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Abstract—The vulnerabilities in Open Source Software (OSS)
code, particularly critical ones, offer attackers numerous oppor-
tunities, leading to significant economic losses for users. This
has driven the development of various models to identify these
vulnerabilities. However, previous models often used shallow
neural networks with a single feature extraction method, failing
to capture deep feature representations. To address this, we
propose Vuln-Detector, an approach for automatically identifying
dangerous Issue Reports (IRs). Vuln-Detector comprises three
components: the Knowledge Bank component, which stores
information about Common Weakness Enumeration (CWE) to
enhance learning; the Matching component, which measures the
similarity between a security report and CWE categories; and the
Voting component, which determines whether a report is related
to a code vulnerability. We validated our approach through
experiments on 3,937 No Security Vulnerability Reports (NSVRS)
from 1,390 OSS projects on GitHub. Vuln-Detector achieved a
precision of 42%, recall of 73%, F1-score of 53%, AUROC of
98%, and AUPRC of 41%. Compared to the current state-of-
the-art, it shows a relative improvement of 11% in precision,
5% in AUPRC, and 8% in F1-score. The results demonstrate
that Vuln-Detector effectively identifies vulnerability-related IRs.

Index Terms—Vulnerability, Open Source Software Security,
Deep Learning

I. INTRODUCTION

Open source is widely used in the software industry as an
efficient development model. Despite its numerous benefits,
OSS openness brings many security threats [1], [2]. Attackers
exploit publicly available vulnerability information to launch
attacks, disrupting development and increasing security main-
tenance for teams. Traditional approaches follow a Coor-
dinated Vulnerability Disclosure (CVD) process [3], where
vulnerabilities are coordinated with vendors for patching be-
fore public disclosure. However, many organizations lack sys-
tematic security reviews and necessary testing standards [4].
Vulnerability reports, often submitted to public Issue Tracking
Systems (ITS) before formal disclosure, create a window for
attackers. This makes such reports, known as dangerous IRs,
significant security risks [5].

Therefore, it is crucial to correctly label reported IRs as
dangerous or not. However, manually checking these IRs is
highly inefficient and time-consuming. Previous approaches
[6] mostly train models based on the textual descriptions of
IRs as input and output of the IR categories.

Peters et al. [5] introduced the FARSEC framework, which
identifies and removes non-security error reports using secu-
rity keywords, but did not consider the impact of security
crosswords. Le et al. [7] proposed DeepCVA, achieving a
higher MCC than other baselines by using an attention-based

convolutional gated recurrent unit and context-aware features.
Oyetoyan et al. [8] improved model generalization by using
highly customized TF-IDF values as security keywords. Most
previous approaches used datasets limited to specific projects,
degrading performance on unseen projects. Challenges still
exist in labeling IRs.

Lack of deep features in the input IRs: Vulnerability
reports have high dimensionality and sparsity in their feature
vectors, making feature extraction crucial for classification.
Most previous models perform convolution, classification, or
regression without post-processing semantic features, lead-
ing to lower accuracy. Shallow network models significantly
weaken detailed features and fail to capture global contextual
information, leading to the loss of key details. Long IR
sequences, if not properly extracted, lose valuable information,
affecting classification tasks.

To address the above challenges, we propose Vuln-Detector
for accurate and efficient IR labeling. Vuln-Detector automati-
cally identifies dangerous IRs early in vulnerability generation
and consists of three components: an external storage com-
ponent, a feature extraction component, and a classification
component. The external storage component provides a vast
repository of vulnerability information for model training,
enhancing detection capabilities. The feature extraction com-
ponent employs a self-attention mechanism to capture richer
global contextual information and integrate feature informa-
tion. The classification component maps the extracted feature
vectors to the same feature space for classification.

Our contributions are as follows:

• We propose an automated approach that flattens the
feature tensors of the IRS and external anchor obtained
through BERT compression, performs multidimensional
feature extraction and then fuses the extracted features for
issue report classification. We also add the self-attention
mechanism for feature repair and extraction, enhancing
the approach’s understanding of the overall content of
sentences.

• We conduct experiments demonstrating the effectiveness
of Vuln-Detector. Our approach excels in Precision, F1-
score, AUROC, and AUPRC metrics. Precision surpasses
the best baseline by 6%, F1-score by 5%, and AUPRC by
4%. These results indicate that Vuln-Detector effectively
identifies dangerous vulnerability reports and outperforms
state-of-the-art methods. The code and dataset for Vuln-
Detector are open-source [9].

The rest of this paper is organized as follows. Section



II introduces the motivation behind our work. The main
components of Vuln-Detector are described in Section III.
Sections IV and V present the experimental setup and results,
respectively. Threats to validity are discussed in Section VI.
Related work is reviewed in Section VII. Finally, Section VIII
provides a summary of our work.

II. MOTIVATION

In this section, we will elucidate the application background
of Vuln-Detector (Section A) and its key technologies (Section
B) to introduce the motivation of this paper.

A. Background

OSS is often developed by programmers, tested, and then
used by end-users who provide feedback [10]. Vulnerability
information is initially submitted as Incident Reports (IRs)
to Issue Tracking Systems (ITS) before formal disclosure.
However, vulnerabilities are sometimes disclosed long after
their submission. Such delays can be risky, as IRs often
contain detailed information about vulnerabilities that can be
exploited by hackers, posing significant risks to OSS users and
maintainers [11].

Data shows that 98.7% of Non-Secure Vulnerability Re-
ports (NSVRs) are created before the corresponding National
Vulnerability Database (NVD) disclosure dates, indicating that
most IRs are at risk of leaking critical vulnerability informa-
tion, leaving OSS users exposed to undetected security threats
[12]. This situation reduces the time available for remediation.

According to Hazra et al. [13], large-scale software systems
can harbor millions of bugs, making manual inspection of bug
reports both tedious and error-prone. Consequently, developing
a model to automatically identify dangerous IRs is crucial
for enhancing vulnerability management and improving the
efficiency of fixing vulnerabilities in open-source software.

B. Key Techniques

The textual descriptions of NSVRs can vary widely across
different Common Weakness Enumeration (CWE) categories.
As shown in Figure 1, categories like ”Improper Removal
of Sensitive Information Before Storage or Transfer” and
”ASP.NET Misconfiguration” exhibit notable differences in
their descriptions. Previous methods [8] have extracted fea-
tures from IRs or used TF-IDF values to train models, but these
methods struggle to capture the full range of vulnerability
knowledge and overall semantic information.

Jawahar et al. [14] noted that as BERT layers increase,
surface-level information can become diluted, and the CLS
representation may lose detailed sentence structure informa-
tion due to its fixed-length nature. To address this, we use
additional feature extraction and an attention mechanism to
optimize local information and mitigate the loss of detail in
the pooled sequence representation.

III. FRAMEWORK OF THE PROPOSED APPROACH

In this section, we first provide an overview of our approach
in Section A. Then, we proceed to describe the components
of the model in detail in Sections B - D.

Fig. 1. Examples of CWE textual descriptions.

A. Model Overview

The architecture of Vuln-Detector, depicted in Fig. 2, con-
sists of three components: a) Knowledge Bank, b) Match-
ing component, and c) Voting component. The Knowledge
Bank provides extensive vulnerability information for learning
descriptions and improving matching success. The Matching
component uses anchors from the CWE tree structure and
employs a Siamese network with BERT as the shared encoder
for text embedding and feature extraction. These vectors are
classified through a linear layer. The Voting component assigns
scores to each output based on CWE matching, labeling the
vulnerability type as NSVR if the score exceeds a threshold;
otherwise, it is labeled as a Specific Vulnerability Report
(SVR).

B. Knowledge Bank component

Knowledge Bank is used to store information about dif-
ferent categories of CWE, providing a wealth of vulnerabil-
ity knowledge to the model. CWE provides descriptions of
weaknesses, and each weakness corresponds to vulnerabilities
related to specific categories. Therefore, incorporating CWE
entries allows the model to directly learn vulnerability-related
knowledge. In the dataset, the CWE categories corresponding
to NSVRs are saved to construct anchors. Each anchor has
at least one NSVR associated with it. For each CWE entry,
we extract relevant attributes as part of the vulnerability
knowledge base. Each anchor includes the CWE category
and its corresponding weakness attributes. The collection
of all anchors forms the Knowledge Bank, which provides
vulnerability information to the model.

We utilize the following five attributes to construct anchors:
Name refers to the name of the weakness. The description
refers to how the weakness arises. Extended Description
refers to the additional description of the weakness. Common
Consequences refer to negative impacts caused by the weak-
ness. Related Weaknesses refer to relationships between the
weakness and other weaknesses.

C. Matching component

The Matching component compares the input IR with
different CWE categories and outputs a scoring distribution
measuring similarity between IR descriptions and anchors.
We use a Siamese network to directly compare the similarity
between two information items or sentences, with IR and
anchor content as inputs.

The Siamese network architecture consists of two parts:
feature extraction and matching. The feature extraction part



Fig. 2. Framework of Vuln-Detector.

extracts feature vectors from the input IR and anchor content.
The matching part calculates the similarity probability between
IR and anchor content based on the extracted vectors. Both
inputs share the same network weights at the encoding layer,
transforming them into the same feature space.

Positive samples account for less than 1% of the dataset,
leading to an imbalanced sample distribution. We introduce
a metric-based few-shot learning technique to effectively uti-
lize the limited number of NSVRs and improve recognition
accuracy.

1) Feature Extraction: Our goal is to match the input IR
with different CWE categories. During training, both IR and
CWE information are input into the model for classification.
Since IRs and anchor content are natural language descrip-
tions, we use BERT to convert them into feature vectors.
BERT, a pre-trained model based on the transformer’s encoder,
effectively extracts feature vectors from sentences for clas-
sification tasks [15]. It learns language representations from
large-scale unlabeled text data and transfers this knowledge to
downstream tasks [16]. We fine-tune BERT on 1,221,677 IRs
to identify vulnerable reports. During training, BERT’s atten-
tion mechanism parameters are updated. BERT uses sentences
as inputs, incorporating the [CLS] token at the beginning and
the [SEP] token at the end of each sentence.

2) Classification Matching : In this component, we aim to
measure the matching degree between the IR and the anchor
information of different categories. Previous approaches for
matching IR and anchors often use Feed-Forward Networks
(FFNs) as classifiers [7], [12]. In our model, the feature vectors
obtained from BERT encoding are first input into a fully
connected feed-forward module and then into a self-attention
module. Subsequently, we input the resulting feature vectors
of the vulnerability report text into a fully connected layer
for further processing, followed by a softmax classifier. The
cross-entropy loss function is used in the classification task.

To enhance the model’s fitting ability, we implemented sev-
eral procedures. Feedforward neural networks capture higher-
level correlations by mapping input to output through com-

positions of nonlinear functions. We applied a feedforward
neural network (with shared parameters) to the feature vectors
of IR and anchor information obtained from BERT’s output to
introduce nonlinearity and consider interactions between latent
dimensions.

We incorporated an attention mechanism into the classifier,
helping the model dynamically focus on specific parts of the
input sentence in text classification tasks [17]. This mechanism
assigns higher weights to relevant information, improving
focus on important data while suppressing irrelevant details.

To address long-distance dependencies and capture word
relevance in IRs, we introduce a self-attention mechanism.
Self-attention explores hidden correlations within feature data
and can directly link relationships between any two words in
a single computational step, enhancing the model’s ability to
attend to different positions in the text [18].

To further obtain the relevance between words in the vulner-
ability information text, we input the feature vectors obtained
from the FFN layer of the IR and anchor them into the self-
attention mechanism. Let’s assume the input feature vector is
X = [x1, x2...xN ] ∈ RDx × N , which is copied three times
and multiplied with WQ,WK , resulting in Q,K, V ,

Q = WQX ∈ RDQ×N (1)

K = WKX ∈ RDK×N (2)

V = WV X ∈ RDV ×N (3)

Then, the obtained Q,K, V are input into the attention layer.
The attention layer first calculates the dot product of Q
and K, and then divides the product by

√
dk, to prevent the

dot product from becoming too large as the vector length
increases. Subsequently, the softmax function is applied to
the resulting values to obtain a weight distribution with a
sum of 1. Finally, the obtained weight is multiplied to obtain
the relevance between words in the vulnerability information
text. This enables the model to focus on features with higher



weights while suppressing features with lower weights, and it
can be expressed as

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (4)

where Q,K, V are the input vulnerability feature vectors,
WQ,WK ,WV are the results of element-wise multiplication
between, and dk is the first dimension of matrix W .

To utilize different feature information from various posi-
tions in the vulnerability data, we introduce a multi-head self-
attention mechanism. After self-attention, we extract feature
vectors of the IR and anchor content, improving the capture
of relationships between distant sequence elements and en-
hancing classification accuracy. We designate the input IR
feature vector as u and the anchor content feature vector
as v. The joint feature vector (u, v, |u − v|) is created by
concatenating these vectors and is denoted as x. This vector
is then fed into the model’s top layer via a linear layer and
passed through the softmax function. The softmax operation
converts the input joint vector into probability distributions,
reflecting the likelihood of reported IR matches with different
categories of CWEs. This process is expressed as

softmax(xi) =
exp(xi)

M∑
i=1

exp(xi)

(5)

where xi is the value of the ith input node of the feature vector
x, and M is the total number of output nodes, i.e., the number
of NSVR species.

D. Voting component

The Voting component determines the category (NSVR or
SVR) of the report’s IR. We input the matching scores obtained
from the classifier into the Voting component and train a
threshold. Assuming we have NSVR categories, the process is

f(x) = argmax
c∈C

n∑
i=1

pi,c (6)

where C represents the set of output NSVR categories, and
pi,c represents the probability of outputting a certain NSVR
category.

After the aforementioned processing, we compare the high-
est obtained matching score with the threshold. If the matching
score is higher than the threshold, the report’s IR is classified
as NSVR. If no matching score reaches the threshold, indicat-
ing that there is no candidate vulnerability type for matching,
the IR is predicted as SVR.

IV. EXPERIMENT SETUP

A. Research Questions

In our experiments, we aimed to answer the following
questions:

RQ1: Is our proposed deep learning-based approach effec-
tive in identifying NSVRs?

RQ2: What is the impact of the pooling method in BERT
on the model’s performance?

RQ3: How many layers of self-attention are most effective?
RQ4: What is the optimal number of heads in the multi-

head self-attention mechanism?
RQ5: How does the impact of the self-attention mechanism

on the model compare to that of other components?

B. Data Preparation

We collected CWE records from the National Vulnerability
Database (NVD) and filtered out those not referenced in
GitHub IRs, ensuring data validity by excluding IRs with
missing information and NSVRs created after their corre-
sponding CVE disclosure dates. This resulted in a final dataset
of 1,195,202 vulnerability reports from 1,360 projects, divided
into training, validation, and testing sets. As shown in Table I,
we divided the dataset into three sets, for training, validation,
and testing.

TABLE I
DATA SET PARTITIONING

NSVR SVR Projects
Training Set 3,175 969,570 1,102

Validation Set 306 103,273 122
Testing Set 403 118,475 136

C. Baseline

To evaluate the effectiveness of our proposed approach
(RQ1), we compared it against the following baseline ap-
proaches:

(1) TextCNN [19]: TextCNN has gained widespread use in
software engineering and it has been shown to achieve good
results in text classification so we use it as a neural network
baseline. This approach employs multiple convolutional filters
of varying sizes to capture N-gram information from the text.
It utilizes max-pooling to extract the most salient features
from each convolutional operation. These features are then
concatenated and fed into a fully connected layer for the
feature. The model is trained using cross-entropy loss.

(2) Random Guess [20]: Stochastic prediction for demon-
strating the effectiveness of deep learning approaches. This
baseline randomly predicts whether the input IR belongs to
the NSVR class.

(3) Naive Bayes (NB) [21]: It is shown that simple text cat-
egorization methods outperform methods designed in previous
studies on clean datasets [22]. This approach is a simple text
classification technique based on Bayes’ theorem.

(4) MemVul [12]: A more advanced approach based on deep
learning proposed by Pan et al. It is shown to be the optimal
model for identifying vulnerability reports obtained from a
combination of metrics.

To investigate the impact of different pooling strategies on
model performance (RQ2), we explored four pooling methods:

(1) CLS token pooling: The vector representation of the
[CLS] token is used as the sentence vector.

(2) Average pooling: The average of all token vectors is
computed to obtain the sentence vector.



(3) Attention pooling: Attention weights are learned to dy-
namically weight the token vectors and compute the sentence
vector.

(4) Max pooling: The maximum value among all token
vectors is selected as the sentence vector.

D. Evaluation Metrics

We employed five evaluation metrics, namely Precision,
Recall, F1-score, AUROC, and AUPRC, to assess our results.
Among them, Precision, Recall, and F1-score are commonly
used metrics in software engineering, including vulnerability
report classification [23]. Precision measures the accuracy of
positive predictions, while Recall evaluates the proportion of
correctly predicted positive samples out of all actual positive
samples. The expressions of Precision and Recall are

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

In the formulas, TP represents true positives (i.e., correctly
predicted positive samples), FP represents false positives (i.e.,
incorrectly predicted positive samples), and FN represents
false negatives (i.e., incorrectly predicted negative samples).

We utilized the F1-score as a comprehensive evaluation
metric. The F1-score represents the model’s ability to strike
a balance between Precision and Recall, with higher values
indicating a stronger ability to improve both metrics simul-
taneously. Previous work [22] has also highlighted the F1-
score as an important metric for evaluating vulnerability report
classification.

F1− score =
2× precision× recall

precision+ recall
(9)

AUPRC measures the model’s ability to balance Precision
and Recall. AUROC is a metric used to assess classifier
performance, with higher values indicating a stronger ability to
correctly discriminate between positive and negative samples.

E. Training Details

We performed MLM (Masked Language Model) tasks on
the obtained IRs for 50 epochs and employed AdamW [24]
as the optimizer. The learning rate (lr) for BERT was set to
2e−5. The model consisted of two layers of self-attention,
with each layer having a head count of 8. The FFN (Feed-
Forward Network) dimension was set to 2048. Additionally,
following the work of Neculoiu et al. [25], we trained the
Siamese network with the ratio of non-matching to matching
pairs by 3:1.

V. EXPERIMENT RESULTS

A. RQ1: Is our proposed deep learning-based approach effec-
tive in identifying NSVRs?

Motivation The purpose of our proposed approach is to
automatically identify NSVRs at an early stage to prevent
the leakage of vulnerability information, which may cause

harm to OSS users. We aim to validate the effectiveness of
Vuln-Detector and demonstrate that our approach outperforms
previous relevant approaches.

Approach We collect 1,221,677 vulnerability information
from NVD, CWE, and GitHub IRs related to the Vuln-Detector
OSS project. To test the approach’s identification performance,
we input IRs from the Vuln-Detector project, including 403
NSVRs and 118,475 SVRs. TextCNN, Random Guess (RG),
Naive Bayes (NB), and MemVul are used as baselines. To
make a fair comparison, we use the same dataset and evalua-
tion metrics to replicate the baselines’ results. We evaluate the
approach’s performance using five metrics: Precision, Recall,
F1-score, AUROC, and AUPRC.

Results The comparison between our approach and the
baselines in terms of various performance metrics is shown
in Table II. For ease of comparison, we bolded the best result
for each metric.

TABLE II
RESULTS OF VULN-DETECTOR AND COMPARISON WITH BASELINE

Approach Precision Recall F1-score AUROC AUPRC
MemVul 0.38 0.70 0.49 0.98 0.39
TextCNN 0.18 0.73 0.28 0.97 0.27

RG 0.003 0.50 0.01 0.50 0.003
NB 0.16 0.81 0.26 0.95 0.23

Ours 0.42 0.73 0.53 0.98 0.41

The experimental results, as shown in Table II, demonstrate
that Vuln-Detector outperforms the baselines in terms of Preci-
sion, F1-score, AUROC, and AUPRC. Vuln-Detector achieves
a Precision of 42%, which is an improvement of 11% over
the best baseline result. This indicates that our approach can
more accurately identify NSVRs. Our approach achieves an
F1-score of 53%, an improvement of 8% over the best baseline
result. The AUPRC is 41%, which is 5% higher than the best
baseline result. The improved F1-score and AUPRC results
indicate that our approach strikes a good balance between
Precision and Recall, ensuring that the model can identify
more NSVRs while accurately identifying them.

In terms of baseline performance, it is observed that RG
performs poorly across all five metrics. This can be attributed
to its reliance solely on random prediction for IR classifi-
cation, lacking a solid theoretical foundation. On the other
hand, NB achieves the highest recall rate of 81% among
the five approaches, but exhibits poor Precision, F1-score,
and AUPRC. This approach relies on probability theory as
its theoretical basis and only utilizes simple IR features for
classification, without considering the correlations between
individual features. While it may effectively avoid missing
NSVR, its recognition accuracy is significantly inadequate,
failing to strike a good balance between accuracy and recall.
The TextCNN model has a simpler structure, but struggles with
the processing of long texts, resulting in the loss of important
features and the inability to capture long-distance dependen-
cies. Consequently, it achieves a high recall rate but only 18%
precision. In contrast, MemVul demonstrates superior perfor-
mance across all metrics by leveraging the BERT language



model to extract features from vulnerability reports. BERT ex-
hibits robust linguistic characterization and feature extraction
capabilities, effectively capturing the semantic information
present in vulnerability reports. This highlights the significance
of the feature extraction component in the vulnerability report
identification model. However, when compared with Vuln-
Detector, MemVul obtains poorer results in various metrics.
This discrepancy arises from the incorporation of the self-
attentive mechanism feature extraction component into our
model. This additional component performs post-processing
on the features, extracting more detailed IR characteristics and
enhancing the model’s nonlinear capacity to capture global
contextual information. As a result, MemVul acquires richer
semantic information, thereby facilitating improved vulnera-
bility report classification.

Conclusion Vuln-Detector demonstrates effectiveness in
predicting the risk level of incoming vulnerability reports,
thereby reducing the likelihood of open source software be-
ing targeted by attackers. Moreover, when compared to the
baselines, our model achieves superior results across various
metrics. This further validates the efficacy and practicality of
our proposed approach over existing approaches.

B. RQ2: What is the impact of the pooling method in BERT
on the model’s performance?

Motivation The pooling method in BERT can have an im-
pact on the overall performance. Pooling is a feature selection
and information filtering process, and different pooling meth-
ods can yield different computational speeds and experimental
results. Therefore, it is necessary to explore different pooling
methods in Vuln-Detector to identify the optimal one.

Approach In the experiment, we employed four different
pooling methods. The first method is mean pooling, which
calculates the average of the output vectors of all tokens to
represent the sentence vector. The second method is max
pooling, which selects the maximum value for each dimension
of the output vectors as the sentence vector. The third method
is attention pooling, which selectively aggregates values to
generate the output. The fourth method directly uses the output
vector at the CLS position to represent the entire sentence.
Except for the different pooling methods, all other module
settings and training details remain the same. We evaluated
the best pooling method based on five evaluation metrics:
Precision, Recall, F1-score, AUROC, and AUPRC.

Results The results of different pooling methods are shown
in Table III. For ease of comparison, we bolded the best result
for each metric.

The experimental results, shown in Table III, indicate that
different pooling methods affect the model’s results. The CLS
pooling method outperforms the other three pooling methods
in terms of Recall, F1-score, and AUROC. Specifically, the
CLS pooling method achieves a Recall of 73%, which is an
improvement of 18% compared to the best results obtained by
the other three pooling methods. A higher Recall enables the
model to identify more NSVRs, reducing the probability of
missing critical vulnerability reports. Our method achieves an

TABLE III
COMPARISON OF DIFFERENT POOLING METHODS

POOLING Precision Recall F1-score AUROC AUPRC

Mean 0.46 0.62 0.53 0.97 0.41
Max 0.48 0.58 0.53 0.97 0.41
Attention 0.45 0.61 0.52 0.97 0.41
CLS 0.42 0.73 0.53 0.98 0.41

F1-score of 53%, indicating a good balance between Precision
and Recall using our pooling method. The AUROC is 98%,
indicating the strong capability of our model to correctly
identify both risky and safe vulnerability reports. The AUPRC
values for all four pooling methods are 41%.

Max pooling has the highest Precision but the lowest Recall
among the four pooling methods. Max pooling selects the
maximum value for each dimension, increasing the receptive
field and extracting more useful feature information, resulting
in the highest identification accuracy. Precision and Recall are
conflicting metrics, so a higher Precision also implies lower
Recall. Mean pooling and Attention pooling have lower Recall
rates, as both methods may blur the textual features of the
input vulnerability reports, causing the model to miss some
NSVRs due to insufficient linguistic information. CLS pooling
yields the lowest Precision, possibly due to the direct use of
the output vector at the CLS position to represent the entire
sentence, leading to the loss of some features. However, CLS
pooling achieves the highest values for the other four metrics.
This is because, compared to other pooling methods, CLS
pooling is more effective at capturing contextual information
under specific contexts, resulting in higher Recall and F1-score
values, meaning it can identify more risky vulnerability reports
and reduce the risk of losses for OSS users due to missed
critical vulnerability reports.

Conclusion In this experiment, the CLS pooling method
performed the best in Vuln-Detector compared to other pooling
methods.

C. RQ3: How many layers of self-attention are most effective?

Motivation The self-attention mechanism is a key factor in
improving the performance of Vuln-Detector. The number of
attention layers can influence the model’s learning capacity for
semantic features. To maximize the performance of the model,
we aim to understand the impact of the number of attention
layers.

Approach In this experiment, we vary the number of self-
attention layers to 1, 2, and 3, respectively. Apart from the dif-
ferent number of self-attention layers, all other module settings
and training details remain the same. In this experiment, we
evaluate the model using the five evaluation metrics: Precision,
Recall, F1-score, AUROC, and AUPRC.

Results The results of different self-attention layers are
shown in Table IV. For ease of comparison, we bolded the
best result for each metric.

The experimental results, as shown in Table IV, reveal that
the model’s performance fluctuates with the variation in the



TABLE IV
COMPARISON OF DIFFERENT SELF-ATTENTION LAYERS

NUM Precision Recall F1-score AUROC AUPRC
1 0.44 0.70 0.54 0.98 0.46
3 0.40 0.55 0.46 0.98 0.36
2 0.42 0.73 0.53 0.98 0.41

number of self-attention layers. We find that when the number
of self-attention layers is 2, the model performs well across all
five metrics. Specifically, it achieves a Recall of 73%, which
is 4% higher than the best results obtained by other layer
numbers. This implies that the model can identify more risky
vulnerability reports when there are 2 self-attention layers. The
AUROC is 98%, indicating the strong ability of the model to
distinguish between SVRs and NSVRs.

When the number of layers is 1, the Precision, F1-score,
and AUPRC are better than the results obtained by other
layer numbers. However, the Recall is only 70%, which does
not show improvement compared to the best baseline result.
This is because with only one layer, the network depth is
shallow, and the crucial features of vulnerability reports may
be misled by other features, resulting in lower Recall. When
the number of layers is 3, the Precision is 40%, Recall is only
55%, AUPRC is 36%, and F1-score is 46%. These results are
the worst among the three different layer numbers. This is
because an excessive number of layers enhances the features
of input vulnerability reports, but it also means that the model
requires more effective features from the reports to judge risky
vulnerability reports. This may lead to the model failing to
recognize some risky vulnerability reports that lack sufficient
relevant features. Additionally, with a small number of positive
samples in the dataset, having too many layers may amplify
irrelevant features of negative samples, resulting in decreased
model performance.

Conclusion When there are 2 self-attention layers, the
model achieves the highest Recall and performs well in other
metrics. It strikes a good balance between layer numbers 1 and
3. Therefore, we ultimately set the number of self-attention
layers to 2 in our Vuln-Detector model.

D. RQ4: What is the optimal number of heads in the multi-
head self-attention mechanism?

Motivation The self-attention mechanism is an important
component that affects the performance of the Vuln-Detector
model. The number of heads in each layer of self-attention
can impact the model’s ability to learn different positional
and semantic features. In order to maximize the model’s
performance, we aim to investigate the effect of the number
of heads and identify the optimal value.

Approach In this experiment, we set the number of heads to
4, 8, and 16, respectively. Apart from the different number of
heads, all other module settings and training details remain the
same. In this experiment, we still use the evaluation metrics
of Precision, Recall, F1-score, AUROC, and AUPRC to assess
the model.

TABLE V
COMPARISON OF RESULTS WITH DIFFERENT NUMBERS OF HEADS

HEAD NUM Precision Recall F1-score AUROC AUPRC
8head 0.44 0.69 0.54 0.98 0.43

16head 0.47 0.60 0.53 0.98 0.43
4head 0.42 0.73 0.53 0.98 0.41

Results The results obtained with different numbers of
heads are presented in Table V. To facilitate comparison, we
highlight the best result for each metric in bold.

The experimental results are shown in Table V. Firstly, it
can be observed from the table that the model performance
varies with the number of heads. We found that when the
number of heads is 4, the model achieves good results for all
five metrics. Specifically, the Recall value is 73%, which is
6% higher than the best result obtained with other numbers
of heads. This indicates that the model can identify more
dangerous vulnerability reports when the number of heads is 4,
making it more suitable for real-world scenarios. The AUROC
is 98%, demonstrating the model’s strong ability to distinguish
between NSVR and SVR.

Compared to the case with 4 heads, the highest Precision
is achieved when the number of heads is 16, but its Recall
value is only 60%, indicating the poorest performance. When
the number of heads is 8, the F1-score and AUPRC values
perform the best, but the Recall is still lower compared to
the case with 4 heads. It can be observed that as the number
of heads increases, the Recall decreases. This is because the
enhancement of the number of heads leads to the extraction
of more irrelevant features, thereby overlooking many crucial
features.

Conclusion In conclusion, compared to other numbers of
heads, the model performs best when the number of heads is
4. Therefore, we set the number of heads to 4 in each layer
of the self-attention mechanism.

E. RQ5:How does the impact of the self-attention mechanism
on the model compare to that of other components?

Motivation The self-attention mechanism in Vuln-Detector
is our key design. To compare it with other feature extraction
components and further demonstrate the effectiveness of our
key design, we replace the self-attention feature extraction
component with three other feature extraction approaches. In
this experiment, we still use five evaluation metrics: Precision,
Recall, F1-score, AUROC, and AUPRC to evaluate the model.

Approach In this experiment, we set the feature extraction
components to be BiLSTM, FFN, TextCNN, and self-attention,
respectively. Apart from the different feature extraction com-
ponents, the settings and training details of other modules
remain the same.

Results The results obtained with different feature ex-
traction components are shown in Table VI. To facilitate
comparison, we highlight the best result for each metric using
bold and underline.

The experimental results are shown in Table 7. Self-attention
outperforms other feature components in terms of F1-score



TABLE VI
PERFORMANCE WITH DIFFERENT FEATURE EXTRACTION COMPONENTS.

DIFF MODEL Precision Recall F1-score AUROC AUPRC
BiLSTM 0.37 0.74 0.50 0.96 0.27

FFN 0.44 0.62 0.51 0.97 0.43
TextCNN 0.30 0.79 0.44 0.98 0.37

Self-attention 0.42 0.73 0.53 0.98 0.41

and AUPRC. Specifically, the F1-score is 53%, which is 4%
higher than the best result obtained by other components. This
indicates that our key design improves the model’s ability
to balance between Precision and Recall. Furthermore, the
AUPRC is 98%, further demonstrating the strong balance
between Precision and Recall in our approach.

In comparison to Self-attention, BiLSTM [26] performs
inadequately across all metrics. Despite being an improve-
ment over traditional RNNs, BiLSTM still struggles to ef-
fectively transmit information from the start of excessively
long sequences. On the other hand, FFN achieves the highest
Precision and AUPRC values, but its Recall value is only
62%, indicating the poorest performance among the considered
feature components. This drawback can be attributed to the
simplified network structure of FFN, which is not well-suited
for extracting feature vectors from lengthy texts, causing the
loss of some semantic information and resulting in a low recall
rate.

TextCNN attains the highest Recall value, but its Precision
value is only 30%, the lowest among the four feature extraction
components. This suggests its limited accuracy in correctly
predicting dangerous vulnerability reports. In contrast, the
Self-Attention mechanism exhibits the best overall perfor-
mance when compared to the other three feature extraction
components. This superiority can be attributed to the self-
attention mechanism’s ability to calculate similarity without
dependencies, enabling efficient parallel computation and sig-
nificantly improving computational efficiency. Furthermore,
the introduction of the self-attention mechanism addresses the
challenge of capturing long-distance dependencies in texts,
thereby mitigating the loss of semantic information. Conse-
quently, it facilitates the effective extraction of feature vectors
from input vulnerability reports.

Conclusion Self-attention is the most effective feature ex-
traction component to improve the model’s expressive ability
to make the best model performance.

VI. THREATS TO VALIDITY

In this section, we analyze the threats to validity from
three aspects: internal validity, external validity, and construct
validity.

A. Internal Validity

The main threat to internal validity is the correctness of
Vuln-Detector and the replication of the model by Pan [12].
We conducted multiple code inspections to minimize errors
in Vuln-Detector. Additionally, we replicated Pan’s approach,
and although the results may differ from the original paper

due to device or other factors, we still compared our results
with the original paper, which may introduce some impact.

B. External Threats

The main threat to external validity is that we only exper-
imented with dangerous IRs from the GitHub IRs referenced
by CVEs. There are many other vulnerability information
databases besides CVE, so our dataset may not represent all
dangerous IRs, and we cannot be certain about the generaliz-
ability of our approach.

However, we believe in the effectiveness of Vuln-Detector
in early automatic identification of dangerous vulnerability
reports. In the future, we plan to collect more datasets from
different open-source platforms and evaluate Vuln-Detector in
real-world development scenarios to address this limitation.

C. Construct validity

The main threat to construct validity is the lack of handling
the imbalance between positive and negative samples in Vuln-
Detector. The scarcity of dangerous vulnerability reports may
affect the approach’s ability to correctly identify them. In
future work, we plan to take measures to increase the number
of dangerous vulnerability reports.

VII. RELATED WORK

In this section, we delve into the automatic mining and
classification of vulnerability reports and comments in online
chatrooms, two crucial areas in open-source software (OSS)
project development. Section A discusses the significance of
accurately identifying and classifying vulnerability reports,
reviewing various approaches and techniques used in previous
research. Section B turns to the automatic classification of
comments in online chatrooms, a common communication
channel among OSS developers.

A. Automatic Mining of Vulnerability Reports

Previous research has highlighted the importance of au-
tomatically identifying dangerous vulnerability reports and
proposed approaches for classifying security and non-security
bug reports. Most existing work is based on bug repositories,
treating bug classification as text classification. Kudjo et al.
[27] demonstrated the challenges with TF-IDF and proposed
a vulnerability classification approach based on term frequency
and inverse gravity moment (TF-IGM) to improve the classifi-
cation accuracy of the model. Patrick et al. [28] proposed the
use of a security vocabulary specific to a particular project
to enhance the importance of standard security keywords.
Subsequently, Oyetoyan et al. [29] demonstrated that training
text classification models with security keywords can improve
the generalization ability of the model.

Based on the discussions of the above previous work, it can
be observed that most of the previous approaches focus on
optimizing the feature extraction component. This indicates
that the quality of extracted features plays a significant role in
the classification results of vulnerability reports. The problem
of how to extract, retain, and enhance effective features
remains an area for further exploration.



Compared to previous work, we adopt a Siamese network
model structure, utilize BERT encoding, and input the encoded
feature vectors into the self-attention mechanism to integrate
and enhance the IR feature information. Additionally, our
approach can capture global information from the input IR
sequences, addressing the issue of word correlations and
improving the accuracy of the model.

B. Automatic Classification of Comments in Online Chat-
rooms

Online chatrooms serve as communication channels among
most OSS project developers. Platforms such as Slack [30] and
Gitter [31] are commonly used for communication. Lin et al.
[32] explored how Slack influences the dynamics of develop-
ment teams and conducted an exploratory study to understand
how developers use Slack and benefit from it. They found
that Slack plays a significant role in software development,
enabling developers to communicate OSS project information
through instant messaging and discuss and resolve bug reports.
Similar to bug reports, the chat messages in online chatrooms
are often diverse, and classifying them for easier access to
desired information becomes necessary.

Antoniol et al. [33] used Alternating Decision Trees (an
extension of decision trees), Naive Bayes classifiers, and
logistic regression to build a classifier that categorizes reports
into bug and non-bug reports. Gu et al. [34] proposed SUR-
Miner, a model that goes beyond the assumption of a sim-
ple bag-of-words model and categorizes chat message data
into five different classes: aspect evaluation, praise, feature
request, error report, and other. Arya et al. [35] employed
TF-IDF weighting as text features and introduced several
machine learning algorithms to classify sentences in problem
statements. Shi et al. [36] proposed a Siamese network-based
approach to transform the traditional text classification task
of mapping individual dialogs to their categories into a task
of determining whether two dialogs are similar by learning
from a few-shot merging. Sorbo et al. [37] introduced intent
mining, and based on that, Huang et al. [38] improved it by
proposing a CNN-based approach for content classification of
comments. This approach achieved a 171% improvement in
accuracy compared to the approach proposed by Sorbo et al.
[37].

Compared to the aforementioned studies, our approach
focuses on categorizing vulnerability reports into dangerous
and non-dangerous reports, providing more precise classi-
fication results than the studies mentioned above. We pay
closer attention to the structural and content information of
the reports, categorizing them not only as bug reports but
also explicitly classifying them as either dangerous or non-
dangerous vulnerability reports.

VIII. CONCLUSION AND FUTURE WORK

The disclosure of dangerous vulnerabilities on the internet
before being remedied can lead to attackers exploiting the
vulnerability information, resulting in losses for OSS users.
To automatically identify dangerous vulnerability reports in the

early stages, we proposed an approach called Vuln-Detector,
which effectively recognizes dangerous vulnerability reports.
The approach consists of a feature extraction component and
a classification component. The feature extraction component
is responsible for extracting feature vectors from the input
vulnerability report texts, and we incorporated self-attention
mechanisms to enhance the model’s ability to extract textual
features. The classification component matches the input vul-
nerability report with known dangerous vulnerabilities, and
if there is no corresponding known dangerous vulnerability
report, it is classified as a safe report; otherwise, it is classified
as a dangerous vulnerability report. Experimental results based
on vulnerability reports from 1,360 projects on GitHub showed
that Vuln-Detector outperformed the approach by Pan et al.
[12] in terms of Precision, F1-score, AUROC, and AUPRC,
with improvements of 11%, 8%, and 5%, respectively. Qual-
itative analysis results also demonstrated that Vuln-Detector
performed better than the baselines in identifying dangerous
vulnerability reports.

For future work, we plan to propose better data augmenta-
tion methods to address the severe class imbalance issue in the
dataset and train more effective models. Additionally, we will
use datasets from different vulnerability information platforms
to train our model so that it can be effectively applied to
various OSS platforms.
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Computational Linguistics, 2019, pp. 3651–3657. [Online]. Available:
https://doi.org/10.18653/v1/p19-1356

[15] A. Gupta, A. Chadha, and V. Tewari, “A natural language processing
model on bert and yake technique for keyword extraction on sustain-
ability reports,” IEEE Access, vol. 12, pp. 7942–7951, 2024.

[16] C. Zhang, T. Xu, and G. Wu, “Neural quality estimation based on
multiple hypotheses interaction and self-attention for grammatical error
correction,” IEEE Access, vol. 11, pp. 8718–8726, 2023. [Online].
Available: https://doi.org/10.1109/ACCESS.2023.3239693

[17] X. Ao, X. Yu, D. Liu, and H. Tian, “News keywords
extraction algorithm based on textrank and classified TF-IDF,”
in 16th International Wireless Communications and Mobile
Computing Conference, IWCMC 2020, Limassol, Cyprus, June
15-19, 2020. IEEE, 2020, pp. 1364–1369. [Online]. Available:
https://doi.org/10.1109/IWCMC48107.2020.9148491

[18] S.-J. Bu and S.-B. Cho, “Time series forecasting with multi-headed
attention-based deep learning for residential energy consumption,”
Energies, vol. 13, no. 18, p. 4722, Sep 2020. [Online]. Available:
http://dx.doi.org/10.3390/en13184722

[19] Y. Kim, “Convolutional neural networks for sentence classification,”
in Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2014, October 25-29, 2014,
Doha, Qatar, A meeting of SIGDAT, a Special Interest Group of the
ACL, A. Moschitti, B. Pang, and W. Daelemans, Eds. ACL, 2014, pp.
1746–1751. [Online]. Available: https://doi.org/10.3115/v1/d14-1181

[20] M. A. Fischler and R. C. Bolles, “Random sample consensus: A
paradigm for model fitting with applications to image analysis and
automated cartography,” Communications of the ACM, vol. 24, no. 6,
pp. 381–395, 1981.

[21] S. Wang, J. Ren, R. Bai, Y. Yao, and X. Jiang,
“A max-relevance-min-divergence criterion for data discretiza-
tion with applications on naive bayes,” Pattern Recog-
nition, vol. 149, p. 110236, 2024. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0031320323009330

[22] X. Wu, W. Zheng, X. Xia, and D. Lo, “Data quality matters: A case
study on data label correctness for security bug report prediction,”
IEEE Trans. Software Eng., vol. 48, no. 7, pp. 2541–2556, 2022.
[Online]. Available: https://doi.org/10.1109/TSE.2021.3063727

[23] A. T. AL Ghazo and R. Kumar, “Andvi: Automated network device and
vulnerability identification in scada/ics by passive monitoring,” IEEE
Transactions on Systems, Man, and Cybernetics: Systems, vol. 54, no. 4,
pp. 2539–2550, 2024.

[24] P. Zhou, X. Xie, Z. Lin, and S. Yan, “Towards understanding con-
vergence and generalization of adamw,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 46, no. 9, pp. 6486–6493, 2024.

[25] P. Neculoiu, M. Versteegh, and M. Rotaru, “Learning text similarity
with siamese recurrent networks,” in Proceedings of the 1st Workshop
on Representation Learning for NLP, Rep4NLP@ACL 2016, Berlin,
Germany, August 11, 2016, P. Blunsom, K. Cho, S. B. Cohen,
E. Grefenstette, K. M. Hermann, L. Rimell, J. Weston, and S. W. Yih,
Eds. Association for Computational Linguistics, 2016, pp. 148–157.
[Online]. Available: https://doi.org/10.18653/v1/W16-1617

[26] B. Song, Y. Liu, J. Fang, W. Liu, M. Zhong, and X. Liu,
“An optimized cnn-bilstm network for bearing fault diagnosis
under multiple working conditions with limited training samples,”

Neurocomputing, vol. 574, p. 127284, 2024. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0925231224000559

[27] P. K. Kudjo, J. Chen, M. Zhou, S. Mensah, and R. Huang, “Improving
the accuracy of vulnerability report classification using term frequency-
inverse gravity moment,” in 19th IEEE International Conference on
Software Quality, Reliability and Security, QRS 2019, Sofia, Bulgaria,
July 22-26, 2019. IEEE, 2019, pp. 248–259. [Online]. Available:
https://doi.org/10.1109/QRS.2019.00041

[28] P. Morrison, T. D. Oyetoyan, and L. A. Williams, “Identifying security
issues in software development: are keywords enough?” in Proceedings
of the 40th International Conference on Software Engineering:
Companion Proceeedings, ICSE 2018, Gothenburg, Sweden, May
27 - June 03, 2018, M. Chaudron, I. Crnkovic, M. Chechik, and
M. Harman, Eds. ACM, 2018, pp. 426–427. [Online]. Available:
https://doi.org/10.1145/3183440.3195040

[29] T. D. Oyetoyan and P. Morrison, “An improved text classification
modelling approach to identify security messages in heterogeneous
projects,” Softw. Qual. J., vol. 29, no. 2, pp. 509–553, 2021. [Online].
Available: https://doi.org/10.1007/s11219-020-09546-7

[30] “Slack,” https://slack.com/, [Online].
[31] “Gitter,” https://gitter.im/, [Online].
[32] B. Lin, A. Zagalsky, M.-A. Storey, and A. Serebrenik, “Why

developers are slacking off: Understanding how software teams use
slack,” in Proceedings of the 19th ACM Conference on Computer
Supported Cooperative Work and Social Computing Companion,
ser. CSCW ’16 Companion. New York, NY, USA: Association
for Computing Machinery, 2016, p. 333–336. [Online]. Available:
https://doi.org/10.1145/2818052.2869117

[33] G. Antoniol, K. Ayari, M. D. Penta, F. Khomh, and Y. Guéhéneuc, “Is
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