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Diffusion Networks with Task-Specific Noise Control
for Radiology Report Generation

Anonymous Authors

ABSTRACT

Existing radiology report generation (RRG) studies mostly adopt
autoregressive (AR) approaches to produce textual descriptions
token-by-token for specific clinical radiographs, where they are
susceptible to error propagation problems if irrelevant contents are
half-way generated, leading to potential ill-presenting of precise
diagnoses, especially when there exist complicated abnormalities in
radiographs. Although the non-AR paradigm, e.g., diffusion model,
provides an alternative solution to tackle the problem from AR by
generating all contents in parallel, the mechanism of using Gauss-
ian noise in existing diffusion models still has significant room to
improve when such models are used in particular circumstances,
i.e., providing proper guidance in controlling noises in the diffu-
sive process to ensure precise report generation. In this paper, we
propose to conduct RRG with diffusion networks by controlling
the noise with task-specific features, which leverages irrelevant
visual and textual information as noise rather than the stochastic
Gaussian noise, and allows the diffusion networks to filter particular
information through iterative denoising, thus performing a precise
and controlled report generation process. Experiments on IU X-Ray
andMIMIC-CXR demonstrate the superiority of our approach com-
pared to strong baselines and state-of-the-art solutions. Human
evaluation and noise type analysis show that comprehensive noise
control greatly helps diffusion networks to refine the generation of
global and local report contents.1

CCS CONCEPTS

• Computing methodologies → Computer vision; Natural
language generation.

KEYWORDS

Radiology Report Generation, Diffusion Networks, Noise Control,
Task-specific Noise

1 INTRODUCTION

Medical imaging holds a crucial position in clinical medicine and
treatment guidance, where physicians are always required to write
medical reports based on the syndromes depicted in images and
thus create comprehensive professional records for patient ref-
erences and later processes. As a particular category of medical
1Code will be released in the final version of the paper.
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images, radiographs play a vital role in assessing patients’ health
by examining the internal structures of their bodies, and have been
widely used in cardiology, dentistry, and pulmonology, etc. Gener-
ally, writing reports is a time-consuming job and often error-prone
for inexperienced radiologists, which thus drives a series of work
[3, 16, 20, 39, 45] on generating reports automatically and precisely.
These studies achieve significant success on this topic, proving the
feasibility of this research direction.

To effectively generate radiology reports, most existing stud-
ies [4, 13, 20, 28, 35, 36, 50, 52, 53] leverage autoregressive (AR)
models (e.g., LSTM [11] and Transformer [46]) as their foundation
architecture with the encoder-decoder pipeline. In doing so, visual
encoders are jointly optimized with text decoders to capture es-
sential semantics from radiograph inputs so as to establish well
image-text mapping for the generation process. They normally
adopt latent representations to store the semantic information for
such mapping and there is a potential deficiency where those repre-
sentations have ambiguities in conveying all essential abnormalities
in the radiograph. The text decoder is thus disrupted by representa-
tion noises and has difficulties in generating comprehensive reports.
Moreover, the AR-based text decoder has its own problem in suscep-
tibility to error propagation, thus potentially generates contextually
incoherent diagnoses if irrelevant contents are half-way produced.

With the recent advances of non-AR paradigm, e.g., diffusion
model [9] on text generation [7, 24] and other cross-modal scenar-
ios [2], it thus provides an alternative solution to existing AR-based
approaches for RRG. However, in applying diffusion models, it
is difficult to perform precise RRG with directly using stochastic
Gaussian noises, thus it still requires certain task-specific guidance
to help handle the necessary information and smooth the gener-
ation process. Although some studies [16, 28, 34, 53] have shown
effectiveness by leveraging external medical knowledge as guidance
for AR-based approaches, their designs are not easy to be applied to
diffusion networks, whose integrity of information optimization is
likely to be corrupted. Therefore, an effective approach is expected
to enhance diffusion networks for RRG.

In this paper, we propose a non-AR solution for RRG with dif-
fusion networks, namely, ControlDiff, by employing a novel
task-specific noise control mechanism to appropriately operate es-
sential cross-modal information in noising and denoising processes.
In our approach, we distinguish useful features, e.g., visual repre-
sentations of different radiographs and textual contents in reports,
from others and leverage the non-useful information as the noise in
our diffusion networks, rather than the standard stochastic Gauss-
ian one. Particularly, for each modality, we process both global and
local information from them to construct our noise vectors, where
removing global noises improves the coherence of final reports and
removing local ones enhances the accuracy of describing specific
regions in input radiographs. Experimental results on two bench-
mark datasets, i.e., IU X-Ray and MIMIC-CXR, demonstrate the

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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superiority of our approach against state-of-the-art studies. Hu-
man evaluation and quantitative noise type analysis illustrate that
choosing different noises affects content filtering during iterative
generation, where controlling global noises ensures the overall
consistency of the generated reports, and controlling local noise
provides fine-grained task-specific guidance for diffusion networks
to produce precise reports.

2 RELATEDWORK

2.1 Radiology Report Generation

RRG is a domain-specific extension to image description generation
[32]. This task requires to automatically generate reports in the
medical domain. To perform the task, existing studies generally
follow the encoding-decoding paradigm. They leverage a visual
encoder to capture visual features and use a text decoder to produce
reports, where advanced architectures such as convolutional neural
networks and Transformers are used. To improve the performance
of RRG, there are studies that try to identify essential visual and
textual features that contribute to the task and leverage them ac-
cordingly. These studies leverage regional visual features [22, 45],
medical terms [18, 53, 54], knowledge graphs [13, 28, 56], and re-
port templates [20, 25] to generate high-quality reports. There are
other studies that put emphasis on improving the cross-modal align-
ment through attention mechanisms [16, 29, 57], memory networks
[3, 39, 48], expert tokens [50], etc. These studies achieve promising
performance for RRG, while they mainly rely on the AR paradigm
and thus suffer from error propagation issues. Compared with these
studies, the approach proposed in this paper is based on diffusion
networks, which generate tokens at the same time and thus avoid
error propagation issues.

2.2 Diffusion Networks

Diffusion models [9] are non-auto-regressive approaches that are
widely used for image generation. Recently, the diffusion models
and their variants have been applied to text generation tasks and
demonstrated as an alternative solution with outstanding perfor-
mance on cross-modal content generation [19, 42, 43]. Owing to
the discrete nature of texts, several studies that use diffusion net-
works propose to model discrete data with continuous forms, e.g.,
embedding [7, 24] and bit representations [2, 31]. For example, Li
et al. [24] propose diffusion-based networks for text generation by
projecting discrete tokens into continuous vectors. Chen et al. [2]
model discrete texts with binary bit representations and enhance
the text generation process with a self-condition mechanism for
image captioning. These studies generally propose new model ar-
chitecture or utilize new features to improve the denoising process
of diffusion models, so as to generate high-quality reports, where
the standard stochastic Gaussian noise is used to in the noising
process. Compared to these aforementioned studies, our approach
utilizes task-specific noise rather than stochastic Gaussian noise to
control diffusion networks for RRG.

3 THE APPROACH

Given an input radiograph V , our approach generates its corre-
sponding radiology report R̂ following the pipeline shown in Figure

1 with three main components, namely, the visual encoder, the task-
specific noise generator (TNG), and the diffusion networks (DN).
Specifically, the visual encoder 𝑓𝑉𝐸 encodes the input radiograph
V into visual representations v. The TNG 𝑓𝑇𝑁𝐺 provides a noise
vector n for the diffusion networks 𝑓𝐷𝑁 through two main com-
ponents, i.e., the global noise generator (GNG) and the local noise
generator (LNG). GNG uses background Visual features shared by
most radiographs and non-informative n-grams in the reports to
construct the global noise vector n𝐺 ; LNC leverages regional visual
features of undetected regions inV and irrelevant medical terms
of reports to construct the local noise vector n𝐿 . Then, GNC and
LNC fuse n𝐺 and n𝐿 into the noise vector n that is processed by
𝑓𝐷𝑁 afterwards. Finally, DN utilizes v and n to produce R̂. In the
following texts, we illustrate the details of each aforementioned
component according to the pipeline sequence.

3.1 Visual Encoder

The visual encoder aims to encode the input radiograph V into
a latent representation v. It contains two components, namely, a
visual feature extractor 𝑓𝑉𝐸 and a feature encoder 𝑓𝐹𝐸 . Specifically,
𝑓𝑉𝐸 is a pre-trained vision backbonemodel (i.e., ResNet-101 [8]), and
𝑓𝐹𝐸 follows the standard architecture of Transformer [46] encoder.
We first adopt 𝑓𝑉𝐸 to extract visual features h𝑣 from V and obtain
h𝑣 from the last convolutional layer of 𝑓𝑉𝐸 through

h𝑣 = 𝑓𝑉𝐸 (I) (1)

Then, we employ 𝑓𝐹𝐸 to encode h𝑣 into the visual representations
v ofV through

v = 𝑓𝐹𝐸
(
h𝑣

)
(2)

where v is used in TNG to produce noise vectors and DN for report
generation.

3.2 Task-specific Noise Generator

Generally, diffusion networks utilize the stochastic Gaussian noise
[2, 10, 23, 55] and present promising results in text generation tasks.
Since the noise is not relevant to any task information, it is intuitive
to explore whether task-related noise is able to improve model
performance. Particularly for RRG, the forward noising process is
analogized to adding non-essential information that is not relevant
to the abnormalities highlighted in the gold standard report R∗; the
denoising process is to eliminate such information from a noise text
to reproduce R∗. We propose to control the noise of diffusion net-
works with task-specific characteristics. Specifically, we consider
two types of noise, namely global noise and local noise. We pro-
pose global noise generator (GNG) and local noise generator (LNG)
in leveraging global and local information from radiographs and
reports to provide the two types of task-specific noise for diffusion
networks. Details of GNG and LNG are illustrated as follows.

Global Noise Generator. The GNC constructs the global noise
vector n𝐺 according to the visual and text global task-specific noise
information that is shared by most radiographs and reports. Specif-
ically, for global visual noise information, it is intuitive to regard
the background features shared by the most radiographs as the
noise. We run an off-the-shelf background segmentation toolkit
(e.g., OpenCV [5]) to produce the background feature vector based
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Figure 1: The overview architecture of our approach for RRG. It consists of three main components, namely, the visual encoder,

the task-specific noise generator, and the diffusion networks, which are presented at the left-bottom, top, and right-bottom

of the figure, respectively. The blue and orange arrows illustrate how the noise vector n is used in training and inference,

respectively. We present an example radiograph for better demonstration.

on the radiographs in the entire training set and regard it as the
global visual noise vector n𝐺𝑉 .

For global text noise information, we utilize n-grams that fre-
quently appear in most reports, since they could be interpreted
as stop words or report templates that carry limited information
about the abnormalities in the radiograph. Specifically, we compute
the frequencies of used n-grams in all radiology reports from the
training set and select the top-𝑁𝐺𝑇 ones as report templates. Then,
we map the n-grams into their embeddings and regard them as the
global text noise vectors n𝐺𝑇,1 . . . n𝐺𝑇,𝑁𝐺𝑇

. We randomly sample a
vector from n𝐺𝑇,1 . . . n𝐺𝑇,𝑁𝐺𝑇

and regard it as the global ext noise
vector n𝐺𝑇 .

Finally, the global noise vector n𝑔 is obtained with the average
and normalization (𝑁𝑜𝑟𝑚) of n𝑔𝑣 and n𝑔𝑡 through

n𝐺 = 𝑁𝑜𝑟𝑚

(
1
2
(n𝐺𝑉 + n𝐺𝑇 )

)
(3)

Local Noise Generator. The LNC constructs the local noise vector
n𝐿 with fine-grained information in the radiographsV and the gold
standard radiology reports R∗. We consider two types of noise from
the visual and textual perspectives. For the visual noise, we use

irrelevant regional information inV to construct the local visual
noise vector n𝐿𝑉 . Specifically, we employ an off-the-shelf object
detector (i.e., fine-tuned Fast R-CNN [40] on Chest ImaGenome
[51]) to extract regional visual features v𝑟 from V . We decompose
v𝑟 into {v𝑟1 . . . v

𝑟
𝑀
} along the channel dimension with 𝑀 as the

number of resulting representation. Considering the detected ob-
jects are generally essential regions in the radiograph, we use the
overall representation obtained from Eq. (2) to subtract the regional
features to compute the local visual noise vector n𝐿𝑉 .

n𝐿𝑉 = v −
𝑀∑︁

𝑚=1

(
v𝑟𝑚

)
(4)

For the text noise, we notice that radiology reports generally
contain medical terms (e.g., heart, lungs, etc.) that are essential for
analyzing the diseases of the patients. This motivates us to use
non-medical-term words in R∗ to construct the local textual noise
vector n𝐿𝑇 . Specifically, we firstly train a Transformer-based model
to annotate medical terms and use it to extract the medical term set
𝑆𝑀𝑇 from the gold standard radiology report R∗. Then, we regard
the tokens in R∗ yet not in 𝑆𝑀𝑇 as the noise tokens. Similar to the
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process to obtain global text noise, we use the same approach to
map the noise tokens into embeddings, randomly sample one from
the noise token embeddings, and use it as the local text noise vector
n𝐺𝑇 . Similar to the process in GNG, we compute n𝐿 according to
n𝐿𝑉 and n𝐿𝑇 through

n𝐿 = 𝑁𝑜𝑟𝑚 (n𝐿𝑉 + n𝐿𝑇 ) (5)

Once n𝐺 and n𝐿 are obtained, we compute the noise vector n for
the diffusion networks in the following processes by

n = 𝑁𝑜𝑟𝑚 (n𝐺 + n𝐿) (6)

3.3 Diffusion Networks

The DN (𝑓𝐷𝑁 ) aims to generate the final report R̂ based on v and n.
It consists of the diffusion noising and denoising processes, where
both processes are used in training, and only the denoising process
is used in inference. The following text illustrates the details of
training and inference.

Training. In training, diffusion noising firstly adds the noise
vector n from TNG into the representation r0 of the gold standard
report R∗ and obtain the noisy representations r𝑡 at the 𝑡-th step.
The time step 𝑡 is randomly sampled from a uniformed distribution
𝑈 (0,𝑇 ) with 𝑇 denoting the total number of steps. We follow the
approach in DDCap [58] to convert tokens of R∗ into the one-hot
representation and compute the representation r𝑡 at the 𝑡-th step
with n through

r𝑡 =
√
𝛼𝑡 · r0 +

√
1 − 𝛼𝑡 · n (7)

where 𝛼𝑡 is a blending scalar correlated to the noise scheduling
strategy of denoising diffusion probabilistic model (DDPM) [9].
Then, 𝑓𝐷𝑁 reconstructs r𝑡 to r0 based on v, where we compute the
loss L through

L = E𝑡∼𝑈 (0,𝑇 ) ∥ 𝑓𝐷𝑁 (r𝑡 , v, 𝑡) − r0∥2
2 (8)

The trainable parameters in the model are updated accordingly
through gradient descent.

Inference. Diffusion denoising generates R̂ following the stan-
dard process of DDCap. It is worth noting that the process to obtain
local text noise vector n𝐿𝑁 relies on the gold standard radiology
report R∗, which is not available during inference. To handle this
issue, we firstly collect a set S𝐴𝑙𝑙 with all tokens and a set S𝑀𝑇

with all medical terms in the reports of the training data. Next, we
randomly sample noise tokens from the difference of S𝐴𝑙𝑙 and S𝑀𝑇

(i.e., S𝐴𝑙𝑙 − S𝑀𝑇 ) and following the same process in training to
get the local text noise vector. Then, we denoise n into the final
representation r̂0. We initialize r̂𝑇 with n and iteratively subtract
noises from ŷ𝑇 through

r̂𝑡−1 =
√
𝛼𝑡−1 ·

r̂𝑡 −
√

1 − 𝛼𝑡 · 𝑓𝐷𝑁 (̂r𝑡 , v, 𝑡)√
𝛼𝑡

+
√

1 − 𝛼𝑡−1 · 𝑓𝐷𝑁 (̂r𝑡 , v, 𝑡) (9)

Finally, we convert the one-hot representation r̂0 into tokens ac-
cording to the vocabulary and obtain the final radiology report,
which is denoted as R̂.

Table 1: The statistics of IU X-Ray andMIMIC-CXR, where

the numbers of images, reports, patients, and the token-based

averaged length (Avg. Len.) of reports in training, validation,

and test sets are presented.

Dataset

IU X-Ray MIMIC-CXR

Train Val Test Train Val Test

Image 5.2K 0.7K 1.5K 369.0K 3.0K 5.2K
Report 2.8K 0.4K 0.8K 222.8K 1.8K 3.3K
Patient 2.8K 0.4K 0.8K 64.6K 0.5K 0.3K
Avg. Len. 37.6 36.8 33.6 53.0 53.1 66.4

4 EXPERIMENT

4.1 Experiment Settings

Datasets. We conduct our experiments on two conventional
benchmark datasets, i.e., IU X-Ray [6] from Indiana University and
MIMIC-CXR [17] from the Beth Israel Deaconess Medical Center.
Table 1 reports the statistics of all datasets in terms of the numbers
of radiographs, reports, patients, and word-based report length
according to each split of the datasets. Specifically, IU X-Ray is
relatively small with 7,470 chest X-Ray images and 3,955 radiology
reports. MIMIC-CXR is the largest public radiology dataset with
473,057 chest X-ray images and 206,563 reports. We follow the
convention of previous studies [3, 4, 13, 16, 39] by only preserving
the “Findings” sections for both datasets. We use the dataset split
with the ratio of 7:1:2 in Jing et al. [16] for IU X-Ray and the official
split of MIMIC-CXR.

Baselines. To evaluate our proposed approach, we compare it
with two baseline models in our experiments, including “Trans”
and “Diff”. “Trans” represents the autoregressive baseline model
with ResNet-101 [8] and a three-layer Transformer encoder as the
visual encoder, and a three-layer Transformer decoder with an
additional eight-head cross-attention layer as the decoder. “Diff”
is our baseline model with diffusion networks, which follows the
same architecture as DDCap [58] and leverages stochastic Gaussian
noise to control the diffusion networks. “Diff+TNG” represents the
model where “Diff” is equipped with the proposed task-specific
noise control in our approach, denoting our full model.

Evaluation. For evaluation metrics, we follow existing RRG
studies [3, 4, 13, 21, 39] to evaluate the generated reports with two
types of metrics, namely, natural language generation (NLG) and
clinical efficacy (CE) metrics. NLG metrics measure the quality
of generated reports based on n-gram overlapping, consisting of
BLEU [38], METEOR [33] and ROUGE-L [26]. CE metrics evaluate
the accuracy of estimating specific medical observations based on
the following procedures. First, we adopt CheXpert [14]2 to ex-
tract medical labels from both generated and gold standard reports.
Then, we calculate the precision, recall, and F1 scores between the

2CheXpert annotates 14 categories of terms related to thoracic diseases and support
devices, including atelectasis, cardiomegaly, consolidation, edema, enlarged cardiom,
fracture, lung lesion, lung opacity, no finding, pneumonia, pneumothorax, pleural effusion,
pleural other, and support devices.
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Table 2: The guideline for human evaluation of the reports.

Metric Scores Illustration

1 The report is ungrammatical and hard to understand.
Fluency 2 The report has some grammatical issues but it is understandable.

3 The report is grammatical and understandable.

1 The report misses more than two essential abnormalities in the radiograph.
Completeness 2 The report misses one or two essential abnormalities in the radiograph.

3 The report covers all essential abnormalities in the radiograph.

1 The report contains more than two incorrect descriptions of the abnormalities.
Precision 2 The report contains one or two incorrect descriptions of the abnormalities.

3 The descriptions of the abnormalities in the report are all correct.

Table 3: Performance (i.e., the average and standard deviation of three runs with different random seeds) of baselines and our

approach (i.e., “+TNG”) on the test sets of IU X-Ray and MIMIC-CXR datasets in terms of NLG and CE metrics. We report both

the average and standard deviation of three runs with different random seeds. BL-1, BL-2, BL-3, and BL-4 denote BLEU scores

using uni-gram, bi-gram, tri-gram, and 4-grams; MTR and RG-L denote METEOR and ROUGE-L, respectively. The average

improvement over all NLG metrics compared to “Trans” is also presented in the “Avg. Δ” column. The relative improvements

of our approach over baselines are statistically significant at 𝑝 ≤ 0.05 level.

Data Model

NLG Metrics CE Metrics

BL-1 BL-2 BL-3 BL-4 MTR RG-L Avg. Δ P R F1

IU
X-Ray

Trans 0.385±0.003 0.219±0.002 0.150±0.002 0.105±0.003 0.150±0.002 0.305±0.003 - - - -
Diff 0.414±0.004 0.245±0.003 0.162±0.004 0.109±0.002 0.162±0.003 0.312±0.002 6.9% - - -
+TNG 0.508±0.003 0.332±0.002 0.243±0.003 0.189±0.002 0.207±0.002 0.390±0.003 48.6% - - -

MIMIC
-CXR

Trans 0.355±0.003 0.213±0.004 0.138±0.002 0.088±0.003 0.126±0.003 0.269±0.002 - 0.348±0.002 0.314±0.003 0.330±0.002
Diff 0.373±0.002 0.217±0.003 0.142±0.002 0.101±0.004 0.134±0.002 0.274±0.003 5.5% 0.385±0.003 0.401±0.004 0.393±0.003
+TNG 0.411±0.004 0.265±0.002 0.183±0.002 0.132±0.003 0.186±0.002 0.299±0.004 30.3% 0.477±0.004 0.484±0.004 0.480±0.004

aforementioned obtained labels, and use the computed scores as
results of the CE metrics.

In addition to automatic evaluations, we also perform human
evaluations of the quality of the generated reports. For each report,
we ask three annotators with medical backgrounds to assess its
quality in three aspects: fluency, completeness, and precision. The
guideline is illustrated in Table 2. The annotators are asked to rate
each aspect of the report on a scale of 1 to 3 accordingly, with higher
scores indicating better quality. The quality of a report is measured
by the average scores from different annotators.

Implementation Details. For model architecture, we use the
standard Transformer encoder with three multi-head attention
layers as 𝑓𝐹𝐸 , and adopt two different eight-layer Transformers for
𝑓𝑉𝐸 in TNG and 𝑓𝐷𝐸 , respectively. The number of the attention head
and dimension of the hidden states for all modules are set to 8 and
512, respectively. For the diffusion networks, the total time step for
diffusion forwarding and decoding processes𝑇 is set to 20. We also
follow the standard process of the denoising diffusion implicit model
(DDIM) [44] sampler in the decoding process. For optimization, we
use Adam optimizer to update all model parameters with a learning
rate of 5𝑒 − 4. We follow the learning rate scheduling strategy
in Vaswani et al. [46] with 20, 000 steps for warm-up, and train
the model on IU X-Ray andMIMIC-CXR with 300 and 10 epochs,

Table 4: Human evaluation results on the report generated

by different models using the sampled test instances from

MIMIC-CXR. The range of human evaluation scores is from

1 to 3. “F”, “C”, and “P” denote fluency, completeness, and pre-

cision, respectively. “IAA” means the inter-annotator agree-

ment (i.e., the number of scores agreed by all annotators out

of all annotations).

Data Model F C P Avg. IAA

IU
X-Ray

Trans 2.6 2.1 2.0 2.2 82%
Diff 2.7 2.2 2.0 2.3 80%
Diff+TNG 2.8 2.4 2.1 2.4 82%

MIMIC
-CXR

Trans 2.5 1.9 1.8 2.1 84%
Diff 2.5 2.0 1.9 2.1 82%
Diff+TNG 2.7 2.2 2.0 2.3 86%

respectively. For other hyper-parameter settings, we try different
combinations of them and select the one with the best performance
on the validation set in our final experiments. For all experiments,
we run them three times with different random seeds and report
the average and standard deviation.
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Table 5: Performance comparison of our approach with the state-of-the-art studies on test sets of IU X-Ray andMIMIC-CXR

with respect to NLG and CEmetrics. The best results of different metrics are highlighted in boldface. For LLM-based approaches

(i.e., XrayGPT), we illustrate the number of parameters in parentheses.

Data Model

NLG Metrics CE Metrics

BL-1 BL-2 BL-3 BL-4 MTR RG-L P R F1

IU
X-Ray

ST [47] 0.216 0.124 0.087 0.066 - 0.306 - - -
Att2in [41] 0.224 0.129 0.089 0.068 - 0.308 - - -
AdaAtt [30] 0.220 0.127 0.089 0.068 - 0.308 - - -
CoAtt [16] 0.455 0.288 0.205 0.154 - 0.369 - - -
Hrgr [25] 0.438 0.298 0.208 0.151 - 0.322 - - -
Cmas-RL [15] 0.464 0.301 0.210 0.154 - 0.362 - - -
R2Gen [4] 0.470 0.304 0.219 0.165 - 0.371 - - -
CA [29] 0.492 0.314 0.222 0.169 0.193 0.381 - - -
CMCL [27] 0.477 0.305 0.217 0.162 0.186 0.378 - - -
PPKED [28] 0.483 0.315 0.224 0.168 - 0.376 - - -
R2GenCMN [3] 0.475 0.309 0.222 0.170 0.191 0.375 - - -
R2GenRL [39] 0.494 0.321 0.235 0.181 0.201 0.384 - - -
XrayGPT (7B) [37] 0.177 0.104 0.047 0.007 0.105 0.203 - - -

ControlDiff 0.508 0.332 0.243 0.189 0.207 0.390 - - -

MIMIC
-CXR

ST [47] 0.299 0.184 0.121 0.084 0.124 0.263 0.249 0.203 0.204
Att2in [41] 0.325 0.203 0.136 0.096 0.134 0.276 0.322 0.239 0.249
AdaAtt [30] 0.299 0.185 0.124 0.088 0.118 0.266 0.268 0.186 0.181
Topdown [1] 0.317 0.195 0.130 0.092 0.128 0.267 0.320 0.231 0.238
R2Gen [4] 0.353 0.218 0.145 0.103 0.142 0.277 0.333 0.273 0.276
CA [29] 0.350 0.219 0.152 0.109 0.151 0.283 - - -
CMCL [27] 0.344 0.217 0.140 0.097 0.133 0.281 - - -
PPKED [28] 0.360 0.224 0.149 0.106 0.149 0.284 - - -
R2GenCMN [3] 0.353 0.218 0.148 0.106 0.142 0.278 0.334 0.275 0.278
R2GenRL [39] 0.381 0.232 0.155 0.109 0.151 0.287 0.342 0.294 0.292
WarmStart [34] 0.392 0.245 0.169 0.124 0.153 0.285 0.359 0.412 0.384
ITA [49] 0.395 0.253 0.170 0.121 0.147 0.284 - - -
WarmStart [34] 0.392 0.245 0.169 0.124 0.153 0.285 0.359 0.412 0.384
RGRG [45] 0.373 0.249 0.175 0.126 0.168 0.264 0.461 0.475 0.447
ORGan [12] 0.407 0.256 0.172 0.123 0.162 0.293 0.416 0.418 0.385
KiUT [13] 0.393 0.243 0.159 0.113 0.160 0.285 0.371 0.318 0.321
XrayGPT (7B) [37] 0.128 0.045 0.014 0.004 0.079 0.111 - - -

ControlDiff 0.411 0.265 0.183 0.132 0.186 0.299 0.477 0.484 0.480

4.2 Overall Results

Experiment results of different models on the two benchmark
datasets are reported in Table 3, with several observations drawn as
follows. It is observed that the basic non-AR model (“Diff”) consis-
tently outperforms the AR one (“Trans”) on both datasets, where
the reason owes to that the error propagation problem is alleviated
by diffusion networks through synchronous generation. On top of
“Diff”, our full model “Diff+TNG” obtains further improvements
through leveraging task-specific noise rather than stochastic Gauss-
ian noise in diffusion networks, confirming the effectiveness of
noise control. The possible reason behind this observation is that
the task-specific noise provides more precise hints to the diffusion
process, therefore ensuring the quality of generated reports by
eliminating potential irrelevant contents.

For human evaluation, we randomly sample 50 instances from
the test sets of IU X-Ray andMIMIC-CXR and collect the reports
generated by different models (i.e., “Trans”, “Diff”, “Diff+TNG”).
The results of the human evaluation are reported in Table 4. We
also report the inter-annotator agreement (IAA) that computes the
number of scores agreed by all annotators out of all annotations.
Similar to the trend in Table 3, human evaluation results show that
our approach outperforms all baselines, which further confirms the
effectiveness of our approach.

Moreover, we compare it with existing state-of-the-art solutions
on both datasets, with results presented in Table 5. Overall, our
approach outperforms other AR-based solutions on all metrics,
illustrating the superiority of our approach for RRG. Notably, our
approach even achieves better performance than the studies that
based on large language models (LLMs) (i.e., XrayGPT), indicating
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Table 6: Performance (i.e., the average and standard deviation of three runs with different random seeds) comparison of our

approach under different settings of noise control on IU X-Ray and MIMIC-CXR with respect to NLG metrics. “GN” means the

diffusion model with the standard stochastic Gaussian noise; “GVN” and “GTN” are global visual noise and global text noise,

respectively; “LVN” and “LTN” are local visual noise and local text noise, respectively. “✓” means the noise type is used in the

model; the last row where “GVN”, “GTN”, “LVN”, and “LTN” are used is our full model.

(a) IU X-Ray
ID Noise Type Evaluation Metric

GN GVN GTN LVN LTN BL-1 BL-2 BL-3 BL-4 MTR RG-L

1 ✓ 0.414±0.004 0.245±0.003 0.162±0.004 0.109±0.002 0.162±0.003 0.312±0.002

2 ✓ 0.445±0.003 0.267±0.003 0.188±0.002 0.130±0.004 0.168±0.003 0.342±0.002
3 ✓ 0.442±0.002 0.265±0.002 0.185±0.004 0.132±0.004 0.166±0.002 0.340±0.003
4 ✓ 0.443±0.002 0.264±0.003 0.189±0.004 0.134±0.002 0.167±0.002 0.341±0.003
5 ✓ 0.447±0.002 0.268±0.002 0.190±0.003 0.134±0.004 0.170±0.003 0.344±0.003

6 ✓ ✓ 0.458±0.002 0.308±0.003 0.216±0.002 0.156±0.004 0.189±0.003 0.367±0.002
7 ✓ ✓ 0.460±0.003 0.305±0.004 0.218±0.002 0.159±0.003 0.188±0.003 0.369±0.003
8 ✓ ✓ 0.463±0.003 0.313±0.002 0.217±0.003 0.158±0.002 0.186±0.003 0.371±0.004
9 ✓ ✓ 0.462±0.003 0.311±0.002 0.216±0.002 0.157±0.002 0.187±0.003 0.370±0.004

10 ✓ ✓ ✓ ✓ ✓ 0.505±0.002 0.330±0.003 0.242±0.004 0.186±0.002 0.206±0.002 0.391±0.002
11 ✓ ✓ ✓ ✓ 0.508±0.003 0.332±0.002 0.243±0.003 0.189±0.002 0.207±0.002 0.390±0.003

(b) MIMIC-CXR
1 ✓ 0.373±0.002 0.217±0.003 0.142±0.002 0.101±0.004 0.134±0.002 0.274±0.003

2 ✓ 0.387±0.003 0.229±0.002 0.156±0.004 0.114±0.003 0.151±0.002 0.279±0.003
3 ✓ 0.385±0.003 0.230±0.004 0.153±0.002 0.109±0.002 0.148±0.004 0.280±0.003
4 ✓ 0.383±0.002 0.234±0.003 0.157±0.003 0.110±0.004 0.146±0.003 0.281±0.002
5 ✓ 0.384±0.003 0.232±0.004 0.155±0.002 0.111±0.003 0.150±0.004 0.283±0.002

6 ✓ ✓ 0.397±0.004 0.251±0.004 0.168±0.002 0.126±0.003 0.169±0.002 0.285±0.003
7 ✓ ✓ 0.391±0.003 0.250±0.004 0.170±0.002 0.124±0.003 0.168±0.002 0.289±0.003
8 ✓ ✓ 0.401±0.003 0.254±0.004 0.172±0.003 0.129±0.004 0.172±0.003 0.287±0.003
9 ✓ ✓ 0.395±0.004 0.253±0.003 0.174±0.003 0.126±0.004 0.171±0.002 0.292±0.003

10 ✓ ✓ ✓ ✓ ✓ 0.408±0.002 0.262±0.003 0.180±0.002 0.132±0.004 0.187±0.002 0.302±0.003
11 ✓ ✓ ✓ ✓ 0.411±0.004 0.265±0.002 0.183±0.002 0.132±0.003 0.186±0.002 0.299±0.004

that appropriate modeling of the report generation process is more
efficient than using massive parameters in LLMs.

4.3 Effect of Different Noise Types

To explore the impact of controlling different noise types, we run
experiments on using particular task-specific information as noise
in diffusion networks. Table 6 reports the results on two benchmark
datasets, where “GN” refers to Gaussian noise; “GVN” and “GTN”
represent the global visual and textual noise, respectively; “LGN”
and “LTN” denote the local visual and textual noise, respectively.
Several observations from different perspectives are illustrated as
follows. First, compared with the model with the standard Gauss-
ian noise (i.e., ID=1), our approach (ID=2-11) with any type of
task-specific noise achieves better performance on most evalua-
tion metrics. This observation demonstrates the effectiveness of
using task-related noise in diffusion models for improving model
performance. Second, comparing our approach with global noise

(ID=6) and with local noise (ID=7), the models achieve similar per-
formance, showing both global and local noise contribute to the
task; similarly, our approaches with visual (ID=8) and text noise
(ID=9) obtain similar performance, showing both visual and text fea-
tures are essential to the task. Third, we observe that models with
multi-modal features as noise (ID=6-9) obtain improvements over
the ones using single-modal features (ID=2-5), since controlling
visual- or textual-only noise provides coarse guidance for report
generation. Finally, we observe that our approaches with (ID=10)
and without (ID=11) the standard Gaussian noise achieve compara-
ble performance. This observation is intuitive since the Gaussian
noise is task-irrelevant and thus brings limited useful information
compared with other task-specific types of noise. Furthermore, our
approach obtains the best performance, where leveraging various
noise information from different views and modalities refines the
iterative generation process.
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Figure 2: An illustration of the report generation processes (through texts generated at different time steps) by different models

with an example radiograph. Medical terms shared by the model outputs and the gold standard texts are highlighted in the

same color. “GNG” and “LNG” stand for global noise generator and local noise generator, respectively.

4.4 Case Study

To further qualitatively demonstrate the effect of noise control in
our approach, we present a case study in Figure 2 with an exam-
ple input radiograph selected from the test set of MIMIC-CXR, as
well as the reports generated by “Trans”, “Diff”, “Diff+GNG”,
“Diff+LNG” and “Diff+TNG”, where “Diff+GNG” and “Diff+LNG”
refer to the diffusion networks equipped with only GNG or LNG,
respectively, and medical terms shared by model output and gold
standard are highlighted in same colors. It is observed that “Diff”
generates reports with more medical terms related to the input
radiograph than “Trans” since the error propagation problem of
AR models is alleviated by “Diff”. Meanwhile, the reports gen-
erated by “Diff” still contain irrelevant descriptions, since a less
controlled generation process is performed owning to the use of
stochastic Gaussian noise. “Diff+GNG” and “Diff+LNG” improve
the quality of generated reports compared to “Diff”. “Diff+GNG”
effectively eliminates irrelevant descriptions by controlling global
noises; “Diff+LNG” offers more fine-grained noise control for the
diffusion networks and produces reports with more related medical
terms than “Diff+GNG”. Finally, “Diff+TNG” obtains themost elab-
orated reports compared to all aforementioned models, suggesting

that controlling both global and local noise provides comprehensive
information for diffusion networks to generate precise reports.

5 CONCLUSION

In this paper, we propose ControlDiff that utilizes diffusion net-
works to generate the report for RRG and thus does not suffer from
the error propagation issues of the existing approaches that use
AR models. In addition, we enhance the diffusion networks with
task-specific noise (e.g., global and local visual and text features)
rather than the standard stochastic Gaussian noise used in the
standard diffusion networks, to generate precise reports for RRG.
Experimental results on two widely used English benchmark RRG
datasets, namely, IU X-Ray and MIMIC-CXR, indicate the supe-
riority and effectiveness of our proposed approach compared to
existing studies, where our approach outperforms strong baselines
and existing studies on both datasets. Further analyses and case
study explore the effect of our noise controlling mechanisms from
different perspectives, suggesting that our approach presents its
potential of being a reference framework to conduct a controlled
generation process for other related tasks in future studies.
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