
Under review as a conference paper at ICLR 2024

UNSUPERVISED COMBINATORIAL OPTIMIZATION UN-
DER COMPLEX CONDITIONS: PRINCIPLED OBJECTIVES
AND INCREMENTAL GREEDY DERANDOMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Combinatorial optimization (CO) has significant theoretical and practical impli-
cations. CO problems are naturally discrete, making typical machine-learning
techniques based on differentiable optimization inapplicable. Karalias & Loukas
(2020) adapted the probabilistic method, an important tool in combinatorics, to
incorporate CO problems into differentiable optimization. Their work ignited
the research on unsupervised learning for CO, composed of two main compo-
nents: probabilistic objectives and derandomization. Several desirable properties
of probabilistic objectives have been proposed, but without principled schemes
to satisfy them. Also, the derandomization process is still underexplored. Mo-
tivated by the limitations, we propose our method UCOM2, consisting of two
schemes: (1) a principled probabilistic objective construction scheme that prov-
ably satisfies the good properties, and (2) a fast and effective derandomization
scheme with a quality guarantee. We apply UCOM2 to various complex condi-
tions (e.g., cardinality constraints, non-binary decisions) and problems involving
them, highlighting that UCOM2 is general and practical. We further show the
empirical superiority of UCOM2 w.r.t. both optimization quality and speed.

1 INTRODUCTION

Combinatorial optimization (CO) is a branch of optimization. Typically, among a discrete set of
choices, a CO problem aims to find the best one that minimizes (or maximizes) some objectives. CO
is theoretically important as a mathematical subfield. Many CO problems are NP-hard (Papadim-
itriou & Steiglitz, 1998; Karp, 2010), and investigating CO problems helps us study computational
complexity and many other related fields like cryptography (Applebaum et al., 2010). Also, many
CO problems are derived from real-world applications (Paschos, 2014).
Naturally, CO problems are discrete. Specifically, the space of feasible solutions is discrete, and the
objective cannot be directly evaluated outside the discrete space. While recent years have witnessed
rapid developments in machine learning (ML), most ML methods are based on differentiable opti-
mization (e.g., gradient descent). Thus, applying such ML techniques to CO problems is non-trivial.
In their pioneering work, Karalias & Loukas (2020) adapted the probabilistic method (Erdős &
Spencer, 1974; Alon & Spencer, 2016), an important tool in combinatorics, to incorporate discrete
CO problems into differentiable optimization. Specifically, they proposed to evaluate CO objectives
on a distribution of discrete choices (i.e., in a probabilistic manner). This allows continuous param-
eterization such that applying ML techniques with differentiable optimization becomes feasible. In
addition to differentiable optimization, their pipeline consists of two main steps: (1) construction of
probabilistic objectives (i.e., a continuous version of the original optimization objectives); (2) de-
randomization to obtain the final discrete solutions. This ignited the line of research on unsupervised
(i.e., not supervised by solutions) learning for combinatorial optimization (UL4CO).
However, the prior works on UL4CO share multiple limitations. Although Karalias & Loukas (2020)
and Wang et al. (2022) proposed some desirable properties of the probabilistic objectives, they did
not propose any practical schemes to construct the objectives with such properties. At the same
time, the derandomization process is underexplored, without many practical techniques or theoreti-
cal discussions. Particularly, we do not have guidelines for UL4CO under complex conditions (i.e.,
complex optimization objectives and/or constraints) that are mathematically hard to handle.

1

Under review as a conference paper at ICLR 2024

Motivated by the limitations, we propose UCOM2 (Usupervised Combinatorial Optimization Under
Complex Conditions), composed of a probabilistic objective construction scheme and a derandom-
ization scheme. UCOM2 has the following theoretical and empirical strengths:
• Probabilistic objective construction scheme: UCOM2 is equipped with the first principled

scheme for constructing probabilistic objectives, satisfying the good properties suggested by Kar-
alias & Loukas (2020) and Wang et al. (2022). Specifically, we show that any probabilistic objec-
tive that can be rephrased as an expectation would suffice in satisfying the properties (Sec. 3.1).

• Derandomization scheme: UCOM2 is equipped with a fast and effective derandomization
scheme. We show that, when a probabilistic objective is constructed following the first scheme,
the derandomized results have a stronger quality guarantee than the existing ones (Sec. 3.2).

• Applicable to complex conditions: UCOM2 is general and practical. We apply UCOM2 to com-
plex conditions (e.g., cardinality constraints and non-binary decisions; Sec. 4). Further, for CO
problems involving such complex conditions, we complete objective construction and derandom-
ization by combining our derivations on their corresponding conditions (Sec. 5).

• Experiments: UCOM2 has empirical superiority w.r.t. optimization quality and speed (Sec. 6).

2 PRELIMINARIES AND BACKGROUND

2.1 MATHEMATICAL PRELIMINARIES AND NOTATIONS

Graphs. A (edge-weighted) graph G = (V,E,W) is defined by a node set V , an edge set E, and
edge weights W : E → R. We let n = |V | denote the number of nodes (WLOG, V = [n] :=
{1, 2, . . . , n}), and let m = |E| denote the number of edges.
Combinatorial optimization. We consider combinatorial optimization (CO) problems on graphs
with finite discrete decisions on nodes. Indeed, many CO problems can be (re-)formulated on
graphs (Khalil et al., 2017). A CO problem CO(f, C, d) is defined by an optimization objective
f : dn → R+, constraints defined by a feasible set C ⊆ dn, and a set of possible decisions d (on
each v ∈ V). Given decisions Xv ∈ d on all the nodes v ∈ V , we have a full decision X ∈ dn.
For each graph G = (V,E,W), we can use the optimization objective function f to evaluate each
full decision X ∈ dn on G by f(X;G), and we aim to optimize minX∈C(G) f(X;G).1 By default,
we consider CO problems with binary decisions (i.e., d = {0, 1}). Given X ∈ {0, 1}n, we call each
node v with Xv = 1 a chosen node, and call VX := {v ∈ V : Xv = 1} ⊆ V the chosen subset.

2.2 BACKGROUND: PROBABILISTIC-METHOD-BASED UL4CO

We shall introduce the background of probabilistic-method-based unsupervised learning for combi-
natorial optimization (UL4CO), including the overall pipeline and some existing ideas/techniques.

2.2.1 THE PROBABILISTIC-METHOD-BASED UL4CO PIPELINE: ERDŐS GOES NEURAL

The probabilistic-method-based UL4CO pipeline, Erdős Goes Neural (Karalias & Loukas, 2020),
has three components: objective construction, differentiable optimization, and derandomization.
Probabilistic objective construction. Given a CO problem CO(f : {0, 1}n → R, C, d = {0, 1}),2
we first construct a penalized objective fpen(X) = f(X) + β1(X /∈ C) with constraint coefficient
β > 0. Then, a probabilistic objective f̃ : [0, 1]n → R accepting probabilistic (and thus continuous)
inputs is constructed such that f̃(p) ≥ EX∼pfpen(X) = EX∼pf(X) + β PrX∼p[X /∈ C].
We see each p ∈ [0, 1]n as a vector of probabilities, and see the pv’s for v ∈ [n] as independent
Bernoulli variables. Hence, we have Prp[X] =

∏
v∈VX

pv
∏

u∈[n]\VX
(1 − pu), EX∼pf(X) =∑

X∈{0,1}n Prp[X]f(X), and PrX∼p[X /∈ C] =
∑

X∈{0,1}n\C Prp[X] = 1−
∑

X∈C Prp[X].

Differentiable optimization. For differentiable optimization, we need ensure that f̃ is differentiable
(w.r.t. p). At this moment, let us assume it holds. Then, given each test instance G, we can use
differentiable optimization to obtain an optimized probabilities po with (ideally) small f̃(po;G).
Derandomization. Finally, derandomization is used to obtain deterministic full decisions. For each
test instance G, the derandomization process transforms each po ∈ [0, 1]n obtained by probabilistic
optimization into a discrete full decision Xp ∈ {0, 1}n. Karalias & Loukas (2020) showed a quality
guarantee of derandomization by random sampling. See Appendix A for more details.

1We can always reverse the sign of f to make it a minimization problem.
2Karalias & Loukas (2020) only considered binary problems. We will discuss non-binary cases in Sec 4.5.

2

Under review as a conference paper at ICLR 2024

2.2.2 LOCAL DERANDOMIZATION WITH ENTRY-WISE CONCAVITY

As Wang et al. (2022) pointed out, the theoretical quality guarantee by Karalias & Loukas (2020)
is obtained by random sampling, and we may need a large number of samplings (and good luck)
to have a good bound. Wang et al. (2022) further proposed a principle to have a deterministic
(i.e., not relying on random sampling) quality guarantee by iterative rounding (i.e., a series of local
derandomization along with a node enumeration). Their principle involves two concepts: (1) local
derandomization of probabilities p and (2) entry-wise concavity of probabilistic objective f̃ .
Local derandomization. Given p ∈ [0, 1]n, i ∈ [n], and x ∈ {0, 1}, der(i, x; p) ∈ [0, 1]n is the
result after pi being locally derandomized as x, i.e., der(i, x; p)i = x, and der(i, x; p)j = pj ,∀j ̸= i.
Entry-wise concavity. A probabilistic objective f̃ : [0, 1] → R is entry-wise concave if
pif̃(der(i, 1; p)) + (1 − pi)f̃(der(i, 0; p)) ≤ f̃(p),∀p, i. Wang et al. (2022) showed that apply-
ing a series of local derandomization to p with an entry-wise concave objective f̃ does not increase
the objective. See Appendix A for more details and Appendix B for more extensive related work.

3 THE PROPOSED METHOD: UCOM2

Although Karalias & Loukas (2020) and Wang et al. (2022) proposed several good properties of
probabilistic objectives, they did not propose any practical scheme for constructing probabilistic
objectives satisfying the good properties they formalized.3 Specifically, a practitioner would not
know how to construct probabilistic objectives for new problems. Also, derandomization is still
underexplored, without many discussions or techniques. This makes applying probabilistic-method-
based UL4CO to specific problems difficult, especially when it involves complex conditions that
are mathematically hard to handle. Motivated by the situation, we propose UCOM2 (Usupervised
Combinatorial Optimization Under Complex Conditions), consisting of two high-level schemes:
• (S1) a probabilistic objective constructions scheme satisfying the good properties;
• (S2) a fast and effective derandomization scheme with a quality guarantee.

3.1 PRINCIPLED PROBABILISTIC OBJECTIVES: EXPECTATIONS ARE ALL YOU NEED

We summarize the good properties of a probabilistic objective f̃ by Karalias & Loukas (2020) and
Wang et al. (2022): (P1) f̃ : [0, 1]n → R accepts continuous inputs p ∈ [0, 1]n (rather than discrete
X ∈ {0, 1}n), (P2) f̃ is an upper bound of the expectation of a penalized objective f + β1(X /∈ C)
for some β > 0, (P3) f̃ is differentiable w.r.t. p, and (P4) f̃ is entry-wise concave w.r.t. p.
Target 1 (Principled objective construction). For each problem with an optimization objective
f : {0, 1}n → R and constraints X ∈ C, we aim to find a principled way to construct a good
probabilistic objective f̃ : [0, 1]n → R to satisfy all the good properties (P1)-(P4).

We shall show that expectations are all you need. Specifically, any probabilistic objective that can
be rephrased as an expectation would satisfy properties (P1), (P3), and (P4). In other words, we only
need to find an upper bound of the original (penalized) objective to satisfy (P2) too.
Theorem 1 (Expectations are differentiable and entry-wise concave). For any g : {0, 1}n → R,
g̃ : [0, 1]n → R with g̃(p) = EX∼pg(X) is differentiable and entry-wise concave w.r.t. p.

Proof. See Appendix C for all the proofs.

Notes. Differentiability and entry-wise concavity are closed under addition. Hence, a linear combi-
nation of expectations also works. Also, probabilities are special expectations of indicator functions.
By Thm. 1, we propose the following scheme to construct an expectation of upper bound.
Scheme 1 (Construct an expectation of upper bound). Given an optimization objective f :

{0, 1}n → R and constraints X ∈ C, if we find f̂1, f̂2 : {0, 1}n → R such that f̂1(X) ≥ f(X) and
f̂2(X) ≥ 1(X /∈ C),∀X , then f̃(p) := EX∼pf̂1(X)+βEX∼pf̂2(X) with β > 0 satisfies (P1)-(P4).

3.2 INCREMENTAL GREEDY DERANDOMIZATION: FAST AND EFFECTIVE

Target 2 (Fast and effective derandomization). We aim to propose a derandomization scheme that
is (1) fast in speed and (2) effective in generating high-quality discrete solutions.

3Wang et al. (2022) proposed to learn an entry-wise concave objective with the actual objective unknown.

3

Under review as a conference paper at ICLR 2024

We generalize greedy algorithms to greedy derandomization and propose an incremental scheme
to improve the speed. For greedy derandomization, starting from pcur = po, we repeat
the following steps: (1) greedily finding the best local derandomization, i.e., (i∗, x∗) ←
argmin(i,x)∈[n]×{0,1} f̃(der(i, x; pcur)) and (2) conducting it, i.e., pcur ← der(i∗, x∗; pcur).

Applying greedy derandomization with an entry-wise concave f̃ (ensured by Scheme 1) not only
has the quality guarantee (G1)-(G2) by iterative rounding, but also can find a local minimum (G3).

Theorem 2 (Goodness of greedy derandomization). For any entry-wise concave f̃ and any po ∈
[0, 1]n, the above process of greedy derandomization can always reach a point where the final pfinal
is (G1) discrete (i.e., pfinal ∈ {0, 1}n), (G2) no worse than po (i.e., f̃(pfinal) ≤ f̃(po)), and (G3) a
local minimum (i.e., f̃(pfinal) ≤ min(i,x)∈[n]×{0,1} f̃(der(i, x; pfinal))).

Challenges naturally arise regarding the time complexity since the naive way requires 2n evaluations
of f̃ at each step. We propose to conduct the derandomization in an incremental manner.
Scheme 2 (Conduct incremental greedy derandomization). We conduct greedy derandomization
and improve the speed by deriving the incremental differences ∆f̃(i, x, pcur) := f̃(der(i, x; pcur))−
f̃(pcur) for all the (i, x) pairs, instead of computing the “whole” f̃(der(i, x; pcur))’s.4

4 APPLICATIONS OF UCOM2 TO COMPLEX CONDITIONS

UCOM2 is general and practical, i.e., can be applied to any condition with proper derivation. Below,
we consider several complex conditions that are commonly involved in various CO problems (see
Sec. 5 and Appendix F). For each condition, we shall derive (1) a probabilistic objective f̃ following
Scheme 1 and (2) incremental differences of f̃ following Scheme 2 for derandomization. Some
conditions here were encountered in existing works, but the conditions were not properly handled
within the probabilistic pipeline. See the detailed discussions in Appendix A.4.

Template. Below is the practical template of how we analyze each condition:
• (S1-1) Given an optimization objective f , we find a good upper bound f̂(X) ≥ f(X),∀X

OR (S1-1′) Given a constraint X ∈ C, we find a good upper bound f̂(X) ≥ 1(X /∈ C),∀X .
– A good upper bound should be easy to derive and efficient to compute.

• (S1-2) After finding f̂ , we construct f̃(p) := EX∼pf̂(X) and derive its detailed formula.
• (S2) We analyze the incremental differences f̃(der(i, x; p)).

4.1 CARDINALITY CONSTRAINTS

Definition. We consider constraints X ∈ C with C = {X : |VX | ∈ Cc}. Some typical cases are
Cc = {k} or Cc = {t ∈ N : t ≤ k} for some k ∈ N (Buchbinder et al., 2014).
Given p ∈ [0, 1]n, |VX | =

∑
i∈V Xi (see Sec. 2) follows a Poisson binomial distribution

PoiBin(p1, p2, . . . , pn) with parameters (pi)i∈[n] (Wang, 1993). The probability mass function
(PMF) is PrX∼p[|VX | = t] =

∑
Vt⊆V :|Vt|=t

∏
i∈Vt

pi
∏

j∈V \Vt
(1− pj), for each 0 ≤ t ≤ n.

Objective construction. We (S1-1) find f̂card(X;Cc) := mink∈Cc
||VX |−k|,5 and (S1-2) construct

f̃card(p;Cc) := EX∼pf̂card(X;Cc). See the following lemma for the detailed formula of f̃card.

Lemma 1 (f̃card abides by Scheme 1). For any p ∈ [0, 1]n and Cc, f̃card(p;Cc) =∑
t∈[n]\Cc

PrX∼p[|VX | = t] mink∈Cc
|t− k| ≥ PrX∼p[|VX | /∈ Cc] = EX∼p1(X /∈ C).

Incremental differences. We (S2) compute the incremental differences of f̃card. The main technical
difficulty lies in the incremental differences of the distribution of a Poisson binomial variable. Our
derivation is based on the recursive formula of the Poisson binomial distribution.
Lemma 2 (Incremental differences of f̃card for Scheme 2). For any p, i, t, PrX∼p[|VX \ {i}| =
t] = (1 − pi)

−1
∑t

s=0 qs(pi/(pi − 1))t−s = (pi)
−1

∑n−t−1
s=0 qt+s+1((pi − 1)/pi)

s, where qs :=

PrX∼p[|VX | = s]. Hence, ∆f̃card(i, 0, p;Cc) := f̃card(der(i, 0; p);Cc) − f̃card(p;Cc) =

4Usually, the incremental differences are simpler than the whole function, and are easily parallelizable.
5We can also compute PrX∼p[|VX | /∈ Cc], but the formula in Lem. 1 practically performs better, intuitively

because it distinguishes different levels of violations. See similar ideas by Pogancic et al. (2019).

4

Under review as a conference paper at ICLR 2024

∑
t∈[n]\Cc

(PrX∼p[|VX \ {i}| = t]− PrX∼p[|VX | = t])mink∈Cc
|t− k|, and ∆f̃card(i, 1, p;Cc) =∑

t∈[n]\Cc
(PrX∼p[|VX \ {i}| = t− 1]− PrX∼p[|VX | = t])mink∈Cc

|t− k|.

Implementation details. We adapt a discrete-Fourier-transform-based method (Hong, 2013; Straka,
2017) for computing the distribution. For all conditions, we make sure each pi ∈ [ϵ, 1− ϵ] for some
small ϵ > 0 for numerical stability. See Appendix D.1 for more details.

4.2 OPTIMUM W.R.T. A SUBSET

Definition. We have a pairwise score function (e.g., distance) h : V ×V → R and we aim to compute
fos(X) := minvX∈VX

h(i, vX) for some i ∈ V (e.g., the shortest distance to a set of points).
We fix i ∈ V in the analysis below, and let v1, v2, . . . , vn be a permutation of V = [n] such that
d1 ≤ d2 ≤ · · · ≤ dn, where dj = h(i, vj),∀j ∈ [n].
Objective construction. We (S1-1) find f̂os(X; i, h) := minvX∈VX

h(i, vX), and (S1-2) construct
f̃os(p; i, h) := EX∼pf̂os(X; i, h). See the lemma below for the detailed formula of f̃os.

Lemma 3 (f̃os abides by Scheme 1). For any p ∈ [0, 1]n, f̃os(p; i, h) = pv1d1 + (1− pv1)pv2d2 +

· · ·+ (
∏n−1

j=1 (1− pvj))pvndn = EX∼p minvX∈VX
h(i, vX) = EX∼pfos(X).

Incremental differences. We (S2) compute the incremental differences of f̃os.

Lemma 4 (Incremental differences of f̃os for Scheme 2). For any p ∈ [0, 1]n and j ∈ [n], we
define qj := (

∏j−1
k=1(1− pvk))pvj , the coefficient of dj in f̃os. Then ∆f̃os(vj , 0, p; i, h) = −qjdj +

pvj

1−pvj

∑
j′>j qj′dj′ ,

6 and ∆f̃os(vj , 1, p; i, h) =
∑

j′>j qj′(dj − dj′),∀j ∈ [n].

4.3 COVERED

Definition. We consider conditions where some i ∈ V needs to be covered (i.e., at least one neighbor
of i is chosen). Formally, the constraints are X ∈ C with C = {X : {vX ∈ VX : (vX , i) ∈ E} ≠ ∅}.
Objective construction. We (S1-1) find f̂cv(X; i) := 1(X /∈ C) = 1({vX ∈ VX : (vX , i) ∈ E} =
∅), and (S1-2) construct f̃cv(p; i) := EX∼pf̂cv(X; i).

Lemma 5 (f̃cv abides by Scheme 1). For any p ∈ [0, 1]n and i ∈ [n], f̃cv(p; i) =∏
v∈[n] : (v,i)∈E(1− pv) = PrX∼p[X /∈ C] = EX∼p1(X /∈ C).

Incremental differences. We (S2) compute the incremental differences of f̃cv.

Lemma 6 (Incremental differences of f̃cv for Scheme 2). For any p ∈ [0, 1]n and i ∈ [n], if
(i, j) /∈ E, then ∆f̃cv(j, 0, p; i) = ∆f̃cv(j, 1, p; i) = 0; if (i, j) ∈ E, then ∆f̃cv(j, 0, p; i) =

pj
∏

v∈Ni,v ̸=j(pv − 1) and ∆f̃cv(j, 1, p; i) = −f̃cv(p; i) (i.e., f̃cv(der(j, 1; p); i) = 0).

4.4 CLIQUES (OR INDEPENDENT SETS)

Definition. We consider conditions where the chosen nodes VX should form a clique (independent
sets can be analyzed similarly). Formally, the constraints are X ∈ C with C = {X :

(
VX

2

)
⊆ E}.

Objective construction. We (S1-1) find f̂cq(X) := |{(u, v) ∈
(
VX

2

)
: (u, v) /∈ E}|, and (S1-2)

construct f̃cq := EX∼pf̂cq(X). See the following lemma for the detailed formula of f̃cq.

Lemma 7 (f̃cq abides by Scheme 1). For any p ∈ [0, 1]n, f̃cq(p) =
∑

(u,v)∈(V2)\E
pupv ≥

PrX∼p[X /∈ C] = EX∼p1(X /∈ C).

Incremental differences. We (2) compute the incremental differences of f̃cq.

Lemma 8 (Incremental differences of f̃cq for Scheme 2). For any p ∈ [0, 1]n and i ∈ [n],
∆f̃cq(i, 0, p) = −pi

∑
j∈[n],j ̸=i,(i,j)/∈E pj , and ∆f̃cq(i, 1, p) = (1− pi)

∑
j∈[n],j ̸=i,(i,j)/∈E pj .

6When pvj = 1, we need to replace
pvj

1−pvj

∑
j′>j qj′dj′ by

∑
j′>j(

∏
1≤i′≤i−1,i′ ̸=j(1 − pvi′))pvidj′ .

Recall that we make sure each pi ∈ [ϵ, 1− ϵ] for some ϵ > 0, so this does not happen in practice.

5

Under review as a conference paper at ICLR 2024

4.5 NON-BINARY DECISIONS

Definition. We have been considering problems with binary decisions. We also consider non-binary
decisions, i.e., there are (potentially) more than two decisions (|d| ≥ 2). WLOG, we assume that
d = {0, 1, . . . , c−1} for some c ≥ 2. Typical examples include problems with partition or coloring.
Notations. For CO problems with non-binary decisions, with a slight abuse of notations, we shall
extend some notations and concepts used for binary cases, while using the same symbols. With
non-binary decisions d = {0, 1, . . . , c − 1}, let X ∈ dn denote a discrete full decision. We use
p ∈ [0, 1]n×c with

∑c−1
r=0 pir = 1,∀i ∈ [n] to represent the probabilities of possible decisions,

where each entry pir represents Pr[Xi = r]. Each row pi represents a categorical distribution
independent of each other. Given p ∈ [0, 1]n×c, i ∈ [n], and x ∈ d = {0, 1, . . . , c − 1}, now
der(i, x; p) is the result after the i-th row of p being locally derandomized w.r.t. its x-th entry, i.e.,
der(i, x; p)ix = 1, der(i, y; p)iy = 0,∀y ̸= x, and der(i, x; p)jz = pjz,∀j ̸= i,∀z.
Theoretical analysis on general non-binary cases. Our theoretical results (Thms. 1 and 2) can be
extended to non-binary cases. We also extend the theoretical results in the existing works by Karalias
& Loukas (2020) and Wang et al. (2022) to non-binary cases (see Appendix E.1).
Now, for non-binary cases, a probabilistic objective f̃ : [0, 1]n×c → R is entry-wise concave if∑

r∈d pirf̃(der(i, r; p)) ≤ f̃(p),∀p, i.
Theorem 3 (Expectations are differentiable and entry-wise concave (non-binary version)). For any
function g : dn → R, g̃ : [0, 1]n×c → R with g̃(p) = EX∼pg(X) is differentiable and entry-wise
concave, where EX∼pg(X) =

∑
X∈dn Prp[X]g(X) with Prp[X] =

∏
v∈[n] pvXv

.

With non-binary decisions, the greedy derandomization is done in a similar way, as follows: (1)
(i∗, x∗)← argmin(i,x)∈[n]×d f̃(der(i, x; pcur)) and (2) pcur ← der(i∗, x∗; pcur).

Theorem 4 (Goodness of greedy derandomization (non-binary version)). Theorem 2 still holds with
{0, 1} being replaced by any general non-binary d.

Due to the generality of non-binary conditions, objective construction and derandomization details
are deferred to where each specific problem is analyzed in Sec. 5.

4.6 UNCERTAINTY

We also consider uncertainty in edge existence, i.e., edge probabilities P : E → [0, 1], where each
edge e ∈ E exists with probability P (e). Due to the generality of uncertainty, the details of objective
construction and derandomization will be deferred to where each specific problem is analyzed.

5 APPLICATIONS OF UCOM2 TO PROBLEMS WITH COMPLEX CONDITIONS

The conditions analyzed in Sec 4 are commonly involved in different CO problems. In this sec-
tion, we apply UCOM2 to several CO problems (facility location, maximum coverage, and robust
coloring) with both theoretical values (NP-hardness (Mihelic & Robic, 2004; Yanez & Ramirez,
2003)) and real-world implications. See Appendix F for the applications to four more problems (ro-
bust k-clique, robust dominating set, clique cover, and minimum spanning tree). For the first time,
we derive probabilistic objectives for such problems, together with the derandomization process.
Specifically, for each specific problem, we shall (1) check which conditions are involved and (2)
construct the probabilistic objective and derandomization process based on the analyses in Sec. 4.

Template. Below is the practical template of how we analyze each problem:
• (1) Find the optimization objective (f =

∑
i fi) and the constraints (X ∈

⋂
i Ci).

• (2) Find the f̃i’s for the optimization objectives and g̃j’s for the the constraints.
• (3) Construct the final objective:

∑
i f̃i + β

∑
j g̃j with constraint coefficient β > 0.

5.1 FACILITY LOCATION

The facility location problem is abstracted from real-world scenarios where we aim to find some
good locations among candidate locations (Owen & Daskin, 1998; Drezner & Hamacher, 2004).
Definition. Given (1) a complete weighted graph G = (V = [n], E =

(
V
2

)
,W), where each pair

(u, v) of nodes are adjacent with distance W (u, v) (for the ease of presentation, we let W (v, v) =

6

Under review as a conference paper at ICLR 2024

0,∀v ∈ V), and (2) the number k of locations to choose, we aim to find a subset VX ⊆ V such that
(c1) |VX | = k, and (c2)

∑
v∈V minvX∈VX

W (v, vX) is minimized.
Involved conditions: (1) cardinality constraints and (2) optimum w.r.t. a subset (see Secs. 4.1-4.2).

Details. Given p ∈ [0, 1]n and β > 0, f̃FL(p;G, k) = (
∑

v∈V f̃os(p; v,W)) +

βf̃card(p; {k}). The incremental differences are ∆f̃FL(i, x, p;G, k) =
∑

v∈V ∆f̃os(i, x, p; v,W)+

β∆f̃card(i, x, p; {k}),∀i ∈ [n], x ∈ {0, 1} See Lems. 1-4 for the details.

5.2 MAXIMUM COVERAGE

The maximum coverage problem (Khuller et al., 1999) is a classical combinatorial optimization
problem with real-world applications including public traffic management (Ali & Dyo, 2017), web
management (Saha & Getoor, 2009), and scheduling (Marchiori & Steenbeek, 2000).
Definition. Given (1) m items (WLOG, [m]), each with weight Wj ,∀j ∈ [m], (2) a family of n sets
S = {S1, S2, . . . , Sn} with each Si ⊆ [m] and (3) the number k of sets to choose, we aim to find
a subset of sets SX ⊆ S such that (c1) |SX | = k, and (c2) the total weights of the covered items∑

j∈TX
Wj is maximized, where TX :=

⋃
Si∈SX

Si is the set of covered items.

Involved conditions: (1) cardinality constraints and (2) covered (see Secs. 4.1 & 4.3).
Details. Construct a bipartite graph GS = (V = S ∪ [m], E), where (Si, j) ∈ E if and only if
j ∈ Si. Given p ∈ [0, 1]n and β > 0, f̃MC(p;S, k) =

∑
j∈[m] Wj f̃cv(p; j,GS) + βf̃card(p; {k}).

The incremental differences are ∆f̃MC(i, x, p;S, k) =
∑

j∈[m] Wj∆f̃cv(i, x, p; j,GS) +

β∆f̃card(i, x, p; {k}),∀i ∈ [n], x ∈ {0, 1}. See Lems. 1, 2, 5, and 6 for the details.

5.3 ROBUST COLORING

The robust coloring problem (Yanez & Ramirez, 2003) generalizes the coloring problem (Jensen
& Toft, 2011). It is motivated by real-world scheduling problems where some conflicts can be
uncertain, with notable applications to supply chain management (Lim & Wang, 2005).
Definition. Given (1) an uncertain graph G = (V,E, P), where Eh := {e ∈ E : P (e) = 1}
represents hard conflicts which we must avoid, and Es := {e ∈ E : P (e) < 1} are soft conflicts
which possibly happen, and (2) the number c of colors, we aim to find a c-coloring X on V , where
each node v ∈ V has a color Xv ∈ d := {0, 1, . . . , c − 1}, such that (c1) no hard conflicts are
violated (i.e., Xu ̸= Xv,∀(u, v) ∈ Eh), and (c2) the probability that no violated soft conflicts
happen (i.e.,

∏
e=(u,v)∈Es : Xu=Xv

(1− P (e))) is maximized. We fix G and c in the analysis below.

Involved conditions: (1) independent sets (the monochromatic subgraph of each color should be an
independent set), (2) uncertainty, and (3) non-binary decisions (see Secs. 4.4-4.6).
Objective construction. Regarding (c1), we extend the ideas in Sec. 4.4 (Lems. 7-8) to non-binary
cases. Let C1 = {X : (c1) is satisfied}, we let ĝ1(X) := |{Xu ̸= Xv : ∀(u, v) ∈ Eh}| ≥ g1(X) :=
1(X /∈ C1) and let g̃1(p) := EX∼pĝ1(X). Regarding (c2), maximizing

∏
e=(u,v)∈Es : Xu=Xv

(1 −
P (e)) is equivalent to minimizing f2(X) =

∑
e=(u,v)∈Es : Xu=Xv

− log(1 − P (e)). We let

f̂2(X) := f2(X) and let f̃2(p) := EX∼pf̂2(X). The final objective is f̃RC = f̃2 + βg̃1 with
constraint coefficient β > 0. See the following lemma for the detailed formula of f̃RC.

Lemma 9 (f̃RC abides with Scheme 1). Fix β > 0, for any p ∈ [0, 1]n×c, f̃RC(p) =∑
e=(u,v)∈Es

∑
r purpvr−log(1−P (e))+β

∑
(u,v)∈Eh

∑c−1
r=0 purpvr ≥ EX∼p(f2(X)+βg1(X)).

Incremental differences. We compute the incremental differences of f̃RC.

Lemma 10 (Incremental differences of f̃RC for Scheme 2). Fix β > 0, for any p, i, x,
∆f̃RC(i, x, p) = ∆f̃2(i, x, p)+β∆g̃1(i, x, p) with ∆g̃1(i, x; p) =

∑
x′∈d\{x} pix′

∑
(i,j)∈Eh

(pjx−
pjx′) and ∆f̃2(i, x; p) =

∑
x′∈d\{x} pix′

∑
(i,j)∈Es

(pjx′ − pjx) log(1− P (i, j)).

6 EXPERIMENTS

In this section, through experiments on problems with complex conditions, we show the effective-
ness of UCOM2 w.r.t. both optimization quality and time, compared to various baseline methods.

7

Under review as a conference paper at ICLR 2024

UCOM2 (ours)UCOM2 (ours)UCOM2 (ours)UCOM2 (ours) randomrandomrandom greedygreedy GurobiGurobi SCIPSCIP CardNNCardNN CardNN-noTTOCardNN-noTTO EGN-naiveEGN-naive RLRL

ideal

(a) FL: rand500

ideal

(b) FL: rand800

ideal

(c) MC: rand500

ideal

(d) MC: rand1000

Figure 1: Trade-off plots on facility location (FL) and maximum coverage (MC). Running time:
smaller the better. Objective: for FL smaller the better; for MC larger the better. For MC, we reverse
the y-axis so that the ideal point is always at the bottom left corner.

6.1 FACILITY LOCATION AND MAXIMUM COVERAGE

We conduct experiments on the facility location problem and the maximum coverage problem
(Secs. 5.1 & 5.2). For both problems, we mainly follow the experimental settings by Wang et al.
(2023), with additional datasets and baselines. For fair comparisons with the method proposed
by Wang et al. (2023), we consider inductive settings (training and test sets are different) and use
the same GNN architectures.7 See Appendix G.1 for the detailed experimental settings.
Methods. We compare UCOM2 with both traditional methods and ML methods: (1) random: k
locations or sets are picked uniformly at random; (2) greedy: deterministic greedy algorithms; (3-4)
Gurobi (Gurobi Optimization, LLC, 2023) and SCIP (Bestuzheva et al., 2021; Perron & Furnon,
2023): the problems are formulated as MIPs and the two solvers are used; (5) CardNN (Wang
et al., 2023): a SOTA UL4CO method with three variants; (6) CardNN-noTTO: CardNN directly
optimizes on each test graph in test time, and these are variants of CardNN without test-time op-
timization; (7) EGN-naı̈ve: EGN (Karalias & Loukas, 2020) with a naı̈ve probabilistic objective
construction and iterative rounding; (8) RL: a reinforcement-learning method (Kool et al., 2019).8

Datasets. We consider both random synthetic graphs and real-world graphs:
• random graphs: The number after “rand” represents the size of the random graphs in the group.

Each group of random graphs contains 100 graphs generated from the same distribution.
• real-world graphs: For facility location, each graph contains real-world entities with locations

(starbucks, mcd, subway). For maximum coverage, each graph contains real-world sets (twitch,
railway). Each group of real-world graphs also contains multiple graphs from the same source.

Speed-quality trade-offs. Several methods allow speed-quality trade-offs. That is, we can grant
more running time to obtain better optimization quality. For UCOM2, we use test-time augmen-
tation (Jin et al., 2023) on the test graphs by adding perturbations into both graph topology and
features to obtain additional data. The three variants of UCOM2 are obtained by using different
numbers of additional augmented data and taking the best objective.
Results. We show the results in Tabs. 1 & 2.9 For each group of datasets and each method, we
show the (normalized) optimization objective and the running time. For each group of datasets, the
performance is averaged on all the graphs in the group. Averaged over all the groups of datasets,
we further compute the average objective, time, and ranks. The average rank “sum” (ARS) is the
summation of the average ranks w.r.t. objective and time. The proposed method UCOM2 achieves
the best trade-offs overall. On facility location, the top-3 methods w.r.t. ARS are the three variants of
UCOM2. On maximum coverage, the three variants are ranked 1, 3, and 4 w.r.t. ARS, respectively.
The comparisons between UCOM2 and EGN-naive show the empirical effectiveness of our two
schemes, which are the differences between UCOM2 and EGN-naive. In Fig. 1, we show the detailed
trade-offs on the random graphs, which visually supports that our method achieves the best trade-off
overall. See Appendix G for the full results and the ablation study.

6.2 ROBUST COLORING

We conduct experiments on the robust coloring problem (see Sec. 5.3) under transductive settings
(i.e., directly optimize probabilistic decisions p on each test dataset). See Appendix G.1 for details.
Methods. We compare UCOM2 with four baseline methods: (1-2) greedy-RD and greedy-GA:
both methods decide the colors following an enumeration of nodes, where greedy-RD follows a ran-

7See Appendix H.1 for discussions on inductive settings and transductive settings.
8See Appendix H.2 for discussions on reinforcement learning and probabilistic-method-based UL4CO.
9The results are averaged over random trials, see Appendix G for the full results with standard deviations.

8

Under review as a conference paper at ICLR 2024

Table 1: Results on facility location. Running time (in seconds): smaller the better. Objective (obj):
smaller the better. In each column, ■ indicates ranking 1st, ■ ranking 2nd, and ■ ranking 3rd.

Method
rand500 rand800 starbucks mcd subway average average rank

obj↓ time↓ obj↓ time↓ obj↓ time↓ obj↓ time↓ obj↓ time↓ obj↓ time↓ obj↓ time↓ sum↓

random 1.41 642.34 1.51 140.99 1.87 187.12 1.69 119.65 1.57 111.62 1.61 240.34 12.0 13.6 25.6
greedy 1.18 5.63 1.16 3.45 1.22 5.07 1.18 5.74 1.11 12.09 1.17 6.40 8.4 3.8 12.2
Gurobi 1.08 325.60 1.22 72.91 1.07 80.17 1.37 62.12 2.58 61.09 1.46 120.38 9.4 11.4 20.8
SCIP 1.75 330.46 2.35 110.34 24.42 64.11 54.49 240.20 55.90 334.37 27.78 215.90 15.8 12.8 28.6
CardNN-S 1.14 34.96 1.06 7.74 1.81 11.85 1.96 1.00 1.09 10.04 1.41 13.12 9.2 3.8 13.0
CardNN-GS 1.00 198.07 1.01 83.97 1.48 54.43 1.14 19.92 1.13 14.60 1.15 74.20 6.0 8.4 14.4
CardNN-HGS 1.00 322.33 1.01 118.05 1.06 76.51 1.11 45.55 1.03 26.18 1.04 117.73 3.4 11.0 14.4
CardNN-noTTO-S 1.58 5.19 1.34 1.26 4.95 1.50 1.14 9.13 2.54 1.00 2.31 3.62 11.8 2.4 14.2
CardNN-noTTO-GS 1.14 76.99 1.15 30.83 1.44 25.14 1.12 31.23 1.14 3.64 1.20 33.56 8.0 6.2 14.2
CardNN-noTTO-HGS 1.14 114.96 1.01 118.05 1.58 21.22 1.25 14.03 1.12 21.27 1.22 57.91 7.6 8.0 15.6
EGN-naı̈ve 1.10 210.90 1.14 50.11 1.15 94.24 1.64 23.97 1.47 56.22 1.30 87.09 8.4 10.2 18.6
RL-transductive 2.31 802.92 2.25 176.23 10.22 1403.43 2.73 897.34 2.52 837.17 4.01 823.42 14.8 15.6 30.4
RL-inductive 1.69 803.07 1.85 176.55 2.74 233.93 2.52 149.57 2.37 139.55 2.23 300.54 13.4 15.0 28.4

UCOM2-short 1.05 1.00 1.04 1.00 1.06 1.00 1.10 1.78 1.06 5.23 1.06 2.00 4.4 1.6 6.0
UCOM2-middle 1.00 83.35 1.00 27.89 1.01 1.99 1.03 5.05 1.05 13.03 1.02 26.26 2.2 4.6 6.8
UCOM2-long 1.00 166.70 1.00 47.88 1.00 7.89 1.00 21.10 1.00 23.45 1.00 53.41 1.0 7.4 8.4

Table 2: Results on maximum coverage. Running time (in seconds): smaller the better. Objective
(obj): larger the better. In each column, ■ indicates ranking 1st, ■ ranking 2nd, and ■ ranking 3rd.

Method
rand500 rand1000 twitch railway average average rank

obj↑ time↓ obj↑ time↓ obj↑ time↓ obj↑ time↓ obj↑ time↓ obj↑ time↓ sum↓

random 0.81 2714.15 0.79 727.67 0.51 391.45 0.96 316.68 0.77 1037.49 12.5 14.0 26.5
greedy 0.98 1.00 0.99 1.00 1.00 1.12 1.00 1.00 0.99 1.03 7.3 1.3 8.5
Gurobi 1.00 1357.92 0.99 364.03 1.00 1.00 1.00 159.16 1.00 470.53 4.3 9.3 13.5
SCIP 0.97 1357.70 0.96 362.32 1.00 5.54 0.99 159.82 0.98 471.35 6.3 10.8 17.0
CardNN-S 0.93 131.16 0.92 35.07 1.00 13.22 0.97 4.08 0.96 45.89 8.0 5.5 13.5
CardNN-GS 0.99 439.38 0.99 208.36 1.00 27.02 1.00 21.79 1.00 174.14 3.0 9.0 12.0
CardNN-HGS 0.99 614.96 0.99 268.37 1.00 55.39 1.00 41.51 1.00 245.06 3.8 10.5 14.3
CardNN-noTTO-S 0.73 23.33 0.70 5.08 0.00 1.75 0.94 1.98 0.59 8.03 16.0 2.5 18.5
CardNN-noTTO-GS 0.83 107.76 0.79 58.17 0.05 3.14 0.96 7.82 0.65 44.22 13.5 5.0 18.5
CardNN-noTTO-HGS 0.83 144.58 0.79 74.58 0.05 4.65 0.96 8.31 0.66 58.03 12.0 6.3 18.3
EGN-naı̈ve 0.92 1365.17 0.91 306.92 0.46 196.90 0.95 159.33 0.81 507.08 12.3 12.3 24.5
RL-transductive 0.92 3392.69 0.82 909.58 0.95 2935.89 0.96 2375.04 0.91 2403.30 11.3 15.5 26.8
RL-inductive 0.77 3393.34 0.77 910.13 0.59 492.43 0.96 398.19 0.77 1298.52 13.5 15.5 29.0

UCOM2-short 0.99 10.26 0.99 7.52 1.00 2.98 1.00 2.51 1.00 5.81 4.5 3.0 7.5
UCOM2-middle 1.00 166.14 1.00 25.82 1.00 18.65 1.00 9.66 1.00 55.07 3.3 6.8 10.0
UCOM2-long 1.00 330.35 1.00 236.95 1.00 31.57 1.00 18.76 1.00 154.41 2.3 9.0 11.3

Table 3: Results on robust coloring. Running time (in seconds): smaller the better. Objective:
smaller the better. In each column, ■ indicates ranking 1st, and ■ ranking 2nd.

Method
collins, 18 colors collins, 25 colors gavin, 8 colors gavin, 15 colors krogan, 8 colors krogan, 15 colors ppi, 47 colors ppi, 50 colors average rank

obj time obj time obj time obj time obj time obj time obj time obj time obj time sum

greedy-RD 115.33 300.34 23.42 300.79 66.51 300.53 7.36 301.46 117.47 300.06 0.87 301.24 4.16 301.31 1.23 301.24 2.88 3.25 6.13
greedy-GA 114.36 188.21 22.20 243.93 66.51 398.90 7.36 540.62 117.47 941.35 0.87 1256.66 3.66 1416.38 1.23 1484.27 2.50 4.25 6.75
DC 586.56 300.28 159.15 300.38 311.91 300.11 58.10 300.12 1065.52 300.07 1.76 300.46 43.35 300.13 6.72 300.76 5.00 2.50 7.50
Gurobi 87.28 301.71 16.23 306.10 42.41 300.80 7.28 303.50 46.78 300.80 0.87 51.70 4.60 328.48 1.31 313.23 2.50 4.00 6.50

UCOM2 (CPU)
82.26

79.36
15.16

54.37
42.99

152.20
6.72

260.90
53.44

211.43
0.87

8.55
2.93

116.54
1.01

120.56
1.50 1.00 2.50UCOM2 (GPU) 7.09 8.03 13.28 17.25 13.73 1.91 5.24 5.48

dom (RD) permutation of the nodes while greedy-GA uses a genetic algorithm (GA) to learn the per-
mutation;10 (3) Deterministic coloring (DC): a deterministic greedy coloring algorithm (Kosowski
& Manuszewski, 2004) is used to avoid all the hard conflicts, and it tries to avoid as many soft
conflicts as possible. (4) Gurobi: the problem is formulated as an MIP and the solver is used.
Datasets. We use four real-world uncertain graphs: (1) collins, (2) gavin, (3) krogan, and (4) PPI.
Speed-quality trade-offs. We record the running time of our method using only CPUs and using
GPUs. For our method, we start from multiple random initial probabilities, while making sure that
even with only CPUs, our method uses less time than each baseline.
Results. In Tab. 3, we show the results. For each group of datasets and each method, we show the op-
timization objective and the running time (without normalization). The average ranks are computed
in the same way as in Tabs. 1 & 2. With the least running time, UCOM2 consistently outperforms
the two greedy baselines and DC, and outperforms Gurobi in most cases. This superiority holds
even when we only use CPUs for UCOM2. Moreover, when using GPUs, UCOM2 is even faster.

7 CONCLUSION

In this work, we study unsupervised combinatorial optimization under complex conditions. We pro-
pose UCOM2, which consists of a principled probabilistic objective construction scheme (Sec. 3.1)
and a fast and effective derandomization scheme (Sec. 3.2). We provide theoretical results for the
proposed schemes and further extend them to non-binary cases (Thms. 1-4). We show that UCOM2
can be effectively applied to various complex conditions and problems (Secs. 4 & 5), evidenced by
the empirical superiority of UCOM2 in the experiments (Sec. 6).

10Greedy-GA is the method proposed by Yanez & Ramirez (2003) in the original paper of robust coloring.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Sungsoo Ahn, Younggyo Seo, and Jinwoo Shin. Learning what to defer for maximum independent
sets. In ICML, 2020.

Junade Ali and Vladimir Dyo. Coverage and mobile sensor placement for vehicles on predetermined
routes: A greedy heuristic approach. In WINSYS, 2017.

Noga Alon and Joel H Spencer. The probabilistic method. John Wiley & Sons, 2016.

Benny Applebaum, Boaz Barak, and Avi Wigderson. Public-key cryptography from different as-
sumptions. In STOC, 2010.

Maliheh Aramon, Gili Rosenberg, Elisabetta Valiante, Toshiyuki Miyazawa, Hirotaka Tamura, and
Helmut G Katzgraber. Physics-inspired optimization for quadratic unconstrained problems using
a digital annealer. Frontiers in Physics, 7:48, 2019.

Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio. Neural combinatorial
optimization with reinforcement learning. In ICLR, 2016.

Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial opti-
mization: a methodological tour d’horizon. European Journal of Operational Research, 290(2):
405–421, 2021.

Quentin Berthet, Mathieu Blondel, Olivier Teboul, Marco Cuturi, Jean-Philippe Vert, and Francis
Bach. Learning with differentiable pertubed optimizers. In NeurIPS, 2020.

Federico Berto, Chuanbo Hua, Junyoung Park, Minsu Kim, Hyeonah Kim, Jiwoo Son, Haeyeon
Kim, Joungho Kim, and Jinkyoo Park. Rl4co: an extensive reinforcement learning for combina-
torial optimization benchmark. arXiv:2306.17100, 2023.

Ksenia Bestuzheva, Mathieu Besançon, Wei-Kun Chen, Antonia Chmiela, Tim Donkiewicz, Jasper
van Doornmalen, Leon Eifler, Oliver Gaul, Gerald Gamrath, Ambros Gleixner, et al. The scip
optimization suite 8.0. arXiv preprint arXiv:2112.08872, 2021.

Alain Billionnet. Different formulations for solving the heaviest k-subgraph problem. INFOR:
Information Systems and Operational Research, 43(3):171–186, 2005.

Immanuel M Bomze, Marco Budinich, Panos M Pardalos, and Marcello Pelillo. The maximum
clique problem. Handbook of Combinatorial Optimization: Supplement Volume A, pp. 1–74,
1999.

Niv Buchbinder, Moran Feldman, Joseph Naor, and Roy Schwartz. Submodular maximization with
cardinality constraints. In SODA, 2014.

Quentin Cappart, Didier Chételat, Elias B Khalil, Andrea Lodi, Christopher Morris, and Petar
Velickovic. Combinatorial optimization and reasoning with graph neural networks. J. Mach.
Learn. Res., 24:130–1, 2023.

Alberto Caprara, Paolo Toth, and Matteo Fischetti. Algorithms for the set covering problem. Annals
of Operations Research, 98(1-4):353–371, 2000.

Matteo Ceccarello, Carlo Fantozzi, Andrea Pietracaprina, Geppino Pucci, and Fabio Vandin. Clus-
tering uncertain graphs. In PVLDB, 2017.

Sebastián Ceria, Paolo Nobili, and Antonio Sassano. A lagrangian-based heuristic for large-scale
set covering problems. Mathematical Programming, 81:215–228, 1998.

Felix Chalumeau, Shikha Surana, Clément Bonnet, Nathan Grinsztajn, Arnu Pretorius, Laterre
Alexandre, and Thomas Barrett. Combinatorial optimization with policy adaptation using latent
space search. In NeurIPS, 2023.

Xuelu Chen, Muhao Chen, Weijia Shi, Yizhou Sun, and Carlo Zaniolo. Embedding uncertain knowl-
edge graphs. In AAAI, 2019.

10

Under review as a conference paper at ICLR 2024

Jinho Choo, Yeong-Dae Kwon, Jihoon Kim, Jeongwoo Jae, André Hottung, Kevin Tierney, and
Youngjune Gwon. Simulation-guided beam search for neural combinatorial optimization. In
NeurIPS, 2022.

Arthur Delarue, Ross Anderson, and Christian Tjandraatmadja. Reinforcement learning with com-
binatorial actions: An application to vehicle routing. In NeurIPS, 2020.

Darko Drakulic, Sofia Michel, Florian Mai, Arnaud Sors, and Jean-Marc Andreoli. Bq-nco: Bisim-
ulation quotienting for generalizable neural combinatorial optimization. In NeurIPS, 2023.

Zvi Drezner and Horst W Hamacher. Facility location: applications and theory. Springer Science
& Business Media, 2004.

Paul Erdős and J.H. Spencer. Probabilistic methods in combinatorics. Akadémiai Kindó, 1974.

Uriel Feige, David Peleg, and Guy Kortsarz. The dense k-subgraph problem. Algorithmica, 29:
410–421, 2001.

Aaron M Ferber, Taoan Huang, Daochen Zha, Martin Schubert, Benoit Steiner, Bistra Dilkina,
and Yuandong Tian. Surco: Learning linear surrogates for combinatorial nonlinear optimization
problems. In ICML, 2023.

Ronald L Graham and Pavol Hell. On the history of the minimum spanning tree problem. Annals of
the History of Computing, 7(1):43–57, 1985.

Jens Gramm, Jiong Guo, Falk Hüffner, and Rolf Niedermeier. Data reduction and exact algorithms
for clique cover. Journal of Experimental Algorithmics (JEA), 13:2–2, 2009.

Nathan Grinsztajn, Furelos-Blanco Daniel, Surana Shikha, Clément Bonnet, and Thomas Bar-
rett. Winner takes it all: Training performant rl populations for combinatorial optimization. In
NeurIPS, 2023.

Sudipto Guha and Samir Khuller. Approximation algorithms for connected dominating sets. Algo-
rithmica, 20:374–387, 1998.

Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2023. URL https://www.gu
robi.com.

Yili Hong. On computing the distribution function for the poisson binomial distribution. Computa-
tional Statistics & Data Analysis, 59:41–51, 2013.

Jiafeng Hu, Reynold Cheng, Zhipeng Huang, Yixang Fang, and Siqiang Luo. On embedding uncer-
tain graphs. In CIKM, 2017.

Tommy R Jensen and Bjarne Toft. Graph coloring problems. John Wiley & Sons, 2011.

Wei Jin, Tong Zhao, Jiayuan Ding, Yozen Liu, Jiliang Tang, and Neil Shah. Empowering graph
representation learning with test-time graph transformation. In ICLR, 2023.

Nikolaos Karalias and Andreas Loukas. Erdos goes neural: an unsupervised learning framework for
combinatorial optimization on graphs. In NeurIPS, 2020.

Richard M Karp. Reducibility among combinatorial problems. Springer, 2010.

Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial opti-
mization algorithms over graphs. In NeurIPS, 2017.

Samir Khuller, Anna Moss, and Joseph Seffi Naor. The budgeted maximum coverage problem.
Information processing letters, 70(1):39–45, 1999.

Minsu Kim, Jinkyoo Park, et al. Learning collaborative policies to solve np-hard routing problems.
In NeurIPS, 2021.

Minsu Kim, Junyoung Park, and Jinkyoo Park. Sym-nco: Leveraging symmetricity for neural com-
binatorial optimization. In NeurIPS, 2022.

11

Under review as a conference paper at ICLR 2024

Wouter Kool, Herke Van Hoof, and Max Welling. Attention, learn to solve routing problems! In
ICLR, 2019.

Adrian Kosowski and Krzysztof Manuszewski. Classical coloring of graphs. Contemporary Math-
ematics, 352:1–20, 2004.

Yang Li, Jinpei Guo, Runzhong Wang, and Junchi Yan. From distribution learning in training to
gradient search in testing for combinatorial optimization. In NeurIPS, 2023.

Andrew Lim and Fan Wang. Robust graph coloring for uncertain supply chain management. In
HICSS, 2005.

Fu Luo, Xi Lin, Fei Liu, Qingfu Zhang, and Zhenkun Wang. Neural combinatorial optimization
with heavy decoder: Toward large scale generalization. In NeurIPS, 2023.

Elena Marchiori and Adri Steenbeek. An evolutionary algorithm for large scale set covering prob-
lems with application to airline crew scheduling. In Workshops on Real-World Applications of
Evolutionary Computation, 2000.

Nina Mazyavkina, Sergey Sviridov, Sergei Ivanov, and Evgeny Burnaev. Reinforcement learning
for combinatorial optimization: A survey. Computers & Operations Research, 134:105400, 2021.

Jurij Mihelic and Borut Robic. Facility location and covering problems. In Proc. of the 7th Interna-
tional Multiconference Information Society, volume 500, 2004.

Sobhan Miryoosefi and Chi Jin. A simple reward-free approach to constrained reinforcement learn-
ing. In ICML, 2022.

Sai Munikoti, Deepesh Agarwal, Laya Das, Mahantesh Halappanavar, and Balasubramaniam
Natarajan. Challenges and opportunities in deep reinforcement learning with graph neural net-
works: A comprehensive review of algorithms and applications. IEEE Transactions on Neural
Networks and Learning Systems, 2023.

Mohammadreza Nazari, Afshin Oroojlooy, Lawrence Snyder, and Martin Takác. Reinforcement
learning for solving the vehicle routing problem. In NeurIPS, 2018.

Susan Hesse Owen and Mark S Daskin. Strategic facility location: A review. European journal of
operational research, 111(3):423–447, 1998.

Christos H Papadimitriou and Kenneth Steiglitz. Combinatorial optimization: algorithms and com-
plexity. Courier Corporation, 1998.

Pál András Papp, Karolis Martinkus, Lukas Faber, and Roger Wattenhofer. Dropgnn: Random
dropouts increase the expressiveness of graph neural networks. In NeurIPS, 2021.

Vangelis Th Paschos. Applications of combinatorial optimization, volume 3. John Wiley & Sons,
2014.

Anselm Paulus, Michal Rolı́nek, Vı́t Musil, Brandon Amos, and Georg Martius. Comboptnet: Fit
the right np-hard problem by learning integer programming constraints. In ICML, 2021.

Laurent Perron and Vincent Furnon. Or-tools v9.7, 2023. URL https://developers.googl
e.com/optimization/.

Seth Pettie and Vijaya Ramachandran. An optimal minimum spanning tree algorithm. Journal of
the ACM (JACM), 49(1):16–34, 2002.

Marin Vlastelica Pogancic, Anselm Paulus, Vit Musil, Georg Martius, and Michal Rolinek. Differ-
entiation of blackbox combinatorial solvers. In ICLR, 2019.

Ruizhong Qiu, Zhiqing Sun, and Yiming Yang. Dimes: A differentiable meta solver for combinato-
rial optimization problems. In NeurIPS, 2022.

Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-scale attributed node embedding. Journal
of Complex Networks, 9(2):cnab014, 2021.

12

Under review as a conference paper at ICLR 2024

Barna Saha and Lise Getoor. On maximum coverage in the streaming model & application to multi-
topic blog-watch. In SDM, 2009.

Sebastian Sanokowski, Wilhelm Berghammer, Sepp Hochreiter, and Sebastian Lehner Lehner. Vari-
ational annealing on graphs for combinatorial optimization. In NeurIPS, 2023.

Martin JA Schuetz, J Kyle Brubaker, and Helmut G Katzgraber. Combinatorial optimization with
physics-inspired graph neural networks. Nature Machine Intelligence, 4(4):367–377, 2022a.

Martin JA Schuetz, J Kyle Brubaker, Zhihuai Zhu, and Helmut G Katzgraber. Graph coloring with
physics-inspired graph neural networks. Physical Review Research, 4(4):043131, 2022b.

Juan Shu, Bowei Xi, Yu Li, Fan Wu, Charles Kamhoua, and Jianzhu Ma. Understanding dropout
for graph neural networks. In TheWebConf (WWW), 2022.

Jiwoo Son, Minsu Kim, Hyeonah Kim, and Jinkyoo Park. Meta-sage: Scale meta-learning scheduled
adaptation with guided exploration for mitigating scale shift on combinatorial optimization. In
ICML, 2023.

Mika Straka. Poisson binomial distribution for python (github repository). https://github.c
om/tsakim/poibin, 2017.

Haoran Sun, Katayoon Goshvadi, Azade Nova, Dale Schuurmans, and Hanjun Dai. Revisiting
sampling for combinatorial optimization. In ICML, 2023.

Zhiqing Sun and Yang Yiming. Difusco: Graph-based diffusion solvers for combinatorial optimiza-
tion. In NeurIPS, 2023.

Jonathan Viquerat, Régis Duvigneau, Philippe Meliga, Alexander Kuhnle, and Elie Hachem. Policy-
based optimization: Single-step policy gradient method seen as an evolution strategy. Neural
Computing and Applications, 35(1):449–467, 2023.

Haoyu Wang and Pan Li. Unsupervised learning for combinatorial optimization needs meta-
learning. In ICLR, 2023.

Haoyu Peter Wang, Nan Wu, Hang Yang, Cong Hao, and Pan Li. Unsupervised learning for combi-
natorial optimization with principled objective relaxation. In NeurIPS, 2022.

Runzhong Wang, Li Shen, Yiting Chen, Xiaokang Yang, Dacheng Tao, and Junchi Yan. To-
wards one-shot neural combinatorial solvers: Theoretical and empirical notes on the cardinality-
constrained case. In ICLR, 2023.

Yuan H Wang. On the number of successes in independent trials. Statistica Sinica, pp. 295–312,
1993.

Javier Yanez and Javier Ramirez. The robust coloring problem. European Journal of Operational
Research, 148(3):546–558, 2003.

Haoran Ye, Jiarui Wang, Zhiguang Cao, Helan Liang, and Yong Li. Deepaco: Neural-enhanced ant
systems for combinatorial optimization. In NeurIPS, 2023a.

Xinyu Ye, Ge Yan, and Junchi Yan. Towards quantum machine learning for constrained combinato-
rial optimization: a quantum qap solver. In ICML, 2023b.

Dinghuai Zhang, Hanjun Dai, Nikolay Malkin, Aaron Courville, Yoshua Bengio, and Ling Pan. Let
the flows tell: Solving graph combinatorial optimization problems with gflownets. In NeurIPS,
2023.

Caiming Zhong, Mikko Malinen, Duoqian Miao, and Pasi Fränti. A fast minimum spanning tree
algorithm based on k-means. Information Sciences, 295:1–17, 2015.

13

Under review as a conference paper at ICLR 2024

A ADDITIONAL DETAILS ON THE BACKGROUND

We would like to provide some additional details on the background (Section 2.2), especially re-
garding the works by Karalias & Loukas (2020) and Wang et al. (2022). We would also talk about
the work by Wang et al. (2023).

A.1 CLARIFICATION: HOW IS UCOM2 DIFFERENT? ARE THESE WORKS COMPARED WITH
OUR METHOD UCOM2 IN THE EXPERIMENTS?

The clearest difference between UCOM2 and the works by Karalias & Loukas (2020) and Wang et al.
(2022) is the proposed derandomization scheme. Regarding probabilistic objective construction, we
would like to clarify that we do not modify the pipeline proposed by Karalias & Loukas (2020),
but improve the components within the pipeline. For the problems with complex conditions that
we consider in the paper, both Karalias & Loukas (2020) and Wang et al. (2022) did not provide
any guidelines on how to handle the conditions. Specifically, Wang et al. (2022) proposed to learn
a probabilistic objective with good properties when the ground-truth objective is unknown, but did
not try to construct a good probabilistic objective out of an existing objective. The main contribution
of our probabilistic objective construction scheme is that the scheme gives practical guidelines to
derive detailed formulae (what we did in Sections 4-5).

If the probabilistic objectives are well constructed (specifically, if the constructed objectives are
entry-wise concave), the methods by Karalias & Loukas (2020) and Wang et al. (2022) are essen-
tially the same. See the response of Wang et al. (2022).11 The method EGN (with naive objective
construction and iterative-rounding derandomization) by Karalias & Loukas (2020) is compared in
our experiments. A variant of UCOM2 using iterative rounding can be seen as the method by Wang
et al. (2022). Indeed, we compare UCOM2 with such a variant in our ablation study, where UCOM2
clearly outperforms the variant. See Appendix G.3.

Regarding the work by Wang et al. (2023), the authors specifically considered cardinality constraints.
However, they did not follow the EGN pipeline but used optimal transport to derive a different top-k
technique. See Appendix A.4 for more details.

A.2 ON THE “DIFFERENTIABLE OPTIMIZATION” IN THE PIPELINE (SECTION 2.2.1)

One can directly optimize a probabilistic decision p on each test instance Gtest, i.e., aim to find p∗ ≈
argminp f̃(p;Gtest). One can also train an encoder (e.g., a graph neural network) parameterized
by parameters θ on a training set Dtrain to learn to output “good” (probabilistic) decisions for each
training instance, i.e., aim to find θ∗ ≈ argminθ

∑
G∈Dtrain

f̃(ENCODER(G; θ);G). Such a
trained encoder can be applied to each test instance Gtest and output a (probabilistic) decision p =
ENCODER(Gtest; θ). Training such an encoder is optional, but if trained well, it can save time for
unseen cases since we do not need to optimize p for each test instance from scratch.12 Even when
using such an encoder, one can still further directly optimize the probabilistic decisions on each test
instance. See more discussions on inductive settings and transductive settings in Appendix H.1.

A.3 FORMAL THEORETICAL RESULTS IN THE EXISTING WORKS

Here, we would like to provide the detailed formal theoretical results in the existing works by Kar-
alias & Loukas (2020) and Wang et al. (2022). Recall that Karalias & Loukas (2020) showed a
quality guarantee by random sampling.
Theorem 5 (Theorem 1 by Karalias & Loukas (2020)). Assume that f is non-negative.13 Fix any
β > maxX∈C f(X;G), ϵ > 0, and t ∈ (0, 1] such that (1 − t)ϵ < β. If f̃(pinit;G) < β, then
PrX∼pinit [f(X;G) < ϵ ∧X ∈ C] ≥ t.

Recall that Wang et al. (2022) further proposed a principle to guarantee the quality by iterative
rounding. Also, recall the following definitions: given a probability decision p ∈ [0, 1]n, an index

11https://openreview.net/forum?id=HjNn9oD_v47¬eId=lglGd6uJRvl
12See some related discussions at https://github.com/Stalence/erdos_neu.
13We can always ensure this for any bounded f by adding a sufficiently large positive constant to f .

14

Under review as a conference paper at ICLR 2024

i ∈ [n], and x ∈ {0, 1}, let der(i, x; p) denoted the result after the i-th entry of p being locally deran-
domized as x. Formally, der(i, x; p)i = x, and der(i, x; p)j = pj ,∀j ̸= i. A probabilistic objective
f̃ is entry-wise concave if pif̃(der(i, 1; p);G) + (1− pi)f̃(der(i, 0; p);G) ≤ f̃(p;G),∀G, p, i.

Theorem 6 (Theorem 1 by Wang et al. (2022)). If f̃(p) ≥ EX∼pf(X) + β PrX∼p[X /∈ C],∀p
is entry-wise concave and non-negative with β > max(f̃(pinit),maxX∈C f(X)), then for any
permutation π : [n] → [n], starting from pcur = pinit and for i ∈ [n] doing (1) x∗ ←
argminx∈{0,1} f̃(der(π(i), x; pcur)) and (2) pcur ← der(i, x∗; pcur) will finally give a discrete
pfinal ∈ C such that f(pfinal) < f̃(pinit).

A.4 COMPLEX CONDITIONS IN EXISTING WORKS

As mentioned in Section 4, several conditions have been encountered in existing works. Here, for
each condition analyzed in Section 4, we shall discuss how the existing works try to handle it and
how our derivation is different and satisfies more good properties (see Section 3).

Cardinality constraints. Wang et al. (2023) specifically considered cardinality constraints. How-
ever, they used optimal transport soft top-k instead of the probabilistic pipeline we focus on in this
work. Also, our derivation is more general since it can handle general cardinality constraints other
than choosing a specific number of entities (i.e., top-k). Wang et al. (2023) claimed that cardinality
constraints cannot be handled in the EGN pipeline, but this work shows that cardinality constraints
can actually be properly handled following our schemes.

Optimum w.r.t. a subset Wang et al. (2023) also encountered such a condition in the facility lo-
cation problem which they considered. They used the softmin to approximate the min operation,
which indeed provides an upper bound. However, the result of softmin is not entry-wise concave,
and thus fails to satisfy the good property required by Wang et al. (2022), while our derivation
satisfies all the good properties, as shown in Theorem 1.

Covered Wang et al. (2023) also encountered such a condition in the maximum coverage problem
which they considered. They used min(1,

∑
v∈Ni

pv) as an approximation for the probability of i
being covered, where Ni = {v : (v, i) ∈ E}. In other words, they used max(0, 1 −

∑
v∈Ni

pv))
to approximate the probability that i is not covered. As we have shown, the probability that i is not
covered is exactly

∏
v∈Ni

(1 − pv). However, max(0, 1 −
∑

v∈Ni
pv)) is not an upper bound of∏

v∈Ni
(1− pv) but a lower bound. Therefore, the derivation by Wang et al. (2023) does not satisfy

the conditions required for the probabilistic pipeline (see Section 2.2.1).

Cliques (or independent sets). Karalias & Loukas (2020) considered the maximum clique problem,
and their derivation coincides with ours. Our probabilistic objective construction scheme provides a
principled way to interpret the derivation.

B ADDITIONAL RELATED WORK

In the main text, we introduce the background with the most related works (Section 2.2). Here, we
provide a more extensive literature review.

Unsupervised learning for combinatorial optimization. Most related are the works on unsuper-
vised learning for combinatorial optimization (UL4CO). Karalias & Loukas (2020) first explicitly
applied the probabilistic method to combinatorial optimization (CO) problems. UL4CO has been
further explored and improved. Wang et al. (2022) proposed some theoretically desirable proper-
ties for probabilistic objective formulation. However, they did not propose any practical scheme
to construct objectives within the probabilistic-method framework. Wang et al. (2023) focused on
cardinality constraints, and instead of using the probabilistic method, they proposed a differentiable
soft top-k method to handle cardinality constraints. We also see the potential future direction of ex-
tending UL4CO assuming dependence between decisions instead of assuming the decisions on the
node are independent (Sanokowski et al., 2023). See Section 2.2 and Appendix A for more details.

Reinforcement learning for combinatorial optimization. There are also other learning-based
methods proposed for CO problems. Typical techniques include reinforcement learning (RL). The
pioneers who applied RL to CO problems include Bello et al. (2016) and Khalil et al. (2017). Most

15

Under review as a conference paper at ICLR 2024

reinforcement-learning-for-combinatorial-optimization (RL4CO) methods focus on routing prob-
lems such as the traveling salesman problem (TSP) and the vehicle routing problem (VRP) (Berto
et al., 2023; Kool et al., 2019; Kim et al., 2021; Delarue et al., 2020; Kim et al., 2022; Nazari et al.,
2018; Ye et al., 2023a; Chalumeau et al., 2023; Luo et al., 2023; Grinsztajn et al., 2023), as well as
maximum independent sets (MIP) (Ahn et al., 2020; Qiu et al., 2022; Sun & Yiming, 2023; Li et al.,
2023), while our method and schemes are more general.

See also some recent surveys on RL4CO (Mazyavkina et al., 2021; Bengio et al., 2021; Cappart
et al., 2023; Munikoti et al., 2023) for more details.

As pointed out by Wang et al. (2023) and as shown in our experimental results, the existing RL-
based methods still suffer from efficiency issues. See the discussions by Wang et al. (2022). See
also Appendix H.2 for some discussions on RL and probabilistic-method-based UL4CO. We also
see the potential that probabilistic-method-based objective construction can also be used for reward
design in RL methods.

Other machine-learning techniques for combinatorial optimization. Except for RL, there are
also some other machine-learning techniques proposed for CO problems. We have recent progress
based on search (Choo et al., 2022; Son et al., 2023; Li et al., 2023), sampling (Sun et al., 2023),
graph-based diffusion (Sun & Yiming, 2023), generative flow networks (Zhang et al., 2023), meta-
learning (Qiu et al., 2022; Wang & Li, 2023), and quantum machine learning (Ye et al., 2023b).
Physics-inspired machine learning has also been considered (Schuetz et al., 2022a; Aramon et al.,
2019; Schuetz et al., 2022b). There is also a line of research on perturbation-based methods for
CO (Pogancic et al., 2019; Berthet et al., 2020; Paulus et al., 2021; Ferber et al., 2023). As shown
by Wang et al. (2023), perturbation-based methods are consistently outperformed by CardNN pro-
posed by Wang et al. (2023), while our proposed method outperforms CardNN in most cases.

C PROOFS

Here, we provide proof for each theoretical statement in the main text.

Proof of Theorem 1. For any p and i, we have

g̃(p)

=EX∼pg(X)

=
∑

X∈{0,1}n

Prp[X]g(X)

=
∑
X

∏
v∈VX

pv
∏

u∈[n]\VX

(1− pu)g(X)

=
∑

X : i∈VX

 ∏
v∈VX ,v ̸=i

pv
∏

u∈[n]\VX

(1− pu)

 pig(X) +
∑

X : i/∈VX

 ∏
v∈VX

pv
∏

u∈[n]\VX ,u ̸=i

(1− pu)

 (1− pi)g(X)

=pi
∑

X : i∈VX

∏
v∈VX ,v ̸=i

pv
∏

u∈[n]\VX

(1− pu)g(X) + (1− pi)
∑

X : i/∈VX

∏
v∈VX

pv
∏

u∈[n]\VX ,u ̸=i

(1− pu)g(X)

=pig̃(der(i, 1; p)) + (1− pi)g̃(der(i, 0; p))

≥pig̃(der(i, 1; p)) + (1− pi)g̃(der(i, 0; p)),

completing the proof on entry-wise concavity. Regarding differentiability, since

EX∼pg(X) =
∑

X∈{0,1}n

Prp[X]g(X),

it suffices to show that

Prp[X]g(X) =
∏

v∈VX

pv
∏

u∈[n]\VX

(1− pu)g(X)

is differentiable w.r.t p for each X ∈ {0, 1}n. Indeed, fix any X ,
∏

v∈VX
pv

∏
u∈[n]\VX

(1−pu)g(X)

is a polynomial of pi’s, and is thus differentiable w.r.t. p.

16

Under review as a conference paper at ICLR 2024

Proof of Theorem 2. First, we claim that for any non-discrete pcur /∈ {0, 1}n, we can always deran-
domize it through a series of local derandomization while the value of f̃ does not increase. This is
guaranteed by the entry-wise concavity of f̃ . Specifically, since

pif̃(der(i, 1; p)) + (1− pi)f̃(der(i, 0; p)) ≤ f̃(p),∀p, i,

we have
min(der(i, 1; p),der(i, 0; p)) ≤ f̃(p),∀p, i,

which implies that we can always derandomize a non-discrete entry without increasing the value
of f̃ . Therefore, if we greedily improve f̃ via local derandomization, we can always terminate at
a discrete point, completing the proof for point (1). Point (2) is trivial since at each step we make
sure that the value of f̃ does not increase. Point (3) is also immediate from the way we conduct
local derandomization. Specifically, if the current pcur is not a local minimum, we can always find
a possible local derandomization step to proceed the process while strictly decreasing the value of
f̃ .

Proof of Lemma 1. We first validate that f̂card(X) ≥ 1(X /∈ C),∀X . Indeed, mink∈Cc
||VX |−k| =

0 if VX ∈ Cc and mink∈Cc ||VX |−k| ≥ 1 otherwise. Then we validate the detailed formula of f̃card.
Indeed,

EX∼pf̂card(X)

=
∑
X

Pr[X] min
k∈Cc

||Vx| − k|

=
∑
t

Prp[|VX | = t] min
k∈Cc

|t− k|

=
∑

t∈[n]\Cc

Prp[|VX | = t] min
k∈Cc

|t− k|.

Fix any i ∈ [n] and any p ∈ [0, 1]n, we have
PrX∼p[|VX | = 0] = PrX∼p[|VX \ {i}| = 0](1− pi)

PrX∼p[|VX | = t] = PrX∼p[|VX \ {i}| = t](1− pi) + PrX∼p[|VX \ {i}| = t− 1]pi, ∀t
PrX∼p[|VX | = n] = PrX∼p[|VX \ {i}| = n− 1]pi

. (1)

Proof of Lemma 2. Let qs denote PrX∼p[|VX | = s] for each s as in the statement, and also let q̃s
denote PrX∼p[|VX \ {i}| = s]. By Equation (1), if we start from q0 = q̃0(1− pi), we have

q̃0 =
q0

1− pi
, q̃1 =

q1 − piq̃0
1− pi

=
q1(1− pi)− q0pi

(1− pi)2
, · · · ,

which satisfies q̃t = (1− pi)
−1

∑t
s=0 qs

(
pi

pi−1

)t−s

. Now, if

q̃t = (1− pi)
−1

t∑
s=0

qs

(
pi

pi − 1

)t−s

holds for all t ≤ T − 1, we aim to show that it also holds for t = T , which shall prove the statement
by mathematical induction. Indeed, we have

q̃T =
qT − piq̃T−1

1− pi
=

qT − pi(1− pi)
−1

∑T−1
s=0 qs

(
pi

pi−1

)T−1−s

1− pi
= (1−pi)−1

T∑
s=0

qs

(
pi

pi − 1

)T−s

,

completing the proof. If we start from qn = q̃n−1pi, we can obtain the another term (i.e.,

(pi)
−1

∑n−t−1
s=0 qt+s+1

(
pi−1
pi

)s

) in the statement in a similar way.

17

Under review as a conference paper at ICLR 2024

Proof of Lemma 3. The formula of the expectation EX∼p[minvX∈VX
h(i, vx)] is expanded with the

idea that we can consider all the nodes in VX in the ascending order w.r.t the value of h. With
the notations in the statement, if v1 ∈ VX , minvX∈VX

h(i, vx) would be d1, which happens with
probability pv1 ; if v1 /∈ VX but v2 ∈ VX , then minvX∈VX

h(i, vx) would be d2, which happens with
probability (1− pv1)pv2 . All the cases can be analyzed in a similar way, which eventually gives the
formula in the statement.

Proof of Lemma 4. When p′ = der(vj , 0; p), we have

f̃os(p
′; i, h)

=p′v1d1 + (1− p′v1)p
′
v2
d2 + · · ·+ (

n−1∏
s=1

(1− p′vs
))p′vndn

=
∑
s<j

s−1∏
k=1

(1− pvk)pvsds + 0 +
∑
t>j

∏
1≤k≤t−1,k ̸=j

(1− pvk)pvtdt

=
∑
s<j

qsds + 0 +
∑
j′>j

1

1− pvj
qj′dj′

=

n∑
s=1

qsds − qjdj +
∑
j′>j

pvj
1− pvj

qj′dj′

=f̃os(p; i, h)− qjdj +
pvj

1− pvj

∑
j′>j

qj′dj′ .

When p′ = der(vj , 1; p), we have

f̃os(p
′; i, h)

=p′v1d1 + (1− p′v1)p
′
v2d2 + · · ·+ (

n−1∏
s=1

(1− p′vs))p
′
vndn

=

∑
s<j

s−1∏
k=1

(1− pvk)pvsds

+

j−1∏
k′=1

(1− pv′
k
)dj

=

∑
s<j

s−1∏
k=1

(1− pvk)pvsds

+
∑
j′≥j

j′−1∏
k′=1

(1− pvk′)pvj′dj

=
∑
s<j

qsds +
∑
j′≥j

qj′dj

=

n∑
s=1

qsds + 0 +
∑
j′>j

qj′(dj − dj′)

=f̃os(p; i, h) +
∑
j′>j

qj′(dj − dj′).

Proof of Lemma 5. The formula of the probability PrX∼p[{vX ∈ VX : (vX , i) ∈ E} = ∅] can be
represented as the probability that none of i’s neighbor is chosen in VX , which is

∏
v∈Ni

(1−pv).

Proof of Lemma 6. If (i, j) /∈ E, the value of pj does not affect f̃cv(p; i) since pj is not involved in
the value of f̃cv(p; i). When (i, j) ∈ E, if p′ = der(j, 0; p),∏

v∈Ni

(1− p′v) =
∏

v∈Ni,v ̸=j

(1− pv) = f̃cv(p; i)− pj
∏

v∈Ni,v ̸=j

(1− pv);

18

Under review as a conference paper at ICLR 2024

if p′ = der(j, 1; p), ∏
v∈Ni

(1− p′v) = 0.

Proof of Lemma 7. By linearity of expectation, we immediately have

EX∼p[|{(uX , vX) ∈
(
VX

2

)
} : (uX , vX) /∈ E|] =

∑
(u,v)∈(V2)\E

PrX∼p[u, v ∈ VX].

Regarding the inequality, it suffices to show that |{(uX , vX) ∈
(
VX

2

)
} : (uX , vX) /∈ E| ≥

1(VX does not form a clique), which is true because |{(uX , vX) ∈
(
VX

2

)
} : (uX , vX) /∈ E| = 0

if VX forms a clique, and |{(uX , vX) ∈
(
VX

2

)
} : (uX , vX) /∈ E| ≥ 1 otherwise.

Proof of Lemma 8. When p′ = der(i, 0; p),

f̃cq(p
′) =

∑
(u,v)∈(V2)\E

p′up
′
v =

∑
(u,v)∈(V2)\E,u ̸=i,v ̸=i

pupv = f̃cq(p)− pi
∑

j∈[n],j ̸=i,(i,j)/∈E

pj .

When p′ = der(i, 1; p),

f̃cq(p
′) =

∑
(u,v)∈(V2)\E,u ̸=i,v ̸=i

pupv +
∑

(i,j)∈(V2)\E

pj = f̃cq(p) + (1− pi)
∑

j∈[n],j ̸=i,(i,j)/∈E

pj .

Proof of Theorem 3. For any p and i, we have

g̃(p)

=EX∼pg(X)

=
∑

X∈dn

Pr
p
[X]g(X)

=
∑

X∈dn

∏
v∈[n]

pvXvg(X)

=
∑

X∈dn

(
∏

v∈[n]\{i}

pvXv)piXig(X)

=
∑
r∈d

∑
X : Xi=r

(
∏

v∈[n]\{i}

pvXv)piXig(X)

=
∑
r∈d

∑
X : Xi=r

(
∏

v∈[n]\{i}

pvXv)pirg(X)

=
∑
r∈d

pir
∑

X : Xi=r

(
∏

v∈[n]\{i}

pvXv)g(X)

=
∑
r∈d

pir
∑
X

(
∏

v∈[n]\{i}

pvXv)1(Xi = r)g(X)

=
∑
r∈d

pir g̃(der(i, r; p))

≥
∑
r∈d

pir g̃(der(i, r; p)),

completing the proof on entry-wise concavity. Regarding differentiability, since EX∼pg(X) =∑
X∈dn Prp[X]g(X), it suffices to show that Prp[X]g(X) =

∑
X∈dn

∏
v∈[n] pvXv

g(X) is differ-
entiable w.r.t p for each X ∈ {0, 1}n. Indeed, fix any X ,

∑
X∈dn

∏
v∈[n] pvXv

g(X) is a polynomial
of pir’s, and is thus differentiable.

19

Under review as a conference paper at ICLR 2024

Proof of Theorem 4. See the proof for Theorem 2. It is easy to see that the reasoning still holds with
{0, 1} being replaced by any non-binary d.

Proof of Lemma 9. First we show g̃1(p) ≥ Prp[X /∈ C1]. Let A1 denote the event that at least one
hard conflict is violated, and let nh denote the number of violated hard conflicts. By linearity of
expectation, we have

EX∼p[nh] =
∑

(u,v)∈Eh

Pr
X∼p

[Xu = Xv].

For ∑
(u,v)∈Eh

Pr
X∼p

[Xu = Xv] =
∑

(u,v)∈Eh

c−1∑
r=0

purpvr,

it holds because PrX∼p[Xu = Xv] =
∑c−1

r=0[both u and v have color r] = purpvr. Regarding the
inequality, since PrX∼p[A1] = EX∼p1(A1), if suffices to show that nh ≥ 1(A1), which is true
because A1 happens iff nh ≥ 1 by their definitions.

Then we show f̃rc2(p) ≥ EX∼pf2(X). It is immediate since PrX∼p[Xu = Xv] =∑c−1
r=0[both u and v have color r] = purpvr.

Proof of Lemma 10. When p′ = der(i, x; p),

g̃1(der(i, x; p)) =
∑

(u,v)∈Eh

c−1∑
r=0

p′urp
′
vr

=
∑

(u,v)∈Eh

c−1∑
r=0

p′urp
′
vr

=
∑

(u,v)∈Eh,u̸=i,v ̸=i

c−1∑
r=0

purpvr +
∑

(i,j)∈Eh

pjx

= g̃1(p) + (1− pix)
∑

(i,j)∈Eh

pjx −
∑

x′∈d\{x}

pix′

∑
(i,j)∈Eh

pjx′

= g̃1(p) +
∑

x′∈d\{x}

pix′

∑
(i,j)∈Eh

(pjx − pjx′),

where 1− pix =
∑

x′∈d\{x} pix′ has been used. Similarly,

f̃2(der(i, x; p))

=−
∑

e=(u,v)∈Es

∑
r

p′urp
′
vr log(1− P (e))

=−
∑

e=(u,v)∈Es,u ̸=i,v ̸=i

∑
r

p′urp
′
vr log(1− P (e))−

∑
e=(i,j)∈Es

pjx log(1− P (e))

=f̃2(p)− (1− pix)
∑

(i,j)∈Es

pjx log(1− P (i, j)) +
∑

x′∈d\{x}

pix′

∑
(i,j)∈Es

pjx′ log(1− P (i, j))

=f̃2(p) +
∑

x′∈d\{x}

pix′

∑
(i,j)∈Es

(pjx′ − pjx) log(1− P (i, j)).

D ADDITIONAL TECHNICAL DETAILS

Here, we provide some additional technical details that are omitted in the main text.

20

Under review as a conference paper at ICLR 2024

D.1 COMPUTATION OF THE POISSON BINOMIAL DISTRIBUTION

Here, we provide some implementation details on the computation of the Poisson binomial distribu-
tion, which is used in Section 4.1. We mainly follow the original paper (Hong, 2013) and an existing
implementation online (Straka, 2017).

The main formula is PrX∼p[|VX | = t] = 1
n+1

∑n
s=0 exp(−iωst)

∏n
j=1(1 − pj + pj exp(iωs)),

where i =
√
−1 and ω = 2π

n+1 . See the original paper (Hong, 2013) for more technical de-

tails. For the incremental update, we use (1 − pi)
−1

∑t
s=0 qt−s

(
pi

pi−1

)s

for 0 ≤ pi ≤ 0.5 and

(pi)
−1

∑n−t−1
s=0 qt+s+1

(
pi−1
pi

)s

for 0.5 < pi ≤ 1, which results in higher numerical stability. See
Lemma 2 and its Proof in Appendix C for more details.

E ADDITIONAL THEORETICAL RESULTS

Here, we provide additional theoretical results.

E.1 ADDITIONAL RESULTS ON NON-BINARY DECISIONS

Here, we provide additional theoretical results regarding non-binary decisions. Specifically, we
extend the theoretical results in the existing works (Karalias & Loukas, 2020; Wang et al., 2022) to
non-binary cases.

Recall the theoretical results (Theorem 5) by Karalias & Loukas (2020).

Theorem 5 (Theorem 1 by Karalias & Loukas (2020)) Assume that f is non-negative. Fix any
β > maxX∈C f(X;G), ϵ > 0, and t ∈ (0, 1] such that (1 − t)ϵ < β. If f̃(pinit;G) < β, then
PrX∼pinit

[f(X;G) < ϵ ∧X ∈ C] ≥ t.

We extend Theorem 5 to non-binary cases.
Theorem 7 (Non-binary extension of Theorem 5). Assume that f is non-negative. Fix any
β > maxX∈C f(X;G), ϵ > 0, and t ∈ (0, 1] such that (1 − t)ϵ < β. If f̃(pinit;G) < β, then
PrX∼pinit [f(X;G) < ϵ ∧X ∈ C] ≥ t.

Proof. We shall follow the main idea in the original proof of Theorem 5 by Karalias & Loukas
(2020), which is based on Markov’s inequality. The key point is that the reasoning still holds when
the decisions are non-binary. Specifically, we can define a probabilistic penalty function f̂(X;G) =

f(X;G) + β1(X ∈ C). Since β > maxX∈C f(X;G), we have f̂(X;G) < ϵ if and only if
f(X;G) < ϵ and X ∈ C. Therefore, using Markov’s inequality, we have

PrX∼pinit
[(f(X;G) < ϵ) ∧ (X ∈ C)] = PrX∼pinit

[f̂(X;G) < ϵ]

> 1− 1

ϵ
EX∼pinit

[f̂(X;G)]

= 1− 1

ϵ
EX∼pinit

[f(X;G) + β1(X ∈ C)]

> 1− 1

ϵ
(β)

> t.

Recall the theoretical results (Theorem 6) by Wang et al. (2022).

Theorem 6 (Theorem 1 by Wang et al. (2022)) If f̃(p) ≥ EX∼pf(X) + β PrX∼p[X /∈ C],∀p
is entry-wise concave and non-negative with β > max(f̃(pinit),maxX∈C f(X)), then for any
permutation π : [n] → [n], starting from pcur = pinit and for i ∈ [n] doing (1) x∗ ←
argminx∈{0,1} f̃(der(π(i), x; pcur)) and (2) pcur ← der(i, x∗; pcur) will finally give a discrete
pfinal ∈ C such that f(pfinal) ≤ f̃(pinit).

21

Under review as a conference paper at ICLR 2024

We shall show that Theorem 6 can be extended to non-binary cases.

Theorem 8 (Non-binary extension of Theorem 6). If f̃(p) ≥ EX∼pf(X) + β PrX∼p[X /∈ C],∀p
is entry-wise concave and non-negative with β > max(f̃(pinit),maxX∈C f(X)), then for any
permutation π : [n] → [n], starting from pcur = pinit and for i ∈ [n] doing (1) x∗ ←
argminx∈d={0,1,2,...,c−1} f̃(der(π(i), x; pcur)) and (2) pcur ← der(i, x∗; pcur) will finally give a
discrete pfinal ∈ C such that f(pfinal) ≤ f̃(pinit).

Proof. We shall follow the main idea in the original proof of Theorem 6 by Wang et al. (2022),
where the key idea was that entry-wise concavity ensures that local derandomization does not
increase the objective. This key idea still holds with non-binary decisions. First, since after
the series of local derandomization, for each i, it is locally derandomized exactly once, the fi-
nal derandomized result should be discrete. Regarding pfinal ∈ C and f(pfinal) ≤ f̃(pinit), we
claim that “local derandomization does not increase the objective”. Specifically, since f̃ is entry-
wise concave, i.e.,

∑
r∈d pirf̃(der(i, r; p);G) ≤ f̃(p;G),∀G, p, i, and

∑
r∈d pir = 1, we have

minr∈d f̃(der(i, r; p);G) ≤
∑

r∈d pirf̃(der(i, r; p);G) ≤ f̃(p;G),∀G, p, i. Hence, indeed, “local
derandomization does not increase the objective”, and the final f(X;G)+β1(X /∈ C) ≤ f̃(pinit) <

β, which implies that f(X;G) ≤ f̃(pinit) and 1(X /∈ C) = 0, i.e., X ∈ C, completing the
proof.

F ADDITIONAL PROBLEMS

The robust k-clique problem generalizes the maximum k-clique problem (Bomze et al., 1999) and it
can be seen as an uncertain variant of the heaviest k-subgraph problem (Feige et al., 2001; Billionnet,
2005).

F.1 ROBUST k-CLIQUE

Definition. Given (1) an uncertain graph G = (V,E, P), and (2) k ∈ N, we aim to find
a subset of nodes VX ⊆ V such that (c1) |VX | = k, (c2) VX forms a clique, and (c3)
Pr[all the edges between nodes in VX exist] is maximized.

Involved conditions: (1) cardinality constraints, (2) cliques, and (3) uncertainty (see Sections 4.1,
4.4 & 4.6).

Details. Regarding conditions (c1)-(c2), we can directly use Lemmas 1 & 7. Regarding condition
(c3), fix any VX , the probability that all the edges between nodes in VX exist is

∏
(u,v)∈(Vc

2)∩E Puv .
Maximizing the probability is equivalent to minimizing f1(X) := −

∑
(u,v)∈(Vc

2)∩E logPuv . We

let f̂1(X) := f1(X) and let f̃1(p) := EX∼pf̂1(X) = −
∑

(u,v)∈E pupv logPuv . The final objective

is ˜fRQ(p) = f̃1(p) + β1f̃cq(p) + β2f̃card(p; {k}) with constraint coefficients β1, β2 > 0.

Regarding the incremental differences, we only need to derive the incremental differ-
ences of f̃1, which is ∆f̃1(i, 1, p) = (pi − 1)

∑
v : (i,v)∈E pv logPiv , and ∆f̃1(i, 0, p) =

−pi
∑

v : (i,v)∈E pv logPiv .

F.2 ROBUST DOMINATING SET

The robust dominating set problem generalizes the minimal dominating set problem Guha & Khuller
(1998) and can also be seen as an uncertain version of set covering Caprara et al. (2000).

Definition. Given (1) an uncertain graph G = (V,E, P), and (2) k ∈ N, we aim to find a subset of
nodes VX ⊆ V such that (c1) |VX | = k, (c2) VX is a dominating set in the underlying deterministic
graph, that is, for each v ∈ V , either v ∈ VX or v has a neighbor in VX , and (c3) the probability that
VX is indeed a dominating set when considering the edge uncertainty, i.e. Pr[

∧
v∈V \VX

∨
u∈VX

Auv]

is maximized. For each edge (u, v) ∈ E, Auv is the event that (u, v) exists under edge certainty,
which happens with probability Puv .

22

Under review as a conference paper at ICLR 2024

Involved conditions: (1) cardinality constraints, (2) covered, and (3) uncertainty (see Sections 4.1,
4.3, & 4.6).

Details. Regarding conditions (c1), we can directly use Lemma 1. Specifically, f̃1(p) =

f̃card(p; {k}).
Conditions (c2) and (c3) can be combined together. We first add self-loops on each node v ∈ V
(so that each node v can cover v itself), and then consider the condition as X ∈ C with
C = {X : each node v ∈ V is covered}. Then we define f̂2(X) as the expected number of nodes
that are not covered (when taking the edge uncertain into consideration). It is easy to see that
f̂2(X) ≥ 1(X /∈ C),∀X ∈ {0, 1}n. Note that here the uncertainty comes from the edge probabil-
ities while the decisions are discrete. The formula of f̂2 is f̂2(X) =

∑
i∈V Pr[i is not covered] =∑

i∈V \VX

∏
v∈Ni

(1 − Piv), where Ni = {v ∈ V : (i, v) ∈ E} is the neighborhood of i. We then

define f̃2(p) = EX∼pf̂2(X), and its formula is f̃2(p) =
∑

i∈V Pr[i /∈ VX]
∏

v∈Ni
(1 − Piv) =∑

i∈V (1 − pi)
∏

v∈Ni
(1 − Piv). Combining all the conditions, the final probabilistic objective is

f̃RDS(p) = f̃2(p) + βf̃1(p) with constraint coefficient β > 0.

Regarding the incremental differences, we only need to derive the incremental differences of f̃2,
which is ∆f̃2(i, 1, p) = (pi − 1)

∏
v∈Ni

(1− Piv) and ∆f̃2(i, 0, p) = −pi
∏

v∈Ni
(1− Piv).

F.3 CLIQUE COVER

The clique cover problem (Gramm et al., 2009) is a classical NP-hard combinatorial problem. We
consider its decision version, which is NP-complete.

Definition. Given (1) a graph G = (V,E) and (2) c ∈ N, we aim to partition the nodes into c groups,
such that each group forms a clique.

Involved conditions: (1) cliques and (2) non-binary decisions (see Sections 4.4 & 4.5).

Details. This is basically the non-binary extension of the “cliques” condition. For each r ∈
d = {0, 1, 2, . . . , c − 1}, the condition holds for group-r if the group is either empty or forms
a clique. The group-r is empty with probability

∏
i∈V (1 − pir), and we can use f̃cq(p·,r) ≥

PrX∼p[group-r does not form a clique], where p·,r ∈ [0, 1]n with (p·,r)j = pj,r. Then the vi-
olation probability Pr[violation] = Pr[not empty ∧ does not form a clique] ≤ Pr[not empty] +
Pr[does not form a clique]. Therefore, we can have the final probabilistic objective f̃cc(p) =∑c−1

r=0 1 −
∏

i∈V (1 − pir) + f̃cq(p·,r). If we create a complete graph KV with self-loops on V ,
then

∏
i∈V (1 − pir) is f̃cv(p·,r; v,KV) for any v ∈ V . Hence, we have f̃CC(p) =

∑c−1
r=0 1 −

f̃cv(p·,r; v,KV)+ f̃cq(p·,r), and the incremental differences can be handled by those of f̃cv and f̃cq .

F.4 MINIMUM SPANNING TREE

The minimum spanning tree problem (Graham & Hell, 1985) is a classical combinatorial problem.
Notably, it is not theoretically difficult and we have fast algorithms (Pettie & Ramachandran, 2002;
Zhong et al., 2015) for the problem. But it is still interesting to see that our method can be applied
to such a problem.

Definition. Given a graph G = (V,E,W), we aim to find a subset of edges to form a connected
tree (i.e., without cycles) containing all the nodes such that the total edge weights in the tree are
minimized. Instead of considering choosing edges, we consider the decisions on nodes. Specifically,
we put the nodes into different layers. Let c ≤ n be the number of layers, it is a non-binary problem,
where each node v is put into layer-Xv with Xv ∈ d = {0, 1, 2, . . . , c − 1}. For each node vℓ in
layer ℓ > 0, it would be connected to a parent vprev in the previous layer-(ℓ − 1) so that the edge
weight of (vℓ, vprev) is minimized. The conditions are: (c1) each node is either in layer-0, or it can
find a parent in the previous layer, and (c2) the total edge weights are minimized.

Involved conditions: (1) optimum w.r.t. a subset, (2) covered and (3) non-binary decisions (see
Sections 4.2, 4.3, and 4.5).

23

Under review as a conference paper at ICLR 2024

Details. Regarding (c1), we let f̂1 be the number of nodes for which (c1) is violated. For
each node i, it is in layer-0 with probability pv0 and it can find at least one parent with proba-
bility

∑c−1
ℓ=1 Pr[i is in layer-ℓ] Pr[at least one of i’s neighbors is in layer-(ℓ− 1)] =

∑c−1
ℓ=1 piℓ(1 −∏

v∈Ni
(1 − pv,ℓ−1)) =

∑c−1
ℓ=1 piℓ(1 − f̃cv(p·, ℓ− 1; i)), where p·,ℓ−1 ∈ [0, 1]n with (p·,ℓ−1)j =

pj,ℓ−1. Again, Ni = {v ∈ V : (i, v) ∈ E} is the neighborhood of i. Note how the idea
of “covered” is used here. Therefore, the probability that (c1) is violated for the node i is
1 − pi0 −

∑c−1
ℓ=1 piℓ(1 − f̃cv(p·, ℓ− 1; i)). Now we are ready to compute f̃1(p) = EX∼pf̂1(X) =∑

i∈V (1− pv0 −
∑c−1

ℓ=1 pvℓ(1− f̃cv(p·, ℓ− 1; i))).

Regarding (c2), we use the idea of “optimum w.r.t. a subset”. For a spanning tree, the total edge
weights are

∑
i∈V : i not the root W (i, the parent of i). Note that in a minimum spanning tree, each

non-root node should have a single parent. For each node i, the expected W (i, the parent of i) is∑c−1
ℓ=1 piℓf̃os(p,̇ℓ−1; i,W), where p·,ℓ−1 ∈ [0, 1]n with (p·,ℓ−1)j = pj,ℓ−1. The idea of “optimum

w.r.t. a subset” has been used, where we consider the nodes being chosen into layer-(ℓ− 1). There-
fore, we have f̃2(p) =

∑
i∈V

∑c−1
ℓ=1 piℓf̃os(p·,ℓ−1; i,W). Combining the conditions, the final prob-

abilistic objective is f̃MST(p) = f̃2(p) + βf̃1(p) with constraint coefficient β > 0. The incremental
differences can be handled by those of f̃cv and f̃os.

G COMPLETE EXPERIMENTAL SETTINGS AND RESULTS

Here, we provide detailed experimental settings and some additional experimental results.

G.1 DETAILED EXPERIMENTAL SETTINGS

Here, we provide some details of the experimental settings.

G.1.1 HARDWARE

All the experiments are run on a machine with two Intel Xeon® Silver 4210R (10 cores, 20 threads)
processors, a 256GB RAM, and RTX2080Ti (11GB) GPUs. For the methods using GPUs, a single
GPU is used.

G.1.2 FACILITY LOCATION

Here, we provide more details about the settings of the experiments on the facility location problem.
For the experiments on facility location and maximum coverage, we mainly follow the settings
by Wang et al. (2023) and use their open-source implementation.14

Datasets. We consider both random synthetic graphs and real-world graphs:

• Rand500: We follow the way of generating random graphs by Wang et al. (2023). We generate
100 random graphs, where each graph contains 500 nodes. Each node v has a two-dimensional
location (xv, yv), where xv and yv are sampled in [0, 1], independently, uniformly at random.

• Rand800: The rand800 graphs are generated in a similar way. The only difference is that each
rand800 graph contains 800 nodes.

• Starbucks: The Starbucks datasets were used by Wang et al. (2023). We quote their descriptions
as follows: “The datasets are built based on the project named Starbucks Location Worldwide
2021 version,15 which is scraped from the open-accessible Starbucks store locator webpage.16

We analyze and select 4 cities with more than 100 Starbucks stores, which are London (166
stores), New York City (260 stores), Shanghai (510 stores), and Seoul (569 stores). The locations
considered are the real locations represented as latitude and longitude.”

14https://github.com/Thinklab-SJTU/One-Shot-Cardinality-NN-Solver
15https://www.kaggle.com/datasets/kukuroo3/starbucks-locations-worldwide

-2021-version
16https://www.starbucks.com/store-locator

24

Under review as a conference paper at ICLR 2024

• MCD: The MCD (McDonald’s) dataset is available online.17. The dataset contains the locations
of MCD branches in the United States. We divide the dataset into multiple sub-datasets by state,
where each sub-dataset contains branches in the same state. We use the data from 8 states with the
most ranches: CA (1248 branches), TX (1155 branches), FL (889 branches), NY (597 branches),
PA (483 branches), IL (650 branches), OH (578 branches), and GA (442 branches).

• Subway: The Subway dataset is available online.18 Similar to the MCD dataset, it contains the
locations of subway branches in the United States. We also divide the dataset into multiple sub-
datasets by state, where each sub-dataset contains branches in the same state. We use the data from
8 states with the most ranches: CA (2590 branches), TX (21994 branches), FL (1490 branches),
NY (1066 branches), PA (865 branches), IL (1110 branches), OH (1171 branches), and GA (852
branches).

• For the real-world datasets, we use min-max normalization to make sure that each coordinate of
each node (location) is also in [0, 1] as in the random graphs.

Inductive settings. We follow the settings by Wang et al. (2023). For random graphs, the model is
trained and tested on random graphs from the same distribution, but the training set and the test set
are disjoint. For real-world graphs, the model is trained on the rand500 graphs.

Methods. We consider both traditional methods and machine-learning methods:

• Random: Among all the locations, k locations are picked uniformly at random; 240 seconds are
given on each test graph.

• Greedy: deterministic greedy algorithms. We use the implementation of Wang et al. (2023).
• Gurobi (Gurobi Optimization, LLC, 2023) and SCIP (Bestuzheva et al., 2021; Perron & Furnon,

2023): The problems are formulated as MIPs and the two solvers are used; the time budget is set
as 120 seconds, but the programs sometimes do not terminate until more time is used.

• CardNN (Wang et al., 2023): Three variants proposed in the original paper. We use the imple-
mentation of the original authors.

• CardNN-noTTO: In addition to training, CardNN also directly optimizes on each test graph in
test time, and this is a variant of CardNN without test-time optimization. We use the implementa-
tion of the original authors.

• EGN-naive: EGN (Karalias & Loukas, 2020) with a naive objective construction and iterative
rounding, which was used by Wang et al. (2023) as a baseline method. We use the derivation and
implementation by Wang et al. (2022).

• RL: A reinforcement-learning method (Kool et al., 2019). We adapt the implementation by Berto
et al. (2023).19

Speed-quality trade-offs. For the proposed method UCOM2, we use test-time augmentation (Jin
et al., 2023) on the test graphs by adding perturbations into both graph topology and features to
obtain additional data. Specifically, we use edge dropout (Papp et al., 2021; Shu et al., 2022) and
add Gaussian noise into features. The noise scale and the edge dropout ratios are both 0.2, which we
do not fine-tune. The three variants of UCOM2 are obtained by using different numbers of additional
augmented data and taking the best objective. Specifically, the “short” version uses only the original
test graphs, the “middle” version uses less time than CardNN-GS, and the “long” version uses less
time than CardNN-HGS.

Evaluation. Given locations (xv, yv)’s for the nodes v ∈ V , if the final selected k nodes are
v1, v2, . . . , vk, the final objective is

∑
v∈V mini∈[k] dist(vi, v), where the distance metric dist is

the Euclidean squared distance used by Wang et al. (2023). We choose k = 30 locations in each
graph, except for the rand800 graphs where we choose k = 50 locations.

Hyperparameter fine-tuning. For the proposed method UCOM2 and the method CardNN by Wang
et al. (2023), we conduct hyperparameter fine-tuning. For UCOM2, we fine-tune the learning rate
(LR) and constraint coefficient (CC). For CardNN, we fine-tune the training learning rate (LR)20 and
the Gumbel noise scale σ. For random graphs, we choose the best hyperparameter setting w.r.t. the

17https://www.kaggle.com/datasets/mdmdata/mcdonalds-locations-united-s
tates

18https://www.kaggle.com/datasets/thedevastator/subway-the-fastest-gro
wing-franchise-in-the-worl

19https://github.com/kaist-silab/rl4co
20CardNN uses (possibly) different learning rates for training and test-time optimization.

25

Under review as a conference paper at ICLR 2024

objective on the training set, because the distribution of the training set and the distribution of the
test set are the same. For real-world graphs, we choose the smallest graph in each group of datasets
as the validation graph, and we choose the best hyperparameter setting w.r.t. the objective on the
validation graph.

We make sure that the number of candidate combinations (which is 15) is the same for both methods.
Our hyperparameter search space is as follows:

• For UCOM2: LR ∈ {1e− 1, 1e− 2, 1e− 3, 1e− 4, 1e− 5} and CC ∈ {1e− 1, 1e− 2, 1e− 3}
• For CardNN: LR ∈ {1e− 1, 1e− 2, 1e− 3, 1e− 4, 1e− 5} and σ ∈ {0.01, 0.15, 0.25}
Notably, after our fine-tuning, the performance of CardNN is at least the same and usually better than
the performance using the hyperparameter settings in the open-source code of CardNN provided by
the original authors. The best hyperparameter settings for each dataset are:

• Rand500:
– UCOM2: LR = 1e− 2, CC = 1e− 2
– CardNN: LR = 1e− 4, σ = 0.25

• Rand800:
– UCOM2: LR = 1e− 2, CC = 1e− 2
– CardNN: LR = 1e− 4, σ = 0.25

• Starbucks:
– UCOM2: LR = 1e− 1, CC = 1e− 2
– CardNN: LR = 1e− 4, σ = 0.15

• MCD:
– UCOM2: LR = 1e− 2, CC = 1e− 2
– CardNN: LR = 1e− 5, σ = 0.25

• Subway:
– UCOM2: LR = 1e− 1, CC = 1e− 2
– CardNN: LR = 1e− 5, σ = 0.01

G.1.3 MAXIMUM COVERAGE

Here, we provide more details about the settings of the experiments on the maximum coverage
problem.

Datasets. We consider both random synthetic graphs and real-world graphs:

• Rand500: We follow the way of generating random graphs by Wang et al. (2023). Each item has
a random weight chosen uniformly at random between 1 and 100. Each set contains a random
number of items, and the number of items is chosen uniformly at random between 10 and 30.
Each rand500 dataset contains 500 sets and 1000 items.

• Rand1000: The rand1000 graphs are generated in a similar way. The only difference is that each
rand1000 dataset contains 1000 sets and 2000 items.

• Twitch: The Twitch datasets were used by Wang et al. (2023). We quote their descriptions as fol-
lows: “This social network dataset is collected by Rozemberczki et al. (2021) and the edges repre-
sent the mutual friendships between streamers. The streamers are categorized by their streaming
language, resulting in 6 social networks for 6 languages. The social networks are DE (9498
nodes), ENGB (7126 nodes), ES (4648 nodes), FR (6549 nodes), PTBR (1912 nodes), and RU
(4385 nodes). The objective is to cover more viewers, measured by the sum of the logarithmic
number of viewers. We took the logarithm to enforce diversity because those top streamers usually
have the dominant number of viewers.”

• Railway: The railway datasets (Ceria et al., 1998) are available online.21 The data were collected
from real-world crew membership in Italian railways. We have three datasets: (1) rail507 with
507 sets and 63009 items, (2) rail516 with 516 sets and 47311 items, and (3) rail582 with 582 sets
and 55515 items.

Inductive settings. We follow the settings by Wang et al. (2023). For random graphs, the model is
trained and tested on random graphs from the same distribution, but the training set and the test set
are disjoint. For real-world graphs, the model is trained on the rand500 graphs.

21https://plato.asu.edu/ftp/lptestset/rail.

26

Under review as a conference paper at ICLR 2024

Methods. See the method descriptions above for the facility location problem in Appendix G.1.2.

Speed-quality trade-offs. See the descriptions above for the facility location problem in Ap-
pendix G.1.2.

Evaluation. Let wj’s denote the weights of the items. The final objective is the summation of the
weights of the covered items. An item j is covered if at least one set containing j is chosen. This is
the term

∑
j∈TX

Wj in Section 5.2.

Hyperparameter fine-tuning. The overall fine-tuning principles are the same as in the experiments
on the facility location problem. See Appendix G.1.2.

Our hyperparameter search space is as follows:

• For UCOM2: LR ∈ {1e− 1, 1e− 2, 1e− 3, 1e− 4, 1e− 5} and CC ∈ {10, 100, 500}
• For CardNN: LR ∈ {1e− 1, 1e− 2, 1e− 3, 1e− 4, 1e− 5} and σ ∈ {0.01, 0.15, 0.25}
The best hyperparameter settings for each dataset are:

• Rand500:
– UCOM2: LR = 1e− 5, CC = 500
– CardNN: LR = 1e− 5, σ = 0.15

• Rand1000:
– UCOM2: LR = 1e− 5, CC = 500
– CardNN: LR = 1e− 5, σ = 0.15

• Twitch:
– UCOM2: LR = 1e− 1, CC = 100
– CardNN: LR = 1e− 4, σ = 0.01

• Railway:
– UCOM2: LR = 1e− 4, CC = 10
– CardNN: LR = 1e− 5, σ = 0.15

G.1.4 ROBUST COLORING

Here, we provide more details about the settings of the experiments on the robust coloring problem.

Datasets. We use four real-world uncertain graphs (Hu et al., 2017; Ceccarello et al., 2017; Chen
et al., 2019). They are available online.22. Some basic statistics of the datasets are as follows:

• Collins: n = 1004 nodes and m = 8323 edges; a deterministic greedy coloring algorithm uses
18 colors for the hard conflicts, and 36 colors for all the conflicts.

• Gavin: n = 1727 nodes and m = 7534 edges; a deterministic greedy coloring algorithm uses 7
colors for the hard conflicts, and 16 for all the conflicts.

• Krogan: n = 2559 nodes m = 7031 edges; a deterministic greedy coloring algorithm uses 8
colors for the hard conflicts, and 25 for all the conflicts.

• PPI: n = 1912 nodes m = 22749 edges; a deterministic greedy coloring algorithm uses 47 colors
for the hard conflicts, and 53 for all the conflicts.

We take the largest connected component of each dataset. For each dataset, the 20% edges with the
highest edge weights are chosen as the hard conflicts.

Methods. We consider four baseline methods:

• Greedy-RD: The method first samples a random permutation of nodes, and then following the
permutation, for each node, greedily chooses the best coloring to (1) avoid all the hard conflicts
and (2) optimizes the objective; 300 seconds are given on each test graph.

• Greedy-GA: This is the method proposed by Yanez & Ramirez (2003) in the original paper of ro-
bust coloring. The difference between greedy-RD and greedy-GA is that greedy-GA uses a genetic
algorithm (GA) to learn a good permutation instead of randomly sampling permutations; in the
GA algorithm, the number of iterations is 20, the population size is 20, the crossover probability
is 0.6, the mutation probability is 0.1, the elite ratio is 0.01, the parents proportion is 0.3.

22https://github.com/Cecca/ugraph/tree/master/Reproducibility/Data;
https://github.com/stasl0217/UKGE/tree/master/data

27

Under review as a conference paper at ICLR 2024

• Deterministic coloring (DC): a deterministic greedy coloring algorithm (Kosowski &
Manuszewski, 2004) is used to satisfy all the hard conflicts, and the soft conflicts are included
in different random orders until no more soft conflicts can be satisfied. The maximum possible
number of soft conflicts that can be included is found by binary search; 300 seconds are given on
each test graph.

• Gurobi: the problem is formulated as an MIP and the solver is used; 300 seconds are given on
each test graph.

Hyperparameters. For UCOM2, we do not fine-tune hyperparameters. We consistently use learning
rate η = 0.1 and the constraint coefficient β is set as the highest penalty on soft conflicts, i.e.,
maxe=(u,v)∈Es

log(1− P (e)).

Speed-quality trade-offs. We record the running time of our method using only CPUs and using
GPUs. For our method, we start from multiple random initial probabilities (each entry is sampled
uniformly at random in [0, 1]), while making sure that even with only CPUs, our method uses less
time than each baseline.

Evaluation. The recorded objective is the negative log-likelihood of no soft conflicts being violated,
i.e., the function f2 in Section 5.3.

G.2 FULL RESULTS

Here, we provide the full raw results on each problem, together with the standard deviations of the
results obtained by five random independent trials.

In Table 4, we provide the full raw results with standard deviations on the facility location problem.

In Table 5, we provide the full raw results with standard deviations on the maximum coverage
problem.

G.3 ABLATION STUDY

Here, we provide the results of the ablation study. First, we would like to point out that in the ex

G.3.1 Q1: ARE PRINCIPLED PROBABILISTIC OBJECTIVES HELPFUL?

Here, we check whether the probabilistic objectives constructed following the principle proposed by
us are helpful. We compare (a) EGN-naive (non-principled objectives and iterative rounding) and
(b) UCOM2-iterative (principled objectives and iterative rounding). It is difficult to compare the full-
fledged version of UCOM2 (principled objectives and greedy derandomization) and a variant with
non-principled objectives and greedy derandomization, because we find computing the incremental
differences of non-principled objectives nontrivial (yet less meaningful).

In Tables 6 and 7, we show the performance of EGN-naive and UCOM2-iterative on facility loca-
tion and maximum coverage. We observe that in most cases, the optimization objective with the
principled objectives is better. However, we also observe that using the principled objectives, the
running time is sometimes higher. This is because the principled objective of cardinality constraints
proposed by us is mathematically more complicated than the one used in EGN-naive formulated
by Wang et al. (2023). This also validates the necessity of our fast incremental derandomization
scheme, which can improve the speed.

G.3.2 Q2: IS GREEDY DERANDOMIZATION BETTER THAN ITERATIVE ROUNDING?

Here, we check whether the proposed greedy derandomization is helpful, especially when compared
to the iterative rounding proposed by Wang et al. (2022). We compare (a) the full-fledged version of
UCOM2 (principled objectives and greedy derandomization) and (b) UCOM2-iterative (principled
objectives and iterative rounding). In Tables 8 and 9, we show the performance of UCOM2 and
UCOM2-iterative on facility location and maximum coverage.

We observe that when using (incremental) greedy derandomization (compared to iterative rounding),
UCOM2 archives better optimization objectives within a shorter time, validating that the greedy
derandomization scheme proposed by us is indeed helpful.

28

Under review as a conference paper at ICLR 2024

Table 4: Full raw results on facility location with the standard deviations. Running time (time):
smaller the better. Objective (obj): smaller the better.

method
rand500 rand800 starbucks mcd subway

obj↓ time↓ obj↓ time↓ obj↓ time↓ obj↓ time↓ obj↓ time↓
random 3.41 240.00 3.48 240.00 0.54 240.00 1.60 240.00 2.80 240.00
(std) 0.008 0.000 0.004 0.000 0.004 0.000 0.011 0.000 0.007 0.000
greedy 2.85 2.10 2.67 5.88 0.35 6.51 1.12 11.51 1.99 26.00
(std) 0.000 0.012 0.000 0.025 0.000 0.032 0.000 0.054 0.000 0.115
Gurobi 2.60 121.65 2.80 124.11 0.31 102.82 1.30 124.62 4.61 131.35
(std) 0.118 0.206 0.052 0.181 0.005 0.944 0.073 0.766 1.032 0.193
SCIP 4.21 123.47 5.43 187.82 7.09 82.23 51.79 481.83 99.91 718.93
(std) 0.000 0.224 0.000 0.330 0.000 0.285 0.000 0.301 0.000 0.325
CardNN-S 2.75 13.06 2.45 13.17 0.52 15.20 1.87 2.01 1.94 21.59
(std) 0.070 0.446 0.089 0.385 0.060 0.165 0.095 0.299 0.187 1.840
CardNN-GS 2.41 74.01 2.34 142.94 0.43 69.81 1.09 39.97 2.02 31.39
(std) 0.024 1.395 0.066 1.612 0.046 1.483 0.075 1.304 0.145 0.380
CardNN-HGS 2.41 120.44 2.34 200.96 0.31 98.13 1.05 91.38 1.84 56.30
(std) 0.027 5.368 0.036 2.671 0.145 1.430 0.035 0.865 0.123 2.916
CardNN-noTTO-S 3.80 1.94 3.08 2.15 1.44 1.93 1.08 18.32 4.53 2.15
(std) 0.636 0.330 0.134 0.672 0.215 0.021 0.156 0.030 0.214 0.228
CardNN-noTTO-GS 2.75 28.77 2.65 52.48 0.42 32.24 1.06 62.64 2.04 7.82
(std) 0.039 0.355 0.294 0.325 0.194 0.239 0.145 0.261 0.226 0.121
CardNN-noTTO-HGS 2.74 42.95 2.34 200.96 0.46 27.21 1.19 28.14 1.99 45.74
(std) 0.031 1.225 0.093 3.262 0.215 0.423 0.102 2.989 0.148 0.039
EGN-naive 2.65 78.80 2.63 85.30 0.33 120.87 1.56 48.08 2.63 120.87
(std) 0.127 0.345 0.094 0.346 0.244 17.153 0.115 0.220 0.167 1.172
RL-transductive 5.57 300.00 5.18 300.00 2.97 1800.00 2.60 1800.00 4.50 1800.00
(std) 0.356 0.000 0.362 0.000 0.245 0.000 0.261 0.000 0.415 0.000
RL-inductive 4.07 300.06 4.27 300.54 0.79 300.04 2.40 300.04 4.23 300.05
(std) 0.227 0.019 0.143 0.157 0.148 0.014 0.241 0.016 0.395 0.015

UCOM2-short 2.53 0.37 2.39 1.70 0.31 1.28 1.05 3.56 1.89 11.25
(std) 0.027 0.045 0.060 0.037 0.054 0.090 0.099 0.130 0.145 0.112
UCOM2-middle 2.41 31.14 2.31 47.47 0.29 2.55 0.98 10.13 1.88 28.03
(std) 0.023 1.205 0.033 0.999 0.047 0.195 0.087 0.402 0.114 0.183
UCOM2-long 2.41 62.28 2.31 81.51 0.29 10.12 0.95 42.33 1.79 50.42
(std) 0.023 1.702 0.034 1.087 0.046 0.540 0.087 0.858 0.114 0.334

In conclusion, each component in UCOM2 is helpful in most cases, but only when combining both
principled objectives with greedy derandomization can we obtain the best synergy.

G.3.3 Q3: DOES INCREMENTAL DERANDOMIZATION IMPROVE THE SPEED?

Here, we want to check how much the proposed incremental derandomization scheme using incre-
mental differences helps in improving the speed. With greedy derandomization, we compare the
running time of incremental derandomization and naive derandomization (i.e., evaluating the objec-
tive on each possible local derandomization case), on facility location and maximum coverage.

In Tables 10 and 11, we show the running time of UCOM2 when using incremental derandomization
and when using naive derandomization, on facility location and maximum coverage.

We observe that using incremental derandomization significantly improves the derandomization
speed, and the superiority is usually more significant when the dataset sizes increase.

G.3.4 Q4: HOW DOES UCOM2 PERFORM WITH DIFFERENT CONSTRAINT COEFFICIENTS?

Here, we want to check how UCOM2 performs when using different constraint coefficients (i.e.,
different β values) and fixing the other hyperparameters.

In Tables 12 to 14, we show the performance of UCOM2 when using different β values, on facility
location, maximum coverage, and robust coloring.

For facility location and maximum coverage, the candidate β values are the same as in Appen-
dices G.1.2 and G.1.3. We use the fastest version of UCOM2 without test-time augmentation.

29

Under review as a conference paper at ICLR 2024

Table 5: Full raw results on maximum coverage with the standard deviations. Running time (time):
smaller the better. Objective (obj): larger the better.

method
rand500 rand1000 twitch railway

obj↑ time↓ obj↑ time↓ obj↑ time↓ obj↑ time↓
random 36638.16 240.00 70627.17 240.00 17383.20 240.00 7340.50 240.00
(std) 23.204 0.000 40.524 0.000 57.395 0.000 0.000 0.000
greedy 44312.81 0.09 88698.89 0.33 33822.40 0.69 7616.00 0.76
(std) 0.000 0.005 0.000 0.006 0.000 0.012 0.000 0.015
Gurobi 44932.06 120.07 88940.50 120.07 33840.40 0.61 7611.00 120.63
(std) 125.518 0.034 200.929 0.014 0.000 0.072 7.057 0.018
SCIP 43814.37 120.06 86282.30 119.50 33840.40 3.40 7600.00 121.13
(std) 498.180 0.018 215.140 0.129 0.000 0.281 0.000 0.073
CardNN-S 42012.77 11.60 83068.64 11.57 33834.60 8.11 7398.50 3.09
(std) 80.594 3.966 57.158 3.833 891.556 3.242 114.059 0.615
CardNN-GS 44736.29 38.85 88950.66 68.72 33840.40 16.57 7641.50 16.51
(std) 28.100 13.248 86.800 17.063 628.667 6.583 4.500 5.056
CardNN-HGS 44734.66 54.38 88980.52 88.52 33840.40 33.96 7633.00 31.46
(std) 32.200 0.880 86.800 0.163 0.000 0.210 0.000 0.494
CardNN-noTTO-S 33041.61 2.06 62906.71 1.67 109.60 1.07 7205.00 1.50
(std) 48.747 0.018 187.405 0.026 4.219 0.009 0.157 0.017
CardNN-noTTO-GS 37184.06 9.53 70623.51 19.19 1567.00 1.93 7332.00 5.93
(std) 95.720 0.798 70.779 0.052 697.403 0.024 4.530 0.052
CardNN-noTTO-HGS 37223.94 12.78 70685.54 24.60 1766.17 2.85 7351.67 6.30
(std) 59.084 1.223 165.656 0.180 602.371 0.231 5.977 0.817
EGN-naive 41378.43 120.72 81393.77 101.23 15448.20 120.72 7290.00 120.76
(std) 1054.832 2.098 264.491 0.173 36.515 0.709 50.569 1.548
RL-transductive 41461.65 300.00 73597.20 300.00 32143.20 1800.00 7307.00 1800.00
(std) 580.240 0.000 957.157 0.000 315.444 0.000 53.139 0.000
RL-inductive 34536.00 300.06 69155.00 300.18 19840.60 301.91 7320.50 301.78
(std) 22.154 0.017 42.216 0.022 55.146 0.254 9.578 0.195

ours-short 44608.67 0.91 89306.85 2.48 33828.40 1.82 7639.00 1.90
(std) 100.548 1.098 49.199 0.254 0.000 0.145 0.000 0.495
ours-middle 45002.78 14.69 89669.89 8.51 33828.40 11.43 7639.00 7.32
(std) 75.145 12.158 32.157 1.486 0.000 0.301 0.000 3.216
ours-long 45025.56 29.21 89896.96 78.15 33828.40 19.35 7644.50 14.22
(std) 74.968 19.156 32.116 10.159 0.000 0.578 0.601 5.745

Table 6: Ablation study on facility location: are principled probabilistic objectives helpful? Running
time (time): smaller the better. Objective (obj): smaller the better.

method
rand500 rand800 starbucks mcd subway

obj↓ time↓ obj↓ time↓ obj↓ time↓ obj↓ time↓ obj↓ time↓
EGN-naive 2.65 78.80 2.63 85.30 0.33 120.87 1.56 48.08 2.63 120.87
UCOM2-iterative 2.65 169.56 2.67 205.12 0.33 162.15 1.05 87.45 1.96 52.37

Table 7: Ablation study on maximum coverage: are principled probabilistic objectives helpful?
Running time (time): smaller the better. Objective (obj): larger the better.

method
rand500 rand1000 twitch railway

obj↑ time↓ obj↑ time↓ obj↑ time↓ obj↑ time↓
EGN-naive 41378.43 120.72 81393.77 101.23 15448.20 120.72 7290.00 120.76
UCOM2-iterative 42820.04 131.78 84397.79 209.95 16093.80 137.08 7304.50 120.21

For robust coloring, let the originally used β0 := maxe∈Es
log(1− P (e)), we consider three candi-

date values: 1
2β0, β0, and 2β0. The other hyperparameters are fixed as the same.

Our observations are as follows. For facility location and maximum coverage:

• For random graphs, since the distribution of the training set and the distribution of the test
set are the same, the originally used β values perform well, usually the best among the
candidates.

30

Under review as a conference paper at ICLR 2024

Table 8: Ablation study on facility location: is greedy derandomization better than iterative round-
ing? Running time (time): smaller the better. Objective (obj): smaller the better.

method
rand500 rand800 starbucks mcd subway

obj↓ time↓ obj↓ time↓ obj↓ time↓ obj↓ time↓ obj↓ time↓
UCOM2-iterative 2.65 169.56 2.67 205.12 0.33 162.15 1.05 87.45 1.96 52.37

UCOM2-short 2.53 0.37 2.39 1.70 0.31 1.28 1.05 3.56 1.89 11.25
UCOM2-middle 2.41 31.14 2.31 47.47 0.29 2.55 0.98 10.13 1.88 28.03
UCOM2-long 2.41 62.28 2.31 81.51 0.29 10.12 0.95 42.33 1.79 50.42

Table 9: Ablation study on maximum coverage: is greedy derandomization better than iterative
rounding? Running time (time): smaller the better. Objective (obj): larger the better.

method
rand500 rand1000 twitch railway

obj↑ time↓ obj↑ time↓ obj↑ time↓ obj↑ time↓
UCOM2-iterative 42820.04 131.78 84397.79 209.95 16093.80 137.08 7304.50 120.21

UCOM2-short 44608.67 0.91 89306.85 2.48 33828.40 1.82 7639.00 1.90
UCOM2-middle 45002.78 14.69 89669.89 8.51 33828.40 11.43 7639.00 7.32
UCOM2-long 45025.56 29.21 89896.96 78.15 33828.40 19.35 7644.50 14.22

Table 10: Ablation study on facility location: does incremental derandomization improve the speed?

rand500 rand800 starbucks mcd subway

naive derandomization 317.46 1061.02 231.85 1710.84 10196.05
incremental derandomization 0.37 1.70 1.28 3.56 11.25

speed-up ratio 849.65 623.30 180.77 480.14 906.30

Table 11: Ablation study on maximum coverage: does incremental derandomization improve the
speed?

rand500 rand1000 twitch railway

naive derandomization 240.77 1186.06 2247.88 359.86
incremental derandomization 0.91 2.48 1.82 1.90

speed-up ratio 265.49 478.14 1231.81 189.52

Table 12: Ablation study on facility location: how does UCOM2 perform with different constraint
coefficients? The results with the constraint coefficient originally used in our experiments are
marked in bold. The numbers here are objectives (smaller the better).

β rand500 rand800 starbucks mcd subway

1e-1 2.50 2.47 0.31 1.02 1.75

1e-2 2.53 2.39 0.31 1.05 1.89
1e-3 3.19 2.79 1.85 1.41 3.83

• For real-world graphs, the originally used β values do not achieve the best performance in
some cases. In our understanding, this is because we use the smallest graph in each group
of datasets as the validation graph, while the smallest graph possibly has a slightly different
data distribution from the other graphs in the group, i.e., the test set.

• Overall, certain sensitivity w.r.t β can be observed, but usually, multiple β values can
achieve reasonable performance.

For robust coloring:

• Overall, all the candidates β vales can achieve similar performance.
• In other words, the performance of our method is not very sensitive to the value of β on

robust coloring.

31

Under review as a conference paper at ICLR 2024

Table 13: Ablation study on maximum coverage: how does UCOM2 perform with different con-
straint coefficients? The results with the constraint coefficient originally used in our experiments are
marked in bold. The numbers here are objectives (larger the better).

β rand500 rand1000 twitch railway

10 43744.80 87165.08 33801.80 7639.00
100 44382.36 88543.73 33828.40 7628.00

500 44608.67 89306.85 33825.80 7601.50

Table 14: Ablation study on robust coloring: how does UCOM2 perform with different constraint co-
efficients? The results with the constraint coefficient originally used in our experiments are marked
in bold. The numbers here are objectives (smaller the better).

β
collins gavin krogan ppi

18 colors 25 colors 8 colors 15 colors 8 colors 15 colors 47 colors 50 colors
1
2
β0 78.32 15.61 46.56 6.70 52.04 0.87 2.93 1.01

β0 (originally used) 82.26 15.16 42.99 6.72 52.44 0.87 2.93 1.01
2β0 81.17 15.83 44.96 6.77 55.25 0.87 2.93 1.01

H DISCUSSIONS

H.1 INDUCTIVE SETTINGS AND TRANSDUCTIVE SETTINGS

As discussed in Appendix A.2, the differentiable optimization in the pipeline can be done either in an
inductive setting or in a transductive setting. Although ideally, a well-trained encoder can save much
time without degrading the performance, in practice, inductive settings can be less effective (Li et al.,
2023), especially when the training set and the test set have very different distributions (Drakulic
et al., 2023).

As shown in our experimental results, the performance of CardNN (Wang et al., 2023) highly relies
on test-time optimization (compare CardNN and CardNN-noTTO), which implies that the training
is actually less essential than the direct optimization on test instances.

For UCOM2, we also observe that, when the training set and the test set are from different distribu-
tions, the training can be less helpful. Even applying derandomization on random probabilities can
work well sometimes (but definitely not always).

H.2 REINFORCEMENT LEARNING AND PROBABILISTIC-METHOD-BASED UL4CO

The connections between reinforcement learning and probabilistic-method-based UL4CO have been
discussed by Wang et al. (2022). The direct connection comes from the fact that the policy gradient
tries to approximate expectations by sampling, while probabilistic-method-based UL4CO aims to
directly evaluate expectations. Differences also exist. In many cases, RL methods generate decisions
in an autoregressive manner, while UL4CO methods try to do it in a one-shot manner (Wang et al.,
2023), although one-shot RL has also been recently considered (Viquerat et al., 2023). Both the
overhead of sampling and the autoregressive decision-encoding can potentially explain why UL4CO
is usually more efficient than RL methods.

We focus on cases under complex conditions in this work. In RL, there are also similar subfields
studying RL under constraints. On top of the basic difficulties of “sampling”, constrained sampling
for RL is even trickier and less efficient. Moreover, the analysis has been limited to simple con-
straints, e.g., linear and convex ones (Miryoosefi & Jin, 2022). We believe that this work shows that
UL4CO is especially promising in cases under complex conditions.

32

