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ABSTRACT

This paper proposes novel, end-to-end deep reinforcement learning algorithms
for learning two-player zero-sum Markov games. Different from prior efforts
on training agents to beat a fixed set of opponents, our objective is to find the
Nash equilibrium policies that are free from exploitation by even the adversarial
opponents. We propose (1) Nash DQN algorithm, which integrates DQN (Mnih
et al., 2013) with a Nash finding subroutine for the joint value functions; and
(2) Nash DQN Exploiter algorithm, which additionally adopts an exploiter for
guiding agent’s exploration. Our algorithms are the practical variants of theoretical
algorithms which are guaranteed to converge to Nash equilibria in the basic tabular
setting. Experimental evaluation on both tabular examples and two-player Atari
games demonstrates the robustness of the proposed algorithms against adversarial
opponents, as well as their advantageous performance over existing methods.

1 INTRODUCTION

Reinforcement learning (RL) in multi-agent systems has succeeded in many challenging tasks,
including Go (Silver et al., 2017), hide-and-seek (Baker et al., 2019), Starcraft (Vinyals et al., 2017),
Dota (Berner et al., 2019), Poker (Heinrich & Silver, 2016; Brown & Sandholm, 2019; Zha et al.,
2021), and board games (Lanctot et al., 2019; Serrino et al., 2019). Excluding the systems for Poker,
a large number of these works measure their success in terms of performance against fixed agents,
average human players or experts in a few shots. A distinguishing feature of games is that the
opponents can further model the learner’s behaviors, adapt their strategies, and exploit the learner’s
weakness. It is highly unclear whether the policies found by many of these multi-agent systems
remain viable against the adversarial exploitation of the opponents.

In this paper, we consider two-player zero-sum Markov games (MGs), and our objective is to find the
Nash Equilibrium (NE) (Nash et al., 1950). By definition, the NE strategy is a stationary point where
no player has the incentive to deviate from its current strategy. Due to the minimax theorem, the NE
strategy for one player is also the best solution when facing against the best response of the opponent.
That is, NE is a natural solution that is free from the exploitation by adversarial opponents.

The concepts of Nash equilibrium and non-exploitability have been well studied in the community of
learning extensive-form games (EFGs) such as Poker (Heinrich & Silver, 2016; Brown & Sandholm,
2019; Zha et al., 2021; McAleer et al., 2021). Distinct from EFGs which feature tree-structured
transition dynamics and do not efficiently represent the games where multiple states in the past may
lead to the same state in the future, this paper focuses on MGs with general transition structure, and
leverages the Markov structures. Another line of prior works (Heinrich & Silver, 2016; Lanctot et al.,
2017) directly combine the best-response-based algorithm for finding NE in normal-form games,
such as fictitious play (Brown, 1951) and double oracle (McMahan et al., 2003), with single-agent
deep RL algorithm such as DQN (Mnih et al., 2013) and PPO (Schulman et al., 2017) for finding the
best-response. While these approaches can be applied to MGs, they do not utilize the fine structure of
MGs beyond treating it as normal-form games, which leads to the significant inefficiency in learning
(as shown in both tabular and Atari experiments of this paper).

This paper proposes two novel, end-to-end deep reinforcement learning algorithms for learning
the Nash equilibrium of two-player zero-sum MGs—Nash Deep Q-Network (NASH_DQN), and
its variant Nash Deep Q-Network with Exploiter (NASH_DQN_EXPLOITER). NASH_DQN com-
bines the recent theoretical progress for learning Nash equilibria of tabular MGs (Hu & Wellman,
2003; Bai & Jin, 2020; Liu et al., 2021; Jin et al., 2021b), with well-known single-agent DRL
algorithm DQN (Mnih et al., 2013) for addressing continuous state space and function approximation.
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Figure 1: Screen shots of the six two-player video games.

NASH_DQN_EXPLOITER is a variant of NASH_DQN which explicitly train an exploiting opponent
during its learning. The exploiting opponent stimulates the exploration for the main agent. Both
algorithms are the practical variants of theoretical algorithms which are guaranteed to converge to
Nash equilibria in the basic tabular setting.

Experimental evaluations are conducted on both tabular MGs and two-player video games, to show
the effectiveness and robustness of the proposed algorithms. As shown in Fig. 1, the video games
in our experiments include five two-player Atari games in PettingZoo library (Terry et al., 2021;
Bellemare et al., 2013) and a benchmark environment Slime Volley-Ball (Ha, 2020). Due to the
constraints of computational resource, we consider the RAM-based version of Atari games, and
truncate the length of each game to 300 steps. We test the performance by training adversarial
opponents using DQN that directly exploit the learner’s policies. Our experiments in both settings
show that our algorithms significantly outperform standard algorithms for MARL including Neural
Fictitious Self-Play (NFSP) (Heinrich & Silver, 2016) and Policy Space Response Oracle (PSRO)
(Lanctot et al., 2017), in terms of the robustness against adversarial exploitation. The implementation
is also released1

1.1 RELATED WORK

MARL in IIEFGs. This line of work (see, e.g., Lanctot et al., 2009; Heinrich et al., 2015; Brown
& Sandholm, 2019; Farina et al., 2020; McAleer et al., 2021; Kozuno et al., 2021; Bai et al., 2022)
focuses on learning Imperfect Information Extensive-Form Games (IIEFGs). This line of results
focuses on finding Nash equilibrium, which is non-exploitable. However, a majority of these results
focus on the settings and applications (such as Poker) where state space is discrete. More importantly,
comparing to MGs, the model of IIEFGs made a strong assumption of transition which must be
tree-formed. The results of IIEFG typically scales super-linearly with respect to the number of
information sets, which in general grows exponentially with the horizon length of the game.

MARL in zero-sum MGs. There has not been much prior empirical efforts to design algorithms
specializing in solving zero-sum MGs. However, there is a rich class of empirical algorithms that can
be directly applied to this setting. These algorithms involve combining single-agent RL algorithm,
such as deep Q-network (DQN) (Mnih et al., 2013) or proximal policy optimisation (PPO) (Schulman
et al., 2017), with best-response-based Nash equilibrium finding algorithm for normal-form games,
including fictitious play (FP) (Brown, 1951), double oracle (DO) (McMahan et al., 2003), and many
others. A few other examples such as neural fictitious self-play (NFSP) (Heinrich & Silver, 2016),
policy space response oracles (PSRO) (Lanctot et al., 2017), online double oracle (Dinh et al., 2021)
and prioritized fictitious self-play (Vinyals et al., 2019) also in general fall into this class of algorithms
or their variants. These algorithms call single-agent RL algorithm to compute the best response of
the current “meta-strategy”, and then use the best-response-based algorithm for normal-form games
to compute a new “meta-strategy”. However, these algorithms inherently treat MGs as normal-form
games, do not efficiently utilize the finer structure within MGs. Specifically, for normal-form game,
FP has a convergence rate exponential in the number of actions, while DO is linear. However, a direct
converting of Markov game to normal-form game will generate a new action space exponential in
horizon, number of states and number of actions in original Markov game. This, as shown in our
experiments, leads to significant inefficiency in scaling up with size of the MGs.

On the other hand, there has been rich studies on two-player zero-sum MGs from the theoretical
perspectives. Many of these works (see, e.g., Hu & Wellman, 2003; Bai & Jin, 2020; Bai et al.,
2020; Liu et al., 2021; Jin et al., 2021a) focused on the tabular setting, which requires the numbers
of states and actions to be finite. These algorithms are proved to converge to the NE policies in a
number of samples that is polynomial in the number of states, actions, horizon (or the discount
coefficient), and the target accuracy. Among those, Nash Q-learning (Hu & Wellman, 2003) is one of
the earliest works along this line of research, which provably converges to NE for general-sum games

1The code is available at here (click).
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under the assumption that the NE is unique for each stage game during the learning process. On the
other hand, GOLF_WITH_EXPLOITER (Jin et al., 2021b) is another theoretical work with provable
polynomial convergence for two-player zero-sum MGs. Our NASH_DQN algorithm is designed
based on the provable tabular algorithm Nash Value Iteration (Liu et al., 2021), which is a natural
extension of value iteration algorithm from single-agent setting to the multi-agent setting. For better
understanding, we provide a detailed comparison of similarities and differences of Nash Q-learning,
Nash Value Iteration, GOLF_WITH_EXPLOITER and NASH_DQN in the Appendix B.11. Xie et al.
(2020) considers MGs with linear function approximation. There are a few theoretical works on
studying zero-sum MGs with general function approximation (Jin et al., 2021b; Huang et al., 2021),
which include neural network function approximation as special cases. However, these algorithms
are sample-efficient, but not computationally efficient. They require solving optimistic policies with
complicated confidence sets as constraints, which cannot be run in practice.

2 PRELIMINARIES

In this paper, we consider Markov Games (MGs, Shapley, 1953; Littman, 1994), which generalizes
standard Markov Decision Processes (MDPs) into multi-player settings. Each player has its own
utility and optimize its policy to maximize the utility. We consider a special setting in MG called
two-player zero-sum games, which has a competitive relationship between the two players.

More concretely, consider a infinite-horizon discounted version of two-player zero-sum MG, which
is denoted as MG(S,A,B,P, r, γ). S is the state space, A and B are the action spaces for the max-
player and min-player respectively. P(·|s, a, b) is the state transition distribution, r : S ×A×B → R
is the reward function. In the zero-sum setting, the reward is the gain for the max-player and the loss
for the min-player due to the zero-sum payoff structure. γ ∈ [0, 1] is the discount factor.

Policy, value function. We define the policy and value functions for each player. For the max-player,
the (Markov) policy is a map µ : S → ∆A. Here we only consider discrete action space, so ∆A is
the probability simplex over action set A. Similarly, the policy for the min-player is ν : S → ∆B.

V µ,ν : S → R represents the value function evaluated with policies µ and ν, which can be expanded
as the expected cumulative reward starting from the state s,

V µ,ν(s) := Eµ,ν
[ ∞∑
h=1

γh−1r(sh, ah, bh)

∣∣∣∣s1 = s

]
. (1)

Correspondingly, Qµ,ν : S ×A×B → R is the state-action value function evaluated with policies µ
and ν, which can also be expanded as expected cumulative rewards as:

Qµ,ν(s, a, b) := Eµ,ν
[ ∞∑
h=1

γh−1r(sh, ah, bh)
∣∣s1 = s, a1 = a, b1 = b

]
. (2)

In this paper we also use a simplified notation for convenience, [PV ](s, a, b) := Es′∼P(·|s,a,b)V (s′),
where P as the transition function can be viewed as an operator. Similarly, we denote [DπQ](s) :=
E(a,b)∼π(·,·|s)Q(s, a, b) for any state-action value function. In this way, the Bellman equation for
two-player MG can be written as the following, for ∀(s, a, b) ∈ S ×A× B,

Qµ,ν(s, a, b) = (r + γPV µ,ν)(s, a, b), V µ,ν(s) = (Dµ×νQµ,ν)(s). (3)

Best response and Nash equilibrium. In two-player games, if the other player always play a
fixed Markov policy, optimizing over learner’s policy is the same as optimizing over the policy of
single agent in MDP (with other players’ polices as a part of the environment). For two-player
cases, given the max-player’s policy µ, there exists a best response of the min-player, which is a
policy ν†(µ) satisfying V µ,ν

†(µ)(s) = infν V
µ,ν(s) for any s ∈ S. We simplify the notation as:

V µ,† := V µ,ν
†(µ). Similar best response for a given min-player’s policy ν also exists as µ†(ν)

satisfying V †,ν = supµ V
µ,ν . By leveraging the Bellman equation as Eq. (3), the best response can

be derived with dynamic programming,

Qµ,†(s, a, b) = (r + γPV µ,†)(s, a, b), V µ,†(s) = inf
ν
(Dµ×νQµ,†)(s) (4)

The Nash equilibrium (NE) is defined as a pair of policies (µ⋆, ν⋆) satisfying the following minimax
equation:

supµ infν V
µ,ν(s) = V µ

⋆,ν⋆

(s) = infν supµ V
µ,ν(s). (5)
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which is similar as the normal-form game but without the bilinear structure of the payoff matrix. NE
strategies are the ones where no player has incentive to change its own strategy. The value functions
of (µ⋆, ν⋆) is denoted as V ⋆ and Q⋆, which satisfy the following Bellman optimality equation:

Q⋆(s, a, b) = (r + γPV µ,†)(s, a, b)
V ⋆(s) = sup

µ∈∆A

inf
ν∈∆B

(Dµ×νQ⋆)(s) = inf
ν∈∆B

sup
µ∈∆A

(Dµ×νQ⋆)(s). (6)

Learning Objective. The exploitability of policy (µ̂, ν̂) can be defined as the difference in values
comparing to Nash strategies when playing against their best response. Formally, the exploitability of
the max-player can be defined as V ⋆(s1) − V µ̂,†(s1) while the exploitability of the min-player is
defined as V †,ν̂(s1)− V ⋆(s1). We define the total suboptimality of (µ̂, ν̂) simply as the summation
of the exploitability of both players

V †,ν̂(s1)− V µ̂,†(s1) =
[
V †,ν̂(s1)− V ⋆(s1)

]
+
[
V ⋆(s1)− V µ̂,†(s1)

]
. (7)

which is the duality gap as a distance measure to Nash equilibria. We note that the duality gap of Nash
equilibria is equal to zero. Furthermore, all video games we conduct experiments on are symmetric
to two players, which implies that V ⋆(s1) = 0.

NASH_VI and Nash Q-Learning. As a model-based algorithm, NASH_VI (Liu et al., 2021)
estimates the transition and reward functions (omitted here) in Eq. (6) with the collected samples, for
∀(s, a, b, s′) ∈ Sh ×Ah × Bh × Sh+1, h ∈ [H]:

P̃h(sh+1 = s′|sh = s, ah = a, bh = b) =
1

n

n∑
i=1

1(sh+1 = s′i) (8)

Nash Q-Learning (Hu & Wellman, 2003) is the model-free version of NASH_VI. Pseudo-codes and
discussions about NASH_VI and Nash Q-Learning are provided in Appendix B.4, B.8 and B.11.

3 METHODOLOGY

To learn the Nash equilibria of two-player zero-sum MGs, this paper proposes two novel, end-to-end
deep MARL algorithms—NASH_DQN and NASH_DQN_EXPLOITER. NASH_DQN combines
single-agent DQN (Mnih et al., 2013) with NASH_VI—a provable algorithm for tabular MGs.
NASH_DQN_EXPLOITER is a variant of NASH_DQN by explicitly training an adversarial opponent
during the learning phase to encourage the exploration of the learning agent.

3.1 NASH_DQN
We describe NASH_DQN in Algorithm 1 which incorporates neural networks into the tabular
NASH_VI algorithm for approximating the Q-value function. Similar to the single-agent DQN,
NASH_DQN maintains two networks in the training process: the Q-network and its target network,
which are parameterized by ϕ and ϕtarget, respectively. In each episode, NASH_DQN executes the
following two main steps:

• Data collection: NASH_DQN adopts the ϵ-greedy strategy for exploration. At each state st, with
probability ϵ, both players take random actions; otherwise, they will sample actions (at, bt) from
the Nash equilibrium of its Q-value matrix (i.e., NASH(Qϕ(st, ·, ·)), see (9)). After that, we add the
collected data into the experience replay buffer D.

• Model update: We first randomly sample a batch of data M from replay buffer D, and then
perform m-steps gradient descent to update ϕ using the loss below∑

j∈M (Qϕ(sj , aj , bj)− yj)2 ,

where target yj is computed according to line 14. We adopt the convention of setting
Qϕtarget(sj+1, ·, ·) = 0 for all terminal state sj+1.

Here, NASH(·) is the NE subroutine for normal-form games, which takes a payoff matrix A ∈ RA×B

as input and outputs one of its Nash equilibria (µ⋆, ν⋆). In math, we have:

(µ⋆, ν⋆) = NASH(A) if and only if ∀µ, ν, µ⊤Aν⋆ ≤ (µ⋆)⊤Aν⋆ ≤ (µ⋆)⊤Aν. (9)
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Algorithm 1 Nash Deep Q-Network (NASH_DQN)

1: Initialize replay buffer D = ∅, counter i = 0, Q-network Qϕ
2: Initialize target network parameters: ϕtarget ← ϕ.
3: for episode k = 1, . . . ,K do
4: reset the environment and observe s1.
5: for t = 1, . . . ,H do
6: % collect data

7: sample actions (at, bt) from
{

Uniform(A× B) with probability ϵ
(µt, νt) = NASH(Qϕ(st, ·, ·)) otherwise.

8: execute actions (at, bt), observe reward rt, next state st+1.
9: store data sample (st, at, bt, rt, st+1) into D

10: % update Q-network
11: randomly sample minibatchM⊂ {1, . . . , |D|}.
12: for all j ∈M do
13: compute (µ̂, ν̂) = NASH(Qϕtarget(sj+1, ·, ·))
14: set yj = rj + γµ̂⊤Qϕtarget(sj+1, ·, ·)ν̂.
15: Perform m steps of GD on loss

∑
j∈M(yj −Qϕ(sj , aj , bj))2 to update ϕ.

16: % update target network
17: i = i+ 1; if i%N = 0: ϕtarget ← ϕ.

There are several off-the-shelf libraries to implement this NASH subroutine. After comparing the
performance of several different implementations (see Appendix A for details), we found the ECOS
library (Domahidi et al., 2013) works the best, which from now on is set as the default choice in our
algorithms.

Regarding the choice of target value update (line 14), one can view it as a Monte Carlo estimate of
r(sj , aj , bj) + γEs′∼P(·|sj ,aj ,bj)[maxµ̂∈∆A

minν̂∈∆B
µ̂⊺Qϕtarget(s′, ·, ·)ν̂]. (10)

Intuitively, we aim to approximate the Q-value function of Nash equilibria Q⋆ by our Q-network Qϕ.
Recall that Q⋆ is the unique solution of the Bellman optimality equations:
∀(s, a, b), Q⋆(s, a, b) = r(s, a, b) + γEs′∼P(·|s,a,b)[maxµ̂∈∆A

minν̂∈∆B
µ̂⊺Q⋆(s′, ·, ·)ν̂]. (11)

As a result, by performing gradient descent on ϕ to minimize the square loss as in line 15, Qϕ will
decrease its Bellman error, and eventually converge to Q⋆, as more samples are collected. Finally, we
remark that the target Nash Q-network (Qϕtarget ) is updated in a delayed manner as DQN to stabilize
the training process.

3.2 NASH_DQN_EXPLOITER

NASH_DQN relies on the ϵ-greedy strategy for exploration. To improve the exploration efficiency,
we propose a variant of NASH_DQN— NASH_DQN_EXPLOITER, which additionally introduces
an exploiter in the training procedure. By constantly exploiting the weakness of the main agent, the
exploiter forces the main agent to play the part of the games she is still not good at, and thus helps
the main agent improve and discover more effective strategies.

We describe NASH_DQN_EXPLOITER in AppendixB.10 Algorithm 11. We let the main agent
maintain a Q-network Qϕ and let the exploiter maintain a separate value network Q̃ψ, both are
functions of (s, a, b). We make two key modifications from NASH_DQN. First, in the data collection
phase, at state st, we no longer choose both µt, νt to be the Nash equilibrium computed from Qϕ.
Instead, we only choose µt to be the Nash strategy of Qϕ but pick the policy of the exploiter νt to be
the best response of µt under the exploiter’s Q-network Q̃ψ . Formally,

(µt, ·) = NASH(Qϕ(st, ·, ·)) (12)

νt = argmin
ν

µ⊤
t Q̃ψ(st, ·, ·)ν.

In the model update phase, NASH_DQN_EXPLOITER follows exactly the same rule as NASH_DQN
to update Qϕ and Qϕtarget , the Q-networks of the main agent. However, for the update of the exploiter
networks, NASH_DQN_EXPLOITER utilizes a different regression target in the loss function as
specified in line 15. One can view the target as a Monte Carlo estimate of

r(sj , aj , bj) + γEs′∼P(·|sj ,aj ,bj)

[
min
b
µ̂(s′)⊺Q̃ψtarget(s′, ·, b)

]
(13)
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We set the target in this way because we aim to approximate Qµ̂,†, which is the value of the current
policy of the main player µ̂ against its best response, using our exploiter network Q̃ψ. Recall that
Qµ̂,† satisfies the following Bellman equations for the best response:

∀(s, a, b), Qµ̂,†(s, a, b) = r(s, a, b) + γEs′∼P(·|s,a,b)[minb µ̂(s
′)⊺Qµ̂,†(s′, ·, b)]. (14)

Therefore, by performing gradient descent on ψ to minimize the square loss as in line 17, Q̃ψ will
decrease its (best response version of) Bellman error, and approximate Qµ̂,†.

3.3 THEORETICAL JUSTIFICATION

With special choices of Q-network architecture Qϕ, minibatch size |M| and number of steps for GD
m, both our algorithms NASH_DQN and NASH_DQN_EXPLOITER reduce to the ϵ-greedy version
of standard algorithm NASH_VI (Liu et al., 2021) and NASH_VI_EXPLOITER (Jin et al., 2021b) for
learning tabular Markov games, where the numbers of states and actions are finite and small. Please
see Appendix B for a detailed discussion on the connections of these algorithms.

When replacing the ϵ-greedy exploration with optimistic exploration (typically in the form of con-
structing upper confidence bounds), both NASH_VI and NASH_VI_EXPLOITER are guaranteed to
efficiently find the Nash equilibria of MGs in the tabular settings.
Theorem 1 ((Liu et al., 2021; Jin et al., 2021b)). For tabular Markov games, the optimistic ver-
sions of both NASH_VI and NASH_VI_EXPLOITER can find ϵ-approximate Nash equilibria in
poly(S,A,B, (1− γ)−1, ϵ−1, log(1/δ)) steps with probability at least 1− δ. Here S is the size of
states, A,B are the size of two players’ actions respectively, and γ is the discount factor.

We defer the proof of Theorem 1 to Appendix B. We highlight that, in contrast, existing deep MARL
algorithms such as NFSP (Heinrich & Silver, 2016) or PSRO (Lanctot et al., 2017) are incapable of
efficient learning of Nash equilibria with a polynomial convergence rate for tabular Markov games.
Our simulation results reveal that they are indeed highly inefficient in finding Nash equilibria.

4 EXPERIMENTS

The experimental evaluations are conducted on randomly generated tabular Markov games and two-
player video games on Slime Volley-Ball (Ha, 2020) and PettingZoo Atari (Terry et al., 2021). We
tested the performance of proposed methods as well as the baseline algorithms in both (a) the basic
tabular form without function approximation (only in tabular environments); and (b) full versions
with deep neural networks (in both tabular environments and video games). For (a), we measure
the exploitability by computing the exact best response using the ground truth transition and reward
function. This is only feasible in the tabular environment. For (b), we measure the exploitability by
training single-agent DQN (exploiter) against the learned policy to directly exploit it.

4.1 BASELINES

For benchmarking purpose, we have the following baselines with deep neural network function
approximation for scalable tests:

• Self-Play (SP): each agent learns to play the best response strategy against the fixed opponent
strategy alternatively, i.e., iterative best response.

• Fictitious Self-Play (FSP) (Heinrich et al., 2015): each agent learns a best-response strategy
against the episodic average of its opponent’s historical strategy set, and save it to its own strategy
set.

• Neural Fictitious Self-Play (NSFP) (Heinrich & Silver, 2016): an neural network approximation
of FSP, a policy network is explicitly maintained to imitate the historical behaviours by an agent,
and the learner learns the best response against it.

• Policy Space Response Oracles (PSRO) (Lanctot et al., 2017): we adopt a version based on double
oracle (DO), each agent learns the best response against a meta-Nash strategy of its opponent’s
strategy set, and add the learned strategy to its own strategy set.

For tabular case without function approximation, SP, FSP and DO are implemented with Q-learning
as the base learning agents for finding best responses. For tabular case with function approximation
and video games, all four baseline methods use DQN as the basic agent for learning the best-response
strategies. The pseudo-codes for algorithms SP, FSP, DO are provided in Appendix B.
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4.2 TABULAR MARKOV GAME

Tabular forms without function approximation. We first evaluate methods (1) SP, (2) FSP,
(3) PSRO, (4) NASH_DQN and (5) NASH_DQN_EXPLOITER without function approximation
(i.e., w/o neural network) on the tabular Markov games. They reduce to methods (1) SP, (2)
FSP, (3) DO, (4) Nash value iteration (NASH_VI) and (5) Nash value iteration with exploiter
(NASH_VI_EXPLOITER), correspondingly. For SP, FSP and DO, we adopt Q-learning as a subroutine
for finding the best response policies. As tabular versions of our deep MARL algorithms, NASH_VI
and NASH_VI_EXPLOITER also use NASH subroutine for calculating NE in normal-form games,
with ϵ = 0.5 for ϵ-greedy exploration. The pseudo-codes for NASH_VI and NASH_VI_EXPLOITER
are provided in Appendix B.

We randomly generated the tabular Markov games, which has discrete state space S , discrete action
spaces A,B for two players and the horizon H2 The state transition probability function {Th :
S ×A×S → [0, 1], h ∈ [H]} and reward function {Rh : S ×A×S → [−1, 1], h ∈ [H]} are both
i.i.d sampled uniformly over their ranges. As shown in Fig. 2, we tested on two randomly generated

Figure 2: Tabular case experiments on two randomly generated Markov games.

Markov games of different sizes: I. |S| = |A| = |B| = H = 3; II. |S| = |A| = |B| = H = 6. The
exploitability is calculated according to Eq. (7), which can be solved with dynamic programming in
the tabular cases with known transition and reward functions. Our two proposed algorithms without
function approximation show significant speedup for decreasing the exploitability compared against
other baselines, especially for the larger environment (II). This aligns with our theoretical justification
as in Section 3.3.

With neural networks as function approximation. In this set of experimentation, we add neural
networks as function approximators. We evaluate NASH_DQN and NASH_DQN_EXPLOITER
on the same tabular MG environments I and II. We setup the neural-network versions of baseline
methods—FSP, NFSP and PSRO, using the same set of hyperparameters (Appendix C) and the
same training configurations. During training, the model checkpoints are saved at different stages
for each method and reloaded for exploitation test. Each method is trained for a total of 5 × 104

episodes to get the final model, against which the exploiter is trained for 3 × 104 episodes as the
exploitation test. The exploiter is a DQN agent trained from scratch with the same hyperparameters
as the base agents (for finding best responses) in FSP, NFSP, PSRO. We empirically measure the
exploitability of the learner’s policy as follows: we first compute smoothed version of cumulative
utility achieved by the exploiter at each episode (the smoothing is conducted by averaging over a
small set of neighboring episodes); we then report the highest smoothed cumulative utility of the
exploiter as an approximation for the exploitability. We also test the effectiveness of using DQN
exploiter to measure the exploitability, by training it against the oracle Nash strategies (i.e., the
ground-truth Nash equilibria). Results for two tabular environments are displayed in Table 1. As
shown in Table 1, both NASH_DQN and NASH_DQN_EXPLOITER outperform all other methods
by a significant margin. The negative exploitability values of the Oracle Nash strategy indicates
that the DQN-based exploiter is not able to find the exact theoretical best response. Nevertheless, it
approximates the best response very well. The reported exploitability of Oracle Nash is very close
to zero, which justifies the effectiveness of using DQN for exploitation tests. Complete results and
details about exploitability calculation are provided in Appendix D.

4.3 TWO-PLAYER VIDEO GAME

To evaluate the scalability and robustness of the proposed method, we examine all algorithms in five
two-player Atari environments in PettingZoo library (Terry et al., 2021) (Boxing-v1, Double Dunk-v2,

2We encode the horizon into the state space in order to use the algorithm designed for the discounted setting.
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Table 1: Approximate exploitability (lower is better) in two tabular Markov games

Env
Method SP FSP NFSP PSRO Nash DQN Nash DQN Exploiter Oracle Nash

Tabular Env I 0.448 0.379 0.317 0.134 0.096 0.020 −0.027
Tabular Env II 1.239 0.694 0.379 0.569 0.017 0.071 −0.082

Pong-v2, Tennis-v23, Surround-v1) and in environment SlimeVolley-v0 in a public available benchmark
named Slime Volley-Ball (Ha, 2020), as shown in Fig. 1. The algorithms tested for this setting include:
(1) SP, (2) FSP, (3) NFSP, (4) PSRO, (5) NASH_DQN and (6) NASH_DQN_EXPLOITER. To speed
up the experiments, each environment is truncated to 300 steps per episode for both training and
exploitation. A full length experiment is conducted on one environment in Appendix. G. For Atari
games, the observation is based on RAM and normalized in range [0, 1].

Similar to experiments in the tabular environment with function approximation, the exploitation test
(using single-agent DQN) is conducted to evaluate the learned models. Ideally, if an agent learns
the perfect Nash equilibrium strategy, then by definition, we shall expect the agent to be perfectly
non-exploitable (i.e., with even the strongest exploiter only capable of achieving her cumulative
utility at most zero in symmetric games). To carry out the experiment, we first trained all the methods
for 5 × 104 episodes, with detailed hyperparameters provided in Appendix E. After the methods
are fully trained, we take their final models or certain distributions of historical strategies (uniform
for FSP and meta-Nash for PSRO), and the train separate exploiters playing against those learned
strategies. We instantiate a DQN agent as exploiter using the same set of hyperparameters and network
architectures to learn from scratch against the fixed trained checkpoint. The resulting learning curve
in the exploitation test illustrates the degree of exploitation. An exploiter reward greater than zero
indicates that the agent has been exploited since the games are symmetric. The model with lower
exploiter reward means is more difficult to be exploited (is thus better).

Figure 3: The exploiter learning curves for exploitation tests on six two-player zero-sum video games.
Table 2: Approximate exploitability (lower is better) for six two-player video games.

Env
Method SP FSP NFSP PSRO Nash DQN Nash DQN Exploiter

SlimeVolley −0.049 0.514 0.069 0.000 0.000 −0.099
Boxing 24.907 93.683 24.544 66.891 −55.471 22.490

Double Dunk 7.039 6.067 4.564 7.256 −0.539 1.702
Pong 4.207 5.196 4.396 5.217 −3.336 −2.920

Tennis 2.970 2.355 3.207 2.465 −0.425 0.069
Surround 1.782 1.574 1.594 1.603 0.904 1.462

Fig. 3 and Table 2 show the exploitation results of all algorithms and baselines. Each method is
trained for three random seeds, and the model for each random seed is further exploited with DQN
exploiter for 104 episodes under three random initializations. For each method and environment,
Table 2 displays the best performing models with its corresponding exploitability. Complete results
are provided in Appendix Sec. F. The values in the Table 2 is the maximum of smoothed exploiter
reward in the exploitation test of Fig. 3. The baseline methods SP, FSP, NFSP, PSRO do not
perform well in most games. This shows the challenge for finding approximate Nash equilibrium

3The original Tennis-v2 environment in PettingZoo is not zero-sum, a reward wrapper is applied to make it.
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strategies for these games. NASH_DQN demonstrates significant advantages over other methods
across all six games. Except for Surround environment, NASH_DQN achieves non-positive exploiter
rewards for five environments, which demonstrates the non-exploitability of the policies learned
by NASH_DQN. NASH_DQN_EXPLOITER also shows unexploitable performance on SlimeVolley
and Pong environments. Different environments show different levels of difficulties to find a non-
exploitable model. SlimeVolley is relatively easy with almost all methods achieving exploitability
close to zero. Surround is generally hard to resolve due to the inherent complexity of the game. We
believe that solving Surround requires more advanced exploration technique to boost its performance.

Initial Position

Exploiter
Exploiter

Subopt. Model Subopt. Model

Subopt. Model

(a) (b) (c) (d)

Exploiter

Exploiter

Better Model

Figure 4: The key frames in Boxing exploitation test: (a-c)
shows a sub-optimal model exploited by the exploiter. (d)
shows our proposed algorithms learn hard-to-exploit policy
robust against the turning-around strategy of the exploiter.

Interestingly, we observe that in the
exploitation test for Boxing environ-
ment, baseline methods such as SP
sometimes produce a policy that keeps
staying at the corner of the ground. As
shown in Fig. 4, the black agent uses
the learned suboptimal model by SP
algorithm, which tries to avoid any
touch with the white opponent (a-b).
Such policy (always hide in a corner)
is not bad when playing against aver-
age player or AI whose policies may
not have considered this extreme cases
and thus unable to even locate the
black agent. However, this policy is
very vulnerable to exploitation. Once
the exploiter explores the way to touch
the black agent, (c) our exploiter learns to heavily exploit such policy in a short time. On the contrary,
our algorithm NASH_DQN and NASH_DQN_EXPLOITER will never learn such easy-to-exploit poli-
cies. The models learned with NASH_DQN and NASH_DQN_EXPLOITER are usually aggressively
approaching the exploiter and directly fighting against it, which is found to be harder to exploit in
this game. Moreover, our policies are robust to a turn-around strategy by the exploiter, as Fig. 4 (d).

To address the possibility insufficient exploitation on our models, we exploit the models for longer time
(5×104 episodes) for those methods within cells shaded in gray in Table 2 , and the results are shown
in Fig. 5. Except for the Double Dunk environment, the NASH_DQN and NASH_DQN_EXPLOITER
models are still hard to be exploited on four environments even for long enough exploitation. The
difficulty of Double Dunk is that each agent needs to control a team of two players to compete through
team collaboration, which might require a longer training time to further improve the learned policies.

Figure 5: The exploiter learning curves for longer exploitation tests on five video games.

5 CONCLUSION AND DISCUSSION

In this paper, we propose two novel algorithms for deep reinforcement learning in the two-player
zero-sum games. The idea is to incorporate Nash equilibria computation into the training process so
that the agents can learn non-exploitable strategies. The first method that we propose is NASH_DQN,
with the two players trained to learn the Nash value function. To guide its exploration, we also
propose a variant of it named NASH_DQN_EXPLOITER, with the learning agent trained to play
against an opponent that’s designed to exploit learner’s weakness. Experimental results demonstrate
that the proposed methods converges significantly faster than existing methods in random generated
tabular Markov games with or without function approximation. Our experiment further shows that
our algorithms are scalable to learn the non-exploitable strategies in most of the six two-player
video games, and significantly outperform all the baseline algorithms. This is to our knowledge
the first work for learning non-exploitable strategies in two-player zero-sum video games like Atari.
Limitations also exist for the present methods, the NE solving subroutine is repeatedly called in both
inference and update procedures, which leads to large computational costs. Image-based solutions
with explicit policies are to be explored in the future.
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