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Summary
In settings where an AI agent sends interventions to nudge a human agent toward a goal,

the AI’s ability to quickly learn a high-quality policy depends on how well it models the hu-
man. Despite overwhelming behavioral evidence that humans hyperbolically discount future
rewards, we continue to model human agents as Markov Decision Processes (MDPs) with
exponential discounting. This is because solving for optimal policies is difficult with non-
exponential discounts. In this work, we find that there does exist an exponential discount factor
that will never miss a necessary intervention–and minimizes unnecessary extra interventions–
even when the real human is hyperbolic. In addition, we demonstrate that when the dynamics
are unknown, using our exponential alternative outperforms correctly modeling the human,
even when the human’s true hyperbolic discount is known.

Contribution(s)
1. Using theory, we connect model misspecification of a hyperbolic human agent as an expo-

nential one to errors in the downstream AI intervention policy.
Context: Prior work in human-AI settings has not studied how misspecifications of the
human agent’s discount affect AI policies. Our analysis is in the context of absorbing state
MDPS (discrete state / action spaces with absorbing reward states) and on interventions of
the human agent’s discount factor. We make simplifying assumptions– about the stochastic-
ity of the transitions, intermediate rewards, and noise in the human policy– which we relax
in our empirical experiments.

2. We prove that the exponential mean hazard rate, γmhr, guarantees no false negatives in the
AI policy. However, it does not minimize AI false positives.
Context: The mean hazard rate (MHR) is an established method for approximating hy-
perbolic human agents as exponential ones (Rambaud & Torrecillas, 2005; Sozou, 1998;
2009). Previously, there were no formal guarantees on how the MHR affects error when
used to model human agents in a human-AI setting. The same context from contribution 1
(about absorbing-state MDPs, theoretical assumptions), apply.

3. We theoretically derive a fixed exponential discount rate, γsafe, for approximating hyperbolic
human agents.
Context: Our theoretical justification relies on the same assumptions as contribution 1.
However, γsafe is as broad as γmhr and is applicable to settings beyond the ones considered
in this paper.

4. In empirical experiments, we demonstrate that (biased) exponential approximations outper-
form (unbiased) hyperbolic ones when the transitions are learned online.
Context: Prior work had not considered how the choice of discount model for the human
agent affects the AI policy. We found that the hyperbolic approximations are unexpectedly
sensitive to online learning settings.

5. We characterize situations where a fixed exponential discount model with γsafe is preferable
to a fixed one with γmhr; we do the same for γsafe vs. updating γ online.
Context: None.
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Abstract

In settings where an AI agent nudges a human agent toward a goal, the AI can quickly1
learn a high-quality policy by modeling the human well. Despite behavioral evidence2
that humans hyperbolically discount future rewards, we model human as Markov De-3
cision Processes (MDPs) with exponential discounting. This is because planning is4
difficult with non-exponential discounts. In this work, we investigate whether the per-5
formance benefits of modeling humans as hyperbolic discounters outweigh the compu-6
tational costs. We focus on AI interventions that change the human’s discounting (i.e.7
decreases the human’s “nearsightedness” to help them toward distant goals). We derive8
a fixed exponential discount factor that can approximate hyperbolic discounting, and9
prove that this approximation guarantees the AI will never miss a necessary interven-10
tion. We also prove that our approximation causes fewer false positives (unnecessary11
interventions) than the mean hazard rate, another well-known method for approximat-12
ing hyperbolic MDPs as exponential ones. Surprisingly, our experiments demonstrate13
that exponential approximations outperform hyperbolic ones in online learning, even14
when the ground-truth human MDP is hyperbolically discounted.15

1 Introduction16

In AI-assisted behavior change, an AI agent intervenes on human agents to influence them toward17
a goal state. For example, in digital interventions, a mobile health application may encourage users18
to do their daily physical therapy. In this paper, we model the human agent’s policy using a Markov19
Decision Process (as in Nofshin et al., 2024; Yu & Ho, 2022; Evans et al., 2016; Mintz et al., 2023).20
Our AI interventions change the human’s discount, or the degree to which they prioritize a faraway21
goal (Scholten et al., 2019). For example, the app may remind the user that following their physical22
therapy routine will enable them to return to a favorite sport. In this setting, it is crucial that the AI23
models the human MDP well enough to plan high-quality interventions.24

The human MDP includes a choice of discount function, which models how humans trade off fu-25
ture and immediate rewards. Behavioral science has overwhelmingly found that humans discount26
hyperbolically , dhyp(t) = 1/1+kt, where k controls the level of discounting (e.g., Myerson & Green,27
1995; Rachlin et al., 1991; Madden et al., 1999). Despite this, in reinforcement learning (RL), works28
on human-AI interaction continue to model humans as exponential discounters, dexp(t) = γt, where29
γ controls the level of discounting (e.g., Giwa & Lee, 2021; Nofshin et al., 2024; Aswani et al.,30
2019; Mintz et al., 2023; Peysakhovich, 2019; Shah et al., 2019; Knox & Stone, 2012). This is31
because planning with exponential discounting is mathematically convenient; it lets us leverage the32
majority of RL tools that depend on the Bellman Equation. On the other hand, planning with hyper-33
bolic discounting is generally intractable and incurs significant computational costs to approximate.34
For example, a hyperbolic MDP may be approximated as the average of exponential MDPs (Fedus35
et al., 2019; Kurth-Nelson & Redish, 2009), but this requires re-solving for the optimal policy un-36
der several different exponential discount rates, γ. Unfortunately, no works have explored whether37
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the policy improvements obtained by representing humans as hyperbolic discounters are worth the38
increase in model complexity, both computational and mathematical.39

In this work, we ask whether there are high-quality alternatives to using hyperbolic discounting;40
in particular, can we cleverly select an exponential discount rate γ such that we still get a high-41
quality AI policy? We theoretically derive an exponential discount rate, γsafe, which ensures the42
AI never misses a necessary intervention when modeling hyperbolic humans in a class of discrete,43
goal-oriented MDPs. Notably, while setting γsafe requires knowledge of the human’s hyperbolic44
discount rate k (which there are surveys to estimate (Kirby et al., 1999; Reynolds & Schiffbauer,45
2004)), it does not require any information about the environment and thus can be easily used in46
practice when the transition dynamics are unknown. Furthermore, it incurs fewer false positives–47
unnecessary interventions to the user– compared to the well-known method of using an exponential48
discount model with mean hazard rate to approximate hyperbolic discount models (Rambaud &49
Torrecillas, 2005; Sozou, 1998; 2009).50

Interestingly, when the AI learns the environment dynamics, we found that an AI planning with an51
exponential discount model always outperforms the hyperbolic one, even when the true human is52
hyperbolic. This is because the hyperbolic model is more accurate at predicting human Q-values,53
but it also causes more false negatives in the downstream AI policy. Furthermore, we found that54
learning γ online had worse performance than fixing it to γsafe, especially in early episodes with less55
data. This work highlights the importance of carefully selecting a human discount model in human-56
AI settings, as different models impose trade-offs in AI planning. We demonstrate that defaulting to57
a hyperbolic discount is unnecessary, since a well-chosen exponential discount rate can outperform58
a hyperbolic one while avoiding its computational and mathematical complexities.59

2 Related Works60

Evidence that humans are hyperbolic discounters. When considering future rewards in a single61
decision, behavioral science has shown that human discount is better captured by hyperbolic, rather62
than exponential, functions (e.g., Myerson & Green, 1995; Rachlin et al., 1991; Madden et al., 1999).63
This is because hyperbolic functions can capture people’s tendency to perform “preference reversal”64
for distant decisions (Myerson & Green, 1995); people who originally prefer a smaller reward sooner65
“flip” to preferring a larger reward later when asked the same question on a more distant timescale.66
Humans demonstrate this behavior in a wide range of tasks (see Story et al. (2014) for a survey).67
However, most of these studies formalize humans as hyperbolic discounters in “one-off” decision68
settings and do not embed these discount models in a sequential decision-making framework (e.g.,69
MDPs). Thus, it remains unclear whether, within the full MDP framework, modeling humans as70
hyperbolic discounters leads to better human-AI interactions. This question is underexplored due to71
the mathematically challenging nature of using non-exponential discount functions in RL planning.72

Reinforcement learning with hyperbolic discounting. Planning with non-exponential discount73
functions is challenging because the Bellman equation no longer holds, and standard dynamic pro-74
gramming solutions cease to apply (Fedus et al., 2019). Despite this, recent works attempt to op-75
timize value functions under non-exponential discounts through approximation (Fedus et al., 2019;76
Ali, 2023; Ali et al., 2024; Kurth-Nelson & Redish, 2009; Schultheis et al., 2022). For example, Fe-77
dus et al. (2019) and Kurth-Nelson & Redish (2009) approximate a hyperbolic Q-function by aver-78
aging over several exponential Q-functions. Recently, Schultheis et al. (2022) proposed an iterative,79
gradient-based solution to learn optimal values for continuous control. All these methods require80
parameter tuning (either the number of samples or the gradient parameters) to approximate the hy-81
perbolic Q-function, yet no work has formally studied how these approximations impact downstream82
tasks in human-AI settings. In this paper, we compare how different approximations, including mod-83
eling the human as an exponential planner, affect the AI’s policy in AI-assisted decision-making.84

Approximating human agents as exponential discounters. RL literature largely models humans85
as exponential discounters (e.g., Giwa & Lee, 2021; Nofshin et al., 2024; Aswani et al., 2019; Mintz86
et al., 2023; Peysakhovich, 2019; Shah et al., 2019; Knox & Stone, 2012). This approach requires87
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specifying a discount rate, γ, a priori. Some works learn a fixed γ from a batch of data (Aswani et al.,88
2019; Mintz et al., 2023), while others fix γ to one that simulates realistic behaviors (Peysakhovich,89
2019). In contrast, we propose a fixed γ that depends only on the human’s hyperbolic discount rate90
k, and no other data or domain knowledge. The economics literature defaults to the mean hazard91
rate (MHR), (e.g., Rambaud & Torrecillas, 2005; Sozou, 1998; 2009). We challenge the MHR as92
the default γ in our setting because it leads to AI policies that over-intervene. Instead of fixing γ93
a-priori, other methods learn it online (e.g., Nofshin et al., 2024; Yu & Ho, 2022; Yu et al., 2024;94
Zhou et al., 2018; Evans et al., 2016). However, these methods do not explore how misspecification95
of the discount model (i.e. the assumption of exponential discounting) affects the AI policy.96

3 Background97

Hazards: Relating Hyperbolic and Exponential Discounting. In MDPs M = ⟨S,A, R, T, d⟩,98
the discount function d(t) devalues future rewards; we may interpret d(t) as the probability of sur-99
viving to timestep t. Exponential discounting takes the form dexp(t) = γt for γ ∈ [0, 1], and100
hyperbolic discounting takes the form dhyp(t) = 1/(1+kt) for k ∈ [0,∞). Note: in exponential101
discounting, a smaller γ is more myopic, but in hyperbolic, a larger k is more myopic.102

Exponential and hyperbolic discounting can be related through the hazard rate, a concept from103
reliability engineering that describes how one’s probability of survival changes over time: h(t) =104
− d

dt ln d(t), where a high hazard corresponds to a sharply decreasing probability of survival. If we105
assume that the hazard rate is constant, then this is equivalent to exponential discounting:106

h(t) = λ → d(t) = exp(−λt) → d(t) = γt, where γ = exp(−λ).

On the other hand, Sozou (1998) proved that if we assume an exponential distribution on the hazard,107
such that p(λ) = (1/k) exp(−λ/k), then this is equivalent to hyperbolic discounting:108

d(t) =

∫ ∞

λ=0

exp(−λt)p(λ)dλ =
1

1 + kt
. (1)

The hazard rate provides a natural way to approximate hyperbolic discounting with an exponential109
one. By setting γ to the mean of the exponential distribution on the hazard (E [λ] = k), we recover110
the well-known mean hazard rate (mhr): γmhr = exp(−k).111

Distractor

Goal

Policy with intervention 
(less discounting of 

future rewards)

AI decides 
whether to 

intervene on 
discount

Policy without intervention 
(myopic discounting, 

prioritizes short term rewards)

Figure 1: In BMRL, human is an MDP.
AI nudges human toward goal by alter-
ing the MDP (e.g. increase the human’s
discount) and changing human policy.

Finally, Eq. (1) provides an estimate of hyperbolic Q-112
values as an expectation over exponential ones:113

Qhyp(s, a; k) = Eγ∼Beta(1/k,1)
[
Q∗

exp(s, a; γ)
]
, (2)

where Q∗
exp(s, a; γ) is the optimal value at state s and ac-114

tion a for an MDP with exponential discounting at γ. We115
elaborate on this relationship in Appendix B.1.116

Behavior Model RL: an AI Agent that Intervenes on117
a Human Agent’s MDP. We study settings where an AI118
agent guides human agents to a goal state. We use the be-119
havior model RL (BMRL) framework from Nofshin et al.120
(2024), where AI actions change the human agent’s MDP121
parameters, as shown in Fig. 1. Throughout, unless sub-122
scripted with “AI ,” entities belong to the human agent. In123
BMRL, the AI actions are interventions that cause tem-124

porary changes to the human agent’s MDP parameters; following an AI intervention, the human125
MDP changes from M to M′, then reverts to M the next time-step. We consider a binary action126
space: the AI either intervenes on the human’s discounting to make them more farsighted (aAI = 1)127
or does nothing (aAI = 0). Explicitly, if the AI intervenes = 1, then the human’s MDP changes128
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from M = ⟨S,A, R, P, k⟩ to M′ = ⟨S,A, R, P, k′⟩, where the only difference is to make the the129
hyperbolic discount factor more farsighted, from k to k′ = k − δk. Here, δk is the change to the130
discount factor.131

Because the AI agent’s actions change the human’s MDP, the AI must model it as part of its132
environment, including choosing a human discount model. Formally, the states SAI is the133
same as the human states, but includes the human’s action from the last timestep α, so that134
sAI = [s, α]. This allows the transitions factorize into two distributions: PAI(s′AI |sAI , aAI) =135
P (s′|s, α′)π(α′|s, aAI), where π(α′|s, aAI) is the effect of the AI intervention on the human’s ac-136
tion, and P (s′|s, α′) is the effect of the human action on the next state. Note that π depends on the137
human MDP M′ that results from an AI intervention aAI .138

4 Problem Setting and Formulation139

Setting: Absorbing state MDPs. Our human agents act in a discrete class of MDPs that represent140
the behavior change setting. There are N absorbing state, and s(n) refers to the nth absorbing state.141
One of the absorbing states, s(N), is the “goal” state (e.g. doing physical therapy). The remaining142
s(1), . . . , s(N−1) absorbing states are “distractors” (e.g. watch TV instead). The reward at the goal143
state r(N) = 1 is larger than all others r(1), . . . , r(N−1) ∈ (0, 1). Even though the goal reward is144
largest, the human agent may still choose the distractor for its proximity. Finally, a per-timestep145
reward rb < 0 represents the burden of behavior change (Baumeister & Vohs, 2007; Nofshin et al.,146
2024), and incentivizes the human agent to settle for nearby absorbing states.147

Absorbing state MDPs are general and encapsulate several worlds from the literature, such as the148
“donut world” from Evans et al. (2016); Peysakhovich (2019), “big-small” from Ankile et al. (2023),149
and the “chain world” from Nofshin et al. (2024). See Appendix D.2 for in-depth examples.150

Problem formulation: Approximating Hyperbolic Human MDPs for High-Quality AI Inter-151
ventions. Following behavioral science, our true human agents discount hyperbolically. The AI152
agent intervenes on the human agent’s MDP to help them reach the goal. We focus on AI inter-153
ventions that target the human’s discounting, so that when aAI = 1, γ increases to γ′ = γ + δγ154
or k decreases to k′ = k − δk, depending on whether the AI assumes a hyperbolic or exponential155
discount. Note: δk, δγ > 0 are changes to the discount factor, also called the intervention effect.156

We aim to understand how misspecifications of the discount model impact the optimal policies of the157
AI agent. Specifically, we study differences in AI policies arising from approximating hyperbolic158
human agents as exponential ones; cases where πAI

exp(s; γ) ̸= πAI
hyp(s; k), for some s ∈ SAI . Here,159

πAI
exp(·; γ) is an AI policy that uses an exponential discount model of the human with parameter γ.160

In our AI assisted behavior change setting, false negatives (missing necessary interventions) are161
more harmful than false positives (delivering unnecessary interventions). Missing an intervention162
means the human will not accomplish their behavioral goal of physical therapy to regain full mo-163
bility, while excessive interventions ensure goal achievement but annoy the user. Formally, false164
negatives are cases where the hyperbolic AI policy intervenes but the exponential AI policy with-165
holds:166

FNs(γ, k) = I
{
πAI

hyp(s; k) = 1 and πAI
exp(s; γ) = 0

}
. (3)

Here, I {·} is the indicator function. Likewise, false positives are cases where the hyper-167
bolic AI agent withholds intervention but the exponential AI agent intervenes: FPs(γ, k) =168

I
{
πAI

hyp(s; k) = 0 and πAI
exp(s; γ) = 1

}
.169

Goal #1: identify an exponential approximation of the hyperbolic human that guarantees no170
false negatives and minimizes false positives in AI policy. In section 5, we identify γs that solve171
the following optimization problem:172

min
γ

∑
s∈S

FPs(γ, k), s.t.
∑
s∈S

FNs(γ, k) = 0. (4)
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Goal #2: identify the best approximation (exponential or otherwise) of the human’s discount-173
ing function when learning the AI policy online. In most real-life settings, the transition dynamics174
of the behavior change setting are unknown. In section 6, we perform empirical experiments that175
compare approximate discount models when transitions are learned online.176

5 Theoretical Analysis177

We identify solutions to the optimization problem in Eq. (4), which ensures the AI will not miss178
necesssary interventions while minimizing uncessesary ones. First, we characterize which γs guar-179
antee no false negatives in the AI intervention policy. Then, we prove that the larger the γ, the fewer180
the false positives. We use this fact to propose two solutions for γ that require different levels of181
knowledge. One is a state-specific γ, which relies on knowledge of the environment transitions and182
human’s hyperbolic discount rate k. The other solution still requires k but does not assume knowl-183
edge of the environment transitions. 1 For brevity, our analysis focuses on the choice between the184
goal state and only a single distractor state. When multiple distractors exist, only the highest-valued185
distractor is relevant, so this reduces to the same pairwise comparison.186

5.1 Guaranteeing No False Negatives187

We characterize exponential discount rates that guarantee no false negatives. Intuitively, to prevent188
false negatives, we want our exponential approximation to be “conservative,” meaning it under-189
estimates the human’s preference for the goal state. This way, we never miss an intervention by190
incorrectly assuming that the human agent’s policy will reach the goal without intervention. Defini-191
tion 1 formally defines a “conservative” exponential approximation; whenever the hyperbolic agent192
values a distractor state over the goal state, the exponential agent must also prefer the distractor.193

Definition 1 (Conservative exponential approximation). Let π(n) refer to a policy whose actions194
lead to absorbing state s(n) and V (n) refer to the value of following this policy. Suppose the human195
agent is hyperbolic with discount rate k. An exponential approximation of the agent is conserva-196
tive if, for all states s ∈ S where the hyperbolic agents prefers the distractor state V

(n)
hyp (s; k) ≥197

V
(N)

hyp (s; k), the exponential agent also prefers the distractor state V
(n)

exp (s; γ) ≥ V
(N)

exp (s; γ).198

In order for a conservative exponential approximation to guarantee no false negatives, the AI must199
also assume that the intervention effect, δγ , is sufficiently large. Under a conservative γ, the AI200
always recognizes when the human prefers the distractor and thus never misses opportunities to201
intervene. However, it may still withhold intervention if the effect is too weak to alter the outcome.202
The simplest way to ensure δγ is sufficiently large is to assume maximal effectiveness; δγ = 1− γ.203
In Theorem 2, we prove that an exponential approximation using a conservative γ and δγ = 1 − γ204
implies no false negatives in the AI intervention policy.205

Theorem 2 (Conservative means no false negatives). Let the true human agent discount hyper-206
bolically with parameter k and that AI interventions reduce this parameter by δk. If the AI agent207
plans using an exponential approximation with conservative γ (under Definition 1) and maximal208
intervention effect δγ = 1− γ, then there are no false negatives:

∑
s∈S

FNs(γ, k) = 0.209

Proof. In Appendix A.1, we present a proof by contradiction.210

Solving for a conservative exponential discount rate γ. We now characterize what γ’s are con-211
servative (and by extension of Theorem 2, what γ’s guarantee no false negatives). To facilitate our212
theoretical characterization, we make three assumptions: the transitions of the MDP are determin-213
istic, there is no burden (intermediate rewards), and human policies are deterministic. Later, in214
Section 6, we demonstrate that our results hold empirically when the assumptions are relaxed.215

1In psychology, there are known ways to estimate a human’s k, such as the Monetary Choice Questionnaire survey Kirby
et al. (1999)
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Under the above assumptions, we derive closed-form solutions to value functions in absorbing state216
MDPs. Let ℓ(n) refer to the length of the path from state s to absorbing state s(n) under deterministic217
policy π(n). Then the value functions for hyperbolic and exponential discounting are:218

V
(n)

hyp (s; k) =
1

1 + k(ℓ(n) − 1)
r(n) V (n)

exp (s; γ) = γℓ(n)−1r(n). (5)

In Theorem 3, we leverage these closed-form solutions to derive conditions under which γ guaran-219
tees a conservative approximation.220

Theorem 3 (Characterizing conservative γ). Suppose the true human agent discounts hyperbolically221
with parameter k. Suppose the distractor state s(n) has reward r(n). Let ℓ(n) refer to the length of222
the deterministic path from state s ∈ S to s(n). Let ∆ = ℓ(N) − ℓ(n) ≥ 1 refer to the difference223
in distance between the goal and distractor state. If the exponential agent uses a discount rate of γ224
satisfying the following, then the exponential agent is a conservative approximation:225

γ ≤
(

1 + kℓ(n) − k

1 + kℓ(n) + k∆− k

) 1
∆

, (6)

Proof. Algebraic derivation in Appendix A.2.226

5.2 Minimizing False Positives227

Ruling out false negatives alone does not ensure good AI policies. We must also minimize false228
positives, which occur when the AI intervenes even though the human agent would have reached the229
goal state without intervention. This scenario involves three conditions (details in Appendix C.3):230

C1 The true hyperbolic agent with discount k prefers the goal.231

C2 The exponential approximation with discount γ prefers the distractor.232

C3 The exponential approximation under intervention with discount γ + δγ prefers the goal.233

Using the above, we can formalize which parameters will cause a false positive. C2 implies234
V

(n)
exp (s; γ) ≥ V

(N)
exp (s; γ). C3 implies that V

(n)
exp (s; γ + δγ) < V

(N)
exp (s; γ + δγ). C1 can be235

ignored because the exponential approximation does not affect it. Together, C2 and C3 imply:236
(γ + δγ)

ℓ(n)−ℓ(N) ≤ r(N)
/r(n) ≤ γℓ(n)−ℓ(N)

. Our choice of γ affects how often this condition is met.237
We define the “broadness” of the condition as a function of γ, which we call the false positive range:238

FPrange(γ) = γℓ(n)−ℓ(N) − (γ + δγ)
ℓ(n)−ℓ(N)

. (7)

The larger FPrange, the more false positives, because there is greater chance that a given combina-239
tion of rewards (r(n

∗), r(N)) will trigger the condition. In Theorem 4, we show that FPrange is a240
decreasing function of γ. This implies that larger γ minimize false positives.241

Theorem 4. Let ℓ(n) and ℓ(N) refer to the length to distractor and goal state from state s. Consider242
two exponential approximations, which use discount rates γ1 and γ2. Both approximations assume243
the same intervention effect, δγ . If γ1 > γ2, then FPrange(γ1) < FPrange(γ2).244

Proof. In Appendix A.4, we take the derivative of FPrange.245

5.3 Solutions246

In Section 5.1, we proved γ must be small enough to avoid false negatives, and in Section 5.2 we247
proved that larger γ result in fewer false positives. This implies a natural solution to our optimization248

problem in Eq. (4); we set γ to be the largest value in Eq. (6), so that γs =
(

1+kℓ(n)−k
1+kℓ(n)+k∆−k

) 1
∆

. How-249

ever, setting γs relies on distances to the goal and distractor, which are derived from the transition250
dynamics. However, we may not have access to the transition dynamics for real-world applications.251
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Figure 2: Comparison of the state-specific γs, the
mean hazard rate γmhr, and our proposed γsafe as a
function of k. MHR is always smaller than ours.

An exponential approximation, γsafe, that252
only requires k. Instead requiring access to253
transitions, we lower bound γs by assuming the254
“worse-case” values of ∆ = 1 and ℓ(n) = 1.255
This reduces to an exponential discount rate of256

γsafe =
1

1 + k
. (8)

Since γsafe ≤ γs, it is conservative and guaran-257
tees no false negatives (see Appendix A.3).258

The mean hazard rate is strictly worse (more259
false positives). Our theory allows us to ana-260
lyze an exponential approximation with rate set261

to γmhr = exp(−k). Since γmhr < γsafe (shown in Appendix C.2), it guarantees no false negatives,262
but it also incurs more false positives.263

6 Empirical Analysis264

When learning online, our decision to approximate hyperbolic humans as exponential reduces vari-265
ance but increases bias, which means that the AI can guide users to their goals faster at the long-term266
cost of sending more interventions. Our experiments test whether this trade-off is worthwhile, es-267
pecially compared to the low bias, high variance alternative of using a hyperbolic approximation,268
which will take longer to help users reach their goals. Furthermore, our experiments relax assump-269
tions of the theory to test its generalizability: the transitions are unknown, the efficacy of the AI270
intervention varies for each human, there is burden, and humans are not deterministic. Results with271
stochastic transitions are in Appendix D.3.1 (omitted because main results remain unchanged).272

Experimental setup. The experiments are in randomly sampled absorbing state MDPs with 8−20273
states and 2 actions. The deterministic transitions are sampled from a categorical distribution. We274
filter for valid transitions where every absorbing state is reachable from any state. There is one275
distractor state with reward r(n) ∼ Unif(0.1, 0.5), a goal state with reward r(N) = 1 and burden276
rb ∼ Unif(-0.5, -0.01). Human agents are hyperbolic with discount k ∼ Unif(0.1, 5). Interventions277
decrease this by δ ∼ (0.09, k). Following precedent in modeling humans as “Boltzmann rational,”278
actors (e.g., Reddy et al., 2018; Laidlaw & Dragan, 2022), our human agents follow stochastic279
softmax policies with a small temperature τ = 0.02, which ensures they can reach the goal under280
the oracle AI policy (if the human is too random, even good AI policies will not help). The AI281
agent receives a reward of 1 when the human agent enters the goal, −1 at a distractor, and −0.1 for282
intervening. Episodes start in states where the optimal AI policy is to intervene.283

Baselines for modeling the human agent. Table 1 describes our baselines. All methods except284
the oracle estimate the transitions, by normalizing the observed counts of transitions (MLE). AI ac-285
tions are selected according to an ϵ-greedy policy with ϵ = 0.1; interventions are random 10% of286
the time and maximize the optimal value function under the estimated transitions for the remaining287
(certainty-equivalence RL). The hyperbolic baseline in our main experiments use Monte-Carlo esti-288
mation with 500 samples to approximate the expectation in Eq. (2), but we also compare alternate289
approximation methods in our experiments. We include the fixed-γbig baseline to demonstrate what290
happens when an exponential model with a discount factor larger than ours is used (the value of γ is291
clipped at 0.99). Always-intervene is a naive strategy that intervenes every timestep.292

6.1 Results293

Approximation error in the hyperbolic method means AI policies fail to intervene when294
needed. Surprisingly, in Fig. 3a, the exponential methods outperform the hyperbolic approxima-295
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Table 1: Experimental baselines, which differ in their model of the human’s discount

Baseline Transitions Discount model Intervention

oracle True T True hyperbolic k True δk
hyp-mcmc (Fedus et al., 2019) Learned Hyperbolic approx. Eq. (2) True δk

fixed-γsafe Learned Exponential, fixed to 1/1+k Max
fixed-γmhr Learned Exponential, fixed to exp(−k) Max
fixed-γbig Learned Exponential, fixed to γsafe + 0.2 Max

learning-γ (Nofshin et al., 2024) Learned Exponential, γ is learned δγ learned
always-intervene – – –
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Figure 3: Hyperbolic approximation (green) predicts the human value well, but leads to more
false negatives and worse AI policies. Error bars are 95% CI over 5000 trials (1000 random MDPs,
5 runs each). First row is error in human value prediction, second row is error in AI policy.

tion, even though the true human is hyperbolic. The poor performance of the hyperbolic approxima-296
tion is due to the variance of learning the transitions; with true transitions, its performance matches297
the oracle. What causes the hyperbolic approximation to have low rewards when learning the tran-298
sitions? In Fig. 3b and Fig. 3c, the hyperbolic approximation better predicts human value functions,299
which means it is generally better at anticipating user intentions. But, in Fig. 3d, we see the few user300
misunderstandings it does make lead to more false negatives in the AI policy (i.e. assumes the user301
prefers the goal state when they do not).302

Our γsafe strikes the right balance of minimizing false negatives and avoiding false positives in303
the AI policy. Our theory indicates that γsafe and γmhr will prevent false negatives in the AI policy304
when the transitions are known, meaning an AI policy that uses γsafe or γmhr will intervene enough305
to get the user to the goal state. Fig. 3d and Fig. 3e shows that our theory generalizes to when the306
transitions are learned; fixed-γsafe and fixed-γmhr learn AI policies with the fewest false negatives–307
meaning they help user reach the goal more consistently– but fixed-γsafe has fewer false positives–308
meaning it is less likely to annoy the user. Naturally, one might wonder how fixed-γsafe and fixed-309
γmhr compare to the strategy of always intervening, which has a false negative rate of 0. Though310
not shown in Fig. 3e for visualization reasons, the always-intervene baseline has a false-positive311
rate of 0.8, much higher than even that of fixed-γmhr at 0.075. As a result of over-intervening, the312
always-intervene baseline overburdens the human and has low overall reward in Fig. 3a.313

Finally, fixed-γbig demonstrates that fixed-γsafe is not too big. The fixed-γbig baseline incurs more314
false negatives than fixed-γsafe and lower overall reward in Fig. 3 (this difference is more apparent315
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Figure 4: Gap between fixed-γsafe and fixed-γmhr is bigger for larger k (humans are more my-
opic). Fig. 4a shows reward difference, averaged over all episodes, increases with k. Dotted line is
γsafe − γmhr. Fig. 4b shows fixed-γmhr intervenes more than fixed-γsafe .

when humans are optimal in Appendix D.3.2). Thus, we see that γsafe is “just right”; it is conservative316
enough to intervene on the human when the goal is at stake, but big enough to avoid over-intervening.317

The fixed-γmhr baseline over-intervenes more severely on human agents that are more myopic.318
Our theory indicates that γmhr is always smaller than γsafe for humans with the same k, meaning319
fixed-γmhr will intervene more on a given user. This is why fixed-γsafe outperforms fixed-γmhr in320
Fig. 3a. This performance gap increases for larger k (see Fig. 4a), as the difference in γs– and321
therefore the difference in false-positives– also increases between the two methods (see Fig. 4b).322
For small enough k in Fig. 4a, fixed-γmhr outperforms fixed-γsafe . However, this describes a setting323
in which the human is already far-sighted, which is less relevant in practice, since far-sighted users324
are unlikely to need help prioritizing faraway goals.325

Fixing γ is better than learning it when the inductive bias aligns with the true environment.326
When a small γ accurately models the human’s behavior, fixed-γsafe outperforms learning-γ by327
avoiding the cost of learning. For example, a small discount such as γsafe is plausible when the goal328
is close, because the human agent must be more myopic to prefer the distractor reward. Fig. 5b329
confirms that the likelihood of the γsafe is higher when the goal is close, and correspondingly, the330
advantage of fixed-γsafe is more pronounced in Fig. 5a. The fact that fixed-γsafe does worse as the331
goal grows more distant (and γsafe no longer models the MDP well) suggests that a good strategy332
may be to use γsafe as a prior, and then learn a more likely γ as more data becomes available.333

When the transitions are unknown, regardless of the approximation method, the hyperbolic334
model has worse performance and worse computational efficiency than exponential. Mod-335
eling hyperbolic agents requires approximating the expectation over exponential Q-values from336
Eq. (2). The better the approximation, the better the AI’s model of the human. Thus far, our ex-337
periments have demonstrated that an MCMC approach with 500 samples is insufficient for good338
performance. Fig. 6 further illustrates that fixed-γsafe outperforms a hyperbolic approximation re-339
gardless of the method used. Fig. 6b demonstrates that increasing the number of samples does not340
help, because the hyperbolic methods are still sensitive to the quality of estimated transitions. Over-341
all, hyp-mcmc consumes several orders of magnitude more computation (Fig. 6c) while still failing342
to meet the performance of fixed-γsafe managed with no prior engineering effort.343

7 Discussion and Future Work344

Estimating k. In this work, we investigated the impact of approximating hyperbolic humans as345
exponential discounters on AI intervention policy. We proposed an exponential discount rate, γsafe,346
whose initialization does not depend on knowledge of an absorbing-state MDP’s transitions, but347
does require knowledge of the human’s hyperbolic discount rate, k. In practice, k can be estimated348
using known surveys (Kirby et al., 1999), and an interesting future direction to study the extent to349
which surveys can provide accurate measures for k for AI agent planning. Furthermore, we note350
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Figure 5: Gap between fixed-γsafe and learning-γ is bigger when goal is close; γsafe provides
appropriate inductive bias. Fig. 5a shows reward differences, averaged over first 40 episodes,
decreases when goal is farther. Fig. 5b shows smaller γ’s, e.g. γsafe (red) and γmhr (blue), are more
likely when goal is close. Fig. 5c shows that γ from learning-γ is bigger than γsafe when goal is far.
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Figure 6: Hyperbolic approximations, regardless of method and number of samples, perform
worse than fixed-γsafe and are orders of magnitude more computationally expensive. In Fig. 6,
no approximation method (defined in Appendix D.1) matches the performance of fixed-γsafe . In
Fig. 6b, increasing the number of samples has diminishing returns when learning transitions (dashed
line is given true transitions). Fig. 6b shows the runtime cost of increasing samples per timestep.

that needing an estimate for k is not a unique limitation of our method – estimating k is necessary351
even when using a fully hyperbolic model or the mean hazard rate.352

Generalization to other human-AI interaction paradigms. In our AI intervention setting, we353
found that exponential methods outperformed the hyperbolic approximators, even when human354
agents were truly hyperbolic. This raises questions about whether careful selection of the expo-355
nential discount γ can match– or even surpass– the performance of hyperbolic approximation in356
other human-AI interaction settings. For example, in inverse reinforcement learning, the goal is357
to infer the human’s other MDP parameters, such as the reward. Recent work has started to ex-358
plore inverse learning under non-exponential discounts (Yao et al., 2024), but it is worth considering359
whether there is an exponential discount rate that would suffice.360

Beyond absorbing state MDPs. Our results are on absorbing state MDPs, where there is one361
absorbing goal state and multiple distractor states. Although this class of MDPs covers several362
worlds considered in recent literature, they do not encompass all the behavior settings we might363
want to study. It would be interesting to see how our proposed γ = 1/1+k, which we derived364
specifically for absorbing state MDPs, generalizes to worlds outside of this class, such as ones with365
more complex intermediate rewards than burden.366

Preference reversal. While we considered hyperbolic discount in our MDPs, we did not include367
preference reversal in our formalization. To do so, we would have to incorporate replanning, since368
preference reversal occurs because the agent has a time dependent policy; the policy in one timestep369
(i.e., looking far into the future) is different from the policy in the other (i.e., considering the “now”).370
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For example, Yu & Ho (2022) implement replanning by changing the definition of value functions;371
they account for value at a current and future timestep. Modeling pre-commitment would allow372
us to consider more AI interventions, such as pre-commitment, where humans are encouraged to373
“pre-commit” to a goal-preferring policy (e.g., Yi et al. (2019)). It is unclear whether it is possible374
to plan pre-commitment interventions when the AI uses an exponenital human model.375

Conclusion. In this paper, we addressed a mismatch in how human decisions are modeled in be-376
havioral science (as hyperbolic discounters) and RL (as exponential discounters). We examined the377
extent to which humans’ hyperbolic discounting is approximated by a carefully chosen exponential378
discount model. In our intervention setting, we found that hyperbolic approximations of the human379
agent led to worse AI policies than an exponential one using out theoretically-justified discount rate,380
γsafe. We also showed that γsafe is as general as the well-known γmhr, but with fewer false positives,381
leading to decreased unnecessary interventions that could have adverse impacts (such as unneces-382
sarily irritating human users, potentially leading to disengagement with the RL interventions). This383
highlights that defaulting to a hyperbolic model is not the best strategy, particularly given its ad-384
ditional computational costs, and we encourage AI researchers who work with human agents to385
evaluate the trade-offs between different exponential models (including γsafe) and a hyperbolic one386
in their specific applications.387

A Appendix388

A.1 Proof for Theorem 2: conservative γ means no false negatives389

We proceed by contradiction. Let γ be a conservative exponential approximation. By definition390
of the conservative exponential approximation, we have that V (n)

hyp (s; k) ≥ V
(N)

hyp (s; k) under no391

intervention, implies V (n)
exp (s; γ) ≥ V

(N)
exp (s; γ)– i.e. when the ground-truth hyperbolic agent prefers392

the distractor state, so does the exponential approximation.393

Suppose that the exponential approximation by γ results in a false negative at s (in Eq. (3)). By the394
definition, we must have that: πAI

hyp(s) = 1 and πAI
exp(s) = 0. It follows from the assumption that γ395

is conservative that πAI
hyp(s) = 1 =⇒ V

(n)
hyp (s; k) ≥ V

(N)
hyp (s; k) =⇒ V

(n)
exp (s; γ) ≥ V

(N)
exp (s; γ).396

There are two cases that πAI
exp(s) = 0 could be true:397

1. Suppose πAI
exp(s) = 0 because V

(n)
exp (s; γ + δγ) ≥ V

(N)
exp (s; γ + δγ). But, by assumption we have398

γ + δγ = 1. This means that V (n)
exp (s; γ + δγ) ≥ V

(N)
exp (s; γ + δγ =⇒ r(n) ≥ r(N). However,399

by our problem formulation in Section 4, we must have r(n) < r(N). So, this case does not hold.400

2. Suppose πAI
exp(s) = 0 because V

(n)
exp (s; γ) < V

(N)
exp (s; γ). Recall that we had V

(n)
exp (s; γ) ≥401

V
(N)

exp (s; γ). Thus, we have a contradiction, and this case does not hold.402

Both cases cannot hold, thus it must be that πAI
exp(s) = 1.403

A.2 Proof for Theorem 3: characterizing conservative γ404

By construction, the ground truth hyperbolic agent prefers the distractor state, i.e. V
(n)

hyp (s) ≥405

V
(N)

hyp (s). Using the definition of hyperbolic value functions in Eq. (5), we solve the inequality406

for a constraint on the reward at the distractor state, r(n):407

V
(n)

hyp (s) ≥ V
(N)

hyp (s)

=⇒ r(n)

1 + kℓ(N) − k
≥ r(N)

1 + kℓ(n) − k
Using Eq. (5)

=⇒ r(n) ≥ r(N)

(
1 + kℓ(n) − k

1 + kℓ(N) − k

)
. (9)
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Similarly, we solve for the constraint on the distractor state reward in exponential value functions:408

V (n)
exp (s) ≥ V (N)

exp (s) =⇒ γℓ(n)−1r(n) ≥ γℓ(N)−1r(N) =⇒ r(n) ≥ γℓ(N)−ℓ(n)

r(N). (10)

We want a γ such that a hyperbolic agent’s preference of the distractor state implies that the expo-
nential agent will prefer the same. Relating this to Eq. (9) and Eq. (10), we want to show that

r(n) ≥ r(N)

(
1 + kℓ(n) − k

1 + kℓ(N) − k

)
=⇒ r(n) ≥ r(N)γℓ(N)−ℓ(n)

.

It suffices to show that r(N)
(

1+kℓ(n)−k
1+kℓ(N)−k

)
≥ r(N)γℓ(N)−ℓ(n)

. Solving this inequality for γ:409

r(N)

(
1 + kℓ(n) − k

1 + kℓ(N) − k

)
≥ r(N)γℓ(N)−ℓ(n)

=⇒ γ ≤
(

1 + kℓ(n) − k

1 + kℓ(n) + k∆− k

) 1
∆

. (11)

A.3 Proof that γsafe ≤ γs410

We show that γsafe ≤ γs, meaning that γsafe is conservative (i.e. guarantees no false negatives). First,411
note that γs is increasing with respect to ℓ(n). The derivative of γs with respect to ℓ(n) is:412

k

∆︸︷︷︸
(a)

(
1 + k(∆ + ℓ(n) − 1)

1 + k(ℓ(n) − 1)

)(1− 1
∆ )

︸ ︷︷ ︸
(b)

(
∆k

(1 + k(∆ + ℓ(n) − 1))2

)
︸ ︷︷ ︸

(c)

(12)

Part (a) > 0 because k ≥ 0 and ∆ > 0. Part (b) > 0 because ℓ(n) ≥ 1 and all the other terms are413
positive. Part (c) > 0 for the same reason. So, we know the function is increasing with respect to414
ℓ(n). Since γs is increasing with respect to ℓ(n), we can lower bound it by substituting the lowest415
possible value of ℓ(n) = 1. Note that if ℓ(n) = 0, then the agent would be in an absorbing state.416

The value of γs is then: γs ≥
(

1
1+k∆

) 1
∆

. Again, the derivative shows that this increases with ∆:417

∂

∂∆

(
1

1 + k∆

) 1
∆

= − 1

∆2︸︷︷︸
(a)

(
1

1 + k∆

) 1
∆

+1

︸ ︷︷ ︸
(b)

(k∆+ (1 + k∆) log(1/1+k∆))︸ ︷︷ ︸
(c)

.

Since k ≥ 0 and ∆ > 0, term (b) is positive and term (a) negative. So, we show that term (c) ≤ 0:418

k∆+ (1 + k∆) log(1/1+k∆) ≤ k∆+ (1 + k∆)

(
1

1 + k∆
− 1

)
= 0 (13)

So, γs increases with ∆. Again, we can fill in the smallest possible ∆ = 1, so that γs ≥ 1
1+k . Thus,419

γs =

(
1 + kℓ(n) − k

1 + kℓ(n) + k∆− k

) 1
∆

≥
(

1

1 + k∆

) 1
∆

≥ 1

1 + k
= γsafe. (14)

A.4 Proof for Theorem 4: FPrange is a decreasing function of γ420

We want to show that FPrange is decreasing over γ ∈ [0, 1]. Consider the derivative:421

FP ′
range(γ) = (ℓ(n) − ℓ(N))γℓ(n)−ℓ(N)−1 − (ℓ(n) − ℓ(N))(γ + δ)ℓ

(n)−ℓ(N)−1 (15)

= (ℓ(n) − ℓ(N))︸ ︷︷ ︸
(a)

(
1

γℓ(N)−ℓ(n)+1
− 1

(γ + δ)ℓ(N)−ℓ(n)+1

)
︸ ︷︷ ︸

(b)

. (16)

Part (a) is negative because ℓ(N) > ℓ(n) by definition. Part (b) is positive because the left side422
denominator is smaller than right one, i.e. the left side term is larger than the right. So, the derivative423
FP ′

range(γ) < 0, i.e. the size of the false-positive range decreases as γ increases.424
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Supplementary Materials523

The following content was not necessarily subject to peer review.524

525

B Background details526

B.1 Linking hyperbolic and exponential Q-values527

Here, we elaborate on the result from Fedus et al. (2019) that hyperbolic Q-values can be approxi-528
mated as an expectation over exponential Q-values:529

Qhyp(s, a; k) = Eγ∼Beta(1/k,1)
[
Q∗

exp(s, a; γ)
]
. (17)

Starting with Eq. (1), we apply a change of variables γ = exp(−λ) which relates the survival530
probability γ with the hazard λ.531

dhyp(t; k) (18)

=

∫ ∞

λ=0

1

k
exp(−λ(t+ 1/k))dλ From Eq. (1) (19)

=

∫ 0

γ=1

1

k
×−γ−1γt+1/kdγ (20)

=

∫ 1

γ=0

γt × 1

k
γ

1/k−1dγ (21)

= Eγ∼p(γ)

[
γt
]

p =
1

k
γ

1/k−1 (22)

= Eγ∼p(γ) [dexp(t; γ)]. (23)
(24)

Note that the step from Eq. (19) to Eq. (20) follow from the change of variables, where dλ =532
−γ−1dγ and the respective bounds become e0 = 1 and e−∞ = 0.533

Finally, the distribution over γ follows a Beta distribution. To see this, we relate p(γ) to a uniform534
distribution by considering the CDF:535

Fγ(x) =

∫ x

0

p(γ)dγ

=
1

k

∫
γ

1
k−1dγ

=
1

k

(
kγ

1
k

)∣∣∣∣x
γ=0

= x
1
k .

This implies that γ = Uk, where U ∼ Unif(0, 1). Equivalently, γ follows a beta distribution536
Beta(1/k, 1).537
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Since Q-values are discounted sums of rewards, the above relationship holds for Q-values due to the538
linearity of expectations:539

Qhyp(s, a; k)

=

∞∑
t=0

dhyp(t; k)Rt

=

∞∑
t=0

Eγ [dexp(t; γ)Rt]

= Eγ

[ ∞∑
t=0

dexp(t; γ)Rt

]
= Eγ [Qexp(s, a; γ)].

B.2 Behavior Model RL (BMRL)540

Human optimal 
value

Human discount 
model

Human (world) 
transitions

Human policy AI transitions AI policies

Figure 7: Overview of how the human’s discount function affects the downstream AI policy in
BMRL in Nofshin et al. (2024). The human agent’s discount model and transitions affect the human
agent’s optimal value function, which in turns affects the human’s optimal policy. The human’s
policy is completely encapsulated in the AI transitions, which in turn, affects the AI policy. Note
that the human transitions appear twice; first to affect the optimal value, and then to affect the AI
transitions.

B.3 Worlds Represented by Our Sampled Absorbing State MDPs541

Cliff walking world The cliff walking world is a 2-D gridworld introduced in Sutton & Barto542
(2018) and appears throughout the literature, including by implementation in the popular Gymna-543
sium library introduced by Towers et al. (2024). There is a start state, a goal state, and a set of “cliff”544
states that run along the bottom of the world. If the agent enters a cliff state, they transition back to545
the start state.546

The goal state is well represented as an absorbing state. If the cliff is implemented as an absorbing547
state, then it corresponds to a distractor state, and the entire cliff world is an absorbing state MDP.548
If the cliff is implemented as a non-absorbing state (i.e., the agent gets sent back to the starting state549
if they enter a cliff state), then this is still an absorbing state MDP without any distractor states.550

Chain world Nofshin et al. (2024) introduced the chain world, which captures a notion of a (hu-551
man) user’s progress toward some task. There is a disengagement state where once the user disen-552
gages, the user receives reward of 0 in perpetuity. There is also a goal state, and there are interme-553
diary progress states. The goal state corresponds to the goal state in absorbing state MDPs. The554
disengagement states correspond to distractor states in absorbing state MDPs. Hence chain worlds555
are absorbing states.556

Vegetarian cafe vs. donut chain world. Evans et al. (2016) introduces a world where agents face557
a tradeoff from going to nearby donut chain stores versus a further vegetarian cafe that is better for558
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their health. There is also a second path with a noodle shop. Both the donut chain stores and the559
noodle shop represent distractor absorbing states, while the further vegetarian cafe represents a goal560
absorbing state. Hence, this can be represented as an absorbing state MDP.561

Path world Fedus et al. (2019) introduces a world of paths of varying lengths, where the agent562
faces a decision between the paths. We can represent the lengths of the paths as intermediate states,563
and the states at the end of each path are indeed absorbing states. These absorbing states vary in564
reward, and the largest is the goal absorbing state; the others are distractors. Hence, this world is565
well represented by our sampled absorbing state MDPs.566

Precommitment and addiction Kurth-Nelson & Redish (2010) links hyperbolic discounting to567
notions of precommitment — which occurs when an agent takes a path that goes toward a single568
reward and excludes the possibility of the type of preference reversal seen in hyperbolic discounting569
— and addiction science and other manifestations of impulsivity in behavioral science.570

The example given by Kurth-Nelson & Redish (2010) where an agent is able to commit to a larger571
world (their “Figure 1”) is indeed well represented by an absorbing state MDP of the type we sample.572
There are two large rewards — which can be represented as goal absorbing states — and one small573
reward — which can be represented as a distractor absorbing state.574

This is a particularly salient example because of the links to real-world applications in modeling575
behavior including in the study of addiction.576

C Theoretical Analysis577

C.1 Form of Value Functions for Absorbing State MDPs578

Let L be the time to any absorbing state under policy π. Let R be the reward at that absorbing state.579
Both of these variables are random because of the randomness in the transitions P . In absorbing580
state MDPs, value functions will have the form:581

V π(s) (25)

= Eπ,P

[ ∞∑
t=1

d(t− 1)Rt

]
Definition of value function

= EL,R

[
d(L− 1)R+ rb

L∑
t=1

d(t− 2)

]
MDP structure

= EL,R

[
d(L− 1)R+ rb

L−2∑
t=0

d(t)

]
Shitfing sum

= EL

[
ER

[
d(L− 1)R+ rb

L−2∑
t=0

d(t)

]]
Repeated expectations

= EL

[
d(L− 1)ER [R] + rb

L−2∑
t=0

d(t)

]
. (26)

If we assume the transitions are deterministic, then L and R are no longer random. Let ℓ(n) be the582
length of the path from state s to absorbing state s(n) with reward r(n). Furthermore, if we assume583
no burden (rb = 0), then only the absorbing state reward remains. The value of a policy π(n) that584
goes to absorbings state s(n) is:585

V
(n)
d (s) = d(ℓ(n) − 1)r(n). (27)
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C.2 Proof that γmhr < γsafe586

γmhr < γsafe (28)

=⇒ exp(−k) <
1

1 + k
(29)

=⇒ −k < ln

(
1

1 + k

)
(30)

=⇒ k ≥ ln

(
1

1 + k

)
(31)

=⇒ k ≥ 1

1 + k
− 1, (Note that ln(x) ≤ x− 1) (32)

=⇒ (k + 1)2 ≥ 1 (33)

=⇒ k2 + 2k + 1 ≥ 1 (34)

=⇒ k2 + 2k ≥ 0. (35)

The last line is always true, since k > 0.587

C.3 Expanded details on false positive range588

In AI interventions, false positives are when the AI intervenes despite the fact that the human agent589
would have reached the desired goal state without needing intervention. A scenario with a false590
positive requires three conditions to hold.591

1. The (true) hyperbolic agent is already going to the big reward:

V
(N)

hyp (s; k) ≥ V
(n)

hyp (s; k) for all n ∈ {1, . . . , N}

2. The exponential agent goes to the small reward:

V (n)
exp (s; γ) ≥ V (N)

exp (s; γ) for any n ∈ {1, . . . , N}

3. The exponential agent under intervention goes to the big reward.

V (N)
exp (s; γ + δγ) ≥ V (n)

exp (s; γ + δγ) for all n ∈ {1, . . . , N},

where δγ > 0 refers to the increase in the exponential agent’s discount factor.592

Formalizing condition (1). Let i be the best option absorbing state (that is not the goal state),
defined as:

i = argmaxi=1,...,N−1V
(i)

hyp (s).

If the agent prefers the goal state, it means that the goal state is better than this alternate best-option:593

V
(N)

hyp (s) ≥ V
(n)

hyp (s) for all n ∈ {1, . . . , N} (36)

=⇒ V
(N)

hyp (s) ≥ V
(i)

hyp (s) (37)

=⇒ 1

1 + kℓ(N) − k
r(N) ≥ 1

1 + kℓ(i) − k
r(i) (38)

=⇒ (1 + kℓ(i) − k)r(N) ≥ (1 + kℓ(N) − k)r(i) (39)

=⇒ r(N) ≥ 1 + kℓ(N) − k

1 + kℓ(i) − k
r(i). (40)
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Formalizing condition (2). Let j be the best option absorbing state (that is not the goal state) under
exponential discounting, defined as

j = argmaxj=1,...,N−1V
(j)

exp (s).

If the agent prefers the distractor state, it means the best-option absorbing state is better than the594
goal state:595

V (n)
exp (s) ≥ V (N)

exp (s) for any n ∈ {1, . . . , N} (41)

=⇒ V (j)
exp (s) ≥ V (N)

exp (s) (42)

=⇒ γℓ(j)−1r(j) ≥ γℓ(N)−1r(N) (43)

=⇒ r(N) ≤ γℓ(j)−ℓ(N)

r(j) (44)

Formalizing condition (3). The condition becomes:596

V (N)
exp (s; γ + δγ) ≥ V (n)

exp (s; γ + δγ) for all n ∈ {1, . . . , N} (45)

=⇒ V (N)
exp (s; γ + δγ) ≥ V (j)

exp (s; γ + δγ) (46)

=⇒ (γ + δ)ℓ(N)r(N) ≥ (γ + δ)ℓ(j)r(j) (47)

=⇒ r(N) ≥ (γ + δ)ℓ
(j)−ℓ(N)

r(j). (48)

Defining the false-positive range for γ. Since our choice of γ does not affect whether or not the597
hyperbolic agent prefers the goal state, we can ignore condition (1).598

So, our AI will send a false positive if:599

(γ + δ)ℓ
(j)−ℓ(N)

r(j) ≤ r(N) ≤ γℓ(j)−ℓ(N)

r(j) (49)

=⇒ (γ + δ)ℓ
(j)−ℓ(N) ≤ r(N)

/r(j) ≤ γℓ(j)−ℓ(N)

(50)

This defines the range of values for γ under which a false positive might occur. We want to show600
that larger γ results in a smaller chance of false positives. This means that we want this range to be601
smaller the larger the γ.602

D Empirical Experiment Details603

D.1 List of estimators604

We are using the following integral estimation methods, which we refer to above as:605

• mcmc: Monte Carlo estimation sampling from a target distribution and averaging.606

• quad: Gaussian quadrature that approximates via selection of nodes and weights.607

• riemann: A simple Riemann sum.608

• strat: Stratified sampling done by sampling uniformly among the strata (divisions of the sampled609
support).610

• importance: Importance sampling drawing from a proposal distribution and shifting to a target611
distribution.612

D.2 Examples of randomly sampled absorbing state MDPs613

Fig. 8 shows examples of state diagrams for randomly sampled absorbing state MDPs.614
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Figure 8: Examples of state diagrams for randomly sampled absorbing state MDPs.

D.3 Experimental results in expanded settings615

D.3.1 Stochastic transitions616

In Fig. 9, noise η ∈ [0, 1] represents the stochasticity of environment transitions. Formally, there is617
a 1 − η change of transitioning to state s′ after taking action a in state s, and there is a η chance of618
transitioning to a random state that is not s′. The larger η, the more stochastic.619
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Figure 9: Cumulative reward of AI policy in sampled absorbing state MDPs with varying levels of
environment stochasticity. The stochasticity does not affect the main trends; the exponential methods
still outperform hyperbolic, and all policies outperform the naive always-intervene baseline.

D.3.2 Optimal (deterministic) human policies620

In Fig. 10, we show the impact of running a simulation in which the human agent follows an optimal,621
deterministic policy vs. a softmax policy. As expected, the softmax policy leads to noisier results.622
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Figure 10: Cumulative reward of AI policy in sampled absorbing state MDPs with different action
selection policies for the human agent. Most main trends remain the same, but the hyperbolic
baseline with the true transitions does worse when the human is optimal (green, dotted line), due to
small errors in the Q-values translating to errors in ranking actions.
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