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ABSTRACT

Multiple-choice question (MCQ) is a common task for evaluating large language
models (LLMs). LLMs’ performance on MCQ is often affected by various biases.
Previous research has extensively examined the impact of inherent option bias on
MCQ predictions, where this bias refers to a preference for a specific option ID
token introduced during the model’s training. However, in an in-context learning
scenario, few-shot prompting can also introduce a form of bias, known as context
option bias. This occurs, for instance, in extreme cases where all demonstration
answers are consistently option A, in which case LLMs may predict A for the given
question whatever the question is. Context option bias can significantly degrade
LLMs’ performance. To better observe the LLMs’ behavior when affected by
the context option bias, we deliberately use demonstrations with obvious context
option bias for MCQ to amplify the effect. The results indicate that certain attention
heads in LLMs are particularly sensitive to context option bias. Motivated by this
observation, we propose our approach, CoLo, to address this issue. First, using
samples with ordinary and biased demonstrations as input, CoLo compares the
outputs of two types of inputs and localizes attention heads sensitive to context
option bias through sequential interventions. Then, we propose an attention scaling-
based method to intervene in the identified attention heads during the inference
stage, thereby mitigating the impact of context option bias on the LLMs’ predictions.
Experimental results demonstrate that CoLo effectively alleviates the impact of
context option bias and improves the LLM’s robustness on MCQ tasks.

1 INTRODUCTION

Multiple-choice question (MCQ) is a common type of question-and-answer format in daily life and
is also a common method used in the field of natural language processing to test the generalization
ability of large language models (LLMs). There exist benchmarks and datasets specifically designed,
spanning a variety of fields(Hendrycks et al.} 2021} Talmor et al.l 2018 |Clark et al.,|2018). We hope
LLMs can well understand the question and choose the most appropriate answer from all options.
For this purpose, many efforts have been made and few-shot in-context learning has been shown to
be one of the effective methods. It provides some demonstrations before the question as prompts and
can largely improve an LLM’s performance on MCQs.

Despite the above efforts, large language models are still often affected by certain biases and yield
unexpected answers. Previous works(Wang et al.| [2023} |Pezeshkpour & Hruschkal [2023];Zheng et al.|
2023) have investigated several inherent option bias of LLMs. For example, experiments indicate
that gpt—-3.5-turbo tends to prefer option A (Zheng et al., [2023)), which may result from the
uneven distribution of options in the training corpus. However, bias introduced by context, referred
to as context option bias, has not been carefully studied. As shown in Figure[I] take questions with
only two options as an example, if all demonstrations’ answers happen to be A, then LLMs will also
prefer to predict A no matter what question is given. In contrast, if answers for demonstrations do
not show too much preference to a certain option, the model will be more inclined to choose the
correct answer, i.e., B in this example. The results indicate that context option bias has an impact on
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Figure 1: The context gives the demonstration and question, allowing the model to predict the correct
option. Due to the bias in the demonstration, it will affect the final prediction result.
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Figure 2: Biased context is constructed by few shot prompts through answer is always A. We counted
the predictions of some language models in biased and ordinary demonstrations respectively, as well
as the proportion of option distribution of real labels on MMLU dataset(Hendrycks et al., 2021)
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an LLM’s prediction. Figure 2] provides another evidence, that is, when given demonstrations all with
answers A, LLMs will predict much more A than with ordinary demonstration

However, demonstrations with evenly distributed options still introduce context option bias towards
certain answer choices. We observed that demonstrations with evenly distributed answer options
significantly influence the model’s predictions. For instance, in the 5-shot Gemma—-2B model, we
modified the sequence of options in the MMLU dataset demonstrations to two different configurations:
A-B-C-D-A and D-C-B-A-D. Compared to the random sequence demonstration, the total number
of A selections in configuration A-B-C-D-A decreased by 33%, while the total number of D
selections in configuration D-C—-B—A-D decreased by 47%. We speculate that this behavior arises
because the model tends to avoid selecting the same option consecutively, believing that the probability
of repeated occurrences of the same option is low, thus introducing a bias in answering questions
with similar option distributions.

To better excavate the reasons behind this problem and resolve it, we deliberately construct some
demonstrations with obvious context option bias and compare the model’s behavior under these
conditions with that under ordinary demonstrations. The experiments find that even with simple
option swaps in demonstrations, the attention map’s distribution in an LLLM varies significantly.
This observation inspires us to test the attention distribution under conditions with obvious biased
demonstrations, identify the attention heads that are more sensitive to context option bias, and
intervene accordingly to mitigate the impact of context option bias on the model behavior.

Following this motivation, we propose our method CoLo to localize and mitigate context option bias
in LLMs. Particularly, (1) CoLo first takes samples with biased demonstrations as input to obtain the
LLM’s predictions, which we refer to as biased answers. (2) We then intervene in different layers and
different attention heads within each layer. If the LLM’s predictions after the intervention is more
inclined towards the correct or ordinary answers, it indicates that the corresponding attention head is
sensitive to context option bias and likely to lead the model to biased answers. (3) CoLo selects a set
of attention heads that are most sensitive to context option bias and applies interventions to these
heads simultaneously during the subsequent inference stage.

Extensive experiments show that for MCQ in an in-context learning scenario, when there is context
option bias in demonstrations, our method can effectively mitigate the impact of the bias, improving
an LLMs’ accuracy on MCQ to a level similar to that with ordinary demonstrations without affecting
other LLMs’ abilities. Besides, the identified attention heads demonstrate powerful generalization
across datasets and tasks. That is, for a certain model, the attention heads identified with one dataset
also applies to other datasets. More importantly, even when the demonstrations look unbiased,
applying our proposed intervention can also further enhance the model’s accuracy. We assume it

!Ordinary demonstrations mean those with the same questions as biased demonstrations but do not show
preference to a certain option. We implement this by swapping options in demonstration questions.



Under review as a conference paper at ICLR 2025

is because seemingly unbiased demonstrations may also contain some context option bias that are
imperceptible, thereby affecting the model’s predictions.

It is worth summarizing our contributions as follows:

* We propose a method to identify attention heads that are sensitive to context option bias in
multiple-choice questions under an in-context learning scenario.

* Our attention scaling-based method mitigates the impact of context option bias on the LLM’s
predictions and improves performance without compromising other capabilities.

» Extensive experiments are conducted and the results show the effectiveness of our method.

2 RELATED WORK

Inference intervention techniques. Inference intervention comprises various methods designed
to modulate the behavior of large-scale models post-training. Commonly employed inference
intervention strategies include activation editing(Li et al., 2024b), weight editing(Dai et al., [2022;
Meng et al., |2022), guidance vectors(Zou et al., [2023)), and alter the output distribution through
comparison(Li et al., [2022} |Chuang et al., 2023). Our method focuses on modifying the attention
distribution by attention scaling, which is a technique that originates from GPT-2(Radford et al.,
2019)). Contrary to the broader method of global attention scaling of GPT-2, our approach is distinctly
less invasive, selectively targeting attention heads that are associated with context option bias. By
identifying and scaling the attention heads linked to context option bias, our method effectively
mitigates this bias using a significantly smaller dataset, requiring far fewer examples than those
needed for reinforcement learning (RL) (Ouyang et al.,[2022) and fine-tuning-based methods (Hu
et al., 2021). Our approach to structuring the comparison of specific contexts is analogous to the ICD
method(Zhang et al., 2024).

Bias of LLMs. Our study uses bias to refer to the production of systematic errors in a model.
Although In-context learning can bring considerable task learning capabilities to the model(Pan,
2023)), but |{Turpin et al.[(2024) assess the LLMs’ unfaithfulness to CoT interpretation by constructing
context option bias features. That mean the abilities brought by in-context learning are not necessarily
useful. |Pezeshkpour & Hruschkal(2023) point out the sensitivity of option position to model multiple-
choice questions and|Zheng et al.|(2023)) suggest that the option bias of the model comes more from
the option token bias, and proposed Pride, a method to alleviate the option prior bias by estimating
the prior and applying prior debiasing. Distinct from the Pride, CoLo intervenes internally within the
model to mitigate context option bias without impacting text generation processes, such as Chain of
Thought (CoT)(Kojima et al.,2022). This technique requires only a minimal number of samples to
identify a general head that responds to biases across various contexts. In contrast, Pride functions
primarily as a pre-processing technology, necessitating recalibration of bias each time the context
changes, and it often performs suboptimally in scenarios with limited data samples.

3 LOCALIZING AND MITIGATING CONTEXT OPTION BIAS

3.1 OVERVIEW

During the model’s inference, different attention heads perform distinct functions(Zhang & Nanda,
2024)). While some attention heads may correspond to option bias, it is not feasible to directly identify
which ones specifically linked to option bias during inference.

To identify attention heads strongly associated with option bias, it is necessary to amplify the presence
of the bias. Due to the difficulty of directly manipulating the model’s inherent option bias, we choose
to amplify context option bias by constructing biased demonstrations. We can get the state output of
the model in these two different situations state;, and state, corresponding to biased and ordinary
demonstrations respectively. The gap between the two states arises from the amplification of context
option bias. We employ an intervention function f that acts on specific attention heads to reduce the
state difference between state;, and state,. The extent of this reduction is compared to evaluate the
correlation strength between these attention heads and context option bias, allowing us to select the
most relevant set of attention heads. The algorithm flow is described in detail in Section
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After identifying attention heads strongly associated with context option bias, different intervention
methods are employed to modify the attention distribution of these heads and mitigate context option
bias. We describe the intervention methods utilized in Section 3.3l

3.2 LOCALIZING ATTENTION HEADS

We amplify context option bias by swapping options in the demonstration. Specifically, we consolidate
all correct answers into a single option, such as always setting the correct answer to A. This creates
a biased demonstration, denoted as dj,, while the ordinary demonstration is d,, and the problem is
represented by q. Each sample includes the true label y;. We randomly select /N samples to create

the set used for localizing attention heads, denoted as D = (d!,d, ¢', yé)fil

We describe the general pattern by which large models accomplish selection tasks as:

p(yld, q) = softmax({$(g),c € C}), )

where C represents the token ID of the option after tokenizer encoding, the vocabulary head ¢(-)
predicts the probability of the choice token, g is the output of the last layer of the model.

The probability of the correct option of the model under biased demonstration is p(y:|dy, ¢), and
under ordinary demonstration is p(yt|d,, ¢). Choose the option with the highest probability as the
answer y:

Y = Yo, argmax p(ycl|d, ), (@)

thus, we can obtain y, through d,. The probability of the model output option after intervention
function f will change. The probability distribution after intervention function f is recorded as
p'(y|d, q). Particularly, p/"(y|d, q) represents probability distribution after intervention function f
act on the h-th attention head in the [-th transformer decoder block.

We define E; to quantify the effectiveness of the intervention function, described as:

Ey = p'(ylds, q) — p(ylds, @),y € {Yo, 1}, (3)

where y € {y,, y:} represents our expectation that, following the application of the intervention
function, the model’s output previously influenced by biased demonstrations will either align with the
label y,, corresponding to the output under ordinary demonstrations, or with the true label y; of the
current sample. Another intuitive approach is to use KL divergence to define the effectiveness of the
intervention. To this end, we attempted to measure it by calculating the KL divergence between the
model’s output after the intervention under biased demonstrations and the output from the original,
unbiased demonstration, as well as the true label. However, this approach yielded poor results, as
detailed in the Appendix [G]

By further partitioning the sample dataset D and conducting multiple rounds of voting, the top K]
layers are selected, followed by the selection of the top K, heads within each layer based on their
Ey values. The details of the localizing algorithm are provided in Algorithm E} The rationale for
partitioning D and performing multiple rounds of voting is to mitigate the influence of outliers.

It is essential to emphasize that we first identify the top K layers and then select the top K, heads
within these layers. This approach may overlook some heads in lower-ranked layers that could be of
greater importance. Although traversing all heads would produce better results, the computational
cost is significantly higher. Therefore, we adopt this compromise method to efficiently localize
attention heads.

We employ random sampling to partition the sample set and use multiple rounds of voting to identify
the top K layers. The context option bias present in each sample set is determined during this process.
If the identified attention head corresponds to the option bias, its focus should be concentrated on a
specific layer and remain robust across samples containing the same context option bias but differing
in content. We use the indicator S € [0, 1] to measure the stability of the identified attention head:

§=%" - _ep, @

mel’

The variable cnt represents the number of selections after n rounds of sampling, while m denotes
the number of samples in each round. A larger value of .S indicates greater concentration and higher
effectiveness of the attention head localization strategy.

4
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Algorithm 1 Localizing Attention Heads

Require: Language model, test samples D = {(d¢,d;, ¢, yi)}}¥,, rounds number n, sample number
of every round m = N/n, divide D into {D; }"_;.
Ensure: Model attention heads set to intervene H
1: Initialize decoder layers set £ = & and the attention heads set H = & > Initialization
2: Sample the estimation samples D, under K and the remaining samples D, = D\ D,
3: for D; € {D;}7_, do
4: for | € model.layers do
5: for (dOadIHQayO) € D; do
6: score;+ = p(Yoldy, @) + p)(ye|ds, q)
7 end for
8: select top K layers [y, ..., Ik, of score
9: end for
10: Find the top K layers with the largest scores and add them into £ > Get intervene layers
11: ent, ++,1=1,..., K,
12: end for
13: select top K layers in cnt get £
14: forl € L do
15: for A in Lheads do

16: for (dy, dp, q,y:) € D do

17: scoref+ = p" (yold, q) + pi" (ye|ds, q)
18: end for

19: select Top K, of scorel ,add (I, h) to H
20: end for

21: end for

22: return H

3.3 INTERVENTION METHODS

To establish the notation and context, we briefly outline some fundamental aspects of transformer
architecture(Vaswani et al., 2017), a sequence of transformer layers indexed by the variable .

Throughout the inference process, the token undergoes initial encoding into the embedding space
via the embedding layer 2y € RP | initiating the residual stream. We use h to represent head index
of each layer.The inputs of multi-head attention(MHA) are );, € RP, K;, € RP, v, € RP, all
represented by z; is obtained through linear operation. In each layer, MHA consists of H heads.
Each head is an independent linear operation. After concating the I attention heads, it is processed
through W, € RPHXPH projection gets the result of Multi-head Attention.

x141 = a1 + concat(head)), . . ., heady_ )W, ®)
Every attention head can be written as:

QLK)
VD
Specifically, in the standard transformer, f () = x, whereas in our approach, the function f represents
an intervention method applied to the attention weights. After preliminary experimental attempt in
Appendix [D] we guess that attention scaling can better adjust the distribution of attention weight
thereby reducing the gap in the final output state of the model. We conducted further experiment with

different forms of f(x), such as scaling and zeroing, on specific heads to modify the distribution of
attention weights in order to achieve the highest possible E:

head, = Attn(Q',, K}, Vi) = softmax(f( ) x Vi, (6)

x/T, scaling
f(z) =10, setting zero (7)
mean(x), setting mean value

Attention scaling is equivalent to adding the temperature coefficient T to the softmax of the attention
score. Given the relatively limited exploration of the softmax operation of attention scores in prior
work, LLMs conventionally set the temperature parameter to 1 during reasoning.
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Table 1: Compare different intervention methods f on Gemma-2B and evaluate on MMLU. Report
accuracy improvement ¢ and localizing stability .S. b=0.5 for translation.

Methods Scaling(T=0.5) Scaling(T=2) Setting zero Setting mean value

S 0.8 0.25 0.23 0.35
biased d(%) 222 -0.26 -0.19 0.14
ordinary (%) 1.74 0.03 -0.08 0.15

After identifying the head set  through Algorithm[I} we intervene in these attention heads selected
during model inference to obtain the prediction results.

QLK)

VD

head!, = softmax( f( N x Vi (1,h) €H ®)

3.4 DISCUSSION

How many additional labeled samples are required for CoLo? Small amount of additional
sample are required in Algorithm[I}] Moreover, we can expand the dataset by modifying the context
option bias in the demonstration. For instance, in a four-option MCQ, we can alter the options to
consist entirely of A/B/C/D, thereby increasing the sample size fourfold. Clearly, a greater number of
additional samples enhances the stability of the final attention head. We ultimately decided to use
only 10 additional samples and expanded the dataset to N=40 by experiment.

How much additional computational overhead does CoLo introduce? The additional compu-
tational overhead introduced by the localization process is proportional to the number of samples
N used for positioning. In our experiment, the model requires approximately 150N additional
inferences, which depends on the number of layers and attention heads in the model. The calculation
method is detailed in Appendix @ However, once the relevant attention heads are identified, it can be
applied to other datasets without incurring any further computational overhead during inference.

4 EXPERIMENTS

In our experiments, we employed LLMs such as Llama(Touvron et al., 2023) and Gemma(Team
et al., 2024). Our methodology is also applicable to other LLMs with accessible internal attention
weights and computational mechanisms.

4.1 MAIN RESULTS

We select the MMLU (Hendrycks et al.,[2021)) as our benchmark. Initially, we randomly select 10
samples from this dataset and increase the sample size fourfold to construct D. Utilizing this set,
we identify the attention heads by localizing algorithm and then perform intervention, subsequently
assess accuracy on the remaining samples.

According to the localizing method we gave, we try different attention intervention functions and find
that using attention scaling method has the best effect as shown in Table |1} which is reflected in the
most obvious improvement in accuracy on the dataset and higher localizing stability S. This is the
same as our guess. The following will provide a detailed introduction to the effects of using attention
scaling method as intervention function f on large-scale datasets.

Given that the number of samples selected for the experiment is considerably smaller than the
total available, the attention heads identified for each sample are not identical, though they exhibit
significant similarity. This procedure is replicated five times to mitigate random variability, and we
report the mean accuracy achieved across these iterations.

To quantify the mitigation of option bias, we use recall standard deviation (RStd) as an indicator(Zheng
et al.l [2023)), measuring the balance of recall rates across different option IDs. Additionally, we
compare the bias mitigation performance and computational overhead with PriDe. Since CoLo
operates during inference, it can be combined with PriDe to further reduce option bias.
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Table 2: The experimental results of CoLo on the MMLU dataset, along with a comparison to Pride,
encompass evaluations of computational cost, accuracy, and RStd performance. Biased 5 shot is
constructed by consistently modifying the standard answers to A.

Zero Shot Ordinary (5 shot) Biased (5 shot)
Model Cost  Acc(®%) RSW(%) | Acc(%) RStd(%) | Ace(%) RStd(%)
Gemma—2B 1 338 218 39.9 143 38.2 16.1
+CoLo <119 362 12,6 417 10.8 40.5 7.0
+Pride(5%) X115 341 10.6 417 75 / /
+CoLo Pride(3%) x134  37.0 5.0 425 42 / /
Gemma—7B 1 61.6 52 62.6 54 593 106
+CoLo x129 620 55 63.4 3.7 615 10.9
+PriDe(5%) <115 616 52 64.4 5.0 / /
+CoLo PriDe(5%) x144  62.1 18 64.5 35 / /
Llama2—78 I 40.9 13.9 455 10.7 435 1.5
+CoLo x145 432 44 46.5 3.8 45.6 6.2
+PriDe(5%) <115 40.0 5.7 45.6 7.0 / /
+CoLo PriDe(5%) x1.60  43.5 42 46.8 42 / /
Ilama3-8B 1 614 13.8 64.6 738 60.7 12.0
+CoLo «145 619 6.8 64.8 23 62.0 8.9
+PriDe(5%) <115 63.6 53 65.0 2.1 / /
+CoLo PriDe(5%) x1.60 635 3.9 64.9 1.9 / /

Based on the experimental results in the Table[2} we can conclude that CoLo effectively mitigates
option bias, particularly in addressing context option bias. The reduction in RStd indicates a
weakening of the model’s option bias. Although our primary objective was to reduce option bias,
the simultaneous improvement in model accuracy alongside the reduction in RStd further validates
the effectiveness of the CoLo. Moreover, the biased demonstration was specifically designed to
amplify context option bias. Under these conditions, CoLo demonstrates greater effectiveness in
reducing RStd and improving accuracy compared to ordinary demonstrations, indicating its ability to
successfully alleviate context option bias.

CoLo alleviates option bias under both ordinary demonstration and zero-shot settings. A plausible
explanation is that, while the option distribution in the few-shot setting is uniform, it still contains
implicit context option bias as shown in Appendix [C] Furthermore, the mitigation of option bias in
the zero-shot setting may stem from the inclusion of the question as part of the input context, which
can introduce additional context option bias. In summary, the reduction of bias and improvement in
accuracy observed in both ordinary demonstration and zero-shot scenarios further underscore the
significance and broad applicability of the CoLo.

As shown in the Table [2] we compare the performance of CoLo and PriDe on the MMLU dataset
and find that combining the two methods achieves a more effective debiasing outcome. Additionally,
we compare CoLo and PriDe across different settings, as well as in combination, and present
detailed experimental results on domain transfer within MMLU dataset. The results in Appendix
demonstrate that CoLo exhibits distinct advantages in domain transfer.

4.2 ROBUSTNESS OF DIFFERENT EXPERIMENT SETTINGS

To validate whether the attention heads obtained through CoLo genuinely correspond to context
option bias, we perform mode transformations on the original MCQ input format, varying factors
such as the number of options, the length of demonstrations, and the format of option identifiers.
Through these experiments, we aim to verify the following two points:

1. Whether the attention heads selected in the original MMLU remain useful to mitigate context
option bias after the mode transformations.

2. Whether the attention heads selected in different modes is consistent.

For the first point, we selected the model’s attention heads based on the sample set D in the base
mode and reported the accuracy improvements across different modes of D. As shown in Figure [3{a),
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Figure 3: (a) Starting with localizing attention head in the base mode (where the number of choices is
5, the number of demonstrations is 4, and the biased answer is A), we modify the mode for different
samples and report the resulting accuracy improvements. (b) We localize attention heads across
different modes and present the localization frequency for each attention head. The experimental
results are based on the Gemma—2B model applied to the MMLU dataset.

Table 3: Cross-dataset experiments were conducted using the attention heads obtained from
MMLU, along with ordinary few-shot learning across all datasets. For TruthfulQA, the MC1/2/3
indicators were used for evaluation, while accuracy was employed as the evaluation metric for the
remaining datasets. FS stands for 5-shot in table. We use Im-eval-harnessGao et al.|(2024)) as the
evaluation tool.

Model MMLU CMMLU CEVAL AGIEVAL Truthful QA
A FS VA FS VA FS A MC1 MC2 MC3
Gemma-2B  33.0 41.7 | 284 309 | 265 313 31.0 0.233 0371 0.173
+CoLo 362 428 | 298 31.7 | 298 322 31.6 0241 0372 0.173
Gemma-7B  61.6 645 | 448 489 | 412 482 38.7 0.308 0.476 0.228
+CoLo 620 652 | 454 498 | 444 494 38.8 0.322 0479 0.236
Llama2-7B 409 45.6 | 27.2 327 | 30.0 34.0 323 0.286 0.434 0.207
+CoLo 432 46.8 | 282 328 | 303 350 33.1 0.291 0.440 0.215
Llama3-8B 614 665 | 475 505 | 479 519 373 0.324 0492 0.244
+CoLo 619 669 | 472 506 | 497 52.0 39.0 0.321 0491 0.245

the results indicate that accuracy improves following mode transformation. For the second point is to
use different D after mode transformation to select attention heads. For different modes, the heads
selected are similar in Figure [3[b). The result indicates that the attention heads selected through our
method is robust to mode transformations.

4.3 CROSS-DATASET GENERALIZATION

In order to further illustrate that the head obtained by positioning corresponds to the context option bias
of the model, and has a certain degree of robustness, we will apply the attention head obtained through
random sampling localizing in MMLU and the intervention method of attention scaling to different
fields and different forms tasks , 1) MCQ dataset CMMLU(Li et al., 2024a)) and CEVAL(Huang et al.,
2023)), 2) comprehensive dataset AGIEVAL(Zhong et al.|[2023)), including multiple choice questions
and cloze, 3) TruthfulQA, MCQ dataset but not select specific option IDs.

The results of the experiment in Table [3]illustrates the improvement in accuracy of MCQ in other
fields, which demonstrates the robustness of our approach in mitigating option bias across datasets.
Additionally, the stable performance on the Truthful QA indicates that our intervention method will
not cause the model to lose the ability to generate general text.

4.4 INTERVENTION PARAMETERS

An important parameter 7' € R is involved in CoLo. Although no theoretical framework exists to
determine its optimal value, we explore its effects through experimental analysis.
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Figure 4: (a) and (b) test various T values for T<1 and T>1, respectively, and observe the frequency
of the localized head. (c) Different attention scaling coefficients T were tested on Gemma—2B using
the head identified by CoLo, and the accuracy improvements were evaluated on the MMLU.

We found that for T < 1, the positions of the heads are similar, while for T>1, the positions become
more dispersed, as shown in Figure[d(a) and (b). Additionally, we conducted experiments to vary the
value of T after determining the head positions for T < 1 and T > 1. From Figure ] we observed
that increasing T beyond 1 has no effect on improving accuracy. We hypothesize that reducing the
variation in the attention distribution does not impact the model’s predictive performance. In this case,
T>1 may have identified a set of heads that are not critical for predicting the final outcome. Aligning
the attention distribution closer to the mean appears to have no significant influence on the results.

As long as T is within a reasonable interval, T€[0.1, 0.6], there is no significant difference in the final
bias mitigation effect and accuracy improvement.

4.5 EXPLANATIONS AND ANALYSES

We give reasonable explanations why our method can mitigate context option bias from model’s
focus changes after intervention.

We define the focus coefficient to measure the extent to which the model attends to different parts of
the context, including context demonstrations C'y, question Cy, and self-rational C.. p; represents the
last position of the encoded text, p, represents the end position of the ID after the demonstration is
encoded by the tokenizer, p, represents the end position of the question. According to the decoder
structure, we can calculate its attention coefficient for each attention head when the model finally
determines the answer to the question. We use A, j (%, j) represents the attention score of the (i, j)
position of the h-th attention head in the [-th layer. After normalizing, the final attention coefficient
C4, Cy4 and C, is obtained.

C= ZAl,h(plvj)”e —s5+ 1|7 (87 6) € {(Oapd)a (pd + 17pq)a (pq + 17pl)} (9)
j=s

Options with high uncertainty are more sus- Table 4: The proportion of doubtful and firm types
ceptible to context option bias in demon- in the MMLU, and the confidence to the question.
strations. In Table 4, context option bias is
intensified by constructing biased demonstra- Model ‘
tions, and MCQs are divided into two cate-
gories: “doubtful,” where selections change =~ Llama2-78 ‘ 793 207 ‘ 0402 0269
after switching from ordinary to biased demon- Gemma-2B | 738 362 |0333 0256
strations, and “’firm,” where selections remain

unchanged. The confidence in the altered options is significantly lower than in the unchanged ones,
averaging 0.25 for the four-option questions. Thus, when context option bias is amplified, options
with lower certainty are more likely to change.

proportion % confidence
firm doubtful | firm  doubtful

Context option bias tends to manifest more prominently in the deeper layers of the model. In
Figure[5] we analyze the variations in attention allocation for different types of MCQ. The model
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Figure 5: We utilized the L1ama2-7B model to evaluate the impact of using CoLo on attention
to demonstrations within the MMLU dataset. It was observed that the model exhibited increased
attention to demonstrations in deeper layers when faced with doubtfule MCQs, thereby introducing
contextual option bias. By employing CoLo, the model’s attention to demonstrations could be
reduced, mitigating the bias introduced in deeper layers.

(2) (b)
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Figure 6: L1ama2-7B model was used to evaluate the difference in attention to context demonstra-
tions before and after the intervention. Figures (a) and (b) illustrate the head positioning in the 14th
and 18th layers, respectively, following the intervention on the BBH sports understanding dataset
(Suzgun et al.| [2022).

tends to rely more on contextual demonstrations when handling uncertain questions, while it focuses
more on the question itself for more confident ones. Based on this, we hypothesize that context-option
bias primarily arises in the model’s deeper layers. CoLo mitigates this bias by reducing the model’s
reliance on context in these deeper layers, thereby effectively decreasing context option bias.

Deep layers reduce attention to context demonstrations following intervention. CoLo is designed
to mitigate context-option bias, which often arises from contextual information and typically manifests
in the deeper layers of the model. This is supported by the observed reduction in attention to context
demonstrations in the deeper layers through our method. However, at the intervention layer, attention
to context demonstrations C; may increase, as shown in Figure [(b). This suggests a trade-off
between attention to examples, questions, and rationale, with the model internally adjusting to
maintain a balanced approach.

5 CONCLUSIONS

We propose CoLo, a general localization method designed to mitigate context option bias and improve
the accuracy of MCQ. Specifically, by amplifying context option bias through rearranging the order
of options in demonstrations, we compare the LLMs’ outputs of biased and ordinary demonstration to
localizing attention heads strongly associated with context option bias. Attention scaling interventions
are then applied to reduce this bias. CoLo requires only small labeled samples to localize attention
heads which can be applied across different datasets. Once the attention heads requiring intervention
are identified, CoLo introduces no additional inference delay. Compared to previous debiasing
methods, CoLo has a natural advantage in extending to generative tasks.

While we have provided a plausible explanation for why the identified attention heads can mitigate
option bias, there remains a lack of theoretical proof supporting the efficacy of this method in reducing
such bias. Additionally, although the selection of attention heads shows generalizability, achieving
optimal results necessitates that the small labeled sample set used for positioning be identical to the
final test set, which will incur additional offline computational overhead.
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A REPRODUCIBILITY STATEMENT

All experiments in the paper can be completed in 4 x GeForce RTX4090(24GB). All the raw versions
of evaluation data are accessible from their official repositories in Table [5]

Table 5: Evaluated open-source models

Models | URLs

Llama2-7B https://huggingface.co/meta-1llama/Llama-2-7b
Llama3-8B https://huggingface.co/meta-1llama/Meta-Llama-3-8B
Gemma-2B https://huggingface.co/google/gemma-2b

Gemma-"7B https://huggingface.co/google/gemma—"7b
Mistral-7b-v0.1 | https://huggingface.co/mistralai/Mistral-7B-v0.1
Qwen2.5-0.5B https://huggingface.co/Qwen/Qwen2.5-0.5B
Qwen2.5-1.5B https://huggingface.co/Qwen/Qwen2.5-1.5B
Qwen2.5-3B https://huggingface.co/Qwen/Qwen2.5-3B

B INHERENT BIAS

Position bias manifests itself as inconsistencies in model Question: Find the degree for the given field
predictions when the sequence of options changes but extension Q(sart(2), sart(3), sart(18)) over Q.
all other elements are held constant. Token bias, on the origin position bias  token bias
other hand, arises when the substitution of option tokens - - -

. .. . . . Option: Option: Option:
impacts predictions. Figure[7] an example of inconsistent A0 B 4 A 4
prediction result of L1ama2~-7B due to position bias and B.4 A0 B.0
token bias. The correct answer A initially selected by g-é g-é g-é

the model may arrive at by chance due to its own biases. R PR el

By swapping option positions/swapping option contents
LLMs will get the wrong answer.
Figure 7: An example of inherent bias

C CONTEXT OPTION BIAS IN
DEMONSTRATIONS WITH EVENLY DISTRIBUTED OPTIONS

Demonstrations with evenly distributed correct choices in a 5-shot setting yield varying effects on
predictions depending on the order in which they are presented.

Table 6: With uniform distribution but different order in Gemma—-2B result in varying predictions.

Sequence of demonstraion A B C D
Random 1094 4886 5295 2767
A-B-C-D-A 736 5833 5215 2258
D-C-B-A-D 1202 5849 5526 1465

D COMPARISON OF ATTENTION DISTRIBUTION

The experiments find that even with simple option swaps in demonstrations, the attention map’s
distribution in an LLM varies significantly as shown in Figureg]

Based on the difference in attention distribution as shown in Figure[0] we speculate that attention
scaling can be used to strengthen attention to the question to make the attention distribution in the
two states closer.
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Figure 8: Utilizing the L1ama2~-7B model, we report the average value of the attention coefficients
for every head in layer 14th when applied to the BBH’s sports understanding dataset(Suzgun et al.,
2022). (a) ordinary demonstrations (b) biased demonstrations
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Figure 9: We used biased and ordinary demonstrations on the BBH dataset to obtain the attention
distribution on head 9th and layer 14th respectively.

E ADDITIONAL COMPUTATIONAL OVERHEAD OF COLO

The model consists of L candidate layers, with each layer containing H attention heads. Given a
sample size of N, the number of additional inferences required is:

LXxNx24+K; xHxN x2, (10)

2 means that both biased and ordinary demonstration require one inference.

F LOCATED ATTENTION HEADS

CoLo is mainly divided into the offline head localization phase and the inference phase. The offline
localization phase primarily consists of three steps:

1. Construct biased MCQ by altering the order of options.
2. Vote to select top K layers.

3. Select top K}, heads based on Ey.

Table[/|shows the attention heads we obtained by randomly selecting 80 samples from the MMLU
data set and positioning them on different models. We use {layer:(head list, T)} to represent the
positioned attention head, K; = 2, K} = 4.
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Figure 10: The overall of CoLo, encompassing offline heads identification and the inference phase.

Table 7: The attention heads obtained by CoLo of each model

Models | Attention heads

Llama2-7B {14: ([24, 4, 20, 31], 0.5), 18: ([30, 10, 25, 28], 0.5)}
Llama3—-8B {17: ([24, 25, 26, 28], 0.5), 14: ([23, 5, 4, 201, 0.5)}
Gemma-2B {12: ([3,7,2,11,0.5), 14: ([0, 1, 6,7],0.5)}
Gemma-7B {18: ([0, 8, 6,2],0.5), 2: ([1, 5,3, 0],0.5)}
Mistral-7B-v0.1 {16: ([12, 14,13, 11, 0.5), 19: ([8, 16, 9, 10], 0.5)}
Qwen2.5-0.5B {15: ([13, 12,9, 71, 0.5), 14: ([0, 3, 6, 11],0.5) }
Qwen2.5-1.5B {21: ([11,9, 6, 81, 0.5), 18: ([3, 11, 0, 6], 0.5)}
Qwen2.5-3B {27: ([1,4,3,111,0.5) 8: ([7, 12, 3,91, 0.5)}

G CALCULATE SCORE BY KL DIVERGENCE

Using the same positioning strategy and sample set, modify the equation [3]to following equation[T1]
KL(-) represents the calculation of KL divergence.

score =1 —KL(p (yoldy, ), p(yoldv, @) + ' (yeldy, @) — p(yeld, @) (11
(@) (b)
°] = °]
) I . o
| ]
) | .
001 2 3 4 5 6 7 8 91011 12131415 16 17 01 23 4567 8 91011 121314151617
layer layer

Figure 11: (a) calculate score by equation (b) Modify the original formula through KL divergence.
H COMPARISON OF CROSS-DOMAIN MMLU PERFORMANCE

Table 2] presents the performance of non-cross-domain CoLo and PriDe on the MMLU dataset. To
compare the cross-domain transfer capabilities of CoLo and PriDe, we conducted cross-domain
experiments on MMLU under different settings as shown in Table[§] The MMLU dataset consists of
four domains: STEM, Social Science, Humanities, and Others. For both CoLo and PriDe, offline
computations were performed within a single domain to prepare for debiasing. Specifically, PriDe
calculates the prior probability, while CoLo identifies the relevant attention heads. Accuracy across
the various domains is then obtained through cross-domain evaluation, and the average for each
domain is calculated to determine the overall accuracy on MMLU.
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Table 8: Cross-domain comparative experiment between CoLo and PriDe on MMLU.

MODEL Baseline CoLo PriDe(5%) Pride(40%) | Pride(40%)+CoLo
Cost x1 ~ x1.5 x1.15 x2.2 x3.7
MMLU-Transfer Acc RStd | Acc RStd | Acc RStd | Acc RStd | Acc RStd
Gemma-2B 33.8 218 | 362 12.6 | 33.8 10.1 | 35.5 7.6 37.8 7.5
Gemma-2B+FS 399 143 | 41.7 10.8 | 41.6 6.4 424 5.1 42.9 4.6
Gemma-—7B 61.6 5.2 62.0 5.5 61.7 6.7 62.3 5.5 62.5 5.1
Gemma-7B+FS  62.6 5.4 634 3.7 64.3 5.9 64.7 4.9 64.5 4.2
Llama2-7B 409 139 | 43.2 4.4 40.0 9.2 41.7 7.6 44.3 6.9
Llama2-7B+FS 455 10.7 | 46.5 3.8 45.5 9.0 46.5 7.4 47.4 8.0
Llama3-8B 614 13.8 | 619 6.8 63.4 5.9 63.7 4.8 63.1 4.0
Llama3-8B+FS 64.6 7.8 64.8 4.7 65.0 39 65.4 3.1 64.7 2.7

Table 9: Performance of CoLo on MMLU with different K; and K},

K\Kp | 1 2 4 6 8

1 40.6/12.3  40.9/11.8 41.7/10.7 41.1/11.3  41.0/10.9
41.3/11.8  41.4/10.7  41.7/8.8 41.2/9.9  41.2/10.6
41.5/11.6  41.5/11.3  41.2/9.8 41.2/10.0 41.0/10.1
409/11.1  41.8/94 41.2/9.8  40.8/10.1  40.9/9.7
40.9/11.8 41.1/109  40.9/8.0 41.0/11.4 39.4/11.7
40.8/11.2  41.0/10.6  40.8/10.8 40.4/11.1  38.4/10.7

AN A WN

I SUPPLEMENTARY EXPERIMENTS

We explored K; and K}, using Gemma~—2B model in Table[9] When the number of heads is between
6 and 8, the performance remains consistent; however, as the number of heads increases further, the
effectiveness of the method diminishes. Similarly, the number of intervention layers should not be
excessive. Based on our findings, we recommend using 2-3 intervention layers and 68 heads as
the most suitable configuration. Furthermore, with regard to the intervention layer, our experiments
on various models have identified a pattern: the optimal intervention layer is typically located in the
middle layers of the model.

In our study, we initially selected 10 samples but did not investigate or elaborate on how sample size
influences the method’s performance. To address this limitation, we conducted additional experiments
using Gemma-2b on the MMLU benchmark, varying the number of samples. Each experiment was
repeated five times, with the mean accuracy and Rstd reported. The results demonstrate that when
the sample size reaches 10, the performance improvement is approaching a plateau. Based on these
findings, we estimate that the minimum number of samples required is approximately 10-12 as shown
in Table[I0] For improved stability, we recommend using 12 samples.

Table 10: The performance scale with different number examples.

Sample Num | 0 4 6 8 10 12 14 16

Acc 399 400 40.6 412 417 41.6 417 416
Acc Var / 025 061 042 02 0.09 0.12 0.11

RStd 143 122 109 105 108 94 96 9.6
RStd Var / 1.3 39 36 34 23 2.5 2.1
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Table 11: Supplementary experiments on the Qwen2.5 series model using CoLo

Zero Shot Ordinary (5 shot) Biased (5 shot)

Model Cost  Acc(%) RSW(%) | Acc(%) RStd(%) | Acc(%) RStd(%)
Qwen2.5-0.5B 1 46.2 17.2 475 13.7 475 13.7
+CoLo x1.10 474 13.5 48.6 7.9 48.6 7.9
Qwen2.5-1.5B 1 58.8 8.4 59.4 3.6 59.4 3.6
+CoLo x1.19  59.6 75 60.5 0.9 60.5 1.0
Qwen2.5-3B 1 64.2 8.3 65.6 32 65.2 3.2
+CoLo x125 654 6.3 66.4 1.4 66.2 1.4
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