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Abstract

Multimodal large language models (MLLMs)001
have achieved remarkable performance in pro-002
cessing and reasoning over text and images.003
However, they remain susceptible to halluci-004
nations—instances where generated content005
deviates from input data or contradicts estab-006
lished knowledge. While extensive research007
has explored general hallucinations in MLLMs,008
font-induced hallucinations remain an over-009
looked yet critical challenge, particularly in010
OCR-based applications and high-stakes do-011
mains such as medical and legal text analy-012
sis. In this work, we formally define the phe-013
nomenon of font hallucinations and systemat-014
ically categorize them into three types: font015
style, font semantics, and font sentiment. We016
further conduct comprehensive experimental017
analyses to quantify their impact on model re-018
liability. Building on this analysis, we pro-019
pose the FontHalu benchmark, the first dedi-020
cated benchmark for evaluating MLLMs’ ro-021
bustness against font-based hallucinations. To022
mitigate these hallucinations, we implement023
LoRA-based parameter-efficient fine-tuning,024
demonstrating improved generalization to un-025
seen fonts while highlighting the limitations of026
current adaptation techniques. We will publicly027
release the benchmark and datasets, advancing028
the development of more reliable multimodal029
AI systems.030

1 Introduction031

Multimodal large language models (MLLMs) have032

significantly advanced text and image processing,033

yet they remain vulnerable to hallucinations (Bai034

et al., 2024a), where generated content deviates035

from input data or contradicts established knowl-036

edge, undermining their reliability. Existing stud-037

ies have identified various forms of hallucinations038

in multimodal systems. For instance, Liu et al.039

(2024d) demonstrate that MLLMs can generate040

incorrect answers despite correctly interpreting vi-041
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Figure 1: Examples of font-related hallucinations in
MLLMs: a case study of Qwen2-VL-7B (Q) and
MiniCPM-V-2.6 (M). The letters marked in red indi-
cate those that are inconsistent with the ground truth.

sual content, using paired positive and negative vi- 042

sual question-answer samples. Similarly, PhD (Liu 043

et al., 2024c) highlights significant variability in 044

MLLM performance across different tasks, expos- 045

ing inconsistencies in how these models reason 046

over multimodal inputs. 047

While extensive research has explored general 048

hallucinations in MLLMs, the interaction between 049

textual and visual features introduces additional 050

challenges. In particular, font styles and sizes can 051

significantly affect MLLMs’ perception of textual 052

information. As shown in Figure 1, changes in font 053

style may cause MLLMs to confuse visually sim- 054

ilar letters during text recognition. Furthermore, 055

stylistic variations can alter the perceived senti- 056

ment of a text, resulting in misclassification in sen- 057

timent analysis. We define this phenomenon as 058
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FontHalu—errors or unreasonable outputs gener-059

ated by MLLMs due to the visual characteristics of060

fonts within input images, rather than the textual061

semantics alone.062

FontHalu is not merely an academic concern but063

pose tangible risks in real-world applications. For064

example, in medical diagnostics, font misinterpre-065

tations in patient records may result in incorrect066

treatments, while in legal document processing, hal-067

lucinations could lead to misread contract clauses068

with significant consequences. Although the in-069

creasing reliance on MLLMs for automated docu-070

ment understanding, the effects of font variations071

remain largely unexplored, leaving a critical gap in072

model robustness evaluation.073

Despite the significance of this issue, exist-074

ing benchmarks fail to systematically assess the075

impact of font hallucinations on model relia-076

bility. CHAIR (Rohrbach et al., 2018) and077

POPE (Li et al., 2023c) evaluates object hallucina-078

tion. OCRbench (Liu et al., 2024e), SROIE (Huang079

et al., 2021), DOCVQA (Mathew et al., 2021),080

TextVQA (Singh et al., 2019) primarily eval-081

uate OCR performance. While some bench-082

marks include recognition of handwritten or artistic083

fonts (Cui et al., 2024), they cover only a limited084

range of font variations and do not systematically085

investigate font-based hallucinations, leaving an086

important gap in MLLMs evaluation.087

To address this gap, we adopt a controlled088

variable methodology to systematically analyze089

MLLM performance across multiple dimensions090

of font variation. Specifically, we investigate how091

models respond to changes in font attributes, font092

types, and more complex typographic transforma-093

tions. These carefully designed experiments pro-094

vide valuable insights into the challenges posed095

by font-based hallucinations. Based on these find-096

ings, we introduce the FontHalu benchmark—the097

first dedicated benchmark for evaluating MLLMs’098

robustness against font-based hallucinations. Our099

contributions are as follows:100

1. We introduce the FontHalu phenomenon, cat-101

egorize its types, and conduct a detailed em-102

pirical analysis to characterize its impact on103

MLLMs.104

2. We develop FontHalu benchmark, the first105

benchmark specifically designed to system-106

atically evaluate font-induced hallucinations107

in MLLMs, enabling standardized assessment108

and comparison.109

3. We construct a specialized training dataset 110

for fine-tuning MLLMs, incorporating font- 111

specialized modifications to mitigate font- 112

based hallucinations and enhance model re- 113

liability in font-related tasks. 114

2 Related Work 115

Hallucinations in MLLMs The remarkable suc- 116

cess of LLMs has paved the way for the develop- 117

ment of multimodal large language model (Li et al., 118

2023a; Liu et al., 2024b; Wang et al., 2024; Zhu 119

et al., 2024), which combine pretrained visual mod- 120

els with LLMs to enable their visual capabilities. 121

But at the same time, it also introduced many vision 122

specific hallucination phenomena (Gunjal et al., 123

2024; Jiang et al., 2024; Zhou et al., 2024). These 124

hallucinations can be roughly classified into cate- 125

gory, attribute, and relationship (Bai et al., 2024b). 126

In the research on category types (Liu et al., 2024a; 127

Yu et al., 2024) mainly focuses on object existence 128

and descriptive issues, while research on fonts is 129

relatively scarce. However, fonts play a crucial 130

role in tasks such as KIE (Knowledge-Intensive 131

Extraction) recognition, text-guided VQA (Visual 132

Question Answering) tasks, and sentiment analysis 133

tasks (Liu et al., 2023; Huang et al., 2021; Mathew 134

et al., 2021; Singh et al., 2019). Therefore, study- 135

ing the hallucinations problem caused by fonts is 136

of great significance and can promote further de- 137

velopment in the field of MLLM hallucinations. 138

Benchmarks for MLLMs There are many hal- 139

lucination benchmarks for MLLMs, such as 140

POPE (Li et al., 2023b), Nope (Lovenia et al., 141

2023), and CIEM (Hu et al., 2023). While ef- 142

fective for basic hallucination assessment, these 143

benchmarks notably exclude OCR recognition ca- 144

pabilities from their evaluation scope (Liu et al., 145

2024a; Chen et al., 2023). Recently, more and 146

more hallucination benchmarks have mentioned 147

OCR recognition as an important part of multi- 148

modal hallucination assessment, such as Hallusion- 149

Bench (Guan et al., 2024) and MME (Cui et al., 150

2024). However, their treatment of OCR-related 151

hallucinations is limited, particularly in address- 152

ing the impact of font variations on hallucinations 153

in MLLMs, a factor that can significantly affect 154

recognition accuracy. 155

3 Font-based Hallucinations 156

In this work, we identify three typical types of 157

FontHalu: hallucinations of font style, hallucina- 158
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Figure 2: The constructions pipeline of benchmark.

tions of font semantics, and hallucinations of font159

sentiment.160

Hallucinations of Font Style From the perspec-161

tive of a single font, Shimoda et al. (2024) di-162

vide font attributes into various aspects, such as163

color, alignment, capitalization, font size, angle,164

letter spacing, and line height. Additionally, Brown165

(2024) categorizes font variation axes into six di-166

mensions: weight, width, slant, italic, optical size,167

and X-height. In this work, we focus on six key168

dimensions of font attributes: size, spacing, slant,169

alignment, weight, and X-height.170

• Size: Adjusts the font size, ranging from small171

to large.172

• Spacing: Varies the space between letters,173

from tight to loose.174

• Slant: Changes the font’s angle, tilting letters175

to the right without altering their forms.176

• Alignment: Determines text alignment, from177

left to right or center.178

• Weight: Adjusts stroke thickness, ranging179

from light to bold.180

• Line-height: Controls the vertical space be-181

tween text lines.182

The combination of dimensional variations re-183

sults in style changes within the same font. From184

the perspective of different font families, font 185

styles can vary widely, including categories such 186

as Serif (Arditi and Cho, 2005), Sans-Serif, Script, 187

Monospaced, and others characterized by unique 188

features like strokes. These varying font styles af- 189

fect MLLMs’ ability to accurately recognize text, 190

leading to differences in performance across font 191

types. We refer to this phenomenon as Font Style 192

Hallucinations. For instance, transitioning from 193

a standard typeface to a more decorative or hand- 194

written style can cause the model to misinterpret 195

the text, potentially leading to hallucinations and 196

incorrect inferences. In Figure 1, for example, the 197

model confuses ‘7’ with ‘F’ and ‘g’ with ‘q’ due to 198

the specific font. This misinterpretation often mani- 199

fests in the confusion of visually similar characters, 200

which is exacerbated by stylistic elements. 201

Hallucinations of Font Semantics In practical 202

applications, adjustments to font style can intro- 203

duce additional semantic cues or nuances to the 204

text. For example, highlighting a word serves to 205

emphasize its importance. Wu and Yuan (2003) 206

find that highlighting can significantly improve ta- 207

ble search efficiency. In handwritten documents, 208

strike-through text may appear, potentially compli- 209

cating OCR system recognition (Adak and Chaud- 210

huri, 2014). This is particularly relevant since strik- 211

ing through a word and replacing it with a new 212

one signifies that the original term is invalid and 213

has been superseded. Additionally, overlay text 214

plays a vital role in video content analysis, pro- 215

3



viding key semantic cues for tasks such as video216

information retrieval and summarization (Adak and217

Chaudhuri, 2014). Similarly, when a word is writ-218

ten in a light color and overlaid with a darker one,219

the darker color often conveys the final or correct220

answer. However, MLLMs may not always be221

capable of recognizing these semantic cues, lead-222

ing to hallucinations, which we refer to as Font223

Semantics Hallucinations. As shown in Figure 1,224

MiniCPM treats the strikethrough text as the final225

answer, resulting in a semantic hallucination.226

Hallucinations of Font Sentiment Emotion-227

driven attention facilitation is influenced not only228

by biological relevance but also by perceptual fea-229

tures, such as font size (Bayer et al., 2012). In this230

context, Zhang et al. (2018) used semantic differ-231

ential and statistical analysis methods to identify232

factors like exquisiteness, constriction, and a sense233

of order, which shape the emotional perception of234

fonts. For example, fonts themselves can evoke235

emotional tones, such as the horror effect conveyed236

by the Silent Hill font. This raises the question:237

do MLLMs recognize these emotional cues in238

fonts? If so, they may misinterpret or exagger-239

ate the emotional tone, resulting in what we term240

Font Sentiment Hallucinations. As shown in Figure241

1, the models can correctly assess sentiment with242

a neutral (or standard) font. However, when we243

switch to a more cheerful-looking font, the models’244

response changes from negative to neutral. Simi-245

larly, when the models assess sentiment as positive246

in a neutral font, switching to a horror-themed font247

causes the sentiment evaluation to shift to neutral,248

resulting in a font sentiment hallucination.249

We will experimentally validate and analyze the250

aforementioned hallucinations in Section 5.1.251

4 FontHalu Benchmark252

4.1 Overview253

The FontHalu benchmark is a comprehensive eval-254

uation framework designed to assess the impact of255

font-induced hallucinations on MLLM. This bench-256

mark specifically targets the three types of font257

hallucinations introduced earlier: Font Style, Font258

Semantics, and Font Sentiment. To systematically259

evaluate these phenomena, we introduce three ded-260

icated sub-tasks:261

• Font Variation Recognition (VarRec): This262

task involves extracting text rendered in dif-263

ferent fonts from images with a blank back-264

ground. It aims to measure the model’s robust- 265

ness to font variations in isolated text recogni- 266

tion scenarios. 267

• Font Semantic Analysis (SemAna): This 268

task evaluates the model’s ability to extract 269

text from real-world contexts, such as ship- 270

ping labels or documents, where additional 271

semantic cues—such as strikethroughs, high- 272

lights, or overlays—may alter the intended 273

meaning. 274

• Font Sentiment Analysis (SentAna): This 275

task assesses the extent to which a model can 276

correctly interpret the sentiment of a sentence 277

when presented in a specific font, reflecting 278

the potential influence of typography on senti- 279

ment perception. 280

4.2 Construction 281

The benchmark construction process, illustrated in 282

Figure 2, consists of four key stages: font selection, 283

image template creation, content generation, and 284

benchmark assembly. 285

Font Selection In this stage, we collect a diverse 286

set of fonts, including both commonly used and 287

rare artistic or commercial fonts, to ensure compre- 288

hensive coverage of font variations. Ultimately, we 289

gather 19,274 distinct fonts, each applied to render 290

identical content on 250×1500 pixel blank images. 291

The content consists of two lines of Lorem Ipsum 292

text and one line of numerical data, generating a 293

total of 19,274 images. These images are then pro- 294

cessed using a pre-trained ViT model (ViT-Base- 295

Patch16-224) (Dosovitskiy et al., 2021) to extract 296

feature vectors from the final hidden layer. To re- 297

duce dimensionality, we apply UMAP (McInnes 298

and Healy, 2018), followed by K-means cluster- 299

ing (Lloyd, 1982) to group the feature vectors into 300

200 clusters. From each cluster, five representa- 301

tive fonts are selected, yielding a total of 1,000 302

candidate fonts for the benchmark1. 303

Template Creation In this phase, 200 images are 304

selected from publicly available datasets, including 305

DocVQA (Mathew et al., 2021), FUNSD (Jaume 306

et al., 2019) and SROIE (Huang et al., 2021)2. 307

1For a detailed explanation of the font selections algo-
rithm,see appendix A.

2In this paper, all publicly available datasets used have
been authorized and strictly adhere to the relevant usage agree-
ments.
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We then annotate each image with 2–3 bound-308

ing boxes (annotation criteria are shown in Ap-309

pendix B). To facilitate controlled content place-310

ment, we binarize these images by removing the311

content within the annotated regions while preserv-312

ing the location information. This process results313

in 200 annotated template images.314

Content Generation In this phase, we design315

various data types based on the annotated bound-316

ing boxes, including Lorem Ipsum text, numbers,317

dates, times, names, addresses, email addresses,318

etc. These content types are selected to reflect di-319

verse real-world text data, ensuring broad scenario320

coverage.321

For each task, we follow specific content gen-322

eration strategies: VarRec Task: The selected323

fonts are used to write Lorem Ipsum content on324

blank images. SemAna Task: Questions are first325

generated based on the key information associated326

with the annotated bounding boxes in the image327

templates. Then, specific content is written in328

these bounding boxes using various fonts while329

applying one of four randomly selected formatting330

modes: strikethrough, highlighting, overlay, or nor-331

mal. These modified texts serve as our ground-332

truth answers. SentAna Task: The test set of333

the Sentiment140 dataset is rendered in different334

fonts.335

Finally, we manually verify the dataset, remov-336

ing low-quality samples to ensure data integrity337

(the specific criteria are shown in Appendix B).338

This results in the final version of the FontHalu339

benchmark. Statistics of the FontHalu benchmark340

are presented in Table 1.341

Task Images Questions

VarRec 250 250

SemAna 780 1877
Normal 589 928
Strikethrough 124 132
Overlay 317 393
Highlight 343 424

SentAna 200 200

Table 1: Task overview: number of images and ques-
tions. Normal, Strikethrough, Overlay, and Highlight
refer to the four types of text formatting in the SemAna
task.

4.3 Evaluation Metrics342

We evaluate MLLMs’ performance using the fol-343

lowing metrics: ACC: Measures the presence of344

the expected answer in the generated response, with 345

higher values indicating better performance. NED: 346

Measures the normalized edit distance between the 347

expected and generated answers, with lower values 348

indicating better performance3. 349

5 Experiments 350

5.1 Font-based Hallucinations 351

To validate the three types of hallucinations intro- 352

duced in Section 3, we design targeted experiments 353

to analyze the characteristics and manifestations of 354

FontHalu. For detailed experimental settings, refer 355

to Appendix D. 356

Settings When investigating hallucinations of 357

font style, we first explore the variations in font at- 358

tributes using a single, commonly used font. These 359

attributes include size (ranging from 15 to 50 pt), 360

spacing (from -0.1 to 0.4 em), slant (from 15 to 361

50 degrees), alignment (left, center, right), weight 362

(from 100 to 900 on the font weight scale), and line 363

height (from 0.4 to 2.0 em). To minimize potential 364

confounding factors, we present the font against 365

a plain background, avoiding any layout or con- 366

textual influences. This experiment is referred to 367

as Font Style (Plain). Next, we examine the im- 368

pact of different font types, using five distinct fonts. 369

To simulate real-world scenarios more effectively, 370

we incorporate these fonts into contextual settings 371

(such as tracking numbers and receipts). This ex- 372

periment, conducted on both Chinese and English 373

datasets, is called Font Style (Scene). 374

For hallucinations of font semantics, We ex- 375

amine how MLLMs interpret content when text is 376

presented in four different formatting styles: nor- 377

mal, overlay, highlight, and strikethrough. We refer 378

to this experiment as Font Semantics. 379

We further examine how MLLMs exhibit hallu- 380

cinations of font sentiment when presented with 381

identical content rendered in five different fonts: 382

a visually neutral font (NF), two horror-themed 383

fonts (HF-A, HF-B), and two visually cheerful 384

fonts (CF-A, CF-B)4. We refer to this experiment 385

as Font Sentiment. 386

The hyperparameters for the models used in 387

these experiments remain at their default settings.5 388

3Specific calculation formulas are in the appendix C.
4Figure 8 illustrates the five fonts separately.
5For detailed configuration parameters, please refer to the

website https://huggingface.co.

5
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Figure 3: Results on font variations for text recognition using MLLMs with plain backgrounds.

Model
0-9 0-9 0-9 0-9

ACC NED ACC NED ACC NED ACC NED ACC NED

English Dataset

Qwen2-VL-7B 25.90% 0.48 62.10% 0.56 45.10% 0.45 59.00% 0.31 57.90% 0.33
InternVL-1B 32.00% 0.34 28.70% 0.42 49.80% 0.28 48.50% 0.31 50.10% 0.28
InternVL-2B 23.70% 0.22 25.20% 0.28 45.10% 0.12 41.10% 0.13 42.10% 0.13
InternVL-4B 25.00% 0.31 13.20% 0.41 36.50% 0.28 32.10% 0.31 38.20% 0.27
MiniCPM-V2.6 43.20% 0.10 30.90% 0.23 73.60% 0.05 68.20% 0.05 73.20% 0.05
LLaVA-V1.6-Mistral-7B 0.00% 0.79 0.00% 0.83 0.00% 0.72 0.00% 0.77 0.00% 0.78

Chinese Dataset

Qwen2-VL-7B 75.30% 0.12 62.10% 0.13 80.00% 0.10 83.80% 0.08 84.80% 0.06
InternVL-1B 17.80% 0.42 18.00% 0.52 37.10% 0.36 34.20% 0.38 34.50% 0.38
InternVL-2B 21.70% 0.23 17.60% 0.29 32.10% 0.17 31.70% 0.19 42.10% 0.18
InternVL-4B 42.50% 0.11 44.60% 0.16 69.10% 0.07 63.00% 0.09 62.50% 0.08
MiniCPM-V2.6 41.00% 0.16 25.30% 0.21 65.40% 0.08 66.40% 0.08 64.40% 0.09

Table 2: The effect of font variations on scene text recognition using MLLMs for both English and Chinese datasets.
Bold purple indicates the highest score across five fonts. The fonts from left to right are: Debiao Pen Calligraphy,
FZCYFW, Luxi Mono, Bold Oblique, Liugongquan Calligraphy, and IBMPlexSerif-LightItalic.

Model Normal Overlay Highlight Strikethrough

ACC NED ACC NED ACC NED ACC NED

Qwen2-VL-7B 85.89% 0.12 50.62%− 0.23 86.38%+ 0.11 60.18%− 0.61
MiniCPM-V2.6 90.09% 0.07 50.62%− 0.18 92.68%+ 0.06 75.00%− 0.55
InternVL-1B 76.70% 0.18 39.55%− 0.32 79.11%+ 0.16 52.90%− 0.62
InternVL-2B 77.86% 0.15 39.11%− 0.29 77.23%− 0.13 51.70%− 0.62
InternVL-4B 81.56% 0.12 43.97%− 0.25 82.68%+ 0.10 64.38%− 0.57
LLaVA-V1.6-Mistral-7B 66.25% 0.65 33.26%− 0.73 66.52%+ 0.63 35.89%− 0.84

Table 3: Evaluation of MLLMs for font semantics understanding. − indicates a score decrease relative to Normal,
while + indicates an increase.

Results The experimental results for Font Style389

(Plain) are shown in Figure 3. These findings sug-390

gest that even minor adjustments to a specific font391

dimension, while keeping the textual content un- 392

changed, can significantly impact the recognition 393

performance of MLLMs. The results of the Font 394
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Figure 4: Impact of font variations on sentiment analysis with MLLMs: Example Images in Appendix D.

Style (Scene) experiment, shown in Table 2, indi-395

cate that font style variations can lead to inconsis-396

tent recognition outcomes in MLLMs, even with397

constant textual content. Different MLLMs also398

have varying preferences for specific font styles.399

The results for Font Semantics in Table 3 show400

that highlighting improves MLLMs’ performance,401

while Overlay and Strikethrough reduce recogni-402

tion scores compared to the Normal condition. This403

indicates that certain font-based modifications can404

obscure textual cues, leading to increased halluci-405

nation rates. The Font Sentiment results in Figure406

4 show that cheerful fonts (CF-A/B) boost positive407

recall, while horror fonts (HF-A/B) increase nega-408

tive recall. The Neutral font (NF) yields the highest409

neutral recall for most models, except Qwen2-VL-410

7B and LLaVA-V1.6-Mistral-7B. These findings411

highlight that font variations influence sentiment412

classification in MLLMs, reinforcing the need for413

robustness against font-induced sentiment shifts.414

5.2 Benchmarking of MLLMs using FontHalu415

We evaluated 30 models, including both open-416

source and proprietary advanced MLLMs, on the417

FontHalu benchmark. A detailed list of model418

names and sources can be found in Appendix F.419

Settings Following OCRbench (Liu et al.,420

2024e), the FontHalu benchmark adopts a question-421

answering (QA) format, enabling efficient evalua-422

tion of models’ capabilities. The querying prompts423

for each subtask are as follows: VarRec: "What’s424

the content in the image? Only return the content."425

SemAna: "What’s the {key} in the image? Only re-426

turn the {key}." SentAna: "What emotions do the427

text in the picture express? Choose one from [‘pos-428

itive’, ‘negative’, ‘neutral’]." All model parameters429

remain consistent with their official configurations,430

and API calls follow the same settings as the online431

versions to ensure reproducibility.432

Results The evaluation results on the FontHalu 433

benchmark are summarized in Table 4, where 434

Qwen2-VL-7B achieves the highest score, fol- 435

lowed by Qwen2-VL-2B in second place. Figure 5 436

visualizes the performance differences among the 437

top six models across the three sub-tasks. Notably, 438

substantial variations are observed in the VarRec 439

and SemAna sub-tasks. The Qwen series models 440

demonstrate the best performance in VarRec, while 441

GPT-4o achieves the highest accuracy in SemAna.

VarRec

SemAna

SentAna

Qwen2-VL-7B
Gemini-1.5-Pro

Gemini-Pro-Vision
GPT-4o-2024-08-06

MiniCPM-V-2.6
GML-4V-9B

Figure 5: Comparison of the ACC scores of the top 6
MLLMs across 3 subtasks. Detailed ACC scores of all
models on three subtasks can be found in Appendix E.

442

5.3 Mitigation Strategies 443

We hypothesize that FontHalu in MLLMs arises 444

due to insufficient exposure to diverse fonts during 445

training, leading to poor generalization to unseen 446

fonts. To test this, we use fine-tuning to mitigate 447

FontHalu in this experiment. 448

Settings We first create a training dataset (Same) 449

using 687 fonts that are included in the benchmark, 450

ensuring the model encounters the same fonts dur- 451

ing training and testing. Then we investigate the 452

model’s ability to generalize to unseen fonts. We 453
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Name ACC Name ACC

Qwen2-VL-7B 0.6649 Pixtral-12B 0.4872
Qwen2-VL-2B 0.6558 InternVL2-8B 0.4857
Gemini-1.5-Pro 0.6148 InternVL2-1B 0.4849
Gemini-Pro-Vision 0.5816 InternVL2-2B 0.4798
GPT-4o-2024-08-06 0.5661 CogVLM2-LLaMA3-19B-Chat 0.4616
MiniCPM-V-2.6 0.5601 LLaMA3.2-90B-Vision-Instruct 0.4359
GML-4V-9B 0.5599 Phi3.5-Vision-Instruct 0.4218
Phi-3-Vision-128k-Instruct 0.5527 Ovis1.5-LLaMA3-8B 0.3879
InternVL2.5-1B 0.5517 LLaVA-V1.6-Vicuna-7B-hf 0.3805
InternVL2.5-2B 0.5509 LLaMA3-LLaVA-Next-8B-hf 0.3647
Qwen2-VL-72B-Instruct 0.5499 LLaVA-V1.6-Mistral-7B 0.3597
InternVL2-4B 0.5306 LLaMA3.2-11B-Vision-Instruct 0.2866
InternVL2.5-8B 0.5259 DeepSeek-VL-7B-Chat 0.2339
InternVL2.5-4B 0.5251 InstructBLIP-Vicuna-7B 0.0349
MiniMax-01 0.4910 BLIP-VQA-Base 0.0284

Table 4: Overall performance of MLLMs on benchmark. The scores are arranged in descending order, from top to
bottom, and from left to right.

create two additional datasets: Cluster-200 with454

687 fonts from 200 clusters (excluding benchmark455

fonts) and Cluster-10 (excluding benchmark fonts)456

with 687 fonts from the top 10 clusters. Each font457

in the training sets is used to generate 10 images, re-458

sulting in 6,870 samples per set. During evaluation,459

we first test the models on the benchmark dataset.460

Then, we assess performance on a more diverse test461

set of 10,000 distinct fonts, excluding those used in462

training. All test images are generated with Lorem463

Ipsum text on a blank background6.464

Results The results in Table 5 show that training465

MLLMs with benchmark fonts improves perfor-466

mance, reducing hallucinations. Training with clus-467

tered fonts also helps, indicating the model’s ability468

to generalize across different fonts. However, the469

Qwen2-VL-7B model’s performance drops with470

the Same or Cluster-200 datasets, which may be471

attributed to the model’s parameterization being un-472

suitable for uniform training samples, resulting in473

overfitting to specific font styles. Although font cat-474

egory coverage during training has minimal impact475

on benchmark performance, the table also shows476

that training with 200 font clusters generally results477

in better performance on the test set compared to478

training with only 10 clusters.479

6 Conclusion480

This paper explores font hallucinations in MLLMs,481

investigating their impact across style, semantics,482

and sentiment. To address the lack of dedicated483

evaluation frameworks, we develop the FontHalu484

benchmark, a comprehensive dataset designed to485

6Training parameters are detailed in Appendix G.

Model B-ACC T-ACC

LLaVA-V1.6-Mistral-7B 0.3588 0.0166
Same 0.3866↑ 0.2344
Cluster-10 0.3876↑ 0.2357
Cluster-200 0.3821↑ 0.2466

MiniCPM-V-2.6 0.5576 0.2690
Same 0.5932↑ 0.3995
Cluster-10 0.5923↑ 0.3851
Cluster-200 0.6066↑ 0.4020

Qwen2-VL-7B 0.6649 0.5905
Same 0.6595↓ 0.7244
Cluster-10 0.6671↑ 0.7097
Cluster-200 0.6561↓ 0.7245

Table 5: Performance comparison of MLLMs on
benchmark(B-ACC) and test datasets(T-ACC). Bold de-
notes the highest-performing method under a specific
model, while underlined denotes the second-highest per-
forming method.

assess MLLMs’ robustness to font-induced hallu- 486

cinations. Our extensive experiments reveal that 487

even minor typographic variations can significantly 488

alter model predictions, underscoring the need 489

for greater font awareness in multimodal AI sys- 490

tems. Beyond benchmarking, we explore mitiga- 491

tion strategies by constructing specialized train- 492

ing datasets and applying parameter-efficient fine- 493

tuning techniques. Our results demonstrate that 494

exposure to a diverse set of fonts during training im- 495

proves generalization, reducing hallucination rates. 496

By systematically investigating FontHalu, we pro- 497

vide a foundation for developing more reliable, in- 498

terpretable, and font-aware multimodal large lan- 499

guage models, paving the way for AI systems that 500

perform robustly across diverse typographic con- 501

texts. 502
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Limitations503

This study categorizes FontHalu into three distinct504

types, providing a useful framework for understand-505

ing font-related hallucinations. However, we ac-506

knowledge that this classification may not be ex-507

haustive and could benefit from further exploration508

of additional categories. As font-induced hallu-509

cinations are an emerging research area, further510

studies are needed to refine and expand upon this511

taxonomy.512

Furthermore, although we cluster over 19,000513

fonts and thoughtfully select 1,000 fonts for our514

benchmark, aiming to cover a wide range of typo-515

graphic styles. However, we recognize that even516

with this selection, the full diversity of font styles517

may not be fully captured, and there is potential for518

expanding its scope. Font variations are virtually519

limitless, spanning different scripts, handwritten520

styles, and dynamically generated typefaces, which521

pose additional challenges not addressed in this522

study.523

Additionally, while we explore mitigation strate-524

gies through fine-tuning, our approach does not525

investigate alternative methods such as in-context526

learning, prompt engineering, or reinforcement527

learning, which may offer more effective or gener-528

alizable solutions. Future research could explore529

these techniques to further enhance MLLMs’ ro-530

bustness against font-induced hallucinations.531
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A Details on the Font Clustering735

Algorithm736

To effectively organize and analyze the high-737

dimensional feature vectors of fonts, we adopt a738

two-step approach comprising dimensionality re-739

duction using Uniform Manifold Approximation740

and Projection (UMAP) and clustering using K-741

means. This methodology facilitates the identi-742

fication of representative fonts by leveraging the743

complementary strengths of UMAP’s non-linear744

dimensionality reduction and K-means’ centroid-745

based clustering.746

High-dimensional feature vectors are often chal-747

lenging to visualize and cluster due to the "curse748

of dimensionality" and the complex relationships749

between features. To address this, we employ Uni-750

form Manifold Approximation and Projection751

(UMAP)(McInnes and Healy, 2018), a state-of-the-752

art non-linear dimensionality reduction technique753

known for preserving both local and global struc-754

tures of high-dimensional data (McInnes and Healy,755

2018). Given a set of high-dimensional vectors rep-756

resenting font features:757

X = {x1, x2, . . . , xn}, xi ∈ Rd,758

where n denotes the number of fonts and d rep-759

resents the dimensionality of the feature space,760

UMAP projects these vectors into a lower-761

dimensional space Rm while preserving the topo-762

logical structure:763

f : Rd → Rm, Z = f(X),764

where Z = {z1, z2, . . . , zn} and m ≪ d. UMAP765

constructs a weighted k-nearest neighbor graph766

to model the local relationships between high- 767

dimensional points, optimizing the following cross- 768

entropy objective: 769

C = −
∑
i ̸=j

[pij log qij + (1− pij) log(1− qij)] , 770

where pij is the conditional probability of xi be- 771

ing close to xj in the high-dimensional space, es- 772

timated using a Gaussian kernel. qij is the cor- 773

responding probability in the lower-dimensional 774

space, parameterized as a Student’s t-distribution 775

to better capture local structures. This optimization 776

preserves the local neighborhood continuity while 777

maintaining the global data manifold, thus ensuring 778

that similar fonts are embedded closely together in 779

the reduced space. 780

Following dimensionality reduction, the trans- 781

formed vectors are clustered using K-means, a 782

widely-used centroid-based clustering algorithm 783

that minimizes the within-cluster variance. Specif- 784

ically, the vectors are partitioned into K = 200 785

clusters to capture the diverse stylistic variations 786

present in the font dataset. The objective function 787

of K-means is defined as follows: 788

J =
K∑
k=1

∑
i∈Ck

∥zi − µk∥2 , 789

where:Ck denotes the set of vectors assigned to 790

cluster k. µk is the centroid of cluster Ck, calcu- 791

lated as: 792

µk =
1

|Ck|
∑
i∈Ck

zi. 793

∥·∥ represents the Euclidean distance.The K-means 794

algorithm alternates between the following two 795

steps until convergence: 796

1. Assignment Step: Assign each vector to the 797

nearest centroid: 798

Ck =
{
zi : ∥zi − µk∥2 ≤ ∥zi − µj∥2,∀j, 1 ≤ j ≤ K

}
799

2. Update Step: Recalculate the centroids as the 800

mean of all vectors in each cluster: 801

µk =
1

|Ck|
∑
i∈Ck

zi 802

This iterative procedure continues until conver- 803

gence, yielding 200 distinct clusters. From each 804

cluster, five representative fonts are selected based 805

on their proximity to the cluster centroid, ensuring 806
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Figure 6: Font clustering result diagram.

that the chosen fonts are central and representative807

of their respective clusters:808

Fk = arg min
x∈Ck

∥zi − µk∥ , |Fk| = 5,809

where Fk denotes the set of five representative fonts810

from cluster k. This process yields a total of 1,000811

candidate fonts, providing a diverse yet concise812

benchmark set. Finally, the result of kmeans is813

shown in the figure6.814

B Annotation and Filtering Criteria815

The annotation criteria are as follows:816

1. The bounding box (bbox) should ensure that817

the corresponding keyword is clearly visible,818

facilitating subsequent queries about the con-819

tent within the bbox based on the keyword.820

2. The bounding box should align as closely as821

possible with the original content’s location,822

avoiding discrepancies with the actual key823

content.824

3. When annotating, the size of the bounding box 825

should match the actual content’s dimensions, 826

avoiding excessive cropping or expansion. 827

4. The bounding box should not obscure any cru- 828

cial information, ensuring that all key content 829

is fully presented. 830

The filtering criteria are as follows: 831

1. Images with truncated content are filtered out. 832

2. Images with garbled content, where the corre- 833

sponding font fails to render ASCII characters, 834

are excluded. Images where the content is un- 835

clear or fuzzy (i.e., human-readable keywords 836

are difficult to discern) are removed. 837

3. During the verification process, three review- 838

ers assess the image, and it is only discarded 839

if all three reviewers agree that the content is 840

unreadable. 841

C Evaluation Metrics 842

Here, yi denotes the expected answer with spaces 843

removed and ŷi denotes the generated answer with 844
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spaces removed:845

1. ACC: For each sample:846

Scorei = 1 if yi in ŷi, else 0.847

The overall ACC is:848

Acc(Y, Ŷ ) =
1

N

N∑
i=1

Scorei(yi, ŷi).849

2. NED:850

NED =
1

N

N∑
i=1

EditDistance(yi, ŷi)
max(|yi|, |ŷi|)

851

D Detailed Experiment on Font-based852

Hallucination853

This section primarily provides supplementary de-854

tails for the experiments in Section 5.1.855

In the Font Style (Plain) experiment, Roboto, a856

widely used font from Google Fonts, serves as the857

base font. To isolate the effect of each dimension,858

only one dimension is varied at a time, while the859

others remain at their default values(e.g., size of860

20, weight of 400, alignment as left, spacing as861

0em, slant as 0, and line-height as 1). The canvas862

size is set to 1024x256 pixels. We begin with a set863

of 200 images, each featuring a blank background864

to eliminate layout interference. Each image con-865

tains three lines of text: the first line consists of866

random numbers, the second line contains random867

letters, and the third line features a sentence. For868

each dimension under investigation, variations are869

applied to these 200 base images. The multimodal870

large model’s task is to recognize and extract all871

text content from these images. An example can be872

seen in the top-left corner of the "font variations"873

box in Figure 7.874

In the Font Style (Scene) experiment, we se-875

lect five representative fonts, including both En-876

glish and Chinese styles. The experimental sce-877

narios cover common numerical applications, such878

as tracking numbers, ID cards, invoices, and trans-879

portation permits. We first collect data from the880

aforementioned scenarios, then annotate the data881

with bounding boxes (bbox), removing the origi-882

nal content within the boxes and replacing it with883

new content, restricting it to numerical data to884

eliminate language-related factors. The task is to885

have MLLMs recognize the content within these886

boxes. Finally, we constructed a dataset consist- 887

ing of 2,000 Chinese samples and 2,000 English 888

samples. 889

In the Font Semantics experiment, similar to 890

the Font Style (Scene) experiment, we draw spe- 891

cific content on images from various scenarios and 892

task MLLMs with recognizing the content. The 893

key difference is that the applied content under- 894

goes four random format transformations: normal, 895

strikethrough, overlay, and highlight. We select the 896

Roboto font and generate 2,000 data samples for 897

each format to conduct our exploration. 898

In Font Sentiment experiment, We select 1,000 899

samples from the test set of the Sentiment140 900

dataset and render the text using three font styles: 901

a visually neutral font, a horror-themed font, and 902

a visually cheerful font. Those fonts can be seen 903

in Figure 8. The images are then evaluated by 904

MLLMs to determine which emotion is conveyed 905

by texts in the images. 906

E Detailed Scores on Subtasks of 907

Benchmark 908

The table 6 shows the scores of each subset in 909

the benchmark, including VarRec, SemAna, and 910

SentAna. The scores of each subset can be seen 911

from the table. It can be seen that the highest score 912

of VarRec is the model Qwen2-VL-7B, with an 913

accuracy of 62.80%. There are still many models 914

that do not have the ability to recognize long out- 915

of-order texts, with an accuracy rate below 10%. 916

In the SemAna subset, the main tasks are KIE 917

recognition tasks in the context of documents and 918

invoices. The length of the content to be recognized 919

is not as long as that of the VarRec dataset, so the 920

overall recognition difficulty is relatively low, and 921

the weaker models also have a certain accuracy rate. 922

The highest accuracy rate is also the Qwen2-VL-7B 923

model, with an accuracy rate of 68.19%, beating 924

many models with larger parameters, which also 925

indirectly shows that models with larger parameters 926

are not necessarily more robust to fonts in KIE 927

recognition tasks. 928

F Benchmark Models 929

Table 8 lists all models evaluated in this pa- 930

per，including the ways in which the institution to 931

which the model belongs has acquired it. 932
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Font semantics Font sentiment

Font Style

[Q] What emotions do the text in the picture express? 

Choose one from ['positive','negative','neutral’]

                                                                                                           [G] positive

[Q] What emotions do the text in the picture express? 

Choose one from ['positive','negative','neutral’]

                                                                                                           [G] positive

[Q] What emotions do the text in the picture express? 

Choose one from ['positive','negative','neutral’]

                                                                                                           [G] positive

[Q] What's the TELEPHONE in the image? Only return the TELEPHONE.

[G] 759120329472

[Q] What's the DEPARTMENT in the image? Only return the DEPARTMENT.

[G] Bell, West and Cook Operations Department

[Q] What's the DEPARTMENT in the image? Only return the DEPARTMENT.

[G] Bell, West and Cook Operations Department

[Q] What's the CONTENT in the image?

 Only return the CONTENT.

[G] 25605381501

seOLksVqiRoPa

better latte than never

[Q] What's the Purchase Order No. in 

the image? Only return the Purchase 

Order No.

                                  [G] 8446883583

[Q] What's the IDCard number in 

the image? Only return the IDCard 

number.

                  [G] 662502158563949123

[Q] What's the 

AID in the image? 

Only return the 

AID.

[G] A00014995-

444480

[Q] What's the Road Transport 

Certificate (11-digit Arabic n-

umeral between the characters

and the number) in the image? 

Only return the Road Transp-

ort Certificate (11-digit Arabic

numeral between the characters

and the number).

[G] 4811903444

[Q] What's the Purchase Order No. in the image? 

Only return the Purchase Order No.

                                                 [G] 8888555722

Figure 7: Example images from the font-based hallucination experiment in Section 5.1. [Q] represents the question,
and [G] represents the ground truth.

Figure 8: The fonts used in the images from top to
bottom are Neutral Font, Cheerful Font A, Cheerful
Font B, Horror-themed Font A, and Horror-themed Font
B.

G Training Configuration Details933

We conducted parameter-efficient fine-tuning us-934

ing Low-Rank Adaptation (LoRA) with a935

rank value of 8 on three vision-language archi-936

tectures: LLaVA-1.6-Mistral-7B, MiniCPM-V-937

2.6, and Qwen2-VL-7B. To achieve comprehen-938

sive adaptation of multimodal representations,939

LoRA injections were applied to all linear lay-940

ers—including attention mechanisms and feed-941

forward networks—with a base learning rate of942

1 × 10−5 regulated by cosine decay scheduling 943

and a 10% warmup phase. The training process 944

employed gradient accumulation over 8 steps per 945

device coupled with FP16 mixed-precision arith- 946

metic. The experiments are all conducted on the 947

A100 for both inference and fine-tuning. 948

H Evaluation Samples 949

Here are some benchmark recognition exam- 950

ples 9, 10, 11, 12. Each example shows the answers 951

of 4 models, namely Qwen2-VL-72B, Qwen2-VL- 952

7B, Minicpm-V-2.6 and GPT4o models. 953
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Model VarRec SemAna SentAna
Qwen2-VL-7B 0.6280 0.6819 0.5690
Qwen2-VL-2B 0.6120 0.6798 0.5114
Gemini-Pro-1.5 0.2680 0.6718 0.5315
Gemini-Pro-Vision 0.0480 0.6548 0.5696
GPT-4o-2024-08-06 0.4280 0.5717 0.6702
MiniCPM-V-2.6 0.3640 0.5876 0.5510
Glm-4v-9B 0.3440 0.5850 0.5918
Phi-3-Vision-128k-Instruct 0.1080 0.6244 0.4577
InternVL2.5-1B 0.2160 0.6095 0.4504
InternVL2.5-2B 0.2120 0.6137 0.4136
Qwen2-VL-72B-Instruct 0.3760 0.5637 0.6259
InternVL2-4B 0.1880 0.5855 0.4597
InternVL2.5-8B 0.2080 0.5690 0.5227
InternVL2.5-4B 0.2240 0.5738 0.4599
Minimax-01 0.2533 0.5431 0.3305
Pixtral-12B 0.2960 0.4997 0.5916
InternVL2-8B 0.1480 0.5328 0.4726
InternVL2-1B 0.1320 0.5605 0.2608
InternVL2-2B 0.1160 0.5429 0.3669
CogVLM2-LLaMA3-19B-Chat 0.0840 0.5003 0.5574
LLaMA3.2-90B-Vision-Instruct 0.0840 0.4758 0.4947
Phi3.5-Vision-Instruct 0.1200 0.4513 0.5091
Ovis1.5-LLaMA3-8B 0.1200 0.4156 0.4541
LLaVA-V1.6-Vicuna-7B-hf 0.0120 0.4182 0.4744
LLaMA3-LLaVA-Next-8B-hf 0.0240 0.3953 0.4856
LLaVA-V1.6-Mistral-7B 0.0160 0.3937 0.4567
LLaMA3.2-11B-Vision-Instruct 0.1440 0.3031 0.3077
Deepseek-VL-7B-Chat 0.0760 0.2339 0.4026
InstructBLIP-Vicuna-7B 0.0000 0.0027 0.3285
BLIP-VQA-Base 0.0000 0.0000 0.2844

Table 6: Detailed ACC Scores of MLLMs on Three Subtasks
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Model VarRec SemAna
Qwen2-VL-7B 0.0663 0.2048
Qwen2-VL-2B 0.1206 0.2673
Gemini-Pro-1.5 0.1040 0.2061
Gemini-Pro-Vision 0.3887 0.2468
GPT-4o-2024-08-06 0.0920 0.2821
MiniCPM-V-2.6 0.1017 0.2706
Glm-4v-9B 0.1942 0.7000
Phi-3-Vision-128k-Instruct 0.8270 0.2897
InternVL2.5-1B 0.1776 0.2498
InternVL2.5-2B 0.1777 0.2468
Qwen2-VL-72B-Instruct 0.2001 0.2880
InternVL2-4B 0.2330 0.2852
InternVL2.5-8B 0.1619 0.2611
InternVL2.5-4B 0.1731 0.2603
Minimax-01 0.1225 0.3095
Pixtral-12B 0.1302 0.3307
InternVL2-8B 0.1910 0.4544
InternVL2-1B 0.2390 0.3386
InternVL2-2B 0.2965 0.2826
CogVLM2-LLaMA3-19B-Chat 0.7858 0.8073
LLaMA3.2-90B-Vision-Instruct 0.8038 0.5234
Phi3.5-Vision-Instruct 0.8006 0.4282
Ovis1.5-LLaMA3-8B 0.1671 0.3560
LLaVA-V1.6-Vicuna-7B-hf 0.5810 0.3567
LLaMA3-LLaVA-Next-8B-hf 0.7222 0.4786
LLaVA-V1.6-Mistral-7B 0.8612 0.7885
LLaMA3.2-11B-Vision-Instruct 0.6980 0.6670
Deepseek-VL-7B-Chat 0.5890 0.9248
InstructBLIP-Vicuna-7B 0.9314 0.9122
BLIP-VQA-Base 0.9565 0.9314

Table 7: Detailed edit distance Scores of MLLMs on Two Subtasks
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Model Creator Access
Qwen2-VL-7B Alibaba Weights
Qwen2-VL-2B Alibaba Weights
Gemini-Pro-1.5 Google API
Gemini-Pro-Vision Google API
GPT-4o OpenAI API
MiniCPM-V-2.6 OpenBMB Weights
Glm-4v-9B Zhipu AI Weights
Phi-3-Vision-128k-Instruct Microsoft Weights
InternVL2.5-1B Shanghai AI Lab Weights
InternVL2.5-2B Shanghai AI Lab Weights
Qwen2-VL-72B-Instruct Alibaba API
InternVL2-4B Shanghai AI Lab Weights
InternVL2.5-8B Shanghai AI Lab Weights
InternVL2.5-4B Shanghai AI Lab Weights
Minimax-01 Minimax API
Pixtral-12B Mistral AI API
InternVL2-8B Shanghai AI Lab Weights
InternVL2-1B Shanghai AI Lab Weights
InternVL2-2B Shanghai AI Lab Weights
CogVLM2-LLaMA3-19B-Chat Zhipu AI Weights
LLaMA3.2-90B-Vision-Instruct Meta API
Phi3.5-Vision-Instruct Microsoft Weights
Ovis1.5-LLaMA3-8B Alibaba Weights
LLaVA-V1.6-Vicuna-7B-hf UW–Madison Weights
LLaMA3-LLaVA-Next-8B-hf UW–Madison Weights
LLaVA-V1.6-Mistral-7B UW–Madison Weights
LLaMA3.2-11B-Vision-Instruct Meta API
Deepseek-VL-7B-Chat DeepSeek Weights
InstructBLIP-Vicuna-7B Salesforce Weights
BLIP-VQA-Base Salesforce Weights

Table 8: Models evaluated in this paper
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Qwen2VL-72B:  22570774 QIAUIQU TEVIL OREMIDO EEUQN  ✗

Qwen2VL-7B: 22570774 QIAUIQU TEVIL OREMILDO EEUQN           ✗

MiniCPM-V2.6: 22570774 QIAUIQU TEVIL OREMLDO EEUQN           ✓

GPT4o: 225707774\nçQIAUIQUTEVILOREMLDOU EEUQN          ✗

Qwen2VL-72B: 16451559 etam mdoi UMQNMUA                            ✓

Qwen2VL-7B: 16451559 etam mdoi UMQNMUA                             ✓

MiniCPM-V2.6:   16451559 etam mdoi UMQNNUA                            ✗

GPT4o: 16451559 etam mdoi UMQNMUA                                  ✓

Qwen2VL-72B:   Rapetmo 913331392 lalpcsdi                                      ✗

Qwen2VL-7B: RAPETMO 91331392 IAIPCSDI                                     ✓

MiniCPM-V2.6: RAPETMO 31331392 IAIPESDI                                 ✗

GPT4o:            KAPETMO 91331982 TAIROSVI                                      ✗

Figure 9: Some examples from the VarRec dataset, where the red font shows the inconsistency between the model’s
answer and the correct answer. As shown in the figure, due to changes in font style, there may be some recognition
illusions, such as the presence of confusing characters, such as the ‘L’ character in example 1, which the model may
recognize as ‘I’, and the ‘M’ character in example 2, which may be recognized as ‘N’.
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Qwen2VL-72B: Julie Davis Joshua Williamson            ✗

Qwen2VL-7B:   JULIE DAVIS JOSHUA WILLIAMSON  ✗

MiniCPM-V2.6:  JULIE DAVIS JOSHUA WILLIAMSON ✗

GPT4o:            JOSHUA WILLIAMSON          ✓

Key:  Name right answer:   JOSHUA WILLIAMSON 

Qwen2VL-72B: New London                                            ✗

Qwen2VL-7B:   New Arenton ✗

MiniCPM-V2.6:  Newark ✗

GPT4o:            New Agawam ✗

Key:  City   right answer:   New Aaronton                         

Qwen2VL-72B: 63261571544                                              ✓

Qwen2VL-7B:   63261571544  ✓

MiniCPM-V2.6:  63261571544 ✓

GPT4o:            63261571544          ✓

Key: TELEPHONE right answer:  63261571544                         

Figure 10: An example from the SemAna dataset. In this example, not only will various fonts be introduced, but
also some semantic tasks such as overlay, highlight, and stricthrough will be added. In this case, there are issues
such as confusion between uppercase and lowercase, incorrect recognition of the key as a whole, and errors in
character-level recognition of the key, etc.

Qwen2VL-72B: 2015-01-25                      ✓

Qwen2VL-7B:   2015-01-25                  ✓

MiniCPM-V2.6:  2015-01-25 ✓

GPT4o:            2015-01-25          ✓

Key:  Date     right answer:   2015-01-25  

Qwen2VL-72B: Kevin Narko ✗

Qwen2VL-7B:   Winston & Strawn ✗

MiniCPM-V2.6:  Winston & Strawn ✗

GPT4o:            Thomas Johnson          ✓

Key:  Name    right answer:   Thomas Johnson                         

Qwen2VL-72B: 43659                          ✓

Qwen2VL-7B:   43659  ✓

MiniCPM-V2.6:  43659 ✓

GPT4o:            43659          ✓

Key: No   right answer:  43659                         

Figure 11: Another example from the SemAna dataset: In the name field recognition task in this example, many
models identify incorrect fields and do not account for the interference caused by strikethrough.
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What emotions do the text in the picture express? Choose one from [’positive’,’negative’, ’neutral’]             right answer: positive 

Qwen2VL-72B: The text in the picture expresses a sense of mischief and playfulness, which can be categorized as    
'positive' emotions.               ✓

Qwen2VL-7B:   The text in the picture expresses a negative emotion.  ✗

MiniCPM-V2.6:  Positive. ✓

GPT4o:            Neutral.       ✗

Qwen2VL-72B: The text in the picture expresses a positive emotion. The announcement of a Bok squad and an open   
training session for the public at an iconic stadium like Orlando Stadium suggests excitement and  anticipation for the 
event.              ✗

Qwen2VL-7B:   The text in the picture expresses a positive emotion.  ✗

MiniCPM-V2.6:  The text in the picture expresses a neutral emotion. The content of the message is informational,                   
announcing an event without conveying any particular positive or negative sentiment     ✓

GPT4o:            The text in the picture expresses a neutral emotion.       ✓

What emotions do the text in the picture express? Choose one from [’positive’,’negative’, ’neutral’]   right answer:neutral 

Figure 12: An example from the SentAna dataset. The text content in the example above is "@ TomFoolery23 Yes,
I am the Remus Lupin of werebiers. Just watch out at the next full moon. I may once again attend to steam your
honey...". This sentence references the character Remus Lupin from the Harry Potter series, who is a werewolf. Here,
someone humbly refers to themselves as the ‘werebier version of Lupin’ and enjoyable mentions that they might try
to steam honey during the next full moon. Clearly, it’s a joke with a question. However, some models has identified
a neutral, or even negative sentiment. The text content in the example below is "Book special announcement will be
tomorrow for the Australian tour, open training session for public at Orlando stadium at 15:00 Thursday." This is an
activity description without any specific emotions, and the answer is neutral, but some models answer with positive
emotions.
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