable and superior
performance in these scenarios.

Results in high-dimensional covariates and high missing ratios. We also compare the performance
of different methods under higher covariate dimensions and missing ratios. As shown in Table 4
(Appendix A.3), SHT-GNN consistently outperforms all baselines across different settings, achieving
an average reduction of 18% in prediction RMSE compared to the best baseline.

5.3 ALZHEIMER’S DISEASE NEUROIMAGING INITIATIVE STUDY DATASET

ADNI dataset introduction. We apply SHT-GNN to the real data from Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) study. We propose our model to predict the CSF biomarker Amyloid
beta 42/40 (Aβ42/40), which has been demonstrated as a crucial biomaker in ADNI study. ADNI
dataset containing 1,153 subjects and 10,033 observations. The covariate matrix has 83 dimensions,
with a missing ratios of 0.32 for covariate matrix and a missing ratio of 0.83 for Aβ42/40. More
details about ADNI dataset can be found in Appendix A.5,

SHT-GNN configurations for ADNI dataset. For the ADNI dataset, the configurations of SHT-GNN
are detailed in Appendix A.6.

Table 2: Performance comparison in ADNI dataset. For all
methods, we conduct 5-fold cross-validation and report the
mean values and standard deviations of the results.

Method RMSE AUC Accuracy
Mean 0.112±0.002 0.671±0.009 0.682±0.008
LOCF 0.108±0.003 0.706±0.008 0.717±0.015
MICE 0.109±0.004 0.717±0.021 0.701±0.021

3D MICE 0.103±0.004 0.731±0.017 0.721±0.018
GRAPE 0.106±0.002 0.724±0.010 0.714±0.011
CATSI 0.104±0.003 0.713±0.017 0.708±0.013
IGRM 0.105±0.002 0.721±0.013 0.713±0.009

Transformer 0.110±0.005 0.735±0.021 0.721±0.020
GP-VAE 0.112±0.007 0.738±0.011 0.719±0.017

CTA 0.101±0.003 0.751±0.013 0.721±0.016
Our Method 0.090±0.001 0.829±0.012 0.782±0.011

Validation on observed response
value. We use RMSE to validate the
prediction accuracy. As shown in Ta-
ble 2, our proposed SHT-GNN signif-
icantly outperforms other methods in
predicting Aβ42/40, with an mean
15.5% improvement in accuracy com-
pared to the best baseline.

Validation on diagnostic labels. In
the previous section, we evaluated the
Aβ42/40 prediction results based on
the observed ground truth. However,
most observations in ADNI do not
have recorded Aβ42/40 values, mak-
ing it impossible to validate the pre-
dictions for these observations using
RMSE. In the ADNI study, the ulti-
mate goal is to predict disease progression, so we validate the predictions by employing them to
classify the diagnostic labels. Each observation is associated with a binary diagnostic label: either AD
or no-AD. We combine the predicted Aβ42/40 values with fully observed demographic features and
build a logistic model for classification. The classification performance can reflect the performance
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of Aβ42/40 predictions. As shown in Table 2, using SHT-GNN-predicted Aβ42/40 combined with
basic individual features yields an AUC of 82.92% for the no-AD vs. AD classification.

5.4 EXPERIMENTS ON MORE REAL DATASETS

We compared the performance of our method on more longitudinal data and time series, including
the AirQuality, Electricity, Energy and PhysioNet ICU datasets. The results in Appendix A.7
shows SHT-GNN’s efficiency in borrowing information across features and observations, which
significantly enhances its performance, particularly in the context of irregular longitudinal data
imputation. However, our method does not show a significant advantage in one-dimensional time
series imputation. Regarding performance under different missing mechanisms, apart from the
self-masked MCAR, our method still performs excellently under MAR conditions in ADNI and
PhysioNet ICU. Additionally, we provide a theoretical understanding in Appendix A.9 that explains
the intuition behind our method and its applicability under MCAR and MAR.

5.5 ABLATION STUDY ON THE LAYER COUNT OF LONGITUDINAL SUBNETWORKS

Table 3: Performance comparison of longitudinal subnet-
works with different layer count across different window
sizes. All RMSE values are 0.1 of the actual values.

Window size w = 3 w = 5 w = 7

None 0.673±0.019 0.757±0.015 0.933±0.018
One-Layer 0.621±0.012 0.739±0.015 0.889±0.017
Two-Layer 0.593±0.015 0.687±0.019 0.827±0.020

Three-Layer 0.552±0.011 0.659±0.014 0.763±0.018

As shown in Figure 3, multi-layer lon-
gitudinal subnetworks allow observa-
tion nodes to borrow information from
previous time steps. To validate that
longitudinal subnetworks can borrow
longer-term historical information by
stacking layers, we applied SHT-GNN
with one, two and three layers’ longi-
tudinal subnetworks under data simu-
lated under temporal smoothing win-
dow sizes w = 3, w = 5, and w = 7.
In all cases, we set the subject test ratio r to 0.2, along with the missing rate of both the covariate
matrix and the response vector to 0.3. As shown in Table 3, as w increases, SHT-GNN with three-layer
subnetworks outperform the one-layer and two-layer versions by a larger margin. This suggests that
additional layers in longitudinal subnetworks enhance performance in data with longer-span tem-
poral smoothing, which demonstrating the multi-layer longitudinal networks designed for temporal
smoothing are effectve. Additionally, we conduct an ablation study for the MADGap component in
SHT-GNN. The results and more details can be found in Appendix A.4.

5.6 SCALABILITY OF SHT-GNN

In longitudinal data, a large number of repeated observations often lead to massive data size, making
scalability a critical concern for missing data imputation methods. Specifically, we compare the
scalability of SHT-GNN with two cutting-edge GNN-based imputation methods: GRAPE and IGRM.
For experimental simplicity, we conduct imputation on datasets with varying observation sizes of
N×10 (where N = 50, 500, 1000, and 5000). In SHT-GNN, we fix the subsample size at 500 subjects,
resulting in a total of 5000 observations. For all three methods, we report the memory consumption
and forward computation time per epoch during training. The results show that both GRAPE and
IGRM exhibit significant increases in memory usage and computation time as observation size grows.
However, by fixing the sampled subject batch size, SHT-GNN achieves consistent memory usage and
computation time per epoch, regardless of the observation size.

6 CONCLUSION

In this paper, we present SHT-GNN, a scalable and accurate framework for longitudinal data impu-
tation. Our method combines a sampling-guided training policy with inductive learning, temporal
smoothing, and a custom-designed loss function to address the challenges posed by irregular and
inconsistent longitudinal missing data. Compared to state-of-the-art imputation techniques, SHT-GNN
consistently improves response prediction across both synthetic and real-world datasets. Extensive
experiments confirm the efficacy of our multi-layer longitudinal subnetwork for temporal smoothing.
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7 REPRODUCIBILITY STATEMENT

In this paper, we used the GLOBEM and ADNI datasets for our experiments. For the GLOBEM dataset,
access can be requested at https://physionet.org/content/globem/, which is divided into four groups
of subjects. In this study, we use the original data without any preprocessing. For the ADNI dataset,
access can be requested at https://ida.loni.usc.edu/. The ADNI study is divided into different phases,
and we select those subjects with complete basic genetic observations in the ADNI 1, ADNI 2, and
ADNI GO phases. In the supplementary materials, we provide the complete code for the proposed
SHT-GNN. The original codes for other baselines can be found through the links to the referenced
papers in the Section. In this study, all models are trained on a Windows 10 64-bit OS (version 19045)
with 32GB of RAM (AMD Ryzen 7 4800H CPU @ 2.9GHz) and 4 NVIDIA GeForce RTX 2060
GPUs with Max-Q Design.
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A APPENDIX

A.1 RESPONSE VECTOR SIMULATION

In the experiment involving medium-dimensional covariates and moderate missing ratios, we simulate
response variables from a 50-dimensional covariate matrix for each observation. Specifically, we use
a response simulation model that includes both linear and nonlinear components. The default model
for simulating the response variables is as follows:

y = 0.25 · x1 + 2 ·
(
log(x2 + 10)

25

)2

− 0.4 · x3 − 0.15 ·
(
x4 + 5 · e−5(1.5−log(x5))

2/2
)

−0.25 · log(x6 + 1) + 0.4 · x7 + 0.021 · sin(x8) + 0.04 ·
√
x9 + 0.1 · ex10

+0.05 · log(x11 + 1) + 0.02 · tan(x12) + 0.015 · cos(x13)

+0.07 · log(x14 + 1) + 3.5 ·
√
x15 + ϵ

Each xi is randomly selected without repetition from all the covariates. Before simulating the response
values based on the observed covariates, all covariate values are normalized using the MinMax Scaler
(Rajaraman, 2011). The term ϵ represents random noise following a normal distribution N(0, 0.175).
In the experiment involving high-dimensional covariates and moderate missing ratios, we simulate
response variables from a 100-dimensional covariate matrix for each observation. We use a response
simulation model with higher-order inputs and more complex expressions, as shown below:

y = 0.3 ·
√
x1 − 0.4 · x2

2 + 0.15 · log(x3 + 10−6) + 0.2 · exp(0.5 · x4)− 0.1 · x5

+ 0.05 · sin(2π · x6) + 0.25 · log 1p(x7)− 0.1 · cos(2π · x8) + 0.35 · tan(clip(x9,−0.5, 0.5))

+ 0.05 · arcsin(clip(x10,−1, 1)) + 0.2 · x3
11 − 0.3 ·

√
x12 + 0.4 · log(x13 + 1)

10
+ 0.15 · sin(2π · x14)− 0.1 · log 1p(x15) + 0.1 · exp(x16)− 0.05 · log(x17 + 1)

+ 0.2 · x2
18 + 0.3 · cos(x19)− 0.07 · tan(x20) + 0.05 · sin(x21)

x22 + 1

+ 0.25 · log 1p(x23) + 0.15 · arcsin(clip(x24,−1, 1)) + 0.1 · x3
25 − 0.05 ·

√
x26

+ 0.07 · log(x27 + 1) + 0.2 · tan(x28)

1 + x2
29

− 0.1 · exp(x30)

+ 0.3 · log(x31 + 10) + 0.25 · x32 + ϵ.

Similarly, each xi is randomly selected without repetition from all the covariates. Before simulating
the response values based on the observed covariates, all covariate values are normalized using the
MinMax Scaler. The term ϵ represents random noise following a normal distribution N(0, 0.2).

A.2 DETAILS FOR BASELINES

Mean: For each covariate with missing, we fill in the missing values using the mean of the observed
values for that covariate across all observations.

Copy-mean LOCF: Following the process described in (Jahangiri et al., 2023), missing values are
initially imputed using the LOCF (Last Observation Carried Forward) method within each subject
to provide an approximation. Next, the population’s mean trajectory is used to further refine these
imputed values.

MICE: As outlined in (Van Buuren & Groothuis-Oudshoorn, 2011), MICE (Multiple Imputation
by Chained Equations) performs multiple imputations by modeling each missing value conditioned
on the non-missing values in the data. A maximum of 20 iterations is used during the imputation
process.

3D-MICE: Following the procedure described in (Luo et al., 2018), MICE is configured to perform
cross-sectional imputation with a maximum of 20 iterations. And Gaussian Process Regression is
applied longitudinally to the time-indexed data for each feature. The Gaussian Process uses an RBF
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kernel combined with a constant kernel (Kernel = C(1.0) × RBF(1.0)), and the predictions from
the Gaussian Process are averaged with the MICE-imputed values to capture both temporal and
cross-sectional patterns.

GRAPE: Following the setup in (You et al., 2020), GRAPE is trained for 20,000 epochs using the
Adam optimizer with a learning rate of 0.001. We employ two GNN layers with 16 hidden units and
ReLU activation. The AGGl function is implemented as a mean pooling function MEAN(·). Both the
edge imputation and response prediction neural networks are implemented as linear layers.

CATSI: Following the setup in (Yin et al., 2020), CATSI is trained for 3,000 epochs using the Adam
optimizer with a learning rate of 0.001. We employ the default settings for MLPs and LSTM models
in CASTI to impute covariate values.

IGRM: Following the default settings described in (Zhong et al., 2023), IGRM employs three
GraphSAGE layers with 64 hidden units for bipartite Graph Representation Learning (GRL), and one
GraphSAGE layer for friend network GRL. The Adam optimizer with a learning rate of 0.001 and
ReLU activation function is used. For initializing the friend network, observation nodes are randomly
connected with |U | edges to form the initial network structure, which is updated every 100 epochs
during bipartite graph training.

A.3 RESULTS IN HIGH-DIMENSIONAL COVARIATES AND HIGH MISSING RATIOS

To further compare the performance of different methods under higher covariate dimensions and
higher missing ratios, we set the covariate dimension p to 100. The same settings for temporal
smoothing window size w and the variance of random fluctuation σ(ϵ) were applied as before.
Additionally, two higher missing ratio settings were employed: {rX = 0.5, rY = 0.5} and {rX =
0.5, rY = 0.7}. All methods were run for 5 random trials per setting, and the average RMSE
of response prediction on the test set are recorded. As shown in Table 4, SHT-GNN consistently
outperforms all baselines across all settings, achieving an average reduction of 18% in prediction
RMSE compared to the best baseline.

Table 4: Performance comparison with different methods under varying temporal smoothing windows
and covariate missing ratios. All RMSE values are 0.1 of the actual values.

Missing ratio rX = 0.5, rY = 0.5 rX = 0.5, rY = 0.7

Window size
Variance

w = 3
σ = 0.1

w = 5
σ = 0.15

w = 7
σ = 0.2

w = 3
σ = 0.1

w = 5
σ = 0.15

w = 7
σ = 0.2

Mean 0.803±0.015 0.907±0.022 1.054±0.023 0.908±0.019 0.893±0.020 0.975±0.027
LOCF 0.751±0.029 0.813±0.035 0.938±0.035 0.825±0.023 0.823±0.019 0.937±0.019
MICE 0.797±0.043 0.848±0.041 1.014±0.059 0.837±0.036 0.893±0.041 0.974±0.065

3D MICE 0.745±0.021 0.773±0.047 0.948±0.045 0.795±0.036 0.793±0.046 0.902±0.046
DT 0.763±0.017 0.798±0.018 0.981±0.020 0.781±0.019 0.794±0.027 0.891±0.031

GRAPE 0.724±0.026 0.793±0.015 0.952±0.021 0.809±0.021 0.745±0.021 0.944±0.021
CATSI 0.831±0.029 0.725±0.021 0.945±0.041 0.791±0.031 0.755±0.041 0.903±0.031
IGRM 0.795±0.010 0.831±0.013 0.904±0.014 0.785±0.012 0.815±0.019 0.895±0.021

Our Method 0.632±0.010 0.672±0.017 0.821±0.014 0.658±0.021 0.641±0.013 0.819±0.020

A.4 ABLATION STUDY FOR MADGAP IN SHT-GNN

In SHT-GNN, the multi-layer longitudinal subnetworks are designed for temporal smoothing. How-
ever, the degree of smoothing among observations for the same subject may vary across different
longitudinal studies. The loss function incorporates MADGap to promote greater variance amonng
observation representations for a given subject, enabling the model to effectively trade off between
temporal smoothing and representation diversity. To evaluate the impact of MADGap, we test
SHT-GNN with and without MADGap under different temporal smoothing window sizes. As shown
in Table 5, the results shows that incorporating MADGap enhances SHT-GNN’s performance by an
average of 6%. Moreover, as the degree of temporal smoothing increases, the design incorporating
MADGap exhibited a more substantial advantage over the one without it. This highlights MADGap’s
capacity to help SHT-GNN capture the unique characteristics of each observation during imputation.
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Table 5: Performance comparison of SHT-GNN with and without MADGap across different temporal
smoothing windows and missing ratios. All RMSE values are 0.1 of the actual values.

SHT-GNN without MADGap SHT-GNN with MADGap

rX = 0.3 rX = 0.5 rX = 0.3 rX = 0.5 Enhancement
rY = 0.3 rY = 0.5 rY = 0.3 rY = 0.5

Window size 3 0.591±0.011 0.691±0.013 0.552±0.011 0.632±0.010 9.68%
Window size 5 0.687±0.012 0.718±0.011 0.651±0.014 0.672±0.017 5.57%
Window size 7 0.801±0.011 0.865±0.011 0.769±0.018 0.821±0.014 4.91%

A.5 ADNI DATASET INTRODUCTION

We apply SHT-GNN to the real data from Alzheimer’s Disease Neuroimaging Initiative (ADNI)
study. ADNI is a multi-centre longitudinal neuroimaging study with the aim of developing effective
treatments that can slow or halt the progression of Alzheimer’s Disease (AD). The ADNI participants
were followed prospectively, with follow-up time points at 3 months, 6 months, then every 6
months until up to 156 months. The ADNI study includes a wide range of clinical data such as
cognitive assessments, magnetic resonance imaging (MRI) and cerebrospinal fluid (CSF) biomarkers.
Numerous studies show that CSF biomarkers are strong indicators of AD progression, but collecting
CSF requires invasive procedures like lumbar puncture, leading to high missing data rates. We
propose the SHT-GNN model to predict the CSF biomarker Amyloid beta 42/40 (Aβ42/40), which
has been a key biomaker. ADNI dataset containing 1,153 subjects and 10,033 observations. The
covariate matrix has 83 dimensions, with a missing ratios of 0.32 for covariate matrix and a missing
ratio of 0.83 for Aβ42/40.

A.6 SHT-GNN CONFIGURATIONS FOR ADNI DATASET

We train SHT-GNN for 10 sampling phases with a sampling size of 200. For each sampled graph,
we run 1500 training epochs using the Adam optimizer with a learning rate of 0.001. We employ a
three-layer bipartite graph and two-layer longitudinal subnetworks for all subjects. We use the ReLU
activation function as the non-linear activation function. The dimensions of both node embeddings
and edge embeddings are set to 32. The message aggregation function AGGl is implemented as
a mean pooling function MEAN(·). Both Oimpute and Opredict are implemented as multi-layer
perceptrons (MLP) with 32 hidden units. The λ in loss function is set to 0.001.

A.7 EXPERIMENTS ON MORE REAL DATASETS

Table 6: Comparison of methods on different datasets

AirQuality Electricity Energy PhysioNet-2012
Transformer 0.220±0.019 0.889±0.071 0.313±0.018 0.190±0.019
GP-VAE 0.287±0.010 0.963±0.056 0.401±0.025 0.398±0.020
CTA 0.196±0.012 0.767±0.042 0.205±0.019 0.192±0.016
SAITS 0.201±0.009 0.894±0.051 0.301±0.012 0.190±0.014
MICE 0.310±0.023 1.319±0.051 0.371±0.010 0.223±0.021
3D MICE 0.293±0.009 1.083±0.051 0.341±0.011 0.209±0.015
GRAPE 0.267±0.013 0.891±0.029 0.251±0.009 0.203±0.005
CATSI 0.236±0.019 0.849±0.071 0.201±0.023 0.206±0.013
IGRM 0.242±0.010 0.867±0.045 0.231±0.013 0.193±0.014
Our method 0.212±0.010 0.834±0.025 0.183±0.011 0.187±0.009

On the AirQuality and Electricity datasets, the SHT-GNN method demonstrates inferior performance
compared to RNN and VAE-based approaches. This indicates that the SHT-GNN model is not well-
suited for long-term, single-object time series, which fall outside its intended application scenario.
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However, SHT-GNN achieves state-of-the-art performance on the Energy dataset. Unlike the AirQual-
ity and Electricity datasets, the Energy dataset involves time series with multiple subjects and multidi-
mensional features. SHT-GNN leverages its ability to effectively borrow information across features,
which significantly enhances its performance, particularly in the context of irregular longitudinal data
imputation.

It is worth emphasizing that it can be observed that our method demonstrates a significant advantage
on the PhysioNet dataset, which is also clinical longitudinal follow-up data like the ADNI dataset.

Figure 4: A comparison of the performance of missing data imputation across all methods on
additional datasets.

A.8 SCALABILITY OF SHT-GNN

Figure 5: The comparison of scalability under different observation sizes across GNN-based methods.

A.9 THEORETICAL UNDERSTANDINGS AND INSIGHTS OF SHT-GNN

From an optimization perspective, the missing data imputation process in our method is conceptually
similar to Variational Autoencoders (VAEs), where the goal of the reconstruction step is to minimize
the reconstruction error as part of the Evidence Lower Bound (ELBO). As is widely recognized, the
training objective of a standard VAE for missing data imputation is expressed as (Collier et al., 2020):

Xobs
Encode−−−−→
MLPs

Z
Decode−−−−→
MLPs

X̂obs
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Maximize: log p(xobs) =

∫
log q(z|xobs) ·

p(z, xobs)

q(z|xobs)
dz ≥

∫
q(z|xobs) log

p(xobs, z)

q(z|xobs)
dz

That is to maximize: Eq(z|xobs) log p(xobs|z)−DKL[q(z|xobs) ∥ p(z)]

where Eq(z|x) log p(x|z) represents the reconstruction loss, and DKL[q(z|x) ∥ p(z)] is the regular-
ization term. When maximizing log p(xobs), it is guaranteed that the estimated results for missing
data will be consistent in both MCAR and MAR scenarios, a point that has been emphasized in many
studies (Mattei & Frellsen, 2019; Collier et al., 2020) .

In our proposed SHT-GNN, we are also theoretically optimizing log p(xobs). Specifically, the calcula-
tion and training process can be described as follows:

Xobs, Z
init
O , Z init

F

Message Passing, Embedding Update−−−−−−−−−−−−−−−−−−−→
G

ZL
O, Z

L
F

Edge-wise Prediction as Missing Data Imputation−−−−−−−−−−−−−−−−−−−−−−−−−→
MLPs

X̂obs

where Xobs denotes the observed values, Z init
O and Z init

F represent the initial embedding matrices of
all observation and feature nodes, respectively. ZL

O and ZL
F denote the embedding matrices of all

observation and feature nodes after L layers of forward computation in SHT-GNN. Subsequently, the
training objective in SHT-GNN is expressed as:

Maximize: log p(Xobs) =

∫
log q(ZL

O, Z
L
F |Xobs) ·

p(ZL
O, Z

L
F , Xobs)

q(ZL
O, Z

L
F |Xobs)

dZ ≥
∫

q(ZL
O, Z

L
F |Xobs) log

p(Xobs, Z
L
O, Z

L
F )

q(ZL
O, Z

L
F |Xobs)

dZ

That is to maximize : Eq(ZL
O,ZL

F |Xobs) log p(Xobs|ZL
O, Z

L
F )−DKL[p(Z

L
O, Z

L
F |Xobs) ∥ p(ZL

O, Z
L
F )]

where Eq(ZO,ZF |Xobs) log p(Xobs|ZL
O, Z

L
F ) represents the reconstruction loss.

Here, Eq(ZO,ZF |Xobs) log p(Xobs|ZL
O, Z

L
F ) is the joint distribution over all observations, which dif-

fers from the Eq(z|xobs) log p(xobs|z) in VAE. Previously, in the case of VAE, their expectation is
calculated on the sample level, typically using the MSE over the observed values of all samples to
approximate the reconstruction loss. The specific form is:

Loss = 1
N

∑N
i=1

∑p
j=1 mij · (X̂ij −Xij)

2

where mij is the missing indicator for the j-th feature in the i-th observation.

In contrast, in SHT-GNN, our reconstruction loss is in the form of a joint distribution, and it is not
possible to estimate it by averaging over the samples. This is why we use edge dropout trick (You
et al., 2020) in missing data imputation, because directly using the loss over all observed edges will
not provide an effective estimate of Eq(ZO,ZF |Xobs) log p(Xobs|ZL

O, Z
L
F ). Specifically, we estimate

the overall reconstruction loss by randomly calculating the loss on some edges in each batch of
different heterogeneous graphs.

In principle, the SHT-GNN and VAE-based methods share conceptual similarities. Furthermore, the
reconstruction loss used in both methods, along with the maximized target p(Xobs), theoretically
indicates that our method is also capable of handling missing data in the MAR scenario, in the same
way as VAE-based methods.
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