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Abstract

Accurate segmentation of airways in Low-
Resolution CT (LRCT) scans is vital for diagnos-
tics in scenarios such as reduced radiation expo-
sure, emergency response, or limited resources. Yet
manual annotation is labor-intensive and prone to
variability, while existing automated methods of-
ten fail to capture small airway branches in lower-
resolution 3D data. To address this, we introduce
FuzzySR, a parallel framework that merges super-
resolution (SR) and segmentation. By concurrently
producing high-resolution reconstructions and pre-
cise airway masks, it enhances anatomic fidelity
and captures delicate bronchi. FuzzySR employs
a deep fuzzy set mechanism, leveraging learnable
t-distribution and triangular membership functions
via cross-attention. Through parameters µ, σ, and
df , it preserves uncertain features and mitigates
boundary noise. Extensive evaluations on lung can-
cer, COVID-19, and pulmonary fibrosis datasets
confirm FuzzySR’s superior segmentation accu-
racy on LRCT, surpassing even high-resolution
baselines. By uniting fuzzy-logic-driven uncer-
tainty handling with SR-based resolution enhance-
ment, FuzzySR effectively bridges the gap for ro-
bust airway delineation from LRCT data.

1 INTRODUCTION

Ensuring CT images are sufficiently accurate is crucial for
reliable diagnoses, and medical segmentation inevitably
suffers from low-resolution scans Li et al. [2019]. In set-
tings such as coronary CT angiography (CCTA) or vas-
cular and airway imaging, segmentation quality depends
heavily on image resolution Nagayama et al. [2023a], Ju-
rek et al. [2020a]. Below a certain threshold, small but
clinically significant structures become difficult to delin-

Figure 1: Figure 1: Introduction. (a) Motivation: need a
new biomarker. (b) LRCT can result in false negatives, leak-
age, and discontinuities. (c) Our solution proposes a parallel
network for super-resolution and segmentation. µ, σ is learn-
able for uncertainty.

eate, highlighting the need for methods that enhance res-
olution and improve segmentation performance. Airway
dilation serves as a biomarker for diagnosing and prognos-
ticating pulmonary fibrosis Nan et al. [2024a], Das et al.
[2020b] (Figure 1(a)), calling for an automated approach
under noisy, low-resolution conditions. Fuzzy set theory
helps address intraclass heterogeneity and interclass ho-
mogeneity in LRCT, aiding radiologists’ decision-making.
Yet many LRCT scans are complicated by noise, making
sequential super-resolution (SR) and segmentation both
time-consuming and suboptimal Georgescu et al. [2020],



de Farias [2023], Nagayama et al. [2023b], Jurek et al.
[2020b], Lu et al. [2017b]. Airway segmentation, especially
near terminal bronchi, also remains challenging Singh et al.
[2020], and while fuzzy sets are adept at managing uncertain
boundaries Nan et al. [2024a], Das et al. [2020a], Huang
et al. [2021], Ding et al. [2021], combining fuzzy logic with
SR for airway segmentation remains underexplored (See
Figure 1(b)). For example, Sale’s and Hülleremeier’s Hüller-
meier et al. [2022], Sale et al. [2023] statistical-uncertainty
models provide confidence intervals for the final mask and
can estimate the mis-segmentation probability of individ-
ual branches. However, airway segmentation usually suffers
from blurred boundaries and very small, partly invisible
branches—limitations rooted in morphology and subjec-
tive ambiguity. In addition, the “black-box” nature of deep
learning architectures remains an ongoing concern.

To address these challenges, we propose a parallel net-
work called FuzzySR, which merges fuzzy logic with
super-resolution and segmentation to enhance interpretabil-
ity and reduce uncertainty. Rather than proceeding sequen-
tially, FuzzySR performs super-resolution and airway seg-
mentation concurrently, allowing outputs from the super-
resolution decoder to directly benefit the segmentation pro-
cess. We incorporate fuzzy attention to tackle borderline
or noisy regions, where binary logic often omits fine de-
tails Jain and Sharma [2020]. Specifically, triangular and
t-distribution membership functions enable channel-specific
fuzzy attention, mitigating feature heterogeneity. By learn-
ing parameters (µ, σ), the network adapts to sub-branches
that significantly vary yet still belong to the airway, while
heavier tails in the t-distribution or localized windows in
the triangular function refine airway versus vascular distinc-
tions. Cross-attention further compares membership values
adaptively, avoiding pointwise minima and thus more effec-
tively capturing subtle intensity variations in LRCT (See
Figure 1(c)).

Our comparative experiments yielded four critical findings:

a) Performing super-resolution and segmentation syn-
chronously is more efficient and yields better outcomes than
separate steps.

b) Including fuzzy attention led to significantly improved
results compared to networks without fuzzy logic.

c) Our proposed FuzzySR achieved performance on
LRCT comparable to HRCT-based UNet and FuzzyAttentio-
nUnet, with no significant differences (p=0.89 and p=0.33).

d) Explainability: Visualizing µ, σ over training epochs
and attention maps shows some channels becoming more
sensitive to airway features.

2 METHODOLOGY

Joint multi-task learning in medical imaging typically out-
performs sequential pipelines Amyar et al. [2020a], Lu et al.
[2017a], Amyar et al. [2020b]. Accordingly, we adopt a
Y-shaped network with a shared encoder and two parallel
decoders—one for super-resolution (SR), one for segmenta-
tion—linked by a fuzzy-gating layer that forwards only SR
features useful for segmentation. This design (i) provides
mutual regularisation, with SR safeguarding pixel-level de-
tail while segmentation enforces structural semantics; (ii)
reduced error propagation - Unlike a sequential pipeline, the
segmentation branch in our parallel framework is not solely
conditioned on the SR output, thereby preventing the ampli-
fication of reconstruction errors. (iii) enables true end-to-end
optimisation, letting the segmentation loss directly shape
encoder filters; (iv) permits real-time cross-reinforcement
between fine-detail and semantic cues that a serial SR→Seg
cascade cannot exploit; and (v) handles boundary ambiguity
through fuzzy weighting. These considerations furnish both
the theoretical and empirical basis for expecting the parallel
scheme to surpass sequential SR + Seg approaches.

2.1 SUPER RESOLUTION

Inspired by Luo’s work Luo et al. [2023], our FuzzySR em-
ploys a super-resolution network resembling a plain CNN,
which outperforms variants like Auto Encoder and UNet that
utilize up/down sampling. Although UNet’s skip connec-
tions slightly improve detail reuse, they still underperform
compared to the plain CNN. In our design, eight convolu-
tional layers are followed by LeakyReLU activation, and
two fuzzy attention layers compute feature-weight maps
for the 3rd and 4th encoder blocks, as well as the 1st and
2nd decoder blocks. Specifically, att4 is used within the
super-resolution model, while att5 feeds information to the
segmentation decoder. Figure 2 (left) outlines this architec-
ture, and Table 3 illustrates how fuzzy approaches further
enhance super-resolution performance.

2.2 PROPOSED FUZZYSR

The fuzzy attention layers form the core of FuzzySR, pro-
moting interaction between super-resolution (SR) and seg-
mentation. The SR decoder’s high-resolution output flows to
the segmentation decoder, refining segmentation accuracy,
while the segmentation model’s attention map influences
the MSE loss in SR. This bidirectional exchange fosters
improved predictions of both SR images and airways. An
attention gate suppresses irrelevant activations, and because
different channels capture different features Oktay et al.
[1804], the map must be channel-specific. Unlike conven-
tional attention gates reliant on sigmoid thresholds Nan et al.
[2024a], the fuzzy layer leverages T-distribution, Triangular,
and Gaussian membership functions, endowing mean and



Figure 2: Network Structure of FuzzySR. *LR is low-resolution CT. HR is high-resolution CT. IN is InstanceNorm3d. *Ei

means the output of encoder. *Dimeans the output of decoder. "512" denotes the resolution in the x and y axes, whereas "z"
specifies the resolution along the z-axis in CT. FAL is Fuzzy Attention Layer.

variance with learnable parameters to address LRCT noise,
heterogeneous features, and uncertainty.

To achieve parallel SR and airway segmentation within a sin-
gle large network (FuzzySR), the third and fourth encoder
layers for SR are processed by fuzzy attention layers and
feed into the SR decoder. In turn, the first and second SR
decoder layers pass through fuzzy attention for use as ini-
tial features and decoder inputs in the airway segmentation
network. These inputs undergo typical UNet-like opera-
tions (convolution, up/downsampling). LRCT is provided to
FuzzySR, which outputs a super-resolved CT (SRCT) and a
predicted airway (Figure 2). In FuzzySR, the segmentation
network fuses outputs from four decoding layers, iteratively
computing each layer’s loss against the ground truth to ex-
tract richer details from diverse convolutional kernels.

Fuzzy Attention Layer. In the segmentation network, the
fuzzy attention layer is applied along the pathway of the
skip connections, taking as input the spatial output features
from both the encoder and decoder. These two input feature
vectors are first passed through a 3-D convolution layer
of size 1×1×1, instance normalization, and LeakyReLU
for feature reconstruction. This is followed by voxel-level
addition operations for information fusion, then another
LeakyReLU. Subsequently, the feature representations are
fed into the cross attention layer(CAL) combined with fuzzy
logic for comparison, generating voxel-level attention maps
(Figure 3).

Cross Attention Layer. After the final LeakyReLU in the
Fuzzy Attention Layer, a 3D 1 × 1 × 1 convolution and
instance normalization produce a multi-channel attention
map, which serves as input to the Cross Attention Layer
(CAL) Das et al. [2020b] (Figure 4). This map is fed through
membership functions with trainable parameters (df , σ, µ)
to determine channel-specific feature importance. Query
and Key feature representations are flattened (height, width,
depth) and segmented into chunks (defined by chunk size)
for the Cross Attention Gate (CAG) (Figure 4). After co-
sine similarity and softmax, the weighted Query and Key
chunks are reconstructed into a weighted feature representa-
tion. Fuzzy logic then selects critical features by combining
these weighted representations with encoder feature maps,
producing an uncertainty map that reflects overall ambigu-
ity.

Fuzzy Membership Functions. In fuzzy systems, Mem-
bership Functions are utilized to delineate the fuzziness of
pixels, assigning a degree of membership (ranging between
0 and 1) to each element, thereby facilitating fuzzy inference
and managing the complexity and uncertainty inherent in
real-world scenariosZheng et al. [2021]. Membership Func-
tions can be implemented through various methodologies.
For instance, the triangular membership functionAzam et al.
[2021] is defined by three parameters (a, b, c), forming a
triangle where b represents the peak’s position, and a and c
are the base points.



Figure 3: Fuzzy Attention Layer. *Ei means the output of
encoder. *Dimeans the output of decoder. The parameters
used for the membership functions, such as µ, σ and df are
trainable. T-distribute,Triangular and Gaussian are fuzzy
membership functions. CAL is Cross Attention Layer.

This function is straightforward and computationally effi-
cient, making it suitable for applications demanding high
computational performance:

Triangular(x) = max

(
min

(
x− a

b− a
,
c− x

c− b

)
, 0

)
. (1)

where, x represents the fusion generated by the outputs of
encoder and decoder. a is the left endpoint, b is the peak
point, c is the right endpoint. Where a = µ - σ, b = µ, c
= µ + σ. µ is the mean, σ is the standard deviation. When σ
is small and µ remains unchanged, the triangular shape be-
comes more “pointed,” assigning higher membership values
only near µ. Conversely, if σ is larger, the function grants
higher membership across a broader range.

The t-distribution membership functionAli et al. [2023],
a type of probability distribution function, resembles the

standard normal distribution but with “heavier” tails. It is
typically defined by the degrees of freedom parameter. The
t-distribution is suitable for situations with smaller sample
sizes, especially when estimating standard deviations. In
fuzzy logic, it can be employed to better handle data uncer-
tainty and skewed distributions. In Equation (2), ν is the
degrees of freedom:
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ν+1
2

)
√
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(2)
Concurrently, fuzzy logic operations (such as AND, OR)
define the methodology for amalgamating the membership
degrees of two or more fuzzy sets to derive a new mem-
bership degree. In the process of fuzzy logic reasoning, it
is imperative to initially delineate the fuzzy sets and the
membership degrees of elements via fuzzy membership
functions. Subsequently, these membership degrees are com-
bined through the application of fuzzy logic operations (e.g.,
AND, OR), thereby facilitating fuzzy inference and decision-
makingKlir and Yuan [1996]. The outcomes of fuzzy logic
operations (i.e., the new membership degrees) are then re-
flected upon the fuzzy membership functions. The higher
the membership value, the greater the probability of occur-
rence. Ultimately, the precise output is derived through the
process of defuzzificationGao et al. [2021].

Cross Attention for membership functions Cross At-
tention forms a similarity matrix (score_chunk) between
query_chunk and key_chunk, leveraging global contextual
information for feature fusion instead of purely local op-
erations like element-wise minima Huang et al. [2019].
Chunk_size controls feature partitioning granularity in 3D
or high-dimensional data, progressively accumulating lo-
cal features into global representations. This multi-scale
approach captures object boundaries and fine details more
effectively than single-scale element-wise minima Lin et al.
[2022], and dynamically balances uneven or noisy inputs
via adaptive weight allocation Pan et al. [2022]. In the mem-
bership function processing, Q and K are query/key feature
tensors, while Qflat and Kflat denote flattened forms. The
parameter (chunk_size) specifies how many channels C
are processed in each chunk. Spatial size is D ×H ×W .
Query/key chunks undergo cosine similarity Si and softmax
normalization. Weighted results Wq and Wk merge into the
global tensor, and their element-wise minimum yields the
final attention map, where smaller values indicate greater
distance from the fuzzy center.

Attention Loss Functions

Latt = λ · 1

C

C∑
i=1

1

N

N∑
n=1

A
(n)
i ⊙

(
P

(n)
hr −H(n)

)2
. (3)

where The values Pj and Tj represent the predicted and
target values at pixel j, where the intersection is calculated
as
∑

j P
(n)
j ·T(n)

j , the denominator is obtained by summing



Figure 4: Cross Attention Layer & Cross Attention Gate (CAG). Qi and Ki are multiple chunk size of flatten query and key
arries. WQi and WKi are weighted Qi and Ki.

the target values
∑

j T
(n)
j , and a smoothing term ϵ is added

to avoid division by zero and improve numerical stability.
The weighted sum of the attention map channels i (total C
channels) is calculated, where each channel’s weight map
Ai is element-wise multiplied by the mean squared error
(Phr −H)

2 using ⊙, followed by batch averaging over N
samples, and scaled by a fixed weight coefficient λ.

3 RESULTS AND DISCUSSION

3.1 DATASETS

We used 140 instances by combining EXACT’09 Lo et al.
[2012], LIDC-IDRI Armato III et al. [2011], and an in-house
3D HRCT dataset. We split the entire dataset into training
(90), validation (25), and testing (25), each containing origi-
nal images and validated ground truths. As a preprocessing
step, data were cropped into [128, 96, 64] patches centered
on pulmonary airways. The final 50 in-house cases were re-
served for validation and testing to prevent overlap, ensuring
distinct training/validation and test samples.

(1) Public binary dataset. The training set included three-
dimensional CT scan images depicting typical lung struc-
tures, each accompanied by accurate ground truth.

(2) Our in-house dataset. The validation and test sets con-
tained three-dimensional CT scan images of patients diag-
nosed with COVID-19 and pulmonary fibrosis, specifically
for the lung airway segmentation task, effectively reducing
the risk of model overfitting. Fibrosis data is now avaliable
at MICCAI AIIB23 Nan et al. [2024b]. Meanwhile, this
study has ethical approval from the Sydney Local Health
District (protocol no. X14–0264) and the local Ethics Com-
mittee (code 934/2021/OSS/AOUPR -11.01.2022) at the
University Hospital of Parma (UHP).

All models operate on input patches of size [1,1,128,96,144].
The proposed Parallel FuzzySR yields lower MACs (333.46

GMac) than AttentionUNet (364.68 GMac), and its param-
eter count (15.52 M) remains comparable to other high-
performance networks. The inference time is approximately
1.08 seconds, which is still feasible for 3D medical datasets.
Although this results in a slight increase in MACs and infer-
ence time, it achieves higher accuracy overall.

3.2 QUANTITATIVE AND QUALITATIVE
FINDINGS

Comparison between methods with and without the
fuzzy attention mechanism. In Table 1, FuzzyAttentio-
nUnet using LRCT surpasses UNet in IoU, DSC, and Pre-
cision (0.7972, 0.8787, 0.8942). On HRCT, FuzzyAttentio-
nUnet similarly outperforms UNet and AttentionUNet in
IoU, DSC, and Precision (0.8243, 0.9032, 0.9027), while
AttentionUNet attains higher TD/BD (0.9071/0.8761). For
sequential setups, FuzzyAttentionUnet + SR yields higher
IoU/DSC/Precision (0.7934, 0.8834, 0.8745) than Attentio-
nUNet + SR but scores lower on TD/BD (0.8701/0.8963
vs. 0.8457/0.8587). In the parallel approach, FuzzySR with
Gaussian MF achieves better IoU, DSC, Precision, and BD
(0.8057, 0.8918, 0.8966, 0.8817) compared with Attentio-
nUNet + SR, albeit slightly lower TD (0.9074/0.9136). Fig-
ure 5 shows that among the six baseline models (LRCT and
HRCT), FuzzyUnet achieves the best IoU/DSC/Precision,
with minimal false negatives and the capacity to predict
small unannotated branches, while AttentionUnet achieves
higher TD/BD but lower IoU/DSC/Precision. Although this
suggests strong terminal-branch prediction, some outputs
may reflect tiny branches missed by experts rather than leak-
age. Comparing both serial and parallel AttentionUnet + SR
with FuzzyAttentionUnet + SR confirms that fuzzy-enabled
models exhibit fewer false negatives, reduced leakage, and
improved detection of small terminal branches.

The comparison between parallel and sequential multi-
model networks. In comparing sequential vs. parallel At-
tentionUNet + SR, the parallel setup shows only minor dif-



Table 1: Comparative Analysis of Model Performance.

Our Models Evaluation Metrics

IoU DSC TD BD Precision

UNet (Use LRCT) 0.7815± 0.067∗ 0.8607± 0.042∗ 0.8436± 0.076∗ 0.8036± 0.100∗ 0.8587± 0.048∗

UNet (Use HRCT) 0.8162± 0.056 0.8978± 0.034 0.8709± 0.067∗ 0.8269± 0.095∗ 0.8751± 0.050∗

AttentionUnet (Use LRCT) 0.7914± 0.050∗ 0.8827± 0.031∗ 0.8744± 0.068∗ 0.8259± 0.090∗ 0.8697± 0.042∗

AttentionUnet (Use HRCT)Islam et al. [2020] 0.7746± 0.051∗ 0.8720± 0.033∗ 0.9071± 0.054∗ 0.8761± 0.074∗ 0.8461± 0.057∗

FuzzyAttentionUnet (Use LRCT) 0.7972± 0.069∗ 0.8787± 0.069∗ 0.8329± 0.095∗ 0.7828± 0.123∗ 0.8942± 0.063∗

FuzzyAttentionUnet (Use HRCT)Nan et al. [2024a] 0.8243± 0.062 0.9032± 0.039 0.8566± 0.086∗ 0.8392± 0.111∗ 0.9027± 0.049
AttentionUNet + SR (sequence) (Use LRCT) 0.7876± 0.052∗ 0.8802± 0.033∗ 0.8963± 0.055∗ 0.8587± 0.080∗ 0.8643± 0.049∗
FuzzyAttentionUnet + SR (sequence) (Use LRCT) 0.7934± 0.064∗ 0.8834± 0.040∗ 0.8701± 0.066∗ 0.8457± 0.090∗ 0.8745± 0.062∗
AttentionUNet + SR (parallel) (Use LRCT) 0.7866± 0.045∗ 0.8799± 0.028∗ 0.9136± 0.046∗ 0.8808± 0.067∗ 0.8582± 0.036∗
FuzzySR (parallel) t-dis + triangular (Use LRCT) 0.8174± 0.043 0.8989± 0.026 0.9014± 0.056 0.8663± 0.080 0.9155± 0.032

*All values are denoted by the mean value ± standard deviation. The red font indicates the best results and the bold font indicates our best proposed
FuzzySR with best combination of membership functions. TD/BD: Tree/Branch detected ratio. “*” represents statistical significance (with Wilcoxon
Signed-Rank Test p− value < 0.05) compared with our proposed best FuzzySR t-dis + triangular.

Table 2: Comparative Analysis of Model Performance With Different Fuzzy Logic (AND/OR).

Our Models (Use HRCT) Evaluation Metrics

IoU DSC TD BD Precision

Fuzzy_Unet (AND) 0.798± 0.072 0.886± 0.047 0.794± 0.141 0.735± 0.179 0.880± 0.041
Fuzzy_Unet (OR) 0.824± 0.047 0.903± 0.035 0.920± 0.067 0.879± 0.095 0.903± 0.049

Figure 5: Visualization Results of all baseline models and proposed models. *Unet, AteentionUnet and FuzzyAttentionUnet
are comparable baseline models. Green areas indicate false positive (FP), blue areas indicate false negative(FN). The blod
font model is the proposed best FuzzySR model.



Table 3: Super-Resolution Network Comparison.

Our Models (Use LRCT) Evaluation Metrics

SSIM PSNR RMSE

UNet 0.967± 0.026 74.97± 2.52 0.05± 0.02
AutoEncoder 0.956± 0.030 75.39± 3.03 0.05± 0.02
Plain CNN (no fuzzy) 0.953± 0.030 73.51± 2.25 0.06± 0.02
Plain CNN (with fuzzy) 0.971± 0.024 78.55± 3.84 0.002± 0.02
SRCNN Dong et al. [2014] 0.876± 0.021 32.26± 2.99 6.22± 0.19
ESPCN Shi et al. [2016] 0.872± 0.046 32.06± 2.93 6.36± 0.55
VDSR Kim et al. [2016] 0.886± 0.054 33.05± 3.22 5.68± 0.36
IMDN Hui et al. [2019] 0.884± 0.030 34.04± 1.98 5.06± 1.03
PAN Zhao et al. [2020] 0.885± 0.048 33.93± 2.76 5.13± 0.60
DRIDSR Chen et al. [2022] 0.887± 0.037 34.47± 3.11 4.82± 0.45
Proposed FuzzySR(with cl, MF) 0.924± 0.045 78.15± 4.83 0.04± 0.03

*MF is membership function. *cl is central line.

ferences in IoU, DSC, and Precision (0.001, 0.0003, 0.0061)
but achieves higher TD and BD (+0.0173, +0.0221). With
comparable leakage, the parallel AttentionUnet + SR yields
fewer false negatives and better terminal airway detection
(Figure 5). Meanwhile, the sequential FuzzyAttentionUnet
+ SR underperforms the proposed FuzzySR, which applies
fuzzy logic (OR) and the T-Distribution + Triangular mem-
bership functions via cross-attention. This T-Distribution
+ Triangular setup attains near-zero leakage and minimal
false negatives, scoring 0.8174 (IoU), 0.8989 (DSC), 0.9014
(TD), 0.8663 (BD), and 0.9155 (Precision) (Table 1), while
preserving robust predictive capabilities for terminal air-
ways.

Comparison between the use of LRCT and HRCT. The
UNet using HRCT outperforms its LRCT counterpart on
all five metrics (IoU, DSC, TD, BD, Precision) Li et al.
[2019], Nagayama et al. [2023a], Jurek et al. [2020a], while
AttentionUNet using LRCT surprisingly surpasses Atten-
tionUNet with HRCT, showing minimal leakage and better
terminal airway predictions on HRCT. FuzzyAttentionUnet
further improves upon LRCT results by employing HRCT,
achieving higher IoU, DSC, TD, BD, and Precision Nan
et al. [2024a], Das et al. [2020b] (Figure 5). Notably, our
FuzzySR with LRCT and T-Distribution + Triangular sur-
passes the classic UNet with HRCT, scoring 0.8174 (IoU),
0.8989 (DSC), 0.9014 (TD), 0.8663 (BD), and 0.9155 (Pre-
cision). Compared with FuzzyAttentionUnet using HRCT,
FuzzySR achieves similar IoU, DSC, TD, BD, and even
higher Precision, despite slightly lower IoU, DSC, and Pre-
cision stemming from more terminal branch predictions
(some false positives). Table 1 reveals no significant dif-
ference (p=0.33 or p=0.89) between FuzzySR and other
HRCT-based models, indicating their performance is statis-
tically comparable. Although FuzzyAttentionUnet (HRCT)
reports slightly better metrics, it can underperform on cer-
tain individual cases, suggesting weaker generalization.

Comparison of Fuzzy Logic. In determining the trachea’s
importance across channels and performing fuzzy logic op-
erations, the AND (intersection) operator marks a voxel
as airway only if multiple features concur, whereas the

Figure 6: Comparison between original HRCT (Ground
Truth) images, LRCT (Low-Resolution CT input images),
and SRCT (Super-Resolution CT output images).

Figure 7: Visualization of attention maps for different fea-
ture channel indices. (a) Feature channel index = 3, (b)
Feature channel index = 10.

OR (union) operator requires at least one feature to indi-
cate airway membership. Although the AND operator en-
forces stricter segmentation, it may under-segment terminal
bronchi, while the OR operator often predicts more terminal
branches but admits some false positives. Table 2 confirms
that AND logic causes a larger decline in TD/BD metrics
(by 0.162 and 0.144) compared to OR logic, whereas IoU,
DSC, and Precision drop by 0.026, 0.017, and 0.004, respec-
tively. This finding aligns with the theoretical trade-off and
justifies using OR logic for all airway prediction models Lu
et al. [2017b].

Comparison of the super resolution network. In line with
Section I.A, simpler architectures without up/downsampling
(e.g., Plain CNN) can deliver better results without extra
computational load. Table 3 compares PlainCNN with and
without the fuzzy algorithm, revealing that PlainCNN with
fuzziness yields superior SSIM, PSNR, and RMSE (0.971,
78.55, and 0.002) than UNet and AutoEncoder (0.967/0.956,
74.97/75.39, and 0.05/0.05). Also, PlainCNN (with fuzzy)
also superior the metrics than PlainCNN (without Fuzzy) in
SSIM, PSNR and RMSE (0.953, 73.51, 0.06). In FuzzySR,
the super-resolution CT output alongside airway predictions
outperforms most SR methods Dong et al. [2014], Shi et al.
[2016], Kim et al. [2016], Hui et al. [2019], Zhao et al.
[2020], Chen et al. [2022], achieving SSIM, PSNR, and
RMSE of 0.924 ± 0.045, 78.15 ± 4.83, and 0.038 ± 0.028



Table 4: State-Of-The-Art Tansformer Based Models Performed On HRCT Compares To Proposed FuzzySR Performed On
LRCT.

Models Evaluation Metrics

IoU DSC TD BD Precision

FuzzyAttentionUnet (Use HRCT)Nan et al. [2024a] 0.8243± 0.062 0.9032± 0.039 0.8566± 0.086∗ 0.8392± 0.111∗ 0.9027± 0.049
Transformer-based 3D U-Net (HRCT)Wu et al. [2023] 0.7106± 0.124∗ 0.8232± 0.098∗ 0.8454± 0.067∗ 0.7975± 0.100∗ 0.8227± 0.156∗

Segformer (HRCT)Perera et al. [2024] 0.7350± 0.066∗ 0.8455± 0.045∗ 0.7220± 0.101∗ 0.6244± 0.124∗ 0.8337± 0.043∗

SwinUnet (HRCT)Cai et al. [2023] 0.8134± 0.048 0.8963± 0.029 0.7955± 0.097∗ 0.7284± 0.119∗ 0.9166± 0.030
Proposed FuzzySR (Use LRCT) 0.8174± 0.043 0.8989± 0.026 0.9014± 0.056 0.8663± 0.080 0.9155± 0.032

*All values are denoted by the mean value ± standard deviation. The red font indicates the best results and the bold font indicates our proposed FuzzySR.
“*” represents statistical significance (with Wilcoxon Signed-Rank Test p− value < 0.05) compared with our proposed best FuzzySR t-dis + triangular.

Figure 8: Evolution of the learnable µ (mu) and σ (sigma)
across different feature channels, as training epochs increase
and Dice scores vary. fuzzy in this figure means different
fuzzy subsets. r,p were calculated by Pearson correlation
coefficient.

(Table 3). As shown in Figure 6, the SRCT predicted by
FuzzySR exhibits finer textures and is visually closer to
HRCT than LRCT.

SOTA Transformer-based Model Compares With Our
Proposed FuzzySR. Due to the proposed FuzzySR em-
ploys a t-distribution and triangular MF for cross-attention
fusion, we not only compared it against the baseline Atten-
tionUnet but also against several state-of-the-art methods,
including our benchmark model FuzzyAttentionUnet (using
HRCT)Nan et al. [2024a], Transformer-based 3D U-Net
(HRCT)Wu et al. [2023], Segformer (HRCT)Perera et al.
[2024], and SwinUnet (HRCT)Cai et al. [2023]. Except for
the benchmark model, the other three transformer-based
methods—despite utilizing HRCT for training—performed
worse than the proposed FuzzySR framework, which was
trained solely on LRCT, across all five evaluation metrics

(See Table 4). Although SwinUnet’s performance is close,
it remains slightly below that of the proposed FuzzySR
in IoU (0.8134 vs. 0.8174) and DSC (0.8963 vs. 0.8989).
Two metrics are notably lower than those of the proposed
FuzzySR—TD (0.7955 vs. 0.9014) and BD (0.7284 vs.
0.8663). SwinUnet achieves a marginally higher Precision
value, surpassing the proposed FuzzySR by only 0.0011.

Explainability of Our Proposed FuzzySR. In medical
image segmentation, certain structures (e.g., pulmonary air-
ways) often occupy a limited grayscale range but may face
uncertainty from noise or pathologies. The membership
function provides higher membership near µ and decreases
it for more distant intensities. To validate learnable µ, σ
in our FuzzySR for mitigating airway-segmentation uncer-
tainty, we examined two feature channels—one (a) Channel
= 3 targeting brighter intensities and another (b) Channel
= 10 focusing on darker intensities (Figure 7), revealing
distinct types of airway boundaries or noise regions. As
shown in Figure 8, the network gradually shifts each chan-
nel’s µ toward relevant intensity ranges (a, c, e), indicating
stronger resilience to fuzziness and noise. Once µ, σ stabi-
lize, the channel gains “confidence” in that intensity range: a
high µ highlights brighter zones (a), while a low µ focuses
on lower-intensity areas (c, e). A larger σ tolerates outliers
(b, d), whereas a smaller σ narrows the focus, improving
detail yet risking noise sensitivity (f). Pearson’s correla-
tion analysis reveals significant positive or negative links
between Dice scores and µ, σ in certain channels (p < 0.05
or p < 0.01), confirming strong interpretability for both
high- and lower-intensity regions.

In Figure 8, certain high–sensitivity channels appear to map
to specific airway sub-structures. Because the pulmonary
tree forms a hierarchical network whose branches vary in
calibre and morphology, some channels specialise in de-
tecting peripheral bronchioles, segmental bronchi, or the
main bronchus. Abrupt shifts in a channel’s learnable µ or
σ thus mark strong responsiveness and exert a major in-
fluence on the final segmentation. Channels that focus on
ultra–thin branches or high–contrast edges rapidly adapt
their fuzzy functions during training and can markedly raise
the Dice score. When the channel-wise (µ, σ) values cor-



Figure 9: Comparison between the ground-truth airway annotation and the corresponding fuzzy membership values. 1(a)
and 1(b) visualize the global airway fuzzy membership, where the color gradient from blue to red indicates membership
values ranging from high to low (0–1). Meanwhile, 2(a)/2(b), 3(a)/3(b), and 4(a)/4(b) each display the zoomed-in view of
local membership regions.

relate strongly with Dice (e.g., r ≈ 0.97–0.98), the chan-
nel is likely performing critical discrimination or selection,
thereby driving the overall improvement. Clinically, if a
channel “locks onto” a distinctive morphology—such as tiny
peripheral airways—and exhibits such a high performance
correlation, it indicates refined differentiation of those struc-
tures or pathologies. Hence, these high–sensitivity channels
capture regions that are otherwise difficult to delineate (e.g.,
very fine or distorted bronchi), implying enhanced discrimi-
native power precisely where segmentation is most challeng-
ing and providing potentially valuable insights for diagnosis
and intervention.

Figure 9 visualises global and local uncertainty maps: high-
uncertainty regions (green) cluster along airway boundaries,
indicating that the super-resolution branch—by reconstruct-
ing fine details—also contributes to boundary awareness
instead of relying solely on the segmentation branch. In
clinical airway assessment, one must evaluate not only air-
way location but also subtle deformities, stenoses, and other
fine-scale changes. By retaining boundary uncertainty, fuzzy
logic supports more precise downstream quantification—for
example, detecting incipient luminal narrowing. A hard-
threshold mask risks discarding the borderline voxels (e.g.,
a value of 0.49 forced to 0), thereby masking early pathol-
ogy. Fuzzy membership maps, in contrast, allow graded
updates, prevent abrupt structural jumps, and give clinicians

a smoother, more reliable basis for local refinement and
intervention planning.

In two separate models (super-resolution and segmenta-
tion), feature maps from the super-resolution decoder do
not undergo fuzzy attention nor interact with the segmenta-
tion decoder. By contrast, our proposed FuzzySR embeds
the fuzzy algorithm within the SR network and fuses inter-
mediate four-layer features through a fuzzy attention gate,
subsequently feeding them into the segmentation network
(Fig. 2). We also integrate central line assistance, fuzzy
logic (OR), central line loss, attention loss, cross-attention
fusion, and triangular/t-distribution membership functions.
As shown in Table 1 and Table 4, this combination achieves
the best airway prediction accuracy. FuzzySR significantly
outperforms sequential SR+segmentation models across all
metrics (p < 0.01), while the single SR model (PlainCNN
with fuzzy) surpasses baseline UNet and AutoEncoder in
super-resolution precision. FuzzySR likewise outperforms
many state-of-the-art SR approaches. Furthermore, fuzzy
membership functions combined with logical operations
(OR/AND/min) enable “multiple parallel judgments” across
scales and channels, preserving high-likelihood branches
and avoiding overly strict thresholds that may exclude rele-
vant structures.
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A INTRODUCTION

Integration of Central Lines and Attention Loss. (1) Central-Line-Based Loss. We incorporate manually extracted and
expert-modified central lines of the airways into the loss function, thus improving the detection around branching areas.
This step addresses the difficulty in capturing fine, distal airways and ensures that the parallel network remains sensitive to
small structural details. (2) Attention Loss. We additionally propose an Attention Loss, which uses the fuzzy attention maps
generated by the segmentation branch to guide the super-resolution branch, ensuring that terminal airway regions receive
higher emphasis. This design further facilitates the capture of subtle airway structures in low-resolution scans and reinforces
the synergy between super-resolution and segmentation.

B ADDITIONAL METHODOLOGY

B.1 CENTRAL LINE EXTRACTION

Certain Python packages offer functions frequently used for segmenting tubular structures like airways and vessels. For
instance, one function from the Skimage package processes a three-dimensional Boolean array (a pre-processed binary
image) and produces another Boolean array of identical dimensions, indicating the skeleton of the original shape. This
skeletonization process iteratively strips away outer pixels until only the core structure remains. However, its output
can be inaccurate, often retaining redundant looping centrelines that diminish segmentation precision. Consequently, we
manually extract centrelines during data preprocessing and then rely on expert corrections to ensure more accurate centreline
segmentation.

After medical experts annotated the tracheal central line, we incorporated it as a corrective measure in the training process.
Comparative analyses demonstrated pronounced improvements in quantitative metrics (e.g., Dice Similarity Coefficient,
Intersection over Union, and precision) once the central line was included. Meanwhile, removing falsely segmented regions
(false positives) led to minor decreases in the branch score (BD) and tree detected ratio (TD). Nonetheless, these findings
underscore the clinical importance of integrating the central line, which enhances the model’s predictive accuracy and
delivers better diagnostic support for airway-related pathologies—consistent with the primary objective of our study.
Refinement of Pulmonary Airway Central Lines: The skeletonize_3d() function in the skimage.morphology module of
the SciKit-Image Python library is frequently used to obtain object skeletons in 3D images. However, since it is designed for
general 3D image processing rather than tracheal anatomy, it may yield tracheal centerlines lacking the smoothness and
branching clarity needed for accurate analyses. In contrast, MIMICSUnknown [June 4, 2024a] provides superior centerline
extraction compared to skeletonize_3d(), though further radiologist refinement remains necessary to ensure data reliability.
Consequently, expert manual corrections are indispensable for obtaining accurate tracheal centerlines, even after the use of
skeletonize_3d() and MIMICS (see Figure 10).

Figure 10 highlights the limitations of traditional centerline extraction functions, which, although convenient, are not tailored
to the trachea’s spatial configuration and can generate central lines with looping and nodules. Conversely, medical software



Figure 10: Visualization of Airway Parsing Results. (a) represents the tree parsing results based on the central line extracted
by skeletonize_3d() function. (b) is the inaccurate central line extracted by skeletonize_3d() function. (c) shows the accurate
tree parsing results based on the central line refined by radiologists. (d) represents an accurate, smooth, and nodule-free
refined central line.

specifically designed for pulmonary airways removes most looping and nodules to produce smoother, more coherent tracheal
centerlines. Nonetheless, small branches still require radiologist intervention. These refined centerlines afford more precise
airway parsing, reducing inaccurate branch counts and diminishing erroneous segments from 236 to 145. In Section IV
(RESULTS AND DISCUSSION), all airway prediction metrics reported are derived using the refined centerlines described
in this section to support model training.

Proposed Loss Functions The proposed FuzzySR incorporates two novel loss functions: the Central Line Loss and the
Attention Loss. Each branch is assigned a unique numerical identifier, which is determined through computational processes.
The key to this calculation lies in the hierarchical structure defined by the parent-child relationships. This computation
employs tree parsing methodologies to delineate the branches pertinent to each segment. The intersection metric is derived
by multiplying the forecasted branch for every segment with its respective ground truth (GT) branch and then aggregating
these multiplicative values. The aggregate of the branches delineated in the ground truth across all segments constitutes the
calculation’s denominator. Therefore, the formula for branch loss is given by equation (3) and (4). The formula for central
line loss is given by following equations:
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Inaccuracies in airway central lines extracted via a Python library function, including imprecise branching and looping, led
our experts to refine these lines. The improved lines were then used as a loss metric in our model’s training. The proposed
attention loss is designed by weighting the computed mean squared error (MSE) with the weighted attention map extracted
from FuzzySR. This mechanism provides feedback to the super-resolution regions based on the varying importance of
airway feature distributions. Theoretically, the proposed attention loss allows FuzzySR to allocate more focus to the pixels
surrounding the airway features, thereby improving the accuracy of airway predictions.

C EXPERIMENT SETUP

Coding Environment and Radiologist Annotation tools. The study employed a quad-GPU setup featuring an NVIDIA



Algorithm 1 Cross Attention

class CROSS_ATTENTION(Q,K)
initialize:

Qflat,Kflat ∈ RB×C×(DHW )

WQ,WK ∈ RB×C×D×H×W

Ŝi ∈ RB×chunk_size×chunk_size

function FORWARD(Q,K)
for i = 0 to spatial_size by chunk_size:

Qi = Qflat[:, :, i : i+ chunk_size]
Ki = Kflat[:, :, i : i+ chunk_size]

Si = cosine_similarity(Qi,Ki) =
Q⊤

i ·Ki

∥Qi∥·∥Ki∥

Ŝi = softmax
(

Si

scale

)
WQi

= Ŝi ·Q⊤
i , WKi

= Ŝi ·K⊤
i

WQ[:, :, i : i+ chunk_size]+ = WQi

WK [:, :, i : i+ chunk_size]+ = WKi

attention_map = min(WQ,WK)
return attention_map

TITAN X (12GB VRAM). For annotation, we utilized 3D SlicerUnknown [June 4, 2024b], ITK-SnapUnknown [June 4,
2024c], MeshLabMaggiordomo et al. [2021], and MIMICSUnknown [June 4, 2024a]. Specifically, experts used ITK-Snap
for the annotation of the pulmonary airways and corrections of the central line. MeshLab converted airway ground truths
(annotated in ITK-Snap in NIFTI format) into meshes. 3D Slicer transformed 3D CT data into DICOM, a medical imaging
standard. These DICOM CT scans and meshes were then processed in MIMICS to generate central lines, followed by expert
annotation. We plan to share our findings, including source code, with the scientific community in due course. Performance
Evaluation Metrics: The efficacy of the model was assessed through predictions conducted on the test dataset, subsequently
benchmarked against the ground truth annotations provided by radiologists. Four key metrics were employed for this
evaluation: the Dice Similarity Coefficient (DSC), Precision, Tree Detected Ratio (TD), and Branch Detected Ratio (BD).
These measures facilitated a comprehensive analysis of the model’s performance in terms of accuracy, precision, and its
ability to accurately detect tree and branch structures within the pulmonary airway. To validate the performance of the
proposed FuzzySR in super-resolution, three evaluation metrics were introduced: SSIM(Structural Similarity Index Measure),
PSNR(Peak Signal-to-Noise Ratio), and RMSE(Root Mean Square Error). SSIM is an index that measures the similarity in
visual effects between two images. It considers changes in luminance, contrast, and structure of the images, with values
ranging from -1 to 1, where 1 indicates identical images. This measure aligns more closely with human visual perception
of image quality. PSNR is one of the most commonly used metrics for assessing the quality of image reconstruction. It
evaluates image quality by calculating the relationship between the maximum possible pixel value of the original image and
the mean squared error (MSE) with the reconstructed image. A higher PSNR value indicates better image quality. RMSE
directly measures the pixel-level differences between the original and reconstructed images. A lower RMSE value indicates
that the image is closer to the original, signifying higher image quality.
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