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Abstract

Many causal discovery algorithms exploit conditional independence signatures in
observational data, recovering a Markov equivalence class (MEC) of possible DAGs
consistent with the data. In case the MEC is non-trivial, additional assumptions
on the data generating process can be made, and generative models can be fit to
further resolve the MEC. We show that triangular monotonic increasing (TMI)
maps parametrize generative models that perform conditional independence-based
causal discovery by searching over permutations, that additionally are flexible
enough as generative models to fit a wide class of causal models. In this paper,
we characterize the theoretical properties that make these models relevant as tools
for causal discovery, make connections to existing methods, and highlight open
challenges towards their deployment.

1 Introduction

Causal discovery aims to use data—possibly observational—to uncover causal relationships assumed
to be encoded as a directed acyclic graph (DAG). Traditionally, this is either done by testing for
conditional independence between observed variables, or optimizing some appropriately defined
data-driven scoring function over the space of DAGs, such as the data likelihood (Spirtes et al.,
2000; Chickering, 2002; Kalisch and Bühlman, 2007; Raskutti and Uhler, 2018; Solus et al., 2021).
These methods typically are able to identify causal structure only up to Markov equivalence—the
set of DAGs that encode the same observed conditional independencies. Notably, this excludes the
possibility of discovery in the two-variable setting, where the DAGs X → Y and Y → X are Markov
equivalent.

Markov equivalence might be resolved via interventional data (Hauser and Bühlmann, 2012; Yang
et al., 2018; Squires et al., 2020) or by making certain causal generative modelling assumptions that
break the symmetry of conditional independence (Shimizu et al., 2006; Zhang and Hyvärinen, 2009;
Peters et al., 2014). The latter can be combined with conditional independence based methods to first
identify a Markov equivalence class (MEC), and then to identify the DAG within the MEC by scoring
with the generative model (Monti et al., 2020; Khemakhem et al., 2021). Here, we propose using
generative models parametrized by triangular monotonic increasing (TMI) maps, and show that they
perform conditional independence based causal discovery while also learning the causal generative
model, as well as automatically satisfying DAG constraints. In this way, we can use the same model
to identify the MEC, use the underlying causal generative model to resolve indeterminacies within
the MEC, and finally perform causal inference.
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Triangular monotonic increasing (TMI) mappings from Rd → Rd are natural candidates for causal
generative modelling. Mathematically, a TMI map is a function T : Rd → Rd such that

T (x) =


T1(x1)

T2(x1, x2)
...

Td(x1, . . . , xd)

 , (1)

where each map xk 7→ Tk(x1:k−1, xk) is monotone increasing (hence invertible), for each x1:k−1.

When the causal ordering is known, TMI maps define a flexible, yet identifiable (Xi and Bloem-Reddy,
2023) generative model that contains a wide class of non-linear structural causal models (SCM),
enabling causal inference (Javaloy et al., 2023). However, when the causal ordering is unknown, it is
less clear whether TMI maps can also be used for causal discovery.

Our contribution is to show that TMI maps can also be used to perform conditional independence
based causal discovery by finding the maximally sparse permutation (Raskutti and Uhler, 2018). Here,
sparsity refers to the sparsity of the Jacobian of the learned generative model, which we equivalently
refer to as simply the sparsity of the model, a commonly used notion for causal discovery in non-linear
models (Zheng et al., 2020; Lachapelle et al., 2020; Reizinger et al., 2022).

Given two distributions PX and Pϵ, the TMI map that transports between them as T∗PX = Pϵ is
unique up to a permutation of its inputs. We denote a permuted TMI map by Tπ , for a permutation π
of [d] = {1, 2, . . . , d}. Our key observation is that the permutation that yields maximal sparsity of
the Jacobian of a learned T , JT , identifies the MEC of the underlying DAG.

Theorem 1.1. Let PX be an observed distribution over Rd faithful to a DAG G, and Pϵ be a fixed
base distribution that is independent over Rd. Let (Tπ)π∈Sd index the set of unique TMI maps such
that Tπ

∗ PX = Pϵ. Then, the permutation π∗ such that JTπ∗ (x) is maximally sparse, is such that the
Jacobian, seen as an adjacency matrix, is Markov equivalent to Gπ∗ .

This result actually holds under a weaker condition known as restricted faithfulness, as shown
in Theorem 2.1 c) of Raskutti and Uhler (2018), which shows that the permutation yielding the
sparsest graph from an appropriate sequence of conditional independence tests identifies the Markov
equivalence class. The equivalence here is that TMI maps test precisely the same conditional
independencies via the sparsity of the Jacobian. Raskutti and Uhler (2018) however do not study
the properties of permutations that are not maximally sparse. Under the stronger assumption of
strict faithfulness, we are able to give a constructive result using ideas from variable elimination in
undirected graphs that further identifies the additional edges induced by permutations that are not
maximally sparse (Theorem 3.1).

1.1 Related Works

Jacobian and score-based Causal Discovery Our contribution in this work is complementary to
various recent advancements using the Jacobian of a generator function, or in score matching (Zheng
et al., 2020; Lachapelle et al., 2020; Rolland et al., 2022; Montagna et al., 2023a,b). The main novelty
of using TMI maps to parametrize generative models is that the resulting causal discovery method
is model-free, as it does not depend on the assumption that observations are generated by a specific
underlying structural model. Instead, TMI maps model the conditional independencies directly
due to their properties as probability transport maps. In particular, the result for structure learning
(Theorem 1.1) does not require the observations to be generated by an SCM at all. However, without
assuming an identifiable SCM, the structure can fundamentally only be identified up to a MEC. As
such, we do still assume an underlying SCM to refine the MEC. We attempt to do so minimally in
Theorem 3.2, requiring only that the observations are generated from an SCM that monotonically
depends on the noise variables, which is a strict generalization over additive noise models, by using
ICA-based causal discovery to orient edges (Monti et al., 2020). This is particularly appealing as
TMI generative models perform ICA-style latent variable inference simply via a forward pass of
observations through the trained model, and does not require knowledge of the noise mechanism.
However, this requires the sparsest permutation search to first be solved, for example via greedy
methods (Solus et al., 2021), which is significantly more difficult in a generative model (see Section
4). This is in contrast to stronger assumptions such as additive noise, which allow methods such
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as (Rolland et al., 2022; Montagna et al., 2023a,b) to reduce the permutation search, which scales
combinatorially, to a recursive search of leaf nodes, which scales linearly.

TMIs as Conditional Independence Tests The connection between sparsity in TMI maps and
conditional independence is well known and has been successfully applied for learning undirected
graphical models (Morrison et al., 2017; Spantini et al., 2018; Baptista et al., 2021). Recently,
these results were leveraged by (Akbari et al., 2023) in the context of causal discovery. The SING
algorithm of Morrison et al. (2017) uses a second-order Hessian condition on the TMI map to deduce
conditional independence. Interestingly, SING also attempts to find the sparsest permutation for the
TMI map, optimizing the same criteria as in Theorem 1.1, but only to improve sample efficiency as
the undirected graph has no order structure. Akbari et al. (2023) then propose to use SING as the
conditional independence test within the PC algorithm (Spirtes et al., 2000) to recover the MEC. Our
proposal can be seen as using the sparsest permutation directly to learn the MEC, without the need
of the PC algorithm. In particular, Akbari et al. (2023) requires explicitly re-learning sparsest TMI
maps in each SING subroutine over different subsets at each iteration of the PC algorithm, while our
proposed method can be seen as a single iteration of SING. Then, to break the MEC, Akbari et al.
(2023) propose a criteria based on additive noise, which requires then learning the inverse TMI map
separately. Our proposed approach, via Theorem 3.2, only requires a conditional independence test
on the latent variables after a forward pass through the learned TMI map.

Overall, TMI maps have many attractive properties for causal discovery, many of which have already
been exploited, but not precisely as TMI generative models. In view of recent interest in using
generative models for causality, the connection to existing causal discovery methods is to the best
of our knowledge novel, and allows us to leverage theoretical backing from a rich literature. These
connections cover a wide range of the existing literature: traditional conditional independence-based
methods (Theorem 1.1), learning undirected graphical models (our proof of Theorem 3.1), and
nonlinear-ICA based methods for causal discovery (Theorem 3.2).

2 Triangular Monotonic Maps and the Knöthe–Rosenblatt Transport

TMI maps enjoy several appealing functional and probabilistic properties. A triangular Jacobian
makes it easy to evaluate the Jacobian determinant, and monotonicity ensures invertibility; these
properties make them particularly appealing as layers for normalizing flows (Jaini et al., 2019;
Papamakarios et al., 2021), though there the order is often alternated and thus the final map is not
necessarily triangular. The most appealing fact in our context is that TMI maps naturally generalize
the 1-dimensional CDF transform. It is well-known that if Pϵ = T∗PX , where PX , Pϵ have strictly
positive density and T is a TMI map, then T is equivalent to the Knöthe–Rosenblatt (KR) transport
almost everywhere (see Jaini et al. (2019, Theorem 1), or Bogachev et al. (2005)). Specializing to the
case where Pϵ = U [0, 1]d, the KR transport is described recursively as FXk|X1:k−1

(xk|x1:k−1), the
conditional CDF of the k-th component of Xk|X1:k−1. Because PX has strictly positive density, so
do each of its conditional distributions, and therefore FXk|X1:k−1

is monotone increasing. Note the
first component is simply the CDF transform:

T1(x1) = FX1(x1),

where it is well known that the CDF is the unique monotone increasing transformation from X1 to
the uniform. In each subsequent dimension, the CDF is again the unique monotone increasing trans-
formations between the 1-dimensional unique (almost everywhere) regular conditional probabilities
(Bogachev et al., 2005; Jaini et al., 2019).

2.1 Graphical Models and Conditional Independence

A directed acyclic graph (DAG) with d vertices is a tuple G⃗ = ([d], E) with nodes identified to their
indices [d], and edges E ∈ [d] × [d], where (i, j) ∈ E denotes i → j in the graph. In G, a node
i is said to be a parent of j if the edge i → j exists, and similarly j is said to be a child of i. The
set of parents of j are denoted Pa(j, G⃗), and the children Ch(j, G⃗). The ancestors of j, An(j, G⃗)
denote all nodes with directed paths into j, and including j. When the DAG under consideration is
clear, we drop G⃗ from the notation. In all cases, parents, children and ancestors of sets of nodes are
defined as the union of the constituent nodes. All DAGs admit a topological ordering πt (though it
is not necessarily unique), where πt(i) ∈ Pa(πt(j)) =⇒ πt(i) < πt(j). A particularly important
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sub-graph is the v-structure, i1 → i3 ← i2, where crucially there is no edge between i1 and i2.
Finally, the skeleton of G⃗ is defined as the undirected graph obtained by removing direction on all
edges.

PX is said to satisfy the global Markov property w.r.t. G⃗ if:

I1⊥⊥G⃗I2 | I3 =⇒ XI1⊥⊥XI2 | XI3 , (2)

for all subsets I1, I2, I3 ⊆ [d], where ⊥⊥G⃗ denotes d-separation (Pearl, 2009, Def. 1.2.3). In words,
all d-separations in G⃗ correspond to CI statements in PX . In general, PX is permitted to satisfy
additional CI statements that are not encoded by the graph. Even with perfect knowledge of the CI
statements from PX , a graph that encodes all such statements (if it even exists) may not correspond
to the true DAG. To avoid such cases, we will make the following assumption on any PX under
consideration, known as faithfulness:

I1⊥⊥G⃗I2 | I3 ⇐⇒ XI1⊥⊥XI2 | XI3 , (3)

for I1, I2, I3 ⊆ [d]. Faithfulness is a strong assumption, see Uhler et al. (2013); Sadeghi (2017) for
discussions. We assume faithfulness for simplicity in proving our Theorem 3.1, but note that, due to
the equivalence of our method to sparsest-permutation based methods, Theorem 1.1 holds under a
weaker condition known as SMR (Raskutti and Uhler, 2018).

Before proceeding, we define some important concepts in undirected graphs, which we denote
G = ([d], E). To distinguish from the directed case, we will use the set notation {i, j} ∈ E to denote
an edge, indicating that the order is irrelevant. The neighbourhood of a node i in G is defined as
Nb(j,G) = {i ∈ [d] | {i, j} ∈ E}. A connected component of G is any subgraph such that all nodes
within it are reachable via paths to each other. We will identify connected components to their nodes,
i.e., C ⊆ [d] denotes a connected component. Next, we will define the outer boundary of a subset
I ⊆ [d] to be the following:

OBd(I,G) = {i ∈ [d] | i /∈ I, {i, j} ∈ E for some j ∈ I)}. (4)

In words, the outer boundary contains nodes that are neighbours of nodes in I , but not within I
themselves.

3 TMI Models and Causal Discovery

When looking for conditional independence, we will be interested in the components Tk that do not
depend on all its possible arguments. In other words, we are interested in the sparsity pattern of the
Jacobian of T , JT . The sparsity pattern describes specific conditional independence (CI) statements,
since

FX|Y,Z = FX|Y ⇐⇒ X⊥⊥Z | Y. (5)

In general, we do not require Pϵ = U [0, 1]d, merely that it is independent, in which case the
TMI map differs from the CDF by an univariate monotonic transformation. To reduce the risk of
misspecification in practice, the generative model can be parametrized as ICA via (T, Pϵ), where
T is a TMI map and Pϵ is fully supported with independent components. Such a model remains
identifiable to the extent that any indeterminacy does not affect any conditional independencies, and
hence their causal implications (Xi and Bloem-Reddy, 2023; Javaloy et al., 2023). For the sake of
simplicity however, we continue to view TMI maps as conditional CDFs. The Jacobian JT must be
lower-triangular and JT (x)k,k > 0 for each k representing the (strictly positive) conditional density.
There are n(n − 1)/2 remaining entries corresponding to JT (x)j,k, j < k, the sparsity of which
describe the following CI statements:

Xk⊥⊥Xj | {X1, . . . , Xk−1} \ {Xj}, for each j < k. (6)

The above sequence of CI statements is precisely those that are tested for a given permutation in
permutation-based causal discovery.

Assuming faithfulness, we can interpret the CI statements tested by a TMI model equivalently as
d-separation statements in a DAG G⃗. If a topological order is known, the TMI model recovers the
graph exactly, since the conditional dependencies correspond precisely to the parents of node k. The
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sparsity pattern is highly sensitive to the order of the variables however. Denote a permutation of
variables by π(i), where π is a bijection from [d] to itself. We denote G⃗π as G⃗ with nodes relabelled
according to π. Note this relablling is arbitrary, and does not change the semantic meaning of the
DAG. Thus we consider recovering G⃗π to be equivalent to recovering the true DAG.

In what follows, we use [d] to denote an arbitrary ordering, it is not necessarily the topological order
of G⃗ (e.g., we might have i→ j with i > j). The following result determines the graph recovered
by fitting the TMI map (in the ordering [d]), which may not be maximally sparse, and hence lets us
identify the erroneously added edges when the learned DAG is not in the MEC.

Theorem 3.1. Let PX be faithful to a DAG G⃗ = ([d], E). The TMI map T with T∗PX = Pϵ, has
non-zero Jacobian entries as follows. For each k, JT (x)k,l ̸= 0 if and only if l is in the following set:[

(Ch(k) ∪ Pa(k)) ∩ [k]
]
∪ (Pa(Ch(k) ∩Ak) ∩ [k])

⋃
Ek,C∈Ck

OBd(Ek,C ,GM,Ak
), (7)

where Ak = An([k]), GM,Ak
is the moral graph of G⃗|Ak

, and Ek,C ∈ Ck denotes the connected
components of the nodes Ek := {k + 1, . . . , d} ∩Ak such that the node k is in their outer boundary.

The proof is inspired by the undirected case studied in Spantini et al. (2018), and can be found in
the Appendix, where we also show that this result implies Theorem 1.1. The idea is that the first
term

[
(Ch(k) ∪ Pa(k)) ∩ [k]

]
captures the skeleton, which enumerates the total number of edges in

the truth graph. Hence, any additional edges added in the second and third terms are erroneous. In
particular, the second term corresponds to edges added by incorrectly oriented v-structures, and the
last term corresponds to the fill edges, as in variable elimination (Koller and Friedman, 2009).

The above result performs permutation-based causal discovery, which doesn’t require assuming that
data arise from an underlying SCM, thus allowing us to recover the MEC. To further refine the MEC,
we can also assume that the data arise from a non-linear SCM. We define a SCM based on a DAG G⃗
as a causal model of the following form:

ϵ = (ϵ1, . . . , ϵd) ∼ Pϵ, Xi = fi(Xpa(i), ϵi), (8)

with ϵi⊥⊥ϵj , and assuming that each fi is monotone in ϵi. Such an SCM can always be iteratively
unrolled to be of the form X = g(ϵ), and when a topological order is known, g is triangular. Javaloy
et al. (2023) show that this g can be made triangular in a canonical way following the KR transport,
and thus TMI maps are able to fit any C1 SCM. Note that although we technically fit a TMI map
in the X → ϵ direction, this is an equivalent model as TMI maps are closed under inversion—see
Javaloy et al. (2023, Section 4) for a discussion on the forward versus backward model.

The key benefit here is that while conditional-independence based causal discovery methods require
interventional data to break Markov equivalence, TMI models are able to naturally do this under
the SCM assumption. Monti et al. (2020) propose a method using nonlinear ICA to resolve the
equivalence between edges of the form Xi → Xj and Xi ← Xj by noticing the following. Without
loss of generality, assume i = 1, j = 2:

X1 → X2 X1 ← X2

X1 = ϵ1 X1 = f1(X2, ϵ1)
X2 = f2(X1, ϵ2) X2 = ϵ2
X1⊥⊥ϵ2, X2⊥̸⊥ϵ1 X2⊥⊥ϵ1, X1⊥̸⊥ϵ2

Table 1: Causal and anti-causal edge permutations.

In Monti et al. (2020), an equivalence between SCMs and nonlinear ICA is drawn and the “sources” ϵi
are inferred up to a permutation, which requires further optimization to select the correct permutation.
The TMI model only requires finding the sparsest causal ordering, after which exact inference of ϵi
can be made via a simple pass through the model, as Pϵ = T∗PX . We collect this observation into
the following result.
Theorem 3.2. Assuming the setting of Theorem 3.1, suppose that π is identified as a maximally sparse
permutation where TπPX = Pϵ, and suppose that the model class includes the KR transport between
PX and Pϵ, producing the estimated graph Ĝπ . For each edge (i, j) not participating in a v-structure,
estimate ϵ̂i, ϵ̂j = T (Xi), T (Xj) and perform the independence tests in Table 1. Assuming access to a
consistent independence test, orienting the edge according to whether Xi⊥⊥ϵj or Xj⊥⊥ϵi recovers G⃗.
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Proof. By Theorem 1.1, Ĝπ is Markov equivalent to G⃗, and so their skeleton and v-structures coincide.
In other words, they differ by edge flips not participating in a v-structure. Applying Table 1 correctly
orients these edges, thus recovering G⃗.

4 Challenges and Discussion

So far, we have highlighted appealing properties of TMI maps as generative models that perform
causal discovery. Javaloy et al. (2023) further highlight their ability to perform causal inference,
enabling interventional and counterfactual queries. However, these appealing properties depend
heavily on two practical problems, to which we do not yet have satisfying solutions:

• The difficulty of estimating KR transport between arbitrary distributions as TMI maps. More
generally, what are the properties of TMI maps as conditional independence tests, and how
should we enforce sparsity to this effect (e.g., via ℓ1 regularization of a masking layer, or
thresholding)?

• The difficulty of searching over permutations efficiently while training the TMI model at
each iteration. It will likely not be feasible to train near convergence at each proposed
permutation, except for very small problems.

Estimating KR Transports Our method for causal discovery hinges on thresholding, or sparsity-
regularizing the Jacobian of the TMI model as a de facto conditional independence test. If the TMI
model successfully learns the KR transport, this is a valid procedure. However, this has a number of
practical difficulties—valid conditional independence testing is fundamentally not possible without
distributional assumptions (Shah and Peters, 2020). Simultaneously, the approximation to the KR
transport may converge at an arbitrarily slow rate without smoothness assumptions (Irons et al.,
2022). Furthermore, the model class used in practice may be misspecified, even in the more flexible
ICA-based model.

Permutation Search Searching over all permutations rapidly becomes prohibitively expensive,
requiring the use of heuristics or greedy approaches. However, as this is a shared problem with
order-based methods in general, there are several existing options. In particular, greedy sparsest
permutation (GSP) (Solus et al., 2021), which proposes edge reversals that decrease the number
of edges in the corresponding DAG, has been developed for use with permutation-based causal
discovery, and hence its usage here would be natural. More classically, Teyssier and Koller (2005)
propose a simple greedy local hill-climbing procedure with adjacent swaps, for any scoring function.
Additive-noise SCM assumptions further allow sequential methods, which search for sink or source
nodes amongst the remaining nodes at each iteration (Shimizu et al., 2011; Peters et al., 2014; Wang
and Drton, 2020; Ye et al., 2020; Rolland et al., 2022; Montagna et al., 2023a,b), which can also be
applied here.

The grand challenge of operationalizing TMI maps as causal discovery algorithms is that any
algorithm will contain the first challenge as an inner loop to the second challenge, similar to the
setting addressed in Deng et al. (2023). That is, for each permutation, evaluating the score depends on
finding the correct conditions under which TMI maps are conditional independence tests. Further, in
cases where TMI maps are serviceable conditional independence tests, the complexity of the causal
discovery algorithm can depend significantly on its optimization efficiency. Although the overall
challenge is significant, progress has been made on each sub-problem.

5 Empirical Study

We perform proof-of-concept experiments to demonstrate that our methodology can work for small
scale problems under ideal settings, and also highlight the challenges yet to be addressed. For our
experiments, we consider the DAG G⃗, and its label-permuted variants, in Figure 1 as ground truth. We
generate non-linear synthetic data according to this graph by sampling from a standard Gaussian and
passing it through an MLP with masked first-layer connections, and weights initialized to positive
values to ensure monotonicity, and finally standardizing by mean and standard deviation (Reisach
et al., 2021). In all experiments, we use SOS flows (Jaini et al., 2019) with k = 5 quadratic terms in
the integrand and a single flow layer. In order to use a uniform threshold on the mean of the absolute
value of the Jacobian to determine non-zero entries, we divide each row by its ℓ1-norm.

6



1

2

3

4

5

1

2

3

4

5

Figure 1: Ground truth G⃗ (left) and associated MEC drawn as a mixed graph (right).
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(a) DAG implied by πr = {5, 4, 3, 2, 1}.
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(b) DAG implied by πrs = {5, 2, 4, 3, 1}.

Figure 2: Incorrect orders introduce additional edges. Construction details are in the Appendix.

To examine Theorem 3.1, we consider three possible permutations, ranging from least to most sparse.
First, the correct topological order π∗ = [d] = {1, 2, 3, 4, 5} should correctly recover the graph, with
4 edges. Second, the reverse order πr = {5, 4, 3, 2, 1} results in an extra edge added due to the
incorrectly oriented v-structure 3→ 1← 2, resulting in the 2→ 3 edge being added. Finally, the
reverse-swap order πrs = {5, 2, 4, 3, 1} has the incorrectly oriented v-structure, which in this case
results in the 3→ 4 edge, and a fill-in edge 1→ 2, resulting in 6 edges. The corresponding graphs
are given in Figure 2.

We give results for several different thresholds for a typical run in Table 2, evaluated on a held-out
test set. All permutations lead to nearly identical fit in terms of negative log-likelihood values.
This table shows the difficulty of using thresholding to search for a sparsest permutation—choosing
the sparsest permutation appears to select the correct permutation in this toy problem when the
threshold is small, but can be misleading at larger thresholds. A visual inspection of the Jacobian
values (figures are provided in the Appendix) for each permutation details the problem. The true
permutation is well-behaved in the sense that edges are dramatically larger than non-edges (Fig. 6),
and so thresholding works well for determining the sparsity. However, this is not the case for incorrect
permutations (Fig. 7, Fig. 8), where the estimated sparsity differs dramatically by the threshold, as
spurious Jacobian entries can be close in value to Jacobian entries that do correspond to an edge in
the DAGs detailed in Fig. 2.

Threshold/Permutation π∗ (Expect 4 edges) πr (Expect 5 edges) πrs (Expect 6 edges)
0.05 5 8 7
0.1 4 6 7
0.2 4 3 3
0.3 3 2 2

Table 2: Number of dense entries in the Jacobian at different thresholding values.

Finally, we examined the ability of TMI models to break the Markov equivalence (Theorem 3.2) by
fitting an SCM-type model. Specifically, we estimated the latent variables from a TMI map in two
maximally sparse, and therefore Markov equivalent permutations: the true ordering π∗ = [1, 2, 3, 4, 5],
and the ordering πf = [3, 2, 1, 4, 5], which flips the edges 1 → 3 to the anti-causal direction. We
used Hoeffding’s permutation test for independence (Hoeffding, 1948) to test for the independencies
in Table 1. We observed very weak evidence for X1⊥⊥ϵ3 in π∗ (test statistic ≈ 0.01, smaller is
more independent) over X1⊥⊥ϵ3 in πf (test statistic ≈ 0.02). We leave a detailed study using more
sophisticated independence tests for future work.
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6 Supplementary Material

6.1 Proofs

Our proof of Theorem 3.1, and hence of Theorem 1.1, is based on iteratively marginalizing the moral
graphs required to evaluate the d-separations

k⊥⊥j | {1, . . . , k − 1} \ {j}, for each j < k. (9)

We first introduce some background concepts.

6.1.1 Moral Graphs

For background, in an undirected graph G, the subsets I1, I2 ⊆ [d] are said to be u-separated by
I3 ⊆ [d] if every possible path from a node in I1 to a node in I2 must traverse through a non-empty
subset of I3. We denote this as

I1⊥⊥GI2 | I3. (10)

An equivalent way to evaluate d-separation is to use u-separation in the moral graph Koller and
Friedman, 2009, Proposition 4.10. Let I1, I2, I3 ⊆ [d], let I = I1 ∪ I2 ∪ I3, and consider their
ancestral set AnI := An(I, G⃗). For each v-structure in the subgraph G⃗AnI

, connect the co-parents in
each v-structure and drop directions on all directed edges to create the undirected moral graph over
AnI , which we denote GM,AnI

. Then, we have

I1⊥⊥G⃗I2 | I3, (11)

denoting d-separation in G⃗, if and only if

I1⊥⊥GM,AnI
I2 | I3, (12)

denoting u-separation in the moralized graph.

6.1.2 Marginalization

One key difference between undirected graphs and directed graphs is closure under marginalization.
More formally, let I ⊆ [d], and G⃗ = ([d], E) be a DAG. The existence of a DAG G⃗I = (I, E′) such
that, for any I1, I2, I3 ⊆ I , we have

I1⊥⊥G⃗I2 | I3 ⇐⇒ I1⊥⊥G⃗I
I2 | I3, (13)

is referred to as closure under marginalization. Many DAGs are not closed under arbitrary marginal-
ization, see Maathuis et al. (2018, Figure 2.2) for an example.

On the other hand, undirected graphs are always closed (in terms of u-separation) under marginaliza-
tion. Let G = ([d], E) be a graph and consider marginalization over a single index, i.e., I = [d] \ {i}.
The marginal graph is GI = (I, E′), where E′ is obtained as follows. Take the subgraph E|I
(retain all edges with both vertices in I), and connect the neighbours of i (in other words, turning its
neighbourhood into a clique (Spantini et al., 2018)). That is, for each pair j, k ∈ Nb(i,G), we add
(j, k) ∈ E′, these are known as fill edges (Koller and Friedman, 2009). In general, marginalizing
over a set turns its outer boundary into a clique, as described in the following Lemma.
Lemma 6.1. Let G = ([d], E) be an undirected graph. Let I ⊆ [d] be nonempty, and let M = [d] \ I
denote the set of nodes to be marginalized out. Let GM denote the sub-graph on M and let MC ∈ C
denote its connected components. Then, the marginal graph over I is GI = (I, E′), where

E′ = E|I
⋃

MC∈C
{(j, k) | j, k ∈ OBd(MC ,G)}. (14)

Proof. Let i ∈ MC . Marginalizing over i connects its neighbours. If |MC | = 1, Nb(i,G) =
OBd(MC ,G), not affecting marginalization over other i′ ∈ M since |MC | = 1 implies it has no
other neighbours in M . Otherwise, let |MC | = k < d. Marginalizing over an arbitrary i1 ∈ MC ,
its neighbours not in MC are passed onto some i2. Continuing until ik connects all neighbours of
i1, . . . , ik outside of MC , OBd(MC ,G). By definition of MC , OBd(MC ,G) cannot overlap with
any other neighbourhoods in M .
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6.1.3 Proof of Theorem 3.1

The proof of Theorem 3.1 builds the sequence of moral graphs corresponding to {1, 2, . . . , k} ⊆ [d],
for a given permutation π = [d], and marginalizes out the ancestors to identify the neighbourhood of
node k at each step.

Proof of Theorem 3.1. By faithfulness, the TMI map T has sparse entries corresponding to the
d-separations

k⊥⊥j | {1, . . . , k − 1} \ {j}, for each j < k. (15)

First consider node d. The relevant d-separations in this step are:
d⊥⊥j | {1, . . . , d− 1} \ {j}, for all j < d. (16)

We evaluate these d-separations via the moral graph. Since the participating subsets form the
whole graph, the moral graph Gd := GM is obtained simply by connecting co-parents and dropping
directions. Then, notice that

Xd⊥̸⊥GdXj | {X1, . . . , Xd−1} \ {Xj}, (17)
is equivalent to j ∈ Nb(d,GUG), since all other nodes are in the separating set and thus only
immediate neighbours are u-connected (i.e., they are the tail boundary (Verma and Pearl, 1990)). We
have

Nb(d,GUG) = Pa(d) ∪ Ch(d) ∪ Pa(Ch(d)) (18)
where Pa(d), Ch(d) are obviously neighbours of d, and Pa(Ch(d)) captures the previously uncon-
nected co-parents, that are added via moralization (this is the Markov blanket of node d (Peters et al.,
2017, Proposition 6.27)).

Now, consider node k < d. The relevant d-separations in this step are:
k⊥⊥j | {1, . . . , k − 1} \ {j}, for all j < k. (19)

Notice we can use the same moral graph to evaluate these d-separations, since the participating
subsets are such that their union is always [k] = {1, . . . , k}. We define Ak := An([k]). Thus, the
moral graph is GM,Ak

. However, simply using the moral graph includes possible ancestors not in [k],
and thus we cannot directly use the neighbourhood as we did with node d. However, due to closure
under marginalization, we can use the neighbourhood of the marginalized undirected graph, which
we denote Gk := GUG,[k], to determine the dense entries. We describe its neighbourhood as follows.

Consider the full moral graph GM,Ak
. The neighbourhood is:

Nb(k,GM,Ak
) =

[
Ch(k) ∪ Pa(k) ∪ Pa(Ch(k) ∩Ak)

]
∩Ak. (20)

In words, the neighbourhood contains the children and parents of k in Ak, plus any unconnected
coparents of children in Ak. Next, by Lemma 6.1, the marginalized graph is Gk = ([k], E′), where

E′ = E|[k]
⋃

Ek,C∈C
{(j, k) | j, k ∈ OBd(Ek,C ,GM,Ak

)}, (21)

and Ek,C ∈ C denotes connected components in the subgraph defined by Ek. Notice now if
k ∈ OBd(Ek,C) for any C, then all of OBd(Ek,C) is added to its neighbourhood. Denote Ck ⊆ C
(possibly empty) the set of connected components where k ∈ OBd(Ek,C). We thus have

Nb(k,Gk) = (Nb(k,Gke ) \ Ek)
⋃

Ek,C∈Ck

OBd(Ek,C ,GM,Ak
) (22)

=

([[
Ch(k) ∪ Pa(k) ∪ Pa(Ch(k) ∩Ak)

]
∩Ak

]
\ Ek

) ⋃
Ek,C∈Ck

OBd(Ek,C ,GM,Ak
) (23)

=

([
Ch(k) ∪ Pa(k) ∪ Pa(Ch(k) ∩Ak)

]
∩ [k]

) ⋃
Ek,C∈Ck

OBd(Ek,C ,GM,Ak
) (24)

=
[
(Ch(k) ∪ Pa(k)) ∩ [k]

]
∪ (Pa(Ch(k) ∩Ak) ∩ [k])

⋃
Ek,C∈Ck

OBd(Ek,C ,GM,Ak
). (25)
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6.1.4 Proof of Theorem 1.1

We can now prove a version of Theorem 1.1, that the permutation corresponding to the sparsest
Jacobian (equivalently, graph) under the sequence in Theorem 3.1 yields a graph in the MEC of G⃗.
First, we state a intermediate result that may be of independent interest, stating that the number of
edges in G⃗ lower bounds the number of dense entries in JTπ .

Corollary 6.2. Assume the setting of Theorem 3.1, where G⃗ = ([d], E). For any ordering π, the
Jacobian JTπ

(x) is such that

∥max
x∈Rd

|JTπ
(x)|∥0 ≥ |E|, (26)

with equality if π is a topological order, in which case we also have

JT (x)π(k),π(l) ̸= 0, for π(l) ∈ Pr(πt(k)) ⇐⇒ π(l)→ π(k), (27)

thus recovering the true G⃗π .

Proof. To prove the first claim, note that the first term of the sequence in Theorem 3.1:[
(Ch(π(k)) ∪ Pa(π(k))) ∩ {π(1), . . . , π(k)}

]
(28)

enumerates all the edges of the true DAG G⃗π in any order. This is easy to see. For π(k) = d, the
above term counts the children and parents of node d, each of which represents an edge into or out
of d. Then, for π(k) = d− 1, the above term counts the edges into or out of d− 1, but not related
to d. Continuing in this way enumerates all edges of the DAG. This gives us a lower bound for the
cardinality of dense entries in JT (x) (i.e., the ℓ0-norm ∥maxx∈Rd |JT (x)|∥0).

For the second claim, W.L.O.G., assume the canonical order π(i) = i is a topological order. Invoking
Theorem 3.1, we have

JT (x)k,l ̸= 0 ⇐⇒ (29)

l ∈
[
(Ch(k) ∪ Pa(k)) ∩ [k]

]
∪ (Pa(Ch(k) ∩Ak) ∩ [k])

⋃
Ek,C∈Ck

OBd(Ek,C ,Gke ). (30)

Since the nodes are in topological order, ancestors of k are always in [k], and thus An([k]) = [k].
This implies that Ek = An([k]) ∩ {k + 1, . . . , d} = ∅, and that Pa(Ch(k) ∩ Ak) = Pa(∅) = ∅.
Thus, for each k, we have the following dense entries:

(Ch(k) ∪ Pa(k)) ∩ [k] = Pa(k). (31)

Thus, the k-th row contains dense entries in the parents of k, recovering the DAG G⃗.

The above corollary reveals that we can view the dense entries in row k of JT (x) are the inferred
parents of node k, assuming that the order of the variables is a topological order (even if it is not). In
this way, we can characterize the extra dense entries as mistakenly added edges:[

(Pa(Ch(k) ∩Ak) ∩ [k])
⋃

Ek,C∈Ck

OBd(Ek,C ,Gke )
]
\
[
(Ch(k) ∪ Pa(k)) ∩ [k]

]
. (32)

These are the elements of the second and third terms that do not overlap with the existing edges. We
can see that orders that induce maximal sparsity must correctly orient the v-structures of a DAG, or
else it will incur a dense entry corresponding to the first term. Using this, we can show that maximally
sparse orders are able to recover a graph that is Markov equivalent to the true DAG. We prove the
following version of Theorem 1.1.

Corollary 6.3. Assume the setting of Theorem 3.1, where G⃗ = ([d], E). Let π be an order such that

∥max
x∈Rd

|JT,π(x)|∥0 = |E|. (33)

Then, the adjacency matrix implied by JTπ (x) is Markov equivalent to G⃗π .
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Proof. Again, assume W.L.O.G. the canonical order π(i) = i. We first show that all v-structures
must be correctly oriented. This means that, for any i → j ← k, we have j > i, k. To do this,
W.L.O.G. assume for a contradiction the existence of a v-structure such that j < k. Then, in the
k-th step of the sequence in Theorem 3.1, we have j ∈ Ch(k) ∩Ak, and thus i ∈ Pa(Ch(k) ∩Ak).
Furthermore, i /∈ Ch(k) ∪ Pa(k), and thus[

(Pa(Ch(k) ∩Ak) ∩ [k])
⋃

Ek,C∈Ck

OBd(Ek,C ,Gke )
]
\
[
(Ch(k) ∪ Pa(k)) ∩ [k]

]
̸= ∅, (34)

implying that ∥maxx∈Rd |JT (x)|∥0 > |E|, a contradiction.

Now, recall the skeleton of the DAG is guaranteed via the first term:[
(Ch(k) ∪ Pa(k) ∩ [k]

]
. (35)

Recall that these appear as parents of the inferred DAG. Thus, the DAG inferred by the TMI Jacobian
is such that the v-structures are correctly oriented, and where outside of a v-structure, children may
appear as parents. Thus, it is Markov equivalent to G⃗π .

6.2 Detailed Description of Figure 2

As an example, we give further details on the incorrectly inferred DAGs in Figure 2. The ground-
truth DAGs GDAG, πr and G⃗πrs

, and their moral graphs are given in Figure 3. Note in both cases
An([k]) = {1, 2, 3, 4, 5} for all k = 1, 2, 3, 4, 5, since 1 is always a sink node, and thus the variable
elimination sequence always operates on the same moral graph. In particular, as seen in Figure 2, πr

introduces an additional edge due to moralization, but does not produce any fill-in, since it remains a
perfect elimination ordering. On the other hand, πrs has the additional moralization edge, but is not
a perfect elimination ordering, and thus introduces an additional fill-in edge as well. Details are in
Fig. 4 and Fig. 5 respectively.

5

4

3

2

1

(a) DAG G⃗πr .

5

2

4

3

1

(b) DAG G⃗πrs .

5

4

3

2

1

(c) Moral graph GM,πr .

5

2

4

3

1

(d) Moral graph GM,πrs .

Figure 3: Ground-truth DAGs for πr and πrs, and associated moral graphs.

6.3 Mean Jacobian Plots for Table 2
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5

4

3

2

1

(a) At k = 5, Nb(5,GM,πr ) = {3}, and the
dense entry is (5, 3).

4

3

2

1

(b) At k = 4, Nb(4,G4
M,πr

) = {2}, and the
dense entry is (4, 2).

3

2

1

(c) At k = 3, Nb(3,G3
M,πr

) = {2, 1}, and
the dense entries are (3, 2), (3, 1).

2

1

(d) At k = 2, Nb(2,G2
M,πr

) = {1}, and the
dense entry is (2, 1).

Figure 4: Sequence of marginalized moral graphs for πr. Notice πr does not produce any fill edges—
i.e., it is a perfect elimination ordering.

5

2

4

3

1

(a) At k = 5, Nb(5,GM,πr ) = {4}, and the
dense entry is in position (5, 4).

2

4

3

1

(b) At k = 4, Nb(4,G4
M,πr

) = {3, 1}, and
the dense entries are (4, 3), (4, 1).

2 3

1

(c) At k = 3, Nb(3,G3
M,πr

) = {1, 2}, and
the dense entries are (3, 2), (3, 1).

2

1

(d) At k = 2, Nb(2,G2
M,πr

) = {1}, and the
dense entry is in position (2, 1). This is a
fill-in edge.

Figure 5: Sequence of marginalized moral graphs for πrs. Notice πrs is not a perfect elimination
ordering, and thus introduces the fill-in edge (2, 1), in addition to the moralization edge.
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Figure 6: Array of lower-triangular mean Jacobian values for the true permutation π∗. A dense entry
indicates row index→ column index in the learned graph. Notice the small magnitudes of the sparse
entries compared to the dense entries.
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Figure 7: Array of lower-triangular mean Jacobian values for the permutation πr. A dense entry
indicates row index→ column index in the learned graph.
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Figure 8: Array of lower-triangular mean Jacobian values for the permutation πrs. A dense entry
indicates row index→ column index in the learned graph.
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