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PIMNet: Physics-infused Neural Network for Human
Motion Prediction

Zhibo Zhang1∗, Yanjun Zhu2∗, Rahul Rai3, and David Doermann2

Abstract—Human motion prediction (HMP) predicts future
human pose sequences given the past ones. HMP has recently
attracted attention in computer vision and the robotics domain as
it helps machines understand human behavior, plan target actions
and optimize interaction strategies. Existing methods for HMP
are based on either purely physics-based models or statistical
models. However, each of these methods has its shortcomings.
The physics-based techniques are complex and error-prone, while
the statistical methods require a large amount of data and lack
physical consistency. To overcome their limitations, we propose
a physics-infused neural network (PIMNet), which combines
both physics-based and statistical methods. We first computed
the contact forces and joint torques for each pose using the
physics-based human dynamical model. Then they are fed into an
Encoder-Decoder machine learning architecture to predict future
ones. In this way, PIMNet simultaneously obtains computational
efficiency and physical consistency. Extensive experimental results
on Human 3.6M show that the proposed PIMNet could accurately
predict human motion in both short-term and long-term scope.
It achieves better or comparable prediction accuracy than the
state-of-the-art, even using a basic LSTM as the machine learning
model.

Index Terms—Human Detection and Tracking; Deep Learning
Methods; AI-Based Methods

I. INTRODUCTION

HUMANS exhibit a tremendous ability to make accurate
short-term predictions based on current environmental

information [1]. Human motion prediction (HMP) is one of the
most critical aspects of the ability. It is generally acknowledged
that predicting human motion is a challenging task due to the
complexity of the human musculoskeletal system. The future
movement of humans has various possibilities. However, based
on specific prior information, the range of outcomes can be
restricted to a manageable degree of variation [2]. Research on
human motion prediction helps machines understand human
behavior, plan target actions, and optimize interaction strategies.
HMP techniques are widely used in many applications in
computer vision, medical, and robotics, such as human tracking

Manuscript received: February, 23, 2022; Revised May, 10, 2022; Accepted
June, 12, 2022.

This paper was recommended for publication by Editor Gentiane Venture
upon evaluation of the Associate Editor and Reviewers comments. This work
was supported by Defense Advanced Research Projects Agency (DARPA)

1Manufacturing and Design Lab (MADLab), Department of Mechan-
ical and Aerospace Engineering, University at Buffalo, Buffalo, NY
zzhang38@buffalo.edu

2Artificial Intelligence Innovation Lab (A2IL), Department of Computer
Science and Engineering, University at Buffalo, Buffalo, NY

3Corresponding author. Geometric Reasoning and Artificial Intelligence Lab
(GRAIL), Clemson University, Greenville, SC, USA rrai@clemson.edu

∗ Contributed equally
Digital Object Identifier (DOI): see top of this page.

[3], [4], human behavior monitoring [5], and human-robot
interaction [6]–[8]. There are two kinds of approach to
modeling human motion: physics-based models underpinned
by laws of physics and statistical models underpinned by data.

Traditional physics-based modeling of human motion hinges
on the existing knowledge of human behavior derived from
dynamical information and biomechanical information. Physics
plays a vital role in characterizing, describing and predicting
human motion [9]. A meticulously designed physics model
could provide a reliable prediction. However, it is not easy
to accurately model human motion due to the complexity of
human biomechanical models and the agnostic environment.
Moreover, high-fidelity physics-based human motion models
suffer from extremely high computational complexity, which
fails to employ those models in real-time applications.

Statistical motion models are often expressed as mathemati-
cal equations or functions that describe human motion using a
limited number of parameters and their associated probability
distributions [10]. The statistical motion model is favorable for
human motion representation as it does not require a complex
hand-crafted modeling effort. As long as motion data are
available, any human motion model can theoretically be fitted
[10]. Especially with the widespread success of deep learning,
an increasing number of statistical techniques have proven
promising performance in human motion modeling. However,
the black-box behavior nature of the statistical motion model
can also be a double-edged sword, as it can be undesirably
physics agnostic [11], [12]. Failure to strictly obey physics
principles raises reliability concerns about their use in modeling
human motion. Another primary concern is that deep learning
models are notoriously data-hungry. The quantity and quality
of the data directly impact the model’s performance. However,
accurate motion capture data is costly to obtain. For example,
there are only 210 sequences in the H3.6M dataset, one of the
most significant benchmark datasets for HMP. Kinetics, a public
benchmark for video action recognition, contains 650,000
video clips. In addition, statistical models are often poor in
generalizing beyond their initial training set. Furthermore, it
is unrealistic and costly to have a dataset covering all human
movements. Therefore, the pure statistical model may not be
the best solution for HMP under current conditions.

To overcome the limitations mentioned above for both
approaches, we propose a hybrid model, termed PIMNet,
which combines physics-based and statistical methods in a
unified way. Instead of developing the high-fidelity physics
model from scratch, we propose using a simplified low-
fidelity physics-based motion model. We then combine a
low-fidelity physics-based motion model with an off-the-shelf
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deep neural (statistical) model such as LSTM to arrive at a
hybrid HMP model. When predicting motion, the proposed
hybrid model takes into account historical motion data and
considers force information (from the physics model) that is
the root cause of motion. Thus, PIMNet as a physics-infused
machine learning model obtains computational efficiency and
physical consistency. The contribution of this work lies in three
aspects: (1) we propose a low-fidelity human motion model
to extract physical motion features; (2) we propose a novel
hybrid mechanism for human motion prediction that takes
into account both physics-based model and statistical model;
(3) extensive experiments on public benchmarks demonstrate
the effectiveness of the proposed hybrid model over the pure
machine learning model and the traditional physics-based
model.

The remainder of this paper is organized as follows. Section
II introduces related work. Section III outlines the architecture
of the proposed hybrid model, including a physics-based
dynamic model and deep learning prediction model. Section
IV describes the experimental setups and the metrics used
to evaluate our model’s performance. Training and testing
results are also discussed in Section IV. Section V ends with
concluding remarks.

II. LITERATURE REVIEW

A. Physics-based human motion model

All movements originate from the action of both internal
and external forces. Thus, Newton’s laws of motion provide a
clear relationship between the applied force and the resultant
change in movement. Many researchers have explored how
to model human motion using physics-based models. Wren
and Pentland proposed a dynamic model coupled with human
behavior to track the precise movement of the upper body
[13]. Metaxas and Terzopoulos combined a 3D dynamic model
with continuous non-linear Kalman filtering to estimate human
motion [14]. Kakadiaris and Metaxas presented a force-based
method for tracking human movements, which mitigates the
difficulties arising from occlusion among parts of the body [15].
In Bissacco and Soatto’s work, a switching, linear dynamical
system is utilized to model the motion and contact forces [16].
Additionally, the space-time constraint method is applied to
minimize the energy of motion, which results in modeling
human movement [17], [18]. In addition, control strategies for
physics simulation are also used to model human motion [19],
[20]. In summary, all of these models fall into three categories:
modeling the kinematics and dynamics of humans, modeling
an optimization problem, and modeling based on a control
strategy. However, the physics-based approaches mentioned
above cannot predict human motion with both accuracy and
computational efficiency at the same time because of the
limitations of modeling the complex environment and the
muscle skeleton system of humans.

B. Statistical based human motion model

Statistical models are favorable because they are compact and
only work on the collected motion data. The development of
statistical models of human motion has gone through two stages:

conventional statistical models and deep learning models. In
the traditional statistical model, HMM [21], sequential Monte
Carlo [22], particle filter [23], Gaussian process [10], and
restricted Boltzmann machine [24], [25] are used to model and
predict human movements. However, due to the performance
limitations of these conventional approaches, the prediction
results cannot meet our desirable requirements.

With the rapid emergence of deep learning in recent years,
many researchers have been modeling human motion using
deep learning-based methods. These methods fall into three cat-
egories: RNN-based model, GNN-based (graph neural network),
and GAN-based (generative adversarial network). Because of
the success of sequence-to-sequence prediction, RNN-based
models could be desirable candidates to model human motion.
Fragkiadaki et al. proposed two RNN-based models, that is,
ERD (Encoder-Recurrent-Decoder) and LSTM-3LR (LSTM
with three layers), which involve a nonlinear encoder-decoder
before and after recurrent layers [2]. In [26], the authors
combine the spatio-temporal graphs with RNN, enabling a
promising long-term human motion prediction. Based on previ-
ous work, Martinez et al. improved the SRNN model with three
changes that boosted the prediction performance [27]. Since
the skeleton tree can be regarded as a graph, it is reasonable
to involve GNN in the human motion prediction. In [28], the
authors exploited a graph neural network (GNN) to capture
temporal and spatial information about human joints using
the graph of temporally connected kinematic trees. Li et al.
combined two types of links (actional links and structural links)
into a generalized skeleton graph and proposed an actional-
structural GNN to make motion prediction [29]. Furthermore,
in his subsequent work, a multiscale GNN is developed
to leverage human skeleton structure awareness resulting in
better prediction [30]. GANs have resulted in extraordinary
achievements in image generation. In human motion prediction,
GANs can learn a probability density function of future human
movement conditioned on previous states. Barsoum et al.
proposed HP-GAN based on Wasserstein GAN [31]. Gui et al.
incorporated local geometric structure constraints in GANs to
make the model geometrically meaningful [32].

However, all approaches mentioned above share the same
property: they do not consider the dynamics which cause
the motion. Therefore, the results of the prediction are often
physically implausible. Furthermore, similar to other data-
driven models, the quality of the data directly affects the
prediction results.

C. Hybrid Model

Several attempts have been made to integrate physics-based
models with statistic models [10]. However, these approaches
are based on conventional statistical methods that cannot handle
complex problems like human motion prediction. In recent
years, researchers have started to apply the hybrid idea in
multiple domains using machine learning [33] [34]. Several
works also show decent performance in the human-robotics
domain [35] [36] [37]. By accounting for physical information
and statistical priors simultaneously, our proposed model instills
physical realism into deep learning-based motion models and
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Fig. 1. PIMNet architecture

boosts the physics-based model’s performance with lower
computational cost.

III. METHODOLOGY

A. Physics Dynamic Model

Our primary goal is to predict human motion based on
MoCap (Motion Capture) data. In addition to the statistical
prediction network, a feasible physics-based model of humans
is required. One of the natural approaches is to model full-body
dynamics, which has been explored in many domains, such as
robotic, biomechanical, and computer animation. However, a
full-body high-fidelity dynamic model for humans is highly
complex. Thus, we developed and utilized a low-fidelity model
in our hybrid modeling framework, simplifying several aspects
of the human body and forces. Next, we discuss the entire
modeling procedure in detail.

Fig. 2. Human skeleton model

TABLE I
JOINTS IN THE HUMAN BODY MODEL

Joint Neck Shoulder Elbow Hip Knee Ankle Pelvis-Torso
DOF 3 3 1 3 1 2 3

Joint Type Ball Ball Hinge Ball Hinge Saddle Ball
# of Joints 1 2 2 2 2 2 1

As shown in Figure 2, our human body model contains 13
segments that are regarded as rigid bodies. They are connected
to their parent segments by 1-DOF (degree-of-freedom), 2-DOF,
or 3-DOF joints (as shown in Table I). The pelvis is considered
the root segment "linked" to the world, coordinate by a 6-
DOF "joint" that contains the global position and orientation
information. Our model uses the Quaternion to represent
relative joint angles because of its advantages in dealing with
rotations. Then the generalized coordinates, q ∈ RN (N is the
total DOFs), consist of the root position, orientation (6-DOF),
and all joint angles. Thus, a Newtonian dynamics equation can
be used to represent the full-body movement:

M(q)q̈ = F (q, q̇) + C(q, q̇) (1)

where M is the generalized mass matrix, F is a vector of
generalized forces acting on the human body, C denotes all
other terms to enforce joint constraints, q̇ and q̈ represent the
vector of joint angle velocities and joint angle accelerations.
The desired goal of the aforementioned dynamic model is
to extract the joint forces (torques) and contact forces when
given joint states q, q̇, and q̈. The joint states can be directly
obtained from MoCap data. Next, we explain the generalized
force term.

1) Generalized Forces: The generalized force term can be
divided into two parts: internal torques Fe from the joint
muscles and external forces Fi from the environment, which
can be expressed as:

F (q, q̇) = Fi(q, q̇) + Fe(q, q̇) (2)
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Then we can further decompose the external forces into
those due to gravity fg , contact with the environment fc, and
unexplained components fr:

Fe(q, q̇) = Jf (q)(fg + fc + fr) (3)

in which fg and fc are vectors represented in the body frame,
comprising three forces and three torques for each of the body
segments. And fr, which contains 6 DOFs, is the vector of
residue forces acting on the pelvis segment to explain the
residue effects of the environment, such as wind drag. Jf is
the Jacobian matrix that maps the forces on body segments to
generalized forces. It is easy to model the gravity forces fg by
applying gravity to the CoM (center of mass) of each segment.

We used a continuous contact model, which has been applied
in the work of Liu et al. [38] and follows the method proposed
by Brubaker et al. [39]. We assume that the contact forces
come from the interaction between the body segments (e.g.,
foot, hand) and the fixed surface. Our contact model is based
on a normal-direction damper-spring model and a tangential-
direction friction damper model modulated by two sigmoidal
functions. The contact force fc is expressed as:

fc = S(−60d)S(5fn)(fnns + ft) (4)

where S(x) = 0.5(1 + tanh(x)) is the sigmoid function, d is
the shortest distance from the contact point to the surface, fn
is the magnitude of the normal force coming from the linear
spring, ns is the unit normal of the surface (in this research,
ns = [0, 0, 1] is a constant vector), ft is the tangential force
of the frictional damper. The magnitudes of the normal force
and the tangential force are expressed as follows.

fn = −k(d− 1)− cnv
Tns (5)

ft = −ct(v
T − nT

s vns) (6)

in which, k is the stiffness of the spring, cn, ct denote the
normal and tangential damping coefficient, and v is the velocity
vector of the contact point. To simplify the expression, θ =
[k, cn, ct] is used to denote all contact parameters. Until now,
we have all terms except fr.

The most straightforward way to estimate the joint torques
and contact parameters is to minimize the difference between
the MoCap data and the motion generated by the simulation.
Nevertheless, this approach is computationally complex due
to noise and the existence of local minima. Therefore, we
consider employing a residue force fr to explain the difference
between the dynamic model and the MoCap data. This residue
force does not exist in reality. However, with the help of the
residue force, the physics model can be greatly simplified. The
residual force is only used to model the noise not accounted
for by the contact model.

In sum, by substituting Eq. (2), (3), (4), (5), and (6) to (1),
we derive the human full-body, dynamic model:

M(q)q̈ = Fi(q, q̇) + Jf (q)(fg + fc(q, q̇, θ) + fr) + C(q, q̇)
(7)

2) Parameter optimization: An optimization problem is then
formulated to estimate the contact forces and the internal joint
torque. The objective of the optimization problem is to search
for the surface parameters θ that minimize the magnitude of the
residue forces. By reorganizing the Equation (7), and expanding
the internal torque Fi(q, q̇) = Jτ (q)τ , we get:

[Jτ , Jf ]

[
τ
fr

]
= M(q)q̈− Jf (q)(fg + fc(q, q̇, θ)) + C(q, q̇)

(8)
where Jτ is the Jacobian matrix that maps the joint torques

into the vector of generalized forces, and τ is the vector of the
internal torques actuated by muscles. fr and τ , are function of
surface parameters θ. The overall optimization problem can
then be formulated as follows.

min
θ

6∑
i=1

||f (i)r (θ(k, cn, ct))||2

s.t. 1 ≤ k ≤ 20

0.1 ≤ cn, ct ≤ 20

(9)

The formulated optimization problem is a single-objective
constrained optimization problem. Therefore, a gradient-based
optimizer can be used to find the minimal value of fr and the
corresponding surface parameters θ. Then, the internal torques
τ can be calculated by substituting θ into Eq. (8).

To sum up, there are three steps in the human dynamic
model to estimate the internal joint torques and contact forces:
(1) Calculate the angle velocity q̇ and angle acceleration q̈ by
using forward differences; (2) Build the human body model
by defining the biomechanical information; (3) Estimate the
internal joint torques and contact forces by minimizing residue
forces.

B. PIMNet
The previous subsection outlined the details of the simplified

human full-body dynamic model that extracts pertinent physical
information (contact forces and joint torques). Our primary
goal is to predict human motion based on a hybrid model.
Our hybrid model is a deep neural network-based model that
integrates MoCap data and physical information (from a low-
fidelity physics model) to enable HMP. In this section, we
introduce the notations and problem formulation and outline
the details of the proposed hybrid model.

1) Notation and problem formulation: Given T prior time
series human MoCap data in terms of the Quaternion, that
is, Xi = [X1, X2, ..., XT ] ∈ RT×N×Q, where N is the
number of joints and Q = 4 denotes the dimension of
the Quaternion, we want to predict L future poses X̂o =
[X̂t+1, X̂t+2, ..., X̂T+L] ∈ RL×N×Q. Additionally, based
on the physics-based model X

(t)
p = P(X(t)) described

in the previous section, we get the physics inputs Xp =
[X1

p , X
2
p , ..., X

T
p ] ∈ RL×M×S , where M is the total number of

joints plus the number of contact forces, S = 3 is the dimension
of the forces (torques). Our objective is to design a model f that
narrows the difference between the predicted results X̂o and
the ground truth Xo = [Xt+1, Xt+2, ..., XT+L] ∈ RL×N×Q,
which is formulated as follows.

X̂o = f(Xi, Xp) (10)
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2) PIMNet Architecture: As shown in Figure 1, PIMNet
mainly consists of two components: a physics-infused encoder
and a temporal decoder.

The encoder is essentially RNN, which can encode the input
sequence as feature representations in machine translation [40].
For human motion prediction, the physics-infused encoder can
be used to learn a mapping from Xt

i , X
t
p to ht at the time step

t, which can be written as:

ht = fe(ht−1, X
t
i , X

t
p) (11)

where ht ∈ RH is the embedded hidden state, H is the size
of the hidden state, and fe is a non-linear activation function
that could be an LSTM or GRU (gated recurrent unit). We
use basic LSTM as fe to explore long-term dependencies in
this work. The use of LSTM brings us the merits of avoiding
the problem of vanishing gradients and capturing long-term
dependencies of time series.

To predict the future motion series, we applied another
LSTM network to decode the hidden states h. On the contrary,
the hidden state vector is regarded as the input of the LSTM
network. And the decoder network can be expressed as:

X̂t = fd(h
t) (12)

in which fd is an LSTM-based decoding function. At this point,
our proposed model f is capable of generating the future motion
based on prior MoCap data and physical information, which
can be denoted as:

X̂o = f(Xi, Xp) = fd(fe(Xi, Xp;We);Wd) (13)

where We and Wd are the trainable weights within the encoder
and decoder.

To train our prediction model, we consider the l2 loss. Then,
for N training samples, the cost function is:

L =
1

N

N∑
n=1

||(Xo)n − (X̂o)n||2

=
1

N

N∑
n=1

||(Xo)n − fn(Xi, Xp;We,Wd)||2
(14)

Using backpropagation, we find optimal values of We and Wd

that minimize the cost function L. In our experiment, Adam
is utilized as the optimizer.

IV. EXPERIMENTS AND RESULTS

A. Dataset and preprocessing
We evaluate our model on the Human3.6M (H3.6M) dataset

[41]. H3.6M is the largest MoCap dataset for 3D human
motion analysis. It contains 3.6 million different 3D articulated
poses captured from 11 different professional actors across
17 different scenarios (activities). A Vicon motion capture
system supports H3.6M and provides accurate 3D human joint
locations at the global coordinate. Our experiments follow the
same data preprocessing step presented in [2], [26], [27]. In
the original dataset, 32 joints are recorded; however, some
are overlapping or constant. We eliminate redundant joint
information. The motion sampling rate is reduced from 50 to 25
fps. Furthermore, we adopt the joint angles as the exponential
map [26]. Before training, all features are normalized to [−1, 1].

Fig. 3. Example results. From top to bottom, we show the results of three
activities" Eating," "Walking," and "Discussion." The yellow line is historical
input data, the red dash line is ground truth, and the blue line is predicted
results.

B. Training procedure

The following equations are used to convert the exponential
map representation into the Quaternion representation that is
used in the physics-based model to derive the joint torques
and contact forces:

e = [e1, e2, e3] (15)

θ =
√

e21 + e22 + e23 (16)

q = [q0, q1, q2, q3] = [cos
θ

2
,
e1 sin

θ
2

θ
,
e2 sin

θ
2

θ
,
e3 sin

θ
2

θ
]

(17)
where, e = [e1, e2, e3] is the exponential map, q =
[q0, q1, q2, q3] is the corresponding Quaternion, θ is the rotation
angle.

Our test is carried out on subject 5 (S5) in H3.6M, and
the rest of the data serves as the training set. The Euclidean
distance between the predicted and ground truth joint angles
is used as an error metric to compare the performance of
different methods. We compared our approach with several
recent works: ERD [2], LSTM-3LR [2], SRNN [26], Res-GRU
[27], Traj-GCN [42], and DMGNN [30].

In our model, 1024 LSTM cells are used in the physics-
infused encoder, and 1024 cells are used in the temporal
decoder. The learning rate of the Adam optimizer is 0.001,
with a 0.9 decay rate for every 10,000 steps. The batch size is
set to 16.

C. Computational resource

The physics-based dynamic model is developed in MATLAB.
The training and testing procedures are executed using Ten-
sorflow on a server with Linux Centos 7.5.x operating system,
Intel Xeon Gold 6230 processor (40 cores @2.10GHz), 32GB
RAM, and NVIDIA Tesla V100 GPU.
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TABLE II
MEAN ANGLE ERRORS OF DIFFERENT METHODS FOR SHORT-TERM PREDICTION ON DIFFERENT ACTIONS OF H3.6M.

Method Walking Eating Smoking Discussion
milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400

ERD [2] 0.93 1.18 1.59 1.78 1.27 1.45 1.66 1.80 1.66 1.95 2.35 2.42 2.27 2.47 2.68 2.76
LSTM-3LR [2] 0.77 1.00 1.29 1.47 0.89 1.09 1.35 1.46 1.34 1.65 2.04 2.16 1.88 2.12 2.25 2.23

SRNN [26] 0.81 0.94 1.16 1.30 0.97 1.14 1.35 1.46 1.45 1.68 1.94 2.08 1.22 1.49 4.83 1.93
Res-sup. [27] 0.28 0.49 0.72 0.81 0.23 0.39 0.62 0.76 0.33 0.39 0.62 0.76 0.31 0.68 1.01 1.09

Traj-GCN [42] 0.18 0.32 0.49 0.56 0.16 0.29 0.50 0.62 0.22 0.41 0.84 0.79 0.20 0.51 0.79 0.86
DMGNN [30] 0.18 0.31 0.49 0.58 0.17 0.30 0.49 0.59 0.21 0.39 0.81 0.77 0.26 0.65 0.92 0.99

PIMNet 0.22 0.35 0.50 0.55 0.20 0.31 0.49 0.59 0.21 0.39 0.66 0.70 0.23 0.50 0.71 0.79
Method Direction Greeting Phoning Posing Purchases

millisecond 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400
Res-sup. [27] 0.26 0.47 0.72 0.84 0.75 1.17 1.74 1.83 0.23 0.43 0.69 0.82 0.36 0.71 1.22 1.48 0.51 0.97 1.07 1.16

Traj-GCN [42] 0.26 0.45 0.71 0.79 0.36 0.60 0.95 1.13 0.53 1.02 1.35 1.48 0.19 0.44 1.01 1.24 0.43 0.65 1.05 1.13
DMGNN [30] 0.25 0.44 0.65 0.71 0.36 0.61 0.94 1.12 0.52 0.97 1.29 1.43 0.2 0.46 1.06 1.34 0.41 0.61 1.05 1.14

PIMNet 0.23 0.40 0.64 0.68 0.33 0.60 0.89 0.96 0.37 0.43 0.66 0.79 0.22 0.43 0.96 1.11 0.39 0.60 1.00 1.06

Method Taking Photo Waiting Walking Dog Walking Together Average
millisecond 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400

Res-sup. [27] 0.24 0.51 0.9 1.05 0.28 0.53 1.02 1.14 0.56 0.91 1.26 1.4 0.31 0.58 0.87 0.91 0.36 0.65 0.99 1.11
Traj-GCN [42] 0.14 0.34 0.58 0.7 0.23 0.50 0.91 1.14 0.46 0.79 1.12 1.29 0.15 0.34 0.52 0.57 0.27 0.51 0.83 0.95
DMGNN [30] 0.15 0.34 0.58 0.71 0.22 0.49 0.88 1.10 0.42 0.72 1.16 1.34 0.15 0.33 0.50 0.57 0.27 0.51 0.83 0.95

PIMNet 0.14 0.32 0.55 0.68 0.20 0.50 0.85 1.07 0.44 0.72 1.10 1.23 0.15 0.34 0.50 0.53 0.26 0.45 0.73 0.83

D. Results and Analysis

Qualitative Analysis: First, we present qualitative evaluations
of our results, as shown in Fig. 3. In Fig. 3, the yellow line
represents historical input sequences, the red line represents
ground truth, and the blue line represents predicted results
from PIMNet. Comparing the ground truth with our predicted
sequences shows that our model provided accurate predictions
for "Eating" and "Walking" in both the short and long term.
However, our model fails to predict the movements in the long-
term prediction of "Discussion." This failure occurs because the
actor only moves minimally in the input sequence. Therefore,
the physics-based model can only provide limited prediction
information. Predicting transition scenarios from static to
dynamic is a challenging task. This could be a task for future
work.
Results on H3.6M: We use all activities from H3.6M to evaluate
the performance of our model, except for "Sitting" and "Sitting
Down." Within these two activities, actors continue sitting
either on a chair or on the ground, which is not aligned with
the assumption of the physics-based model that feet are the
only contact points. Figure 4 shows the mean angle error for all
scenarios in the overall prediction of human motion. As shown
in Figure 4, our model outperforms the comparison methods.
Our model only has minor improvements in the short-term
prediction compared to the latest approaches (Traj-GCN and
DMGNN). However, in long-term prediction, our model always
performs the best. Additionally, the gap between our PIMNet
and other models increases with increasing prediction time.
The improved performance of PIMNet can be attributed to the
infusion of physical information from the physics-based model,
making our hybrid model retain physics-plausible features.

We also present the short-term prediction results for each
scenario in Table II. As the table shows, our model cannot beat
the comparison models in short-term prediction (2-4 frames).
However, our model shows better results in the relatively more
extended forecast. Our model has an impressive improvement,
especially in long-term prediction, as shown in Table III.

TABLE III
MEAN ANGLE ERROR OF DIFFERENT METHODS FOR LONG-TERM

PREDICTION ON FOUR ACTIONS

Motion Walking Eating Smoking Discussion
milliseconds 560 1k 560 1k 560 1k 560 1k

ERD [2] 2.00 2.38 2.36 2.41 3.68 3.82 3.47 2.92
LSTM-3LR [2] 1.81 2.2 2.49 2.82 3.24 3.42 2.48 2.93

SRNN [26] 1.90 2.13 2.28 2.58 3.21 3.23 2.39 2.43
Res-sup. [27] 0.93 1.03 0.95 1.08 1.25 1.5 1.43 1.69

Traj-GCN [42] 0.65 0.67 0.76 1.12 0.87 1.57 1.33 1.70
DMGNN [30] 0.66 0.75 0.74 1.14 0.83 1.52 1.33 1.45

PIMNet 0.60 0.66 0.68 0.96 0.76 1.33 0.90 1.35

Furthermore, our proposed model delivers better results in
the case of nonperiodic movements. The deep learning-based
models predict the results based on the prior data. The stronger
the periodicity of the data, the better the prediction performance
of the deep learning-based model. However, informed by the
physics-based model, our proposed hybrid model reduces
dependence on prior training data and shows more robust
performance without periodicity in the data.
Abalation Analysis: To evaluate the contribution of the physics-
based model. We carried out another numerical experiment that
keeps the encoder-decoder prediction model but removes the
physics-based model. The results of the ablation experiment are
shown as the solid black line (ED) in Figure 4. Ablation analysis
shows the efficacy of incorporating physical information from
physics-based models. Figure 4 highlights that the proposed
model without the infusion of physical information leads
to inferior results (the accuracy is close to the Res-sup
model). Performance comparable to the Res-sup model is
understandable since our deep learning-based prediction model
is similar to most encoder-decoder models.

V. CONCLUDING REMARKS

This paper introduces a hybrid model called PIMNet to
model human motion. The proposed model combines a physics-
based model and a machine learning-based model. With the
help of the simplified human full-body dynamic model, our
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Fig. 4. Performance comparison between different methods in terms of mean
angle error for all scenarios

LSTM-based machine learning model can accurately predict
human motion in the short-term and long-term. By comparing
the performance of our proposed model with several state-
of-the-art approaches, we conclude that our physics-infused
hybrid model could be beneficial for HMP tasks.

There are several directions for future exploration: (1) De-
velop a better physics model which involves kinetic information
to infuse more comprehensive physical details. (2) Use a
sequential machine learning model with more robust predictive
capabilities. (3) Propose a wiser fusion method to integrate the
physics-based and machine learning models.
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