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Abstract
Uncertainty estimation is a key factor that makes
deep learning reliable in practical applications.
Recently proposed evidential neural networks ex-
plicitly account for different uncertainties by treat-
ing the network’s outputs as evidence to parame-
terize the Dirichlet distribution, and achieve im-
pressive performance in uncertainty estimation.
However, for high data uncertainty samples but
annotated with the one-hot label, the evidence-
learning process for those mislabeled classes is
over-penalized and remains hindered. To address
this problem, we propose a novel method, Fisher
Information-based Evidential Deep Learning (I-
EDL). In particular, we introduce Fisher Informa-
tion Matrix (FIM) to measure the informativeness
of evidence carried by each sample, according to
which we can dynamically reweight the objective
loss terms to make the network more focus on
the representation learning of uncertain classes.
The generalization ability of our network is fur-
ther improved by optimizing the PAC-Bayesian
bound. As demonstrated empirically, our pro-
posed method consistently outperforms traditional
EDL-related algorithms in multiple uncertainty
estimation tasks, especially in the more challeng-
ing few-shot classification settings.

1. Introduction
Uncertainty estimation is crucial not only for safety decision-
making in high-risk domains such as medical image analysis
(Seeböck et al., 2019; Nair et al., 2020) and autonomous
vehicle control (Feng et al., 2018; Choi et al., 2019), but
also in the general fields where data is highly heterogeneous
or scarcely annotated (Gal et al., 2017; Ablain et al., 2019).
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Predictive uncertainty is quite diverse and can be divided
into data uncertainty, model uncertainty, and distributional
uncertainty (Gal, 2016; Malinin & Gales, 2018). Data un-
certainty, or aleatoric uncertainty, is caused by the natural
complexity of the data, such as class overlap and label noise.
Model uncertainty, or epistemic uncertainty, measures the
uncertainty in estimating model parameters given training
data. Model and data uncertainty are sometimes referred to
as reducible and irreducible uncertainty, respectively, since
model uncertainty can be reduced with more training data,
while data uncertainty cannot. Distributional uncertainty
arises from a distribution mismatch between the training
and test distributions, i.e., the test data is out-of-distribution
(OOD) (Quinonero-Candela et al., 2008). Quantifying the
different uncertainty is obviously a key factor that makes
deep learning reliable.

Softmax is the most widely used normalization function
that maps the continuous activations of the output layer to
a probability distribution. However, Softmax is notorious
for inflating the probabilities of predicted classes (Szegedy
et al., 2016; Guo et al., 2017; Wilson & Izmailov, 2020).
Some methods calibrate network predictions to improve
the reliability of uncertainty estimation (Guo et al., 2017;
Liang et al., 2018). However, these methods can still not
distinguish between different types of uncertainty, which
seriously limits the practical usage of deep learning in chal-
lenging domains without enough training samples. Recently
notable progress has been made in estimating uncertainty in
DNNs. One class of methods stems from Bayesian neural
networks, which quantify uncertainty by learning a poste-
rior over weights (Gal & Ghahramani, 2016; Ritter et al.,
2018; Kristiadi et al., 2022). Other methods often combine
predictions from several independently trained networks to
estimate statistics for class probability distributions (Laksh-
minarayanan et al., 2017; Zaidi et al., 2021). However, these
approaches still cannot distinguish distributional uncertainty
from other uncertainties (Malinin & Gales, 2018).

To address this limitation, Dirichlet-based uncertainty mod-
els quantify different types of uncertainty by modeling the
output as the concentration parameters of a Dirichlet distri-
bution (Malinin & Gales, 2018; 2019; Nandy et al., 2020;
Charpentier et al., 2020). Evidential deep learning (EDL)
(Sensoy et al., 2018) adopts Dirichlet distribution and treats
the output as evidence to quantify belief mass and uncer-
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Figure 1. Data uncertainty for (a) digit “4” in MNIST, (b) “horse”
in CIFAR10. I-EDL has the ability to distinguish between hard
samples (orange) and easy samples (green), but EDL cannot.

tainty by jointly considering the Dempster–Shafer Theory
of Evidence (DST) (Dempster, 1968; Shafer, 1976) and
subjective logic (SL) (Jøsang, 2016). The evidential net-
work proposed by EDL can be represented as a probabilistic
graphical model, where the observed labels y are gener-
ated from the Dirichlet distribution with its parameter α
calculated by passing the input sample x through the net-
work. EDL, which learns optimal parameters by maximiz-
ing the expected likelihood of the observed labels, shows
an impressive performance in uncertainty quantification
and is widely used in various applications, such as graph
neural networks (Zhao et al., 2020), open set recognition
(OSR) (Bao et al., 2021; 2022), molecular property predic-
tion (Soleimany et al., 2021), meta-learning (Pandey & Yu,
2022), and active learning (Hemmer et al., 2022). However,
for samples with high data uncertainty but annotated with
one-hot vectors, the learning process of evidence for those
mislabeled classes is over-penalized and remains hindered.
Data uncertainty is ubiquitous in real-world applications,
such as the indistinguishable “4” and “9”, “1” and “7” in
the MNIST dataset, images containing multiple objects in
ImageNet, and the unavoidable noise labels in almost all
datasets. Figure 1 illustrates that EDL cannot correctly dis-
tinguish MNIST and CIFAR10 image samples with different
data uncertainties. Although EDL can model different types
of uncertainty, its training process will underestimate the ir-
reducible data uncertainty, thereby reducing the availability
of uncertainty estimation.

In this paper, we propose a simple and novel method, Fisher
Information-based Evidential Deep Learning (I-EDL), to
weigh the importance of different classes for each training
sample. In particular, we introduce Fisher Information Ma-
trix (FIM) to measure the information amount of evidence
carried by the categorical probabilities p for each sample
x. According to the derivation of Dirichlet distribution’s
FIM, we found that the higher the evidence for a certain

	𝑥 		𝑝 	𝑦

(a) Standard Network with Softmax

	𝑥 	𝛼 		𝑝 	𝑦

(b) Classical Evidential Network

	𝑥 	𝛼 		𝑝 	𝑦

(c) ℐ-Evidential Network
Figure 2. Graphical model representation of I-EDL. The genera-
tive process of observed labels y is not only related to the predicted
categorical probability p ∼ Dir(α), but also to the parameters α
of the Dirichlet distribution.

class label, the less corresponding information. Thus, we
can set up a Gaussian distribution to help generate observed
labels y by setting a larger variance for these less informa-
tive classes. As shown in Figure 2, the generative process
of observed labels y is not only related to the predicted cat-
egorical probability p, but also to the parameters α of the
Dirichlet distribution. Take the example of an informative
image containing both a dog and a cat. The evidence for
the dog and cat classes should be high if the neural network
learns correctly. Our proposed generative model allows the
observed label to be either dog or cat while retaining evi-
dence for the other label, when the observed labels are set as
one-hot vectors. From the perspective of optimization, com-
pared with classical EDL, our proposed model encourages
the network to focus more on the accuracy of classifying
uncertain classes during the training process. From a gener-
ative model perspective, compared to classical EDL which
only considers a single observation y, the FIM we introduce
can be seen as a type of ground truth distribution. These
improvements help enhance the classification performance
and uncertainty estimation of the evidential neural networks.
Finally, we further improve the generalization ability of our
network by optimizing the PAC-Bayesian bound.

To our knowledge, we are the first to explicitly leverage
evidence to improve uncertainty reliability by dynamically
weighing objective loss terms. Our main contributions can
be summarized as follows: (1) We propose a novel method
to quantify uncertainty by combining Fisher information and
evidential neural networks. (2) We introduce PAC-Bayesian
bound to further improve the generalization ability. (3) Our
proposed method achieves excellent empirical performance
in confidence evaluation and OOD detection, especially in
the more challenging few-shot classification setting.

2. Preliminary
Evidential deep learning (EDL) (Sensoy et al., 2018) mod-
els the neural network by using the theory of subjective
logic (SL) (Jøsang, 1997; 2016), a type of probabilistic
logic that explicitly takes into account epistemic uncertainty
and source trust. The opinion representation used to repre-
sent beliefs in SL provides greater expressive power than
Boolean truths and probabilities, as it can express “I don’t
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know” as an opinion on the truth of possible states. The
concept of beliefs is derived from the Dempster–Shafer
Theory of Evidence (DST), which is a generalization of the
Bayesian theory to subjective probabilities (Dempster, 1968;
Shafer, 1976). The main idea behind DST is to abandon
the additivity principle of probability theory, which means
that the sum of belief masses can be less than 1, and the
remainder is supplemented by uncertainty mass, i.e., lack of
evidence about the truth of state values.

More specifically, considering a state space consisting of
K mutually exclusive singletons (e.g., class labels), SL pro-
vides a belief mass bk for each singleton k ∈ [K] and an
overall uncertainty mass u. The K + 1 mass values satisfy
u +

∑K
k=1 bk = 1, where u ≥ 0, bk ≥ 0,∀k ∈ [K]. Be-

lief mass depends on the evidence for the corresponding
singleton, which measures the amount of support collected
from data. In the absence of evidence, the belief for each
singleton is 0, and uncertainty is 1. Conversely, an infinite
amount of evidence leaves no room for uncertainty, yielding
belief masses that sum to 1. SL formalizes the belief assign-
ment of DST as a Dirichlet distribution with concentration
parameters αk = ek + 1, where ek denotes the derived evi-
dence for the k-th singleton. That is, the belief bk and the
uncertainty u can easily be derived from the parameters of
the corresponding Dirichlet distribution by using

bk =
αk − 1

α0
, u =

K

α0
,

where α0 =
∑K

k=1 αk is referred to as the precision of the
Dirichlet distribution. Higher values of α0 lead to sharper,
more confident distributions.

The Dirichlet distribution is the conjugate prior of the cate-
gorical distribution. It is parameterized by the concentration
parameters α = [α1, · · · , αK ], ∀αk > 0, defined as:

Dir(p|α) =
Γ (α0)∏K

k=1 Γ (αk)

K∏
k=1

pαk−1
k , α0 =

K∑
k=1

αk

where p ∈ ∆K−1, and Γ(·) is the gamma function. Given
an opinion, the expected probability of the k-th singleton
is equivalent to the mean of the corresponding Dirichlet
distribution, calculated as

p̂k =
αk

α0
=

ek + 1∑K
c=1 ec +K

.

When the evidence for one of the K attributes is observed,
the corresponding Dirichlet parameter is incremented to
update the Dirichlet distribution with the new observation.

EDL encourages neural networks to formalize the multi-
ple opinions for the classification of a given sample as a
Dirichlet distribution (Sensoy et al., 2018). Compared to

standard neural networks, EDL replaces the last softmax
layer with an activation layer, e.g., ReLU or Softplus, to ob-
tain a non-negative output, which is the evidence vector used
to parameterize the Dirichlet distribution. Standard DNNs
for classification with a softmax output function can be
viewed as predicting the expected classification distribution
of EDL with an exponential output function. This means it
is not sensitive to arbitrary scaling of αk. Compared with
the standard neural network classifiers that directly output
the classification probability distribution of each sample, ev-
idential neural networks obtain the density of classification
probability assignments by parameterizing the Dirichlet dis-
tribution. Therefore, EDL models second-order probability
and uncertainty (Jøsang, 2016), which can use the proper-
ties of Dirichlet distribution to distinguish different types
of uncertainties, but classical EDL hinders the learning of
evidence, especially for samples with high data uncertainty.

3. Method
3.1. Generative Model of Evidential Network

Evidential neural networks are typically trained using a
combination of the expected mean squared error (MSE) and
a Kullback-Leibler (KL) divergence term as a loss function,
where the KL term penalizes evidence for classes that do
not fit the training data. Note that, MSE performs best
compared with the cross-entropy loss and the negative log
marginal likelihood as empirically demonstrated in Sensoy
et al. (2018). Let fθ : Rd → RK

+ denotes the evidential
neural network. Given a sample (x,y), where y is the one-
hot encoded ground-truth class of observation x, the loss
function of EDL is expressed as:

L(θ) = Ep∼Dir(α)

[
(y − p)T (y − p)

]
+ λDKL(Dir(p|α̂)∥Dir(p|1)),

where α = fθ(x) + 1, α̂ = α ⊙ (1 − y) + y, λ ≥ 0,
1 = [1; · · · ; 1] ∈ RK , and Dir(p|1) denotes the uniform
Dirichlet distribution.

Actually, when trained with MSE loss, the evidential net-
work proposed by EDL can be understood as a new prob-
abilistic graphical model. Specifically, let x,y denote ran-
dom variables whose unknown probability distribution gen-
erates inputs x ∈ Rd and labels y ∈ RK , respectively. EDL
(Sensoy et al., 2018) supposes the observed labels y were
drawn i.i.d. from an isotropic Gaussian distribution, i.e.

y ∼ N (p, σ2I),

where p ∼ Dir(fθ(x)+1). Then, training evidential neural
networks by minimizing the expected MSE can be viewed
as learning model parameters that maximize the expected
likelihood of the observed labels. Since the observed labels
y are one-hot encoded, and the Gaussian distribution of
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the generated labels is isotropic, i.e. each class is treated
independently with the same variance, for high data uncer-
tainty samples, the learning process of evidence for those
mislabeled classes is over-penalized and remains hindered.
This results in the total amount of evidence being under-
estimated and make the network overfitting. Furthermore,
recently proposed work (Bengs et al., 2022) also argues
that classical EDL does not incentivize learners to faithfully
predict their epistemic uncertainty due to its sensitivity to
the regularization parameter λ.

3.2. Fisher Information-based Evidential Network

In this work, based on the fact that the information of each
class carried in categorical probabilities p is different, we
argue that the generation of each class for a specific sample
should not be isotropic. Intuitively, a certain class label
with higher evidence is allowed to have a larger variance,
so that the evidence for missing labels can be preserved
while maximizing the likelihood of the observed labels. The
Fisher information matrix (FIM) is chosen to measure the
amount of information that the categorical probabilities p
carry about the concentration parameters α of a Dirichlet
distribution that models p. Formally, the FIM is defined as:

I(α) = EDir(p|α)

[
∂ℓ

∂α

∂ℓ

∂αT

]
, (1)

where ℓ = logDir(p|α) is the log-likelihood function.
Under weak conditions (see Lemma 5.3 in Lehmann &
Casella (2006)), the FIM can be expressed as I(α) =
EDir(p|α)

[
−∂2ℓ/∂ααT

]
. After applying a series of

derivation steps (see Appendix A.1 for details), I(α) can
be simplified to:

I(α) = diag([ψ(1)(α1), · · · , ψ(1)(αK)])− ψ(1)(α0)11
T ,

where ψ(1)(·) denotes the trigamma function, defined as
ψ(1)(x) = dψ(x)/dx = d2 ln Γ(x)/dx2. Since ψ(1)(x)
is a monotonically decreasing function when x > 0, the
class label with higher evidence corresponds to less Fisher
information. Hence, we use the inverse of the FIM (I(α)−1)
as the variance of the generative distribution of y.

Thus, we assume that the target variable y follows a mul-
tivariate Gaussian distribution with the following closed
form:

y ∼ N (p, σ2I(α)−1),

where α = fθ(x) + 1,p ∼ Dir(α), σ2 is the scalar used
to adjust covariance value, I(α) is the FIM of Dir(α),
defined as Eq.(1). In MLE, we aim to learn model param-
eters θ that maximize the marginal likelihood obtained by
integrating the class probabilities, i.e.

max
θ

E(x,y)∼P
[
logEp∼Dir(α)[N (y|p, σ2I(α)−1)]

]
.

(2)

Due to the concavity of the log function, by Jensen’s inequal-
ity, our objective of Eq.(2) can be achieved by minimizing
the expected negative log-likelihood loss function:

min
θ

E(x,y)∼PEp∼Dir(α)

[
− log p(y|p,α, σ2)

]
.

s.t. α = fθ(x) + 1

I(α) = EDir(p|α)

[
−∂

2 logDir(p|α)

∂ααT

]
p(y|p,α, σ2) = N (y|p, σ2I(α)−1)

(3)

3.3. Learning with PAC-Bayesian Bound

Since the PAC-Bayesian theory (McAllester, 1999) provides
data-driven generalization bounds computed on the training
set and are simultaneously valid for all posteriors on network
parameters, it is often used as a criterion for model selection
or as an inspiration for learning algorithm conception. In
the PAC-Bayes setting, it assumes that the predictor fθ has
prior knowledge of the hypothesis space Θ in the form of
a prior distribution π. After the training dataset D is fed to
the predictor, the prior is updated to a posterior distribution
ρ. The full bound theorem is restated below, derived from
the theorems in Germain et al. (2009), Alquier et al. (2016),
Masegosa (2020), and we give the proof in appendix A.3
for completeness.
Theorem 3.1 ((Germain et al., 2009; Alquier et al., 2016;
Masegosa, 2020)). Given a data distribution P over X ×Y ,
a hypothesis set θ, a prior distribution π over Θ, for any
δ ∈ (0, 1], and λ > 0, with probability at least 1− δ over
samples D ∼ Pn, we have for all posterior ρ,

Eρ(θ)[L(θ)] ≤ Eρ(θ)[L̂D(θ)]

+
1

λ

[
DKL(ρ∥π) + log

1

δ
+ΨP,π(λ, n)

]
,

where ΨP,π(λ, n) = logEπ(θ)ED∼Pn

[
eλ(L(θ)−L̂D(θ))

]
.

In this paper, we treatDir(p|α) as the posterior distribution,
and the prior as Dir(p|µ), where µ is set to β ≫ 1 for the
corresponding class and 1 for all other class. Given training
set D = {(xi,yi)}Ni=1, π, λ and δ, by the Theorem 3.1, the
upper bound of Eq.(3) can be expressed as

1

N

N∑
i=1

Li(θ) +
1

λ
DKL(Dir(pi|αi)∥Dir(pi|µi)), (4)

where Li(θ) = EDir(pi|αi)

[
− logN (yi|pi, σ

2I(αi)
−1)
]
,

αi = fθ(xi) + 1 and pi ∼ Dir(αi).

The first term in Eq.(4) can be reformulated as a trade-off
between the expected FIM-weighted MSE (I-MSE) and a
penalty of negative log determinant of the FIM (|I|), since

Li(θ) ∝ E
[
(yi − pi)

TI(αi)(yi − pi)
]︸ ︷︷ ︸

LI-MSE
i

−σ2 log |I(αi)|︸ ︷︷ ︸
L|I|

i

.
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Among them, since the class label with less evidence corre-
sponds to the larger Fisher information, minimizing LI-MSE

i

can be viewed as: for a certain class with low evidence, we
expect its corresponding prediction probability to be more
accurate, regardless of whether this class is the ground-truth
label or not. The penalty for adding −L|I|

i can be seen as
avoiding overconfidence caused by excessive evidence. It
is worth noting that these loss terms are not only related to
classes but also related to samples. Thus, the FIM-weighted
term can be considered as an adaptive weight that can self-
adjust the corresponding MSE loss based on the information
of each class contained in the sample.

For the second term in Eq.(4), µi varies with sample labels.
To simplify this Kullback-Leibler (KL) divergence, we set
α̂i = αi⊙ (1−yi)+yi to remove the predicted concentra-
tion parameter of the true label corresponding to the sample
xi following Sensoy et al. (2018), thereby the KL term is
converted to

LKL
i = DKL(Dir(pi|α̂i)∥Dir(pi|1)).

Finally, the objective function Eq.(4) can be reformulated as

min
θ

1

N

N∑
i=1

LI-MSE
i − λ1L|I|

i + λ2LKL
i , (5)

where

LI-MSE
i =

K∑
j=1

(
(yij −

αij

αi0
)2 +

αij(αi0 − αij)

α2
i0(αi0 + 1)

)
ψ(1)(αij),

L|I|
i =

K∑
j=1

logψ(1)(αij) + log

1−
K∑
j=1

ψ(1)(αi0)

ψ(1)(αij)

 ,

LKL
i = log Γ(

K∑
j=1

α̂ij)− log Γ(K)−
K∑
j=1

log Γ(α̂ij)

+

K∑
j=1

(α̂ij − 1)

[
ψ(α̂ij)− ψ(

K∑
k=1

α̂ik)

]
,

and λ1, λ2 ≥ 0. The detailed derivation steps are left in
Appendix A.2. The complete pseudo-code of our method
is outlined in Algorithm 1. Actually, classical EDL can be
viewed as a degenerate version of I-EDL without L|I|

i and
with LMSE

i instead of LI-MSE
i . Furthermore, we introduce

the KL term from the PAC-Bayesian bound to make it more
reasonable and interpretable. A detailed comparison of I-
EDL and classical EDL is given in Table 1.

4. Related Work
Dirichlet-based uncertainty models (DBU) predict the
parameters of the Dirichlet distribution, which allows the

Algorithm 1 I-Evidential Deep Learning

Input: λ, Training set D = {(xi,yi)}Ni=1, batch size b,
learning rate β, total epochs T
Initialize θ
for t = 0, 1, · · · , T do
λt = min(1.0, t/T )
for Db ∼ D do

for (xi,yi) ∼ Db do
αi = fθ(xi) + 1
α̂i = αi ⊙ (1− yi) + yi

Li = LI-MSE
i − λL|I|

i + λtLKL
i //see Eq.(5)

end for
θ ← θ − β∇θL with L = 1

b

∑b
i=1 Li

end for
end for

Table 1. Given a sample (xi,yi), the difference in loss function
between I-EDL and EDL are marked in blue.

EDL I-EDL

MSE

∑K
j=1(yij −

αij

αi0
)2

+
∑K

j=1
αij(αi0−αij)

α2
i0(αi0+1)

∑K
j=1(yij −

αij

αi0
)2ψ(1)(αij)

+
∑K

j=1
αij(αi0−αij)

α2
i0(αi0+1)

ψ(1)(αij)

KL DKL(Dir(α̂i)∥Dir(1)) DKL(Dir(α̂i)∥Dir(1))

I - − log |I(αi)|

computation of closed-form classical uncertainty metrics
such as differential entropy, mutual information, etc. These
metrics can be used to distinguish among data, model, and
distributional uncertainty. Different DBU models differ in
the parameterization and training strategy of the Dirich-
let distribution. For example, KL-PN (Malinin & Gales,
2018) proposes the Prior Networks (PN) trained with two
KL divergence terms. The first term is used to learn sharp
Dirichlet parameters for ID data, while the other learns flat
Dirichlet parameters for OOD data. Since the forward KL
divergence is zero-avoiding, RKL-PN (Malinin & Gales,
2019) introduces the reverse KL divergence to avoid un-
desired multimodal target distributions. Posterior Network
(PostN) (Charpentier et al., 2020) uses Normalizing Flows
to predict the posterior distribution of any input sample
without training with OOD data. Evidential Deep Learning
(EDL) (Sensoy et al., 2018) treats the network’s outputs
as belief masses based on the Dempster-Shafer Theory of
Evidence (DST) (Sentz & Ferson, 2002) and derives the loss
function using subjective logic (Jøsang, 2016). Moreover,
deep evidential regression (Amini et al., 2020; Soleimany
et al., 2021) introduces evidential priors over the original
Gaussian likelihood function to model the uncertainty of
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regression networks. Meinert et al. (2022) further analyze
why DER can produce reasonable results in practice despite
overparameterized representations of uncertainty. Zhao et
al. (2020) propose a multi-source uncertainty framework
combined with DST for semi-supervised node classification
with GNNs. Bao et al. (2022) propose a general frame-
work for Open Set Temporal Action Localization (OSTAL)
based on EDL. Although EDL shows an impressive perfor-
mance in uncertainty quantification and is widely used in
various applications, recently proposed work (Bengs et al.,
2022) argues that classical EDL does not motivate learn-
ers to faithfully predict their epistemic uncertainty because
it is sensitive to the regularization parameter. Compared
with previous efforts, our method is the first to exploit evi-
dence for training to improve the performance of uncertainty
quantification. The Fisher information matrix (FIM) we in-
troduce can be seen as some type of first-order distribution
information, which can help learners make more accurate
predictions and better estimate uncertainty.

Bayesian Neural Networks (BNNs) explicitly model net-
work parameters as random variables, quantifying uncer-
tainty by learning a posterior over parameters. Since the pos-
terior inference of BNNs is intractable, many posterior ap-
proximation schemes have been developed to improve scal-
abilities, such as variational inference (VI) (Graves, 2011;
Blundell et al., 2015), stochastic gradient Markov Chain
Monte Carlo (Welling & Teh, 2011; Ma et al., 2015), and
Laplace approximation (Ritter et al., 2018; Kristiadi et al.,
2021). Furthermore, the integral of marginalizing the likeli-
hood with the posterior distribution is also intractable and is
typically approximated via sampling. A well-known method
is Monte Carlo Dropout (MC Dropout) (Gal & Ghahra-
mani, 2016), which treats the dropout layer as a Bernoulli
distributed random variable, and training a network with
dropout layers can be interpreted as an approximate VI.
However, these methods require significant modifications to
the training process and are computationally expensive, and
more importantly, cannot distinguish between distributional
uncertainty and other uncertainties.

Calibration methods aim to reduce over-confidence by cal-
ibrating models. For example, Guo et al. (2017) introduce
temperature scaling as a post-hoc calibration to mitigate
overconfidence. ODIN (Liang et al., 2018) uses a mix of
temperature scaling at the softmax layer and input pertur-
bations. Pereyra et al. (2017) penalize the low-entropy
output distribution in the loss function. Karandikar et al.
(2021) propose differentiable losses to improve calibration
based on a soft version of the binning operation underlying
popular calibration-error estimators. Roelofs et al. (2022)
focus on assessing statistical bias in calibration. Since these
methods cannot distinguish between different types of un-
certainty, they are often combined with the first two types of
methods, such as Lakshminarayanan et al. (2017) combined

calibration results with deep ensembles. Additionally, there
are also some methods of modeling with label noise. For ex-
ample, Collier et al. (2021) propose input-dependent noise
losses for label noise in classification. Cui et al. (2022)
provides a unified framework for reliable learning under the
joint (image, label)-noise. Compared to these works, we
focus on the evidence underestimation problem in evidential
networks, and more importantly, we are the first to address
this problem by introducing the Fisher information matrix.

5. Experiments
In this section, we conduct extensive experiments to com-
pare the performance of our proposed method with previous
methods on multiple uncertainty estimation-related tasks.
See Appendix C for additional results and more details. 1

5.1. Experimental Setup

Datasets We evaluate our algorithm on the following im-
age classification datasets: MNIST (LeCun, 1998), CI-
FAR10 (Krizhevsky et al., 2009), and mini-ImageNet
(Vinyals et al., 2016). For OOD detection experiments,
we use KMNIST (Clanuwat et al., 2018) and FashionM-
NIST (Xiao et al., 2017) for MNIST, the Street View House
Numbers (SVHN) (Netzer et al., 2018) and CIFAR100
(Krizhevsky et al., 2009) for CIFAR10, and the Caltech-
UCSD Birds (CUB) dataset (Wah et al., 2011) for mini-
ImageNet. More details are given in Appendix C.1.

Implementation details Following Charpentier et al.
(2020), we use 3 convolutional layers and 3 dense layers
(ConvNet) on MNIST and VGG16 (Simonyan & Zisserman,
2014) on CIFAR10. For all experiments on both datasets,
we split the data into train, validation, and test sets. We use a
validation loss-based early termination strategy to train up to
200 epochs with a batch size of 64. For the mini-ImageNet
dataset, we conduct experiments on the more challenging
few-shot classification setting. We use WideResNet-28-10
pre-trained backbone from Yang et al. (2021) as the feature
extractor to train a 1-layer classifier. Refer to Appendix C.2
for more details.

Baselines We focus on comparing our algorithm with
other Dirichlet-based uncertainty methods, since only DBU
methods can distinguish different types of uncertainty com-
pared to BNNs and calibration methods, as mentioned pre-
viously. In particular, we compare to following baselines:
Prior Networks (PN) trained with KL divergence (KL-PN)
(Malinin & Gales, 2018) and Reverse KL divergence (RKL-
PN) (Malinin & Gales, 2019), Posterior Network (PostN)
(Charpentier et al., 2020), and Evidential Deep Learning

1The code is available at: https://github.com/
danruod/IEDL
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Table 2. AUPR scores of OOD detection (mean ± standard deviation of 5 runs). † indicates that the first four lines are the results reported
by Charpentier et al. (2020). Bold and underlined numbers indicate the best and runner-up scores, respectively.

MNIST→ KMNIST† MNIST→ FMNIST† CIFAR10→ SVHN† CIFAR10→ CIFAR100

Method Max.P α0 Max.P α0 Max.P α0 Max.P α0

MC Dropout 94.00 ± 0.1 - 96.56 ± 0.2 - 51.39 ± 0.1 - 45.57 ± 1.0 -
KL-PN 92.97 ± 1.2 93.39 ± 1.0 98.44 ± 0.1 98.16 ± 0.0 43.96 ± 1.9 43.23 ± 2.3 61.41 ± 2.8 61.53 ± 3.4

RKL-PN 60.76 ± 2.9 53.76 ± 3.4 78.45 ± 3.1 72.18 ± 3.6 53.61 ± 1.1 49.37 ± 0.8 55.42 ± 2.6 54.74 ± 2.8
PostN 95.75 ± 0.2 94.59 ± 0.3 97.78 ± 0.2 97.24 ± 0.3 80.21 ± 0.2 77.71 ± 0.3 81.96 ± 0.8 82.06 ± 0.8
EDL 97.02 ± 0.8 96.31 ± 2.0 98.10 ± 0.4 98.08 ± 0.4 78.87 ± 3.5 79.12 ± 3.7 84.30 ± 0.7 84.18 ± 0.7

I-EDL 98.34 ± 0.2 98.33 ± 0.2 98.89 ± 0.3 98.86 ± 0.3 83.26 ± 2.4 82.96 ± 2.2 85.35 ± 0.7 84.84 ± 0.6

Table 3. AUPR scores and accuracy of CIFAR10 with VGG16 in
misclassified image detection and image classification, respectively.
Each experiment is run with 5 seeds. † denotes results reported by
(Charpentier et al., 2020). Bold and underlined numbers indicate
the best and runner-up scores, respectively.

Method Max.P Max.α Acc.

MC Dropout† 97.15 ± 0.0 - 82.84 ± 0.1
KL-PN† 50.61 ± 4.0 52.49 ± 4.2 27.46 ± 1.7

RKL-PN† 86.11 ± 0.4 85.59 ± 0.3 64.76 ± 0.3
PostN† 97.76 ± 0.0 97.25 ± 0.0 84.85 ± 0.0
EDL 97.86 ± 0.2 97.86 ± 0.2 83.55 ± 0.6

I-EDL 98.72 ± 0.1 98.63 ± 0.1 89.20 ± 0.3

(EDL) (Sensoy et al., 2018). Furthermore, we compare the
dropout model (MC Dropout) (Gal & Ghahramani, 2016),
which is often state-of-the-art in many uncertainty estima-
tion tasks (Ovadia et al., 2019). Since other methods except
KL-PN and RKL-PN do not require OOD data for training.
For a fair comparison, we use the uniform noise instead of
actual OOD test data as OOD training data for the former
two methods following Charpentier et al. (2020).

5.2. Confidence Evaluation

We first measure the availability of uncertainty estimates
in the confidence evaluation tasks that aim to answer an
interesting question ”Are more confident (i.e., less uncer-
tain) predictions more likely to be correct?”. We use the
area under the precision-recall curve (AUPR) metric. For
DBU methods, we represent maxc pc (Max.P) and maxc αc

(Max.α) respectively as the scores with labels 1 for correct
and 0 for incorrect predictions. Since the dropout model
does not have concentration parameters, we only provide
results with Max.P as scores. Table 3 shows our proposed
method achieves state-of-the-art performance in all mea-
surements. In particular, our method improves image classi-
fication by about 5.2% and confidence estimation by about
0.9% compared to the runner-up methods.

5.3. OOD detection

We then measure the usability of uncertainty quantification
in the OOD detection task. The performance of OOD detec-
tion is also measured by AUPR with labels 1 for ID data and
0 for OOD data. The scores of the DBU methods are given
by maxc pc (Max.P) and α0 (

∑
c αc) respectively, while

Dropout uses Max.P as scores. We compare our method
with other methods on four OOD detection tasks, includ-
ing MNIST against KMNIST and FMNIST, and CIFAR10
against SVHN and CIFAR100. Table 2 shows our proposed
method achieves superior performance in all tasks with-
out training with additional OOD data. More specifically,
I-EDL outperforms the second-placed method by about
1.3%, 0.5%, 3.8% and 1.2% on four OOD detection tasks,
respectively. Note that EDL does not achieve suboptimal
performance on all OOD detection tasks. We also evaluate
performance using differential entropy (D.Ent.) and mutual
information (M.I.) as scores and area under a ROC curve
(AUROC). All these results can be seen in Appendix C.3.
Given lots of efforts contributed to OOD detection (Liang
et al., 2018; Sastry & Oore, 2020), here we mainly focus
on the comparisons with DBU models, which solve OOD
detection by distinguishing different types of uncertainty.

5.4. Few-shot Learning

We next conduct more challenging few-shot experiments
on mini-ImageNet. We use the WideResNet trained fol-
lowing Yang et al. (2021) to obtain pre-trained features,
and then train the 1-layer classifier under N -way K-shot
setting. We evaluate {5, 10}-way {1, 5, 20}-shot classifica-
tion, confidence estimation and OOD detection. The per-
formance of classification and uncertainty estimation are
reported in the average accuracy(%, top-1) and AUPR(%),
respectively, with 95% confidence interval over 10, 000 few-
shot episodes. Each episode contains randomly sampled N
classes and K samples per class for adaptation, min(15,K)
query samples per class for image classification and confi-
dence evaluation, and the same number of query samples
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Table 4. Classification accuracy (Acc.), AUPR scores for both confidence evaluation (Conf.) and OOD detection (OOD) under {5, 10}-way
{1, 5, 20}-shot settings of mini-ImageNet. CUB is used for OOD detection. Each experiment is run for over 10, 000 few-shot episodes.

5-Way 1-Shot 5-Way 5-Shot 5-Way 20-Shot

Method Acc. Conf. (Max.α) OOD (α0) Acc. Conf. (Max.α) OOD (α0) Acc. Conf. (Max.α) OOD (α0)

EDL 61.00 ± 0.22 80.59 ± 0.23 65.40 ± 0.26 80.38 ± 0.15 93.92 ± 0.09 76.53 ± 0.27 85.54 ± 0.12 97.51 ± 0.04 79.78 ± 0.23
I-EDL 63.82 ± 0.20 82.00 ± 0.21 74.76 ± 0.25 82.00 ± 0.14 94.09 ± 0.09 82.48 ± 0.20 88.12 ± 0.09 97.54 ± 0.04 85.40 ± 0.19

∆ 2.82 1.41 9.36 1.62 0.17 5.95 2.58 0.04 5.62

10-Way 1-Shot 10-Way 5-Shot 10-Way 20-Shot

Method Acc. Conf. (Max.α) OOD (α0) Acc. Conf. (Max.α) OOD (α0) Acc. Conf. (Max.α) OOD (α0)

EDL 44.55 ± 0.15 65.97 ± 0.20 67.83 ± 0.24 62.52 ± 0.16 86.81 ± 0.10 76.34 ± 0.20 69.29 ± 0.17 94.21 ± 0.06 76.88 ± 0.17
I-EDL 49.37 ± 0.13 68.29 ± 0.19 71.95 ± 0.20 67.89 ± 0.11 87.45 ± 0.09 82.29 ± 0.19 78.60 ± 0.08 94.40 ± 0.04 82.52 ± 0.14

∆ 4.82 2.32 4.12 5.37 0.64 5.95 9.31 0.19 5.64

Figure 3. (a) Comparison of OOD detection (AUPR) on mini-
ImageNet against CUB under 5-way 5-shot. (b) Noisy data detec-
tion on CIFAR10.

from CUB for OOD detection.

As shown in Table 4, the average test accuracy, Max.α-
based confidence evaluation, and α0-based OOD detection
show impressive improvements on I-EDL over EDL on
all the N -way K-shot tasks. More specifically, all average
test accuracy improvements of our method exceed 1.62%,
up to 9.31% under 10-way 20-shot. In confidence evalua-
tion, I-EDL also shows better performance than EDL, es-
pecially the improvement over 2.32% under 10-way 1-shot.
Moreover, I-EDL shows excellent performance in OOD
detection, where all improvements are between 4.12% and
9.36%. Furthermore, we compare the OOD detection per-
formance of our method and other DBU methods under
5-way 5-shot in Fig. 3(a). All of these results demonstrate
that our method not only improves classification accuracy
but also greatly improves the availability of uncertainty esti-
mation in the more challenging few-shot scenarios. More
results including AUPR and AUROC scores based on M.I.
and D.Ent are provided in Appendix C.4.

5.5. Noisy data detection

We finally evaluate our method on noisy examples. Noisy
examples are generated by adding zero-mean isotropic Gaus-
sian noise with standard deviation σ = 0.1 to the test data

Table 5. Ablation studies under mini-ImageNet 5-way 5-shot for
image classification, confidence evaluation, and OOD detection
against CUB.

I-MSE |I| Acc. Conf. (Max.α) OOD (α0)

80.38 ± 0.15 93.92 ± 0.09 76.53 ± 0.27
✓ 81.82 ± 0.14 93.97 ± 0.09 79.68 ± 0.25

✓ 81.27 ± 0.14 94.42 ± 0.08 81.75 ± 0.22
✓ ✓ 82.00 ± 0.14 94.09 ± 0.09 82.48 ± 0.20

of the ID dataset. As shown in Fig. 3(b), our method demon-
strates excellent detection of noisy data across all metrics,
outperforming the runner-up method by more than 11%.

5.6. Ablation Study

We further investigate our method performance with an
ablation study and summarize it in Table 5. We respectively
ablate the effects of expected FIM-weighted MSE (I-MSE)
and FIM’s negative log determinant (|I|). Note that classical
EDL is equivalent to I-EDL without using I-MSE and |I|.
From the result, we observe that both optimizations are
beneficial for image classification, confidence evaluation,
and OOD detection. In particular, with the only usage of
|I| (I-MSE), the improvements over EDL for classification
and α0-based OOD detection are ∼ 1.9% (1.3%) and ∼
4.1% (6.8%). If both optimizations are used together, the
improvements increase to about 2.0% and 7.8%. Thus, the
combination of two optimizations achieves a win-win effect.
More ablation studies are provided in Appendix C.5.

5.7. Analysis of Uncertainty estimation

Figure 4 represents density plots of the predicted differential
entropy and mutual information2. Lower entropy or mutual
information represents the model yields a sharper distribu-
tion, indicating that the sample has low uncertainty. We also

2Detailed formulas refer to Eq.(18) and Eq.(16) in Appendix B
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Figure 4. Uncertainty representation for ID (MNIST) and OOD
(FMNIST). More results are shown in Appendix C.6.

report the energy distance (Székely & Rizzo, 2013) of two
distributions (Formula is given in Appendix B.4.), which
shows that our method provides more separable uncertainty
estimates. More specifically, I-EDL produces sharper pre-
diction peaks than EDL, both in the low uncertainty region
of ID samples and the high uncertainty region of OOD sam-
ples. Furthermore, our method also reduces the occurrence
of ID samples in high-uncertainty regions.

6. Conclusion
In this paper, we found that the classical EDL trained with
mean square error would hinder the learning of evidence,
especially for high data uncertainty samples. To address
this issue, we propose a novel and simple method, Fisher
Information-based Evidential Deep Learning (I-EDL) to
alleviate the over-penalization of the mislabeled classes
by considering importance weights with different classes
for each sample. More specifically, we introduce the per-
spective of generative models to model evidential networks,
where the observed label is jointly generated by the pre-
dicted categorical probability and the informativeness of
each class contained in the sample. The categorical prob-
abilities are generated from the Dirichlet distribution with
its concentration parameter calculated by passing the input
sample through the evidential network, while the informa-
tion is obtained from FIM. Extensive experiments on various
image classification, confidence evaluation and OOD detec-
tion tasks, as well as comparisons with some state-of-the-art
algorithms, demonstrate the effectiveness of our approach in
achieving high classification and uncertainty quantification.
Since our method is designed based on Dirichlet distribu-

tion, it cannot be directly applied to regression tasks. A
naive approach is to discretize the regression task, but this
is not a good solution because it loses information about
continuous labels, such as order. However, we believe that
avoiding overfitting caused by data uncertainty in regression
tasks and how to apply our ideas to regression tasks is a very
attractive problem worthy of exploration in future work.
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A. Derivation and Proof
This section provides the derivation of the Fisher Information Matrix (FIM) of Dirichlet distribution and the final objective
function of Eq. 5. We also provide a brief overview of the proof of Theorem 3.1 from (Germain et al., 2009; Alquier et al.,
2016; Masegosa, 2020).

A.1. FIM Derivation for Dirichlet Distribution

The Fisher Information Matrix (FIM) of Dirichlet distribution is defined as:

I(α) = E
[
∂ℓ

∂α

∂ℓ

∂αT

]
∈ RK×K ,

where ℓ = logDir(p|α) is the log-likelihood function. Under weak conditions (see Lemma 5.3 in (Lehmann & Casella,
2006)), the FIM can be expressed as I(α) = EDir(p|α)

[
−∂2ℓ/∂ααT

]
. Thus, we can calculate each element by

[I(α)]ij = EDir(p|α)

[
− ∂2

∂αi∂αj
logDir(p|α)|α

]
= EDir(p|α)

[
− ∂2

∂αi∂αj

(
log Γ (α0)−

K∑
k=1

log Γ (αk) +

K∑
k=1

(αk − 1) log pk

)]

= EDir(p|α)

[
− ∂

∂αj
(ψ (α0)− ψ (αi) + log pi)

]
=

{
ψ(1) (αi)− ψ(1) (α0) , i = j,

−ψ(1) (α0) , i ̸= j,

where Γ(·) is the gamma function, ψ(·) is the digamma function, ψ(1)(·) is the trigamma function, defined as ψ(1)(x) =
dψ(x)/dx = d2 ln Γ(x)/dx2. Then, we can get the matrix form of the FIM:

I(α) =


ψ(1) (α1)− ψ(1) (α0) −ψ(1) (α0) · · · −ψ(1) (α0)

−ψ(1) (α0) ψ(1) (α2)− ψ(1) (α0) · · · −ψ(1) (α0)
...

...
. . .

...
−ψ(1) (α0) −ψ(1) (α0) · · · ψ(1) (αK)− ψ(1) (α0)


= diag([ψ(1)(α1), · · · , ψ(1)(αK)])− ψ(1)(α0)11

T ,

(6)

where 1 = [1; · · · ; 1] ∈ RK . Let b = [ψ(1)(α1), · · · , ψ(1)(αK)]T , by applying Matrix-Determinant Lemma, we have

|I(α)| = |diag(b)| · (1− ψ(1)(α0)1
T diag(b)−11) =

K∏
i=1

ψ(1)(αi)(1−
K∑
j=1

ψ(1)(α0)

ψ(1)(αj)
).

Therefore,

log |I(α)| =
K∑
i=1

logψ(1)(αi) + log(1−
K∑
i=1

ψ(1)(α0)

ψ(1)(αi)
). (7)

A.2. Derivation of the objective function Eq. 5

Given training set D = {(xi,yi)}Ni=1, by applying Theorem 3.1, the upper bound of Eq.(3) can be expressed as

min
θ

E(x,y)∼D
[
Ep∼Dir(α)

[
− log p(y|p,α, σ2)

]
+ λDKL(Dir(p|α̂)∥Dir(p|1))

]
s.t. α = fθ(x) + 1

α̂ = α⊙ (1− y) + y

I(α) = diag([ψ(1)(α1), · · · , ψ(1)(αK)])− ψ(1)(α0)11
T

p ∼ Dir(α)

p(y|p,α, σ2) = N (y|p, σ2I(α)−1).

(8)
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We first simplify the first term EDir(p|α)[− logN (y|p, σ2I(α)−1)] (abbreviated as E[− logN (y|p, σ2I(α)−1)]),

E[− logN (y|p, σ2I(α)−1)]

=E
[
− log

(
(2πσ2)−

k
2 |I(α)| 12 exp(− 1

2σ2
(y − p)TI(α)(y − p))

)]
=E

[
k

2
log(2πσ2)− 1

2
log |I(α)|+ 1

2σ2
(y − p)TI(α)(y − p)

]
=
k

2
log(2πσ2)− 1

2
log |I(α)|+ 1

2σ2
E
[
(y − p)TI(α)(y − p)

]
(9)

Then, E
[
(y − p)TI(α)(y − p)

]
can be converted to:

E
[
(y − p)TI(α)(y − p)

]
=yTI(α)y − 2yTI(α)E[p] + E

[
pTI(α)p

]
=yTI(α)y − 2yTI(α)E[p] + E[p]TI(α)E[p]− E[p]TI(α)E[p] + E

[
pTI(α)p

]
=(y − E[p])TI(α)(y − E[p]) + E

[
(p− E[p])TI(α)(p− E[p])

] (10)

Since E[p] = α/α0, Cov(pi, pj) = (δijαiα0−αiαj)/(α
2
0(α0+1)), where δij is the Kronecker delta (i.e. δij = 1 if i = j,

else δij = 0), combined with the value of the FIM (Eq. 6), we have

(y − E[p])TI(α)(y − E[p])

=(y − α

α0
)T


ψ(1) (α1)− ψ(1) (α0) −ψ(1) (α0) · · · −ψ(1) (α0)

−ψ(1) (α0) ψ(1) (α2)− ψ(1) (α0) · · · −ψ(1) (α0)
...

...
. . .

...
−ψ(1) (α0) −ψ(1) (α0) · · · ψ(1) (αK)− ψ(1) (α0)

 (y − α

α0
)

=(y − α

α0
)T
(

diag([ψ(1)(α1), · · · , ψ(1)(αK)])− ψ(1)(α0)11
T
)
(y − α

α0
)

=

K∑
i=1

(yi −
αi

α0
)2ψ(1) (αi) ,

(11)

and
E
[
(p− E[p])TI(α)(p− E[p])

]
=

K∑
i,j=1

Cov(pi, pj)I(i, j) =
K∑

i,j=1

δijαiα0 − αiαj

α2
0(α0 + 1)

(δijψ
(1) (αi)− ψ(1) (α0))

=

K∑
i=1

αiα0 − α2
i

α2
0(α0 + 1)

ψ(1) (αi)−
K∑
i=1

αiα0

α2
0(α0 + 1)

ψ(1) (α0) +

K∑
i,j=1

αiαj

α2
0(α0 + 1)

ψ(1) (α0)

=

K∑
i=1

αi(α0 − αi)

α2
0(α0 + 1)

ψ(1) (αi) .

(12)

Plugging (11) and (12) into (10), we have

E
[
(y − p)TI(α)(y − p)

]
=

K∑
i=1

(yi −
αi

α0
)2ψ(1) (αi) +

αi(α0 − αi)

α2
0(α0 + 1)

ψ(1) (αi) =

K∑
i=1

(
(yi −

αi

α0
)2 +

αi(α0 − αi)

α2
0(α0 + 1)

)
ψ(1) (αi)

(13)
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Furthermore, for the KL term, we have

DKL(Dir(p|α̂)∥Dir(p|1))

= log Γ(

K∑
k=1

α̂k)− log Γ(K)−
K∑

k=1

log Γ(α̂k) +

K∑
k=1

(α̂k − 1)

ψ(α̂k)− ψ(
K∑
j=1

α̂j)

 (14)

Plugging (7), (13) and (14) into (8), we can obtain the final objective of Eq. 5

E
[
− log p(y|p,α, σ2)

]
+ λDKL(Dir(p|α̂)∥Dir(p|1))

∝
K∑
i=1

(
(yi −

αi

α0
)2 +

αi(α0 − αi)

α2
0(α0 + 1)

)
ψ(1) (αi)︸ ︷︷ ︸

LI-MSE
i

−λ1

(
K∑
i=1

logψ(1)(αi) + log(1−
K∑
i=1

ψ(1)(α0)

ψ(1)(αi)
)

)
︸ ︷︷ ︸

L|I|
i

+ λ2

log Γ(

K∑
k=1

α̂k)− log Γ(K)−
K∑

k=1

log Γ(α̂k) +

K∑
k=1

(α̂k − 1)

ψ(α̂k)− ψ(
K∑
j=1

α̂j)


︸ ︷︷ ︸

LKL
i

.

A.3. Proof of Theorem 3.1

Theorem 3.1 ((Germain et al., 2009; Alquier et al., 2016; Masegosa, 2020)). Given a data distribution P over X × Y , a
hypothesis set θ, a prior distribution π over θ, for any δ ∈ (0, 1], and λ > 0, with probability at least 1− δ over samples
D ∼ Pn, we have for all posterior ρ,

Eρ(θ)[L(θ)] ≤ Eρ(θ)[L̂(θ, D)] +
1

λ

[
DKL(ρ∥π) + log

1

δ
+ΨP,π(λ, n)

]

where ΨP,π(λ, n) = logEπ(θ)ED∼Pn

[
eλ(L(θ)−L̂(θ,D))

]
.

Proof. The Donsker-Varadhan’s change of measure states that for any measurable function ϕ : θ → R, we have

Eρ(θ)[ϕ(θ)] ≤ DKL(ρ∥π) + logEπ(θ)[e
ϕ(θ)]

Thus, with ϕ(θ) := λ
(
L(θ)− L̂(θ, D)

)
, we obtain ∀ρ on θ:

Eρ(θ)

[
λ
(
L(θ)− L̂(θ, D)

)]
= λ

(
Eρ(θ) [L(θ)]− Eρ(θ)

[
L̂(θ, D)

])
≤ DKL(ρ∥π) + logEπ(θ)

[
eλ(L(θ)−L̂(θ,D))

]
Next, we apply Markov’s inequality on the random variable ζπ(D) := Eπ(θ)

[
eλ(L(θ)−L̂(θ,D))

]
:

Pr

(
ζπ(D) ≤ 1

δ
ED∼Pn [ζπ (D)]

)
≥ 1− δ

This implies that with probability at least 1− δ over the choice of D ∼ Pn, we have ∀ρ on θ:

Pr

(
Eρ(θ)[L(θ)] ≤ Eρ(θ)[L̂(θ, D)] +

1

λ

[
DKL(ρ∥π) + log

1

δ
+ΨP,π(λ, n)

])
≥ 1− δ,

where ΨP,π(λ, n) = logEπ(θ)ED∼Pn

[
eλ(L(θ)−L̂(θ,D))

]
.
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B. Derivations for Uncertainty Measures and Energy Distance
The Dirichlet distribution is parameterized by its concentration parameters α = [α1, · · · , αK ], ∀αc > 0, defined as:

Dir(p|α) =
Γ (α0)∏K
c=1 Γ (αc)

K∏
c=1

pαc−1
k , α0 =

K∑
c=1

αc

where p ∈ ∆K−1, and Γ(·) is the gamma function. Note that the parameters α is calculated by passing the input sample
through the evidential network (α = fθ(x) + 1 ∈ RK

+ ). The following derivation is adapted from the Appendix of (Malinin
& Gales, 2018).

B.1. Expected Entropy of Dirichlet-based Uncertainty Models

The derivation of the expected entropy is as follows:

Ep∼Dir(α) [H[p(y | p)]] =
∫
SK−1

Dir(p|α)

(
−

K∑
c=1

pc ln pc

)
dp

= −
K∑
c=1

∫
SK−1

Dir(p|α) (pc ln pc) dp

= −
K∑
c=1

∫
SK−1

Γ (α0)∏K
k=1 Γ (αk)

K∏
k=1

pαk−1
k (pc ln pc) dp

= −
K∑
c=1

∫
SK−1

αc

α0

Γ (α0 + 1)

Γ (αc + 1)
∏K

k=1,k ̸=c Γ (αk)

K∏
k=1,k ̸=c

pαk−1
k pαc

c ln pcdp

= −
K∑
c=1

αc

α0

∫
SK−1

Ep∼Dir([α1,··· ,αc−1,αc+1,αc+1,··· ,αK ])[ln pc]dp

= −
K∑
c=1

αc

α0
(ψ(αc + 1)− ψ(α0 + 1))

(15)

The last third equation comes from the fact that Γ(n) = (n − 1)!. Since the expected entropy captures the peaks of the
output distribution p(y | p), it is used to measure data uncertainty. More specifically, lower entropy means that the model
concentrates all probability mass on one class, while high entropy indicates that all p generated by Dir(α) are more
uniformly distributed.

B.2. Mutual Information of Dirichlet-based Uncertainty Models

In the DBU models, the mutual information between the labels y and the categorical p can be deduced by computing the
difference between the entropy of the expected distribution and the expected entropy of the distribution, which can be viewed
as the difference between the total amount of uncertainty and the data uncertainty.

I [y,p | x,D]︸ ︷︷ ︸
Distributional Uncertainty

= H
[
Ep(p|x,D)[p(y | p)]

]︸ ︷︷ ︸
Total Uncertainty

−Ep(p|x,D)[H[p(y | p)]]︸ ︷︷ ︸
Expected Data Uncertainty

. (16)

Assuming that point estimate p(θ|D) = δ(θ − θ̂)⇒ p(p|x,D) ≈ p(p|x, θ̂) = Dir(p|α) is sufficient given appropriate
regularization and training data size, the mutual information can be simplified by

I [y,p | x,D]︸ ︷︷ ︸
Distributional Uncertainty

≈ H
[
Ep∼Dir(α)[p(y | p)]

]︸ ︷︷ ︸
Total Uncertainty

−Ep∼Dir(α)[H[p(y | p)]]︸ ︷︷ ︸
Expected Data Uncertainty

= −
K∑
c=1

αc

α0
ln
αc

α0
+

K∑
c=1

αc

α0
(ψ (αc + 1)− ψ (α0 + 1))

= −
K∑
c=1

αc

α0

(
ln
αc

α0
− ψ (αc + 1) + ψ (α0 + 1)

)
(17)
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The second term in this derivation is from the results of B.1. The mutual information is often used to measure distributional
uncertainty, as it captures the uniform output distribution that excludes data uncertainty. High mutual information indicates
a uniform distribution of expected categorical probability with low data uncertainty.

B.3. Differential Entropy of Dirichlet-based Uncertainty Models

The derivation of the differential entropy is as follows:

H [Dir(p | α)] = −
∫
SK−1

Dir(p|α) lnDir(p|α)dp

= −
∫
SK−1

Dir(p|α)

(
ln Γ (α0)−

K∑
c=1

ln Γ (αc) +

K∑
c=1

(αc − 1) ln pk

)
dp

=

K∑
c=1

ln Γ (αc)− ln Γ (α0)−
K∑
c=1

(αc − 1)Ep∼Dir(α)[ln pc]

=

K∑
c=1

ln Γ (αc)− ln Γ (α0)−
K∑
c=1

(αc − 1) (ψ (αc)− ψ (α0))

(18)

The last equation comes from Ep∼Dir(α)[ln pc] = ψ (αc)− ψ (α0). Lower entropy indicates the model yields a sharper
distribution, while high entropy denotes a more uniform Dirichlet distribution. Thus, differential entropy is also a common
measure of distributional uncertainty.

B.4. Energy Distance

Energy distance is a metric that measures the distance between the distributions of random vectors. Let X and Y be
independent random vectors in Rd, with cumulative distribution function (CDF) F and G, respectively. The energy distance
can be defined in terms of expected distances between the random vectors,

D(F,G) = (2E∥X − Y ∥ − E∥X −X ′∥ − E∥Y − Y ′∥)1/2 , (19)

where X and X ′ (resp. Y and Y ′) are independent random variables whose probability distribution is F (resp. G), ∥ · ∥
denotes the Euclidean norm. Energy distance is zero if and only if the distributions are identical.

C. Experimental Details and Additional Results
C.1. Datasets

MNIST (LeCun, 1998) is a database of handwritten digits 0 to 9, consisting of a training set of 60, 000 examples and a
test set of 10, 000 examples. Each input is composed of a 1 × 28 × 28 tensor. We use (80%, 20%) to split the training
samples into training and validation sets. For OOD detection experiment, we use KMNIST (Clanuwat et al., 2018) and
FashionMNIST (Xiao et al., 2017) containing images of Japanese characters and images of clothes, respectively.

CIFAR10 (Krizhevsky et al., 2009) consists of 60, 000 images in 10 classes, including airplane, automobile, bird, cat,
deer, dog, frog, horse, ship, truck. Among them, there are 50, 000 training images and 10, 000 test images. Each input is
composed of a 3× 32× 32 tensor. We use (95%, 5%) to split the training samples into training and validation sets. Street
View House Numbers (SVHN) dataset (Netzer et al., 2018), a dataset containing digital images, and CIFAR100 are used for
OOD detection.

mini-ImageNet (Vinyals et al., 2016) dataset was proposed for few-shot learning evaluation. It contains 100 classes with
600 samples of 84× 84 color images per class. These 100 classes are divided into 64, 16, and 20 classes respectively for
sampling tasks for meta-training, meta-validation, and meta-test. For the few-shot classification task, we evaluate N -way
K-shot classification tasks for N ∈ {5, 10} and K ∈ {1, 5, 20, 50} and report the average accuracy(%, top-1) and 95%
confidence interval over 10, 000 few-shot episodes on meta-test set. Each episode contains randomly sampled N classes and
K samples per class for adaptation, and min(15,K) query samples per class for evaluation. For OOD detection experiments,
we use Caltech-UCSD Birds (CUB) dataset (Wah et al., 2011), contains 11, 788 images of 200 subcategories belonging to
birds. Note that we randomly sample the same number of OOD examples as the query sample for OOD detection.
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tiered-ImageNet (Ren et al., 2018) dataset is a larger subset of ILSVRC-12. Compared with the 100 classes of mini-
ImageNet, it contains 608 classes (779,165 images), which are grouped into 34 higher-level nodes in the ImageNet
human-curated hierarchy. The nodes are divided into 20, 6, and 8 disjoint sets of training, validation, and testing nodes, with
the corresponding classes forming their respective meta-sets. We conduct the few-shot classification and OOD detection
experiments for CUB on this dataset using the same settings as mini-ImageNet.

C.2. Implementation details

For the MNIST and CIFAR10 datasets, it is implemented by adapting the code provided by (Charpentier et al., 2020).
Following (Charpentier et al., 2020), we use 3 convolutional layers with 3 dense layers and VGG16 (Simonyan & Zisserman,
2014), respectively. Softplus is used in the last layer to get the non-negative output. We use a validation loss-based early
termination strategy to train up to 200 epochs with a batch size of 64. The learning rate is set to 0.001 for MNIST and
FMNIST, 0.0005 for CIFAR10. The coefficient λ of -|I| is set by grid-search (0.1, 0.05, 0.01, 0.005, 0.001). The last chosen
hyperparameter is 0.005 for MNIST, 0.01 for FMNIST and 0.05 for CIFAR10.

For the mini-ImageNet and tiered-ImageNet few-shot classification experiments, it is implemented by adapting the code
provided by (Ghaffari et al., 2021). More specifically, we use WideResNet-28-10 pre-trained backbone from (Yang et al.,
2021) as feature extractor to train the 1-layer classifier. Softplus is used as the activation function to obtain the non-negative
output. The coefficient λ is also set by grid-search on the meta-validation set. Table 6 reports the last chosen hyperparameter
for few-shot settings. Figure 6 shows the impact of λ under 5-way mini-ImageNet setting.

Table 6. List of hyperparameters for our approach.

5way1shot 5way5shot 5way20shot 5way50shot 10way1shot 10way5shot 10way20shot 10way50shot

λ 0.01 0.05 0.005 0.01 0.1 0.01 0.01 0.01

C.3. Additional Experimental Results on OOD detection

Table 7 and 8 displays the AUPR and AUROC scores of OOD detection on CIFAR10 against CIFAR100 and SVHN,
MNIST against KMNIST and FMNIST. Table 9 compares our method and label smoothing on the few-shot setting. We use
maximum probability (Max.P) and entropy (Ent.) to measure uncertainty for label smoothing, and Max.P and α0 for I-EDL.
All of these results consistently demonstrate our proposed method’s superior OOD detection performance.

C.4. Additional Experimental Results on Few-shot Learning

Table 10 shows the AUROC scores of OOD detection under {5, 10}-way {1, 5, 20, 50}-shot of mini-ImageNet. For all
the N -way K-shot tasks, AUROC with Max.P, α0, D.Ent, and M.I. show impressive improvements on I-EDL over EDL.
For example, the improvements of OOD detection after using I-EDL are all above 3.37%, especially the improvement of
Max.P-based OOD detection is up to 12.98% under 10-way 1-shot. The experimental results of tiered-ImageNet are shown
in Figure 5. We can observe the same experimental results as mini-ImageNet, which indicates that our method improves the
performance of OOD detection, especially in the more challenging few-shot setting.

C.5. Additional Ablation Study

Figure 6 shows the effect of coefficient λ of the negative log determinant of FIM (-|I|) under mini-ImageNet classification
and OOD detection experiments. We plot the results under 5-way {5, 20, 50}-shot. It can be observed that the best
coefficients for OOD detection based on different uncertainty measures show consistency, but not with the best coefficients
for accuracy. More specifically, the best coefficients for OOD detection are all around 0.01, but accuracy prefers 0.001. This
is a non-trivial problem because it involves a multi-objective optimization problem. In this work, the coefficient is ultimately
a compromise choice that combines the performance of image classification and OOD detection. Whether there is a better
way to optimize multiple objectives at the same time remains to be explored in the future.

18



Uncertainty Estimation by Fisher Information-based Evidential Deep Learning

Table 7. OOD detection results on (ID) CIFAR10 against (OOD) CIFAR100. Each experiment is run with 5 seeds.

AUPR AUROC

Method Max. P α0 D. Ent. M.I. Max. P α0 D. Ent. M.I.

KL-PN 61.41 ± 2.8 61.53 ± 3.4 60.21 ± 3.2 61.66 ± 3.4 57.89 ± 1.8 58.43 ± 2.6 55.94 ± 3.3 58.53 ± 2.6
RKL-PN 55.42 ± 2.6 54.74 ± 2.8 55.40 ± 2.9 54.86 ± 2.9 54.24 ± 2.4 53.25 ± 2.9 54.15 ± 3.0 53.41 ± 3.0

PostN 81.96 ± 0.8 82.06 ± 0.8 82.34 ± 0.8 78.64 ± 1.7 80.49 ± 0.9 81.17 ± 1.1 81.51 ± 1.0 80.22 ± 1.0
EDL 84.30 ± 0.7 84.18 ± 0.7 84.32 ± 0.7 84.19 ± 0.7 80.96 ± 0.8 80.63 ± 1.0 80.99 ± 0.8 80.65 ± 1.0

I-EDL 85.35 ± 0.7 84.84 ± 0.6 85.40 ± 0.6 84.95 ± 0.7 83.55 ± 0.7 82.15 ± 0.5 83.69 ± 0.7 82.44 ± 0.5

Table 8. OOD detection results on (ID) MNIST against (OOD) KMNIST and FMNIST, (ID) CIFAR10 against (OOD) SVHN. Each
experiment is run with 5 seeds.

AUPR AUROC

Method Max. P α0 D. Ent. M.I. Max. P α0 D. Ent. M.I.

MNIST→ KMNIST

EDL 97.02 ± 0.7 96.31 ± 0.2 96.92 ± 0.9 96.41 ± 1.8 96.59 ± 0.6 96.18 ± 1.3 96.49 ± 0.8 96.22 ± 1.3
I-EDL 98.34 ± 0.2 98.33 ± 0.2 98.34 ± 0.2 98.33 ± 0.2 98.00 ± 0.3 97.97 ± 0.3 97.99 ± 0.3 97.97 ± 0.3

MNIST→ FMNIST

EDL 98.10 ± 0.4 98.08 ± 0.4 98.10 ± 0.4 98.09 ± 0.4 97.39 ± 0.6 97.40 ± 0.5 97.48 ± 0.5 97.43 ± 0.5
I-EDL 98.89 ± 0.3 98.86 ± 0.3 98.89 ± 0.3 98.87 ± 0.2 98.49 ± 0.3 98.41 ± 0.4 98.48 ± 0.4 98.42 ± 0.4

CIFAR10→ SVHN

EDL 78.87 ± 3.5 79.12 ± 3.7 78.91 ± 3.5 79.11 ± 3.7 80.64 ± 4.2 81.06 ± 4.5 80.71 ± 4.3 81.05 ± 4.5
I-EDL 83.26 ± 2.4 82.96 ± 2.2 83.31 ± 2.5 83.06 ± 2.2 87.58 ± 2.0 86.79 ± 1.3 87.69 ± 2.1 87.01 ± 1.5

Table 9. Comparsion of label smoothing and I-EDL on OOD detection AUPR of mini-ImageNet against CUB under 5-way and
{1, 5, 20, 50}-shot settings. Each experiment is run for over 10, 000 few-shot episodes.

5-Way 1-shot 5-Way 5-shot 5-way 20-shot 5-Way 50-shot

Method Max. P Ent.-α0 Max. P Ent.-α0 Max. P Ent.-α0 Max. P Ent.-α0

Label smoothing 72.03 ± 0.2 73.00 ± 0.2 77.17 ± 0.2 77.11 ± 0.2 76.11 ± 0.2 75.35 ± 0.2 74.76 ± 0.2 73.86 ± 0.2
I-EDL 71.95 ± 0.2 74.79 ± 0.2 82.04 ± 0.2 82.49 ± 0.2 84.31 ± 0.2 85.42 ± 0.2 84.68 ± 0.2 84.91 ± 0.2

∆ -0.08 1.79 4.87 5.38 8.20 10.07 9.92 11.05

C.6. Additional Analysis of Uncertainty estimation

Figure 7 and 8 shows density plots of the normalized uncertainty measures for MNIST vs FMNIST, and MNIST vs KMNIST,
respectively. The uncertainty measures include precision α0, maxc pc, differential entropy and mutual information. We
normalize each uncertainty value uc by uc = (uc − mini ui)/(maxi ui − mini ui). We also report the energy distance
of two distributions, with higher values indicating more separability. It can be observed that I-EDL produces sharper
prediction peaks than EDL in the in-distribution (MNIST) region. Although not using OOD data, our method also makes the
uncertainty of OOD data more aggregated.
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Table 10. AUROC scores of OOD detection against CUB under {5, 10}-way and {1, 5, 20, 50}-shot settings. Each experiment is run for
over 10, 000 few-shot episodes.

5-way 1-shot 10-way 1-shot

Method Max.P α0 D. Ent. M.I. Max.P α0 D. Ent. M.I.

EDL 61.88 ± 0.27 59.72 ± 0.31 63.60 ± 0.31 60.42 ± 0.30 55.83 ± 0.22 63.02 ± 0.29 63.06 ± 0.27 63.05 ± 0.29
I-EDL 67.46 ± 0.28 70.08 ± 0.30 69.51 ± 0.30 70.03 ± 0.30 68.81 ± 0.22 69.29 ± 0.22 68.80 ± 0.22 69.29 ± 0.22

∆ 5.58 10.36 5.91 9.61 12.98 6.27 5.74 6.24

5-way 5-shot 10-way 5-shot

Method Max.P α0 D. Ent. M.I. Max.P α0 D. Ent. M.I.

EDL 69.71 ± 0.25 72.01 ± 0.33 72.97 ± 0.29 72.14 ± 0.32 68.59 ± 0.23 73.23 ± 0.23 72.70 ± 0.23 73.16 ± 0.23
I-EDL 79.33 ± 0.22 79.81 ± 0.22 79.60 ± 0.22 79.79 ± 0.22 79.34 ± 0.23 80.29 ± 0.22 78.36 ± 0.20 79.91 ± 0.21

∆ 9.62 7.80 6.63 7.65 10.75 7.06 5.66 6.75

5-way 20-shot 10-way 20-shot

Method Max.P α0 D. Ent. M.I. Max.P α0 D. Ent. M.I.

EDL 76.59 ± 0.24 76.16 ± 0.29 76.75 ± 0.27 76.18 ± 0.29 71.69 ± 0.19 74.08 ± 0.20 73.88 ± 0.19 74.05 ± 0.20
I-EDL 82.04 ± 0.21 83.38 ± 0.22 83.00 ± 0.21 83.29 ± 0.21 79.66 ± 0.16 80.74 ± 0.16 80.07 ± 0.15 80.61 ± 0.16

∆ 5.45 7.22 6.25 7.11 7.96 6.66 6.19 6.56

5-way 50-shot 10-way 50-shot

Method Max.P α0 D. Ent. M.I. Max.P α0 D. Ent. M.I.

EDL 79.30 ± 0.20 78.74 ± 0.24 79.21 ± 0.22 78.76 ± 0.24 73.67 ± 0.17 74.43 ± 0.18 74.32 ± 0.17 74.40 ± 0.18
I-EDL 82.55 ± 0.17 83.17 ± 0.19 83.29 ± 0.18 83.20 ± 0.19 77.39 ± 0.15 77.80 ± 0.16 77.72 ± 0.15 77.78 ± 0.16

∆ 3.25 4.43 4.08 4.44 3.72 3.37 3.40 3.38

Figure 5. Results on tiered-ImageNet {5, 10}-way {1, 5, 20, 50}-shot classification (Accuracy) and OOD detection against CUB (AUPR).
The error bars are almost non-existent (i.e., less than 0.03%), since over 10, 000 trials were performed for each point. I-EDL produces
statistically significant improvements over a wide range of the number of shots.
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Figure 6. The impact of coefficient λ of the negative log determinant of the FIM (-|I|) under 5-way mini-ImageNet classification and
OOD detection experiments.

Figure 7. Uncertainty representation for ID (MNIST) and OOD (FMNIST).

Figure 8. Uncertainty representation for ID (MNIST) and OOD (KMNIST).
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