
Published as a conference paper at ICLR 2025

NO EQUATIONS NEEDED: LEARNING SYSTEM DYNAM-
ICS WITHOUT RELYING ON CLOSED-FORM ODES

Krzysztof Kacprzyk
University of Cambridge
kk751@cam.ac.uk

Mihaela van der Schaar
University of Cambridge
mv472@cam.ac.uk

ABSTRACT

Data-driven modeling of dynamical systems is a crucial area of machine learning.
In many scenarios, a thorough understanding of the model’s behavior becomes
essential for practical applications. For instance, understanding the behavior of a
pharmacokinetic model, constructed as part of drug development, may allow us
to both verify its biological plausibility (e.g., the drug concentration curve is non-
negative and decays to zero in the long term) and to design dosing guidelines (e.g.,
by looking at the peak concentration and its timing). Discovery of closed-form
ordinary differential equations (ODEs) can be employed to obtain such insights
by finding a compact mathematical equation and then analyzing it (a two-step
approach). However, its widespread use is currently hindered because the analysis
process may be time-consuming, requiring substantial mathematical expertise, or
even impossible if the equation is too complex. Moreover, if the found equation’s
behavior does not satisfy the requirements, editing it or influencing the discovery
algorithms to rectify it is challenging as the link between the symbolic form of an
ODE and its behavior can be elusive. This paper proposes a conceptual shift to
modeling low-dimensional dynamical systems by departing from the traditional
two-step modeling process. Instead of first discovering a closed-form equation and
then analyzing it, our approach, direct semantic modeling, predicts the semantic
representation of the dynamical system (i.e., description of its behavior) directly
from data, bypassing the need for complex post-hoc analysis. This direct approach
also allows the incorporation of intuitive inductive biases into the optimization
algorithm and editing the model’s behavior directly, ensuring that the model meets
the desired specifications. Our approach not only simplifies the modeling pipeline
but also enhances the transparency and flexibility of the resulting models compared
to traditional closed-form ODEs.

1 INTRODUCTION

Background: data-driven modeling of dynamical systems through ODE discovery. Modeling
dynamical systems is a pivotal aspect of machine learning (ML), with significant applications across
various domains such as physics (Raissi et al., 2019), biology (Neftci & Averbeck, 2019), engineering
(Brunton & Kutz, 2022), and medicine (Lee et al., 2020). In real-world applications, understanding
the model’s behavior is crucial for verification and other domain-specific tasks. For instance, in
drug development, it is important to ensure the pharmacokinetic model (Mould & Upton, 2012)
is biologically plausible (e.g., the drug concentration is non-negative and decays to zero), and the
dosing guidelines may be set up based on the peak concentration and its timing (Han et al., 2018).
One effective approach to gain such insights is the discovery of closed-form ordinary differential
equations (ODEs) (Bongard & Lipson, 2007; Schmidt & Lipson, 2009; Brunton et al., 2016a), where
a concise mathematical representation is first found by an algorithm and then analyzed by a human.

Motivation: the primary goal of discovering a closed-form ODE is its semantic representation.
We assume that the primary objective of discovering a closed-form ODE, as opposed to using a
black-box model, is to have a model representation that can be analyzed by humans to understand the
model’s behavior (Qian et al., 2022). Under this assumption, the specific form of the equation, its
syntactic representation, is just a medium that allows one to obtain the description of the model’s
behavior, its semantic representation, through post-hoc mathematical analysis. We call the process of

1

Published as a conference paper at ICLR 2025

discovering an equation and then analyzing it a two-step modeling approach. An illustrative example
showing the difference between a syntactic and semantic representation of the same ODE (logistic
growth model (Verhulst, 1845)) can be seen in Figure 1.

Limitations of the traditional two-step modeling. The traditional two-step modeling pipeline,
where an ODE is first discovered and then analyzed to understand its behavior, presents several
limitations. The analysis process can be time-consuming, and requiring substantial mathematical
expertise. It may even be impossible if the discovered equation is too complex. Furthermore, as
the link between syntactic and semantic representation may not be straightforward, modifying the
discovered equation to adjust the model’s behavior may pose significant challenges. This complicates
the refinement process and limits the ability to ensure that the model meets specific requirements.

Proposed approach: direct semantic modeling. To overcome these limitations, we propose
a novel approach, called direct semantic modeling, that shifts away from the traditional two-step
pipeline. Instead of first discovering a closed-form ODE and then analyzing it, our approach generates
the semantic representation of the dynamical system directly from data, eliminating the need for
post-hoc mathematical analysis. By working directly with the semantic representation, our method
allows for intuitive adjustments and the incorporation of constraints that reflect the system’s behavior.
This direct approach also facilitates more flexible modeling and improved performance, as it does not
rely on a compact closed-form equation.

Contributions and outline. In Section 3, we define the syntactic and semantic representation
of ODEs, discuss the limitations of the traditional two-step modeling pipeline and introduce direct
semantic modeling as an alternative. We formalize semantic representation (Section 4) and then use it
to introduce Semantic ODE in Section 5, a concrete instantiation of our approach for modeling 1D
systems. Finally, we illustrate its practical usability and flexibility in (Section 6).

ሶ𝑥 𝑡 = 𝑥(𝑡) 1 −
𝑥(𝑡)

2.8
𝑥 0 = 𝑥0 0.0

0 ≤ 𝑥0 < 1.4 𝑥0 = 2.8 2.8 < 𝑥0

lim
𝑡→+∞

𝑥 𝑡 = 2.8

1.4 ≤ 𝑥0 < 2.8
(𝜌(𝑥0), 1.4)

0.0 0.0 0.0 0.0

𝑥(𝑡) 𝑥(𝑡) 𝑥(𝑡) 𝑥(𝑡)

0.0
0.0

𝜌(𝑥0)

1.4

lim
𝑥0→0

+
𝜌 𝑥0 = +∞

Inflection point

Syntactic representation Semantic representation

𝑥0

𝜊(𝑥0), Τ𝑥0 2 + 1.4
Mid-point

0.0
2.8

𝜊(𝑥0)

lim
𝑥0→∞

𝜊 𝑥0 = 0

𝑥0

ln(2)

𝑡 𝑡 𝑡 𝑡

2.8

Figure 1: Syntactic representation of a logistic growth model refers to its symbolic form, whereas
semantic representation describes its behavior for different initial conditions.

2 FORECASTING MODELS AND DISCOVERY OF CLOSED-FORM ODES

In this section, we formulate the task of discovering closed-form ODEs from data and show how it
can be reinterpreted as a more general problem of fitting a forecasting model.

Let f : RM+1 → RM , and let T = (t0,+∞). A system of M ODEs is described as

ẋ(t) = f(x(t), t) ∀t ∈ T , (1)

where x : T → RM is called a trajectory and ẋm = dxm

dt is the derivative of xm with respect to t.
We also assume each xm ∈ C2(T), i.e., it is twice continuously differentiable on T .1 We denote the
dataset of observed trajectories as D = {(t(d)n ,y

(d)
n)Nd

n=1}Dd=1, where each y
(d)
n represents the noisy

measurement of some ground truth trajectory x(d) governed by f at time point t(d)n .

A closed-form equation (Qian et al., 2022) is a mathematical expression consisting of a finite number
of variables, constants, binary arithmetic operations (+,−,×,÷), and some well-known functions
such as exponential or trigonometric functions. A system of ODEs is called closed-form when each
function fm is closed-form. The task is to find a closed-form f given D.

Traditionally (Bongard & Lipson, 2007; Schmidt & Lipson, 2009) discovery of governing equations
has been performed using genetic programming (Koza, 1992). In a seminal paper, Brunton et al.

1We assume xm ∈ C2(T) instead of C1(T), so that we can discuss curvature and inflection points.

2

Published as a conference paper at ICLR 2025

(2016a) proposed to represent an ODE as a linear combination of terms from a prespecified library.
This was followed by numerous extensions, including implicit equations (Kaheman et al., 2020),
equations with control (Brunton et al., 2016b), and partial differential equations (Rudy et al., 2017).
Approaches based on weak formulation of ODEs that allow to circumvent derivative estimation have
also been proposed (Messenger & Bortz, 2021a; Qian et al., 2022). The extended related works
section can be found in Appendix F.

Each system of ODEs f 2 defines a forecasting model3 F through the initial value problem (IVP), i.e.,
for each initial condition x(t0) = x0 ∈ RM , F maps x0 to a trajectory governed by f satisfying this
initial condition. Therefore, ODE discovery can be treated as a special case of fitting a forecasting
model F : RM → C2(T).

3 FROM DISCOVERY AND ANALYSIS TO DIRECT SEMANTIC MODELING

In this section, we define the syntactic and semantic representations, describe the traditional two-step
modeling and its limitations, and introduce our approach, direct semantic modeling.

3.1 SYNTAX VS. SEMANTICS.
ODEs are usually represented symbolically as closed-form equations. For instance, ẋ(t) = (1 −
x(t))x(t). We refer to this kind of representation as syntactic.

Syntactic representation of a closed-form ODE refers to its symbolic form, i.e., the arrangement
of variables, arithmetic operations, numerical constants, and some well-known functions.

The output of the current ODE discovery algorithms is in the form of syntactic representation. We
assume that the primary objective of discovering a closed-form ODE, as opposed to using a black-box
model, is to have a model representation that can be analyzed by humans to understand its behavior.
Such understanding is necessary to ensure that the model behaves as expected; for instance, it
operates within the range of values and exhibits trends consistent with domain knowledge. We call
the description of the dynamical system’s behavior its semantic representation.

Semantic representation describes the behavior of a dynamical system. Semantic representation
of a single trajectory may include its shape, properties, and asymptotic behavior, whereas
semantic representation of a forecasting model, including a system of ODEs, describes how they
change under different conditions, e.g., for different initial conditions.

Comparison between the syntactic and semantic representation of the same ODE is shown in Figure 1.

3.2 TWO-STEP MODELING AND ITS LIMITATIONS

Semantic representation of a dynamical system is usually obtained by first discovering an equation
(e.g., using an ODE discovery algorithm) and then analyzing it. This two-step modeling approach has
several limitations (depicted in Figure 2).

• Analysis of a closed-form ODE may be time-consuming, and requiring mathematical expertise.
It may be impossible if the discovered equation is too complex. As a result, it may introduce a
trade-off between better fitting the data and being simple enough to be analyzed by humans.

• Obtained insights may be nonactionable. As the link between syntactic and semantic represen-
tations is often far from trivial, it is difficult to edit the syntactic representation of the model to
cause a specific change in its semantic representation and to provide feedback to the optimization
algorithm to solicit a model with different behavior.

• Incorporation of prior knowledge. Often the prior knowledge about the dynamical system
concerns its semantic representation rather than its syntax. For instance, we may know what
shape the trajectory should have (e.g., decreasing and approaching a horizontal asymptote) rather
than what kind of terms or arithmetic operations are present in the best-fitting equation.

3.3 DIRECT SEMANTIC MODELING

To address the limitations of two-step modeling, we propose a conceptual shift in modeling low-
dimensional dynamical systems. Instead of discovering an equation from data and then analyzing it

2With some regularity conditions to ensure uniqueness of solutions.
3In our work we refer to a forecasting model as any model that outputs a trajectory.

3

Published as a conference paper at ICLR 2025

to obtain its semantic representation, our approach, direct semantic modeling, generates the semantic
representation directly from data, eliminating the need for post-hoc mathematical analysis.

Forecasting model determined by semantic representation A major difference between our
approach and traditional two-step modeling is how the model ultimately predicts the values of the
trajectory. Given a system of closed-form ODEs f , a forecasting model F is directly given by
the equation. We just need to solve the initial value problem (IVP) for the given initial condition.
There are plenty of algorithms to do so numerically, the forward Euler method being the simplest
(Butcher, 2016). In contrast, the result of direct semantic modeling is a semantic predictor Fsem (that
corresponds to the semantic representation of the model) that predicts the semantic representation of
the trajectory. Then it passes it to a trajectory predictor Ftraj whose role is to find a trajectory in a
given hypothesis space that has a matching semantic representation. The matching does not need to be
unique but Ftraj needs to be deterministic. Defining F as Ftraj ◦Fsem has multiple advantages. No post-
hoc mathematical analysis is required as the semantic representation of F is directly accessed through
Fsem. The model can be easily edited to enforce a specific change in the semantic representation
because we can directly edit Fsem. Incorporating prior knowledge and feedback into the optimization
algorithm is also streamlined and more intuitive. Finally, as the resulting model does not need to be
further analyzed, it does not need to have a compact symbolic representation, increasing its flexibility.
Figure 2 compares two-step modeling and direct semantic modeling.

Semantic ODE as a concrete instantiation We have outlined the core principles of direct semantic
modeling above. In the following sections, we propose a concrete machine learning model that
realizes these principles. It is a forecasting model that takes the initial condition x0 ∈ R and predicts
a 1-dimensional trajectory, x : T → R. We call it Semantic ODE because it maps an initial condition
to a trajectory (like ODEs implicitly do). Although Semantic ODE can only model 1-dimensional
trajectories, we believe direct semantic modeling can be successfully applied to multi-dimensional
systems. We describe our proposed roadmap for future research to achieve that goal in Appendix G.2.
Before we describe the building blocks of Semantic ODE in Section 5, we need a formal definition of
semantic representation.

Fitting

Semantic
representation

Dataset
Determines Predictive modelFitting

Dataset Predictive model Human analysis

Semantic
representation

ሶ𝑥 𝑡 = 𝑥(𝑡) 1 − 𝑥(𝑡)

Challenging to edit

Cannot provide feedback!

Edit

Provide feedback

Direct semantic modeling

Initial value
𝑥 𝑡0 = 𝑥0

Solve IVP
(e.g., forward Euler method) Trajectory

𝑥: 𝒯 → ℝ

Initial value
𝑥 𝑡0 = 𝑥0

Trajectory
𝑥: 𝒯 → ℝSemantic

representation of 𝑥

𝐹sem 𝐹traj

Sec. 4

Sec. 5

Sec. 6.1 Sec. 6.2

Two-step modeling

Difficult to inject

Prior knowledge

(may be complex)

Prior knowledge
Easy to inject

Figure 2: Comparison between two-step modeling and direct semantic modeling. Left: The discovery
of closed-form ODEs often allows for human analysis, but editing the equation or providing feedback
to the optimization algorithm is challenging. Right: We propose to predict the semantic representation
directly from data, which allows for editing the model and steering the optimization algorithm.

4 FORMALIZING SEMANTIC REPRESENTATION

To propose a concrete instantiation of direct semantic modeling in Section 5 called Semantic ODE,
we need to formalize the definition of semantic representation in Section 3 to make it operational.
We consider a setting where F : R→ C2(T) is a 1D forecasting model (any ODE can be treated as
such a model). We first define a semantic representation of a trajectory x ∈ C2(T) and then use it to
define a semantic representation of F itself.

Semantic representation as composition and properties Our definition of semantic representation
is motivated by the framework proposed by Kacprzyk et al. (2024b). Following that work, each
trajectory x can be assigned a composition (denoted cx) that describes the general shape of the
trajectory and the set of properties (denoted px) which is a set of numbers that describes this shape
quantitatively. The composition of the trajectory depends on the chosen set of motifs. Each motif
describes the shape of the trajectory on a particular interval. For instance, “increasing and strictly
convex”. Given a set of motifs, we can then subdivide T into shorter intervals such that x is described
by a single motif on each of them. This results in a motif sequence and the shortest such sequence
is called a composition. The points between two motifs and on the boundaries are called transition
points. An example of a trajectory, its composition, and its transition points is shown in Figure 3a.

4

Published as a conference paper at ICLR 2025

𝑠+−𝑏
increasing
concave

𝑠−−𝑏
decreasing

concave

𝑠++𝑏
increasing

convex

(𝑠+−𝑏, 𝑠−−𝑏, 𝑠−+𝑏, 𝑠++𝑏)

Motifs:

Composition:

1

2

3

Transition points: 1 2 4 5
start local

maximum
local

minimum
end

5

3

Inflection
point

𝑠−+𝑏
decreasing

convex

4

(a)

s++b s+−b s−+b s−−b

t1

t2

t1

t2 t1

t2

t1

t2

s++u s+−u s−+u s−−u

tend tend
tend tend

s+−h s−+h

tend
tend

(b)

Figure 3: (a) Composition and transition points of x(t) = sin(t) on [0, 2π]. (b) Motif set used in the
proposed formalization of semantic representation.

Extending dynamical motifs The set of motifs we choose is inspired by the original set of
dynamical motifs (Kacprzyk et al., 2024b) but we adjusted and extended it to cover unbounded time
domains and different asymptotic behaviors. We define a set of ten motifs, four bounded motifs and
six unbounded motifs. Each motif is of the form s±±∗, i.e., is described by two symbols (each + or
−) and one letter (b/u/h). The symbols refer to its first and second derivatives. The letter b signifies
the motif is for bounded time domains (e.g., for interval (t1, t2)). Both h and u refer to unbounded
time domains. These motifs are always the last motif of the composition, describing the shape on
(tend,+∞) where tend is the t-coordinate of the last transition point. h specifically describes motifs
with horizontal asymptotes. For instance, s−+h is an unbounded motif that describes a function that
is decreasing (−), strictly convex (+) and with horizontal asymptote (h). All motifs are visualized
in Figure 3b. Note that we excluded the three original motifs describing straight lines to simplify
the modeling process. If necessary, they can be approximated by other motifs with infinitesimal
curvature. We denote the set of all compositions constructed from these motifs as C.

Properties Apart from the composition, the semantic representation of a trajectory also involves
a set of properties. Ideally, the properties should be sufficient to visualize what each of the motifs
looks like and to constrain the space of trajectories with the corresponding semantic representation.
Following the original work, we include the coordinates of the transition points as they characterize
bounded motifs well. In contrast to their bounded counterparts, the unbounded motifs are not
described by their right transition point but by a set of motif properties. These, in turn, depend
on how we describe the unbounded motif. For instance, we could parameterize s++u as x(t) =
x(tend)2

(t−tend)/B , where (tend, x(tend)) is the position of the last transition point. In that setting, B is
the property of s++u that describes the doubling time of x (x(t+B) = 2x(t)). In reality, choosing
a good parametrization with meaningful properties is challenging, and we discuss it in more detail
in Appendix D.2. The set of properties also includes the first derivative at the first transition point
(t0) and the first and the second derivative at the last transition point (tend). They are needed for
the trajectory predictor described in Section 5.2. Each composition c ∈ C may require a different
set of properties that we denote Pc. For instance, a trajectory x with cx = (s++b, s+−h) will have
px = (t0, t1, x(t0), x(t1), ẋ(t0), ẋ(t1), ẍ(t1), h, t1/2), where each (ti, x(ti)) is a transition point,
and (h, t1/2) are the properties of the unbounded motif (see Figure 4). We denote all possible sets of
properties as P , where P =

⋃
c∈C Pc.

We are finally ready to provide a formal definition of the semantic representation of a trajectory
x ∈ C2(T) and a forecasting model F : R → C2(T). Given this formal definition of semantic
representation, we introduce our model, Semantic ODE, in the next section.

Definition 1. The semantic representation of a trajectory x ∈ C2(T) is a pair (cx, px), where cx ∈ C
is the composition of x and px ∈ Pcx is the set of properties as specified by cx.

Definition 2. The semantic representation of F : R → C2(T) is a pair (CF , PF) : R → C × P
defined as follows. CF : R→ C is called a composition map and it maps any initial condition x0 ∈ R
to a composition of the trajectory determined by its initial condition. Formally, CF (x0) = cF (x0).
PF : R→ P is called a property map, and it maps any initial condition x0 ∈ R to the properties of
the predicted trajectory CF (x0). Formally, PF (x0) = pF (x0).

5

Published as a conference paper at ICLR 2025

5 SEMANTIC ODE

ODE discovery methods aim to discover the governing ODE f and thus a forecasting model F
(defined by IVP), which is later analyzed to infer its semantic representation (CF , PF) in a two-step
modeling process. In this section, we introduce a novel forecasting model, called Semantic ODE,
that allows for direct semantic modeling. As described in Section 3.3 our model F consists of
two submodels, Fsem and Ftraj (where F = Ftraj ◦ Fsem). We can now define formally Fsem as a
function that maps an initial condition x0 ∈ R to the semantic representation of a trajectory, i.e.,
Fsem : R → C × P . Ftraj then takes this semantic representation and matches it a trajectory with
such representation, i.e., Ftraj : C × P → C2(T) such that if x = Ftraj(c, p) then (cx, px) = (c, p).
This is visualized in Figure 4. Crucially, by definition, the semantic predictor is the semantic
representation of F . Indeed, let x = F (x0) = Ftraj(Fsem(x0)). Then by the definition of Ftraj above,
(CF , PF)(x0) = (cF (x0), pF (x0)) = (cx, px) = Fsem(x0). Unlike the two-step modeling approach,
there is no need for post-hoc mathematical analysis. The semantic representation of the model can be
directly inspected through the semantic predictor. In Section 5.1, we propose an implementation for
the semantic predictor, and in Section 5.2, we describe the trajectory predictor.

(0.0,0.4)
(1.8,1.4)

𝑥 = 2.8

𝑥

𝑡

TrajectoryInitial condition

𝑥(0) = 0.4 𝐹sem

Section 5.1

𝐹traj

Section 5.2

Semantic representation of 𝑥Semantic predictor Trajectory predictor

Composition: (𝒔++𝒃, 𝒔+−𝒉)

Transition points: 0,0.4 , (1.8,1.4)

Derivatives: ሶ𝑥 𝑡0 = 0.3, ሶ𝑥 𝑡1 = 0.7, ሷ𝑥 𝑡1 = 0

Properties of 𝑠+−ℎ: ℎ = 2.8, 𝑡1/2 = 2.9

Figure 4: Semantic ODE (F) maps the initial condition to the semantic representation of the trajectory
(using Fsem and then uses it to predict the actual trajectory (through Ftraj). Formally, F = Ftraj ◦Fsem.

5.1 SEMANTIC PREDICTOR

Semantic predictor Fsem consists of two models. One that predicts the composition denoted Fcom
(corresponding to the composition map CF), and one that predicts the properties, denoted Fprop
(corresponding to the property map PF).

Fcom is a classification algorithm from R to C′ ⊂ C, where C′ is our chosen composition library.
We model it as a partition of R into intervals (here called branches), each mapped to a different
composition. The maximum number of branches I ∈ N is selected by the user. For instance, the
logistic growth model example in Figure 1 would have 3 branches: Fcom(x0) = (s++b, s+−h) for
0 ≤ x0 < 1.4, Fcom(x0) = (s+−h) for 1.4 ≤ x0 ≤ 2.8, and Fcom(x0) = (s−+h) for 2.8 < x0.

As mentioned earlier, although x0 = 2.8 should be a straight line, we approximate it with s+−h.

Fprop is modeled as a set of univariate functions. Each of them describes one of the coordinates of
the transition point, the value of the first or second derivative, or the properties of the unbounded
motif. These functions are different for different compositions. Continuing our logistic growth
example, Fprop is a piecewise function consisting of three composition-specific property sub-maps
F

(s++b,s+−h)
prop , F (s+−h)

prop , F (s−+h)
prop that correspond to the three branches described above. Let us focus

on F
(s++b,s+−h)
prop that describes the properties of (s++b, s+−h). The list of properties includes the

coordinates of both transition points, first and second derivatives, and two properties of the unbounded
motif (s+−h). This is visualized in Figure 5.

0.25 0.50 0.75 1.00 1.25
x0

0

1

2

3

Transition points (t-coordinates)
t0
t1

0.25 0.50 0.75 1.00 1.25
x0

0.25

0.50

0.75

1.00

1.25

Transition points (x-coordinates)

x(t0)
x(t1)

0.25 0.50 0.75 1.00 1.25
x0

0.0

0.2

0.4

0.6

Derivatives

x(tstart)
x(tend)
x(tend)

0.25 0.50 0.75 1.00 1.25
x0

1

2

3

4

Properties of unbounded motif s+ h

horizontal asymptote
inverse half-life

Property map for composition (s+ + b, s+ h)

Figure 5: Property sub-map of the logistic growth model (for composition (s++b, s+−h)) describes
how various properties depend on the initial condition. See Figure 9 for a full semantic representation.

6

Published as a conference paper at ICLR 2025

Training of Fsem is performed in two steps. First, we train the composition map Fcom. Then, the dataset
is divided into separate subsets, each for a different composition—according to the composition
map—and a separate property sub-map is trained on each of the subsets. A block diagram is presented
in Figure 6, and the pseudocode of the training procedure can be found in Appendix C.

argmin
𝜃

1

|𝒟2|

𝑑
𝐹traj
0 (𝐹com 𝑥0

𝑑
, 𝐹prop

2 (𝑥0
𝑑
; 𝜃))(𝒕 𝑑) − 𝒚(𝑑)

2

2

𝑥0

𝒞′

𝒟
For each (𝑥0, 𝒕, 𝒚) ∈ 𝒟:

For each 𝑐 ∈ 𝒞: Dynamic
programming 𝐹com

min
𝑝∈𝒫

𝐹traj
0 𝑐, 𝑝 (𝒕) − 𝒚

2

return

Divide 𝒟 according to 𝐹com

𝒟1

𝒟2

Fit property submap

Fit property submap

𝐹prop
1

𝐹prop
2

𝐹prop

𝐹sem

Figure 6: Block diagram showing main elements of training the semantic predictor.

5.2 TRAJECTORY PREDICTOR

The goal of the trajectory predictor (Ftraj) is to map the semantic representation (c, p) to a trajectory
x ∈ X such that (cx, px) = (c, p). In that case, we say that x conforms to (c, p) and write it as
x ≡ (c, p). This mapping requires specifying the hypothesis space X for the predicted trajectories.
As mentioned previously, we would also like each trajectory to be twice continuously differentiable,
i.e., X ⊂ C2. We choose X to be a set of piecewise functions defined as

x(t) =

{
x|(t) t ≤ tend

|x(t) t > tend
(2)

where tend is the last transition point (before the unbounded motif), x| ∈ X| is called the bounded
part of x, and |x ∈ |X is called the unbounded part of x. Finding x| and |x is done separately and we
discuss it respectively in Sections 5.2.1 and 5.2.2.

5.2.1 BOUNDED PART OF THE TRAJECTORY

In this section, we define X| and describe how we can find the bounded part of the trajectory (x|) given
a semantic representation (c, p) without the unbounded motif and its properties, denoted (c|, p|).

Cubic splines We decide to define X| as a set of cubic splines. They are piecewise functions where
each piece is defined as a cubic polynomial. The places where two cubics are joined are called knots.
Cubic splines require that the first and second derivatives at the knots be the same for neighboring
cubics so that the cubic spline is guaranteed to be twice continuously differentiable. Cubic splines
are promising because they are flexible, and for a fixed set of knots, the equations for their values
and derivatives are linear in their parameters. We come up with two different ways of finding a cubic
spline that conforms to a particular semantic representation that leads us to develop two trajectory
predictors: F 0

traj : C × P → C0 and F 2
traj : C × P → C2. We use F 0

traj during training of Fsem as it is
fast and differentiable, but the found trajectory may not be in C2 (only continuous). At inference, we
use F 2

traj that is slower and not differentiable but ensures that the trajectory is in C2. We describe both
approaches briefly below. More details are available in Appendix D.1

C0 trajectory predictor F 0
traj describes each motif as a single cubic. Each cubic is found by solving

a set of four linear equations. Two are for the positions of the transition points, and two are for the
derivatives, one at each transition point. As each transition point (apart from t0) is either a local
extremum or an inflection point, we know that either the first or the second derivative vanishes. The
first derivative at t0 is specified directly in p|. During training, we also make sure that this derivative
is always in the range described in Table 9. We prove why this is sufficient to guarantee that the
predicted trajectory conforms to (c|, p|) in Appendix D.1.2.

7

Published as a conference paper at ICLR 2025

C2 trajectory predictor F 2
traj describes each motif as two cubics with an additional knot between

every two transition points. Given K cubics (and K+1 knots), the traditional way to ensure that x| is
in C2 is to set up 3(K−1) constraints that match the values and both derivatives at the knots. Instead,
we propose to fit the second derivative of the cubic spline (ẍ|), a piecewise linear function, and then
integrate it twice to get the desired cubic spline. As it is continuous, we can describe it solely by its
values at the knots (vk at knot tk). Together with the additional two parameters for the integration
constants, we not only reduce the number of parameters to K + 3 (while still guaranteeing the
trajectory is in C2) but, more importantly, we can control exactly the value of the second derivative.
Importantly, as shown in Appendix D.1, we can impose vk > 0 or vk < 0 accordingly. We set some
vk to make sure that the first and second derivatives at the transition points are correct. Then, we
optimize the additional knots and some of vk to minimize the error between the predicted and target
x-coordinates of the transition points (with an additional loss term for the signs of the first derivatives
at the knots). We minimize this objective using L-BFGS-B (Liu & Nocedal, 1989) and Powell’s
method (Powell, 1964) until we find a solution where the error on the transition points is smaller than
a user-defined threshold. If it does not succeed, then we default to F 0

traj.

5.2.2 UNBOUNDED PART OF THE TRAJECTORY

In this section, we define |X and describe how we can find the unbounded part of the trajectory
given an unbounded motif and its properties, as well as the coordinates of the last transition point
and both derivatives at this point. We need them to ensure that x is twice differentiable at tend.
First, we need to choose which properties we are interested in. They should describe the shape
(and long-term behavior) of the unbounded motif in sufficient detail such that we do not need to see
the underlying equation to visualize it. For instance, for motifs with horizontal asymptotes (s+−h

and s−+h), we choose these to be h and t1/2 where x = h is the horizontal asymptote and t1/2
is the time where the trajectory is in the middle between the last transition point and the h, i.e.,
x(t1/2) = (x(tend) + h)/2. In exponential decay, t1/2 − tend would correspond to “half-life”. Then,
we need to come up with a parametrization that would both guarantee the shape of the trajectory
and allow us to impose any possible properties (e.g., h in s−+h needs to satisfy h < x(tend)). We
parametrize s−+h as |x(t) = 2(x(tend) − h)/(1 + eg(t)) + h where g is an appropriately defined
cubic spline. We show how we can find such g and why it has the desired properties, as well as
properties and parameterizations for other motifs, in Appendix D.2. Importantly, it does not matter
how complicated these parameterizations are, as they are not used by humans to understand the
model. All information is directly available in Fsem.

6 SEMANTIC ODE IN ACTION

In this section, we want to illustrate the usability of Semantic ODEs and highlight their advantages:
semantic inductive biases (Section 6.1), comprehensibility (Section 6.2), editing (Section 6.3) and
flexibility and robustness to noise (Section 6.4). To demonstrate the first three advantages, we present
a case study of finding a pharmacokinetic model from a dataset of observed drug concentration curves.
Such models are essential for drug development and later clinical practice. Details about the dataset
can be found in Appendix E.1. We will contrast our approach with one of the most popular ODE
discovery algorithms, SINDy (Brunton et al., 2016b). However, many of the observations will apply
to other algorithms as well.

6.1 SEMANTIC INDUCTIVE BIASES

In Semantic ODEs, a user can specify inductive biases about the semantic representation of the model.
This is in contrast to the syntactic inductive biases, available in ODE discovery algorithms. Semantic
inductive biases can be more meaningful and intuitive for users than syntactic ones as the relationship
between the syntactic and semantic representation may be non-trivial. The role of syntactic biases is,
predominantly, to ensure that the equations can be analyzed by humans. They are not designed to
accommodate prior knowledge about the system’s behavior. Examples of inductive biases in SINDy
and Semantic ODE are shown in Table 1.

The drug concentration curve describes the drug plasma concentration after administration as a
function of time. Without any additional doses, we would expect the concentration to decay to 0

8

Published as a conference paper at ICLR 2025

Table 1: Examples of inductive biases in SINDy and Semantic ODE.

Syntactic inductive biases in SINDy Semantic inductive biases in Semantic ODE

Autonomous system: whether the governing ODE system is
time-invariant.
Library of functions: whether to include, e.g., polynomials,
trigonometric terms, exponential/logarithmic terms, cross-terms.
Sparsity: the number of terms, strength of penalty terms such as
L1 or L2 norms.

Library compositions: The maximum number of motifs,
the starting motif, the type of asymptotic behavior.
The complexity of the composition map: how many
different compositions it should predict.
Complexity of the property maps: how many trend
changes the property maps could have.

as t → ∞. This is a semantic inductive bias that can be easily put into Semantic ODE. We can
enforce the last motif to always be s−+h (decreasing, convex function with a horizontal asymptote) by
removing all biologically impossible compositions from the library C′. Designing syntactic inductive
biases based on the prior knowledge is more challenging. SINDy assumes ẋ =

∑n
i=1 αigi, i.e., f is a

linear combination of pre-specified functions. As choosing which terms should and should not appear
in the equation is far from obvious, we choose a general library containing polynomial terms, exp,
and trigonometric terms (see Appendix E.2 for details). We also consider different sparsity levels,
from 1 to 15 non-zero terms.

6.2 COMPREHENSIBILITY

We have fitted Semantic ODE with the inductive bias described earlier and versions of SINDy with
different sparsity constraints. The results can be seen in Table 2.

Table 2: Results of fitting Semantic ODE and SINDy to the pharmacokinetic dataset.
Model Syntactic biases Semantic biases Syntactic

representation
Semantic
representation

In-domain
(t ≤ 1)

Out-domain
(t > 1)

SINDy ẋ =
∑n

i=1 αigi, n ≤ 1 NA ẋ(t) = −3.06x(t)t NA 0.222(0.041) 0.024(0.005)
SINDy ẋ =

∑n
i=1 αigi, n ≤ 2 NA ẋ(t) = 5.56−43.10x(t)t NA 0.112(0.027) 0.054(0.010)

SINDy ẋ =
∑n

i=1 αigi, n ≤ 5 NA Equation (7) NA 0.101(0.023) 16.850(0.021)
SINDy ẋ =

∑n
i=1 αigi, n ≤ 10 NA Equation (8) NA 0.029(0.005) 18.686(0.003)

SINDy ẋ =
∑n

i=1 αigi, n ≤ 15 NA Equation (9) NA 0.020(0.004) 77.577(1.249)
Semantic ODE NA |cx|≤ 4, cx ends with s−+h NA Figure 7 0.016(.004) 0.033(.006)
Semantic ODE NA cx : (s+−b, s−−b, s−+h), h = 0 NA Figure 8 0.018(.003) 0.015(.002)

We can see that Semantic ODE better fits the dataset than even the longest equations found by SINDy.
Compact equations, e.g., ẋ(t) = 5.56− 43.10x(t)t have poor performance. To improve it, we need
to allow for much more complicated equations, such as Equation (9) in Appendix B. Such equations
are very hard to analyze and, as a result, may be no more interpretable than a black box model. They
are also more prone to over-fitting, as demonstrated by large out-domain error. More importantly,
Semantic ODE can be directly understood by looking at its semantic representation in Figure 7.

t

x

(s+ b, s b, s + h) if < x0 < +
Composition map

0.0 0.2 0.4 0.6 0.8 1.0
x0

0.00

0.05

0.10

Transition points (t-coordinates)

t0
t1
t2

0.0 0.2 0.4 0.6 0.8 1.0
x0

0.0

0.5

1.0

Transition points (x-coordinates)

x(t0)
x(t1)
x(t2)

0.0 0.2 0.4 0.6 0.8 1.0
x0

5

0

5

10

Derivatives
x(tstart)
x(tend)
x(tend)

0.0 0.2 0.4 0.6 0.8 1.0
x0

0.1

0.2

0.3

Properties of unbounded motif s + h

horizontal asymptote
half-life

Property map for composition (s+ b, s b, s + h)

Figure 7: Semantic representation of Semantic ODE fitted to the pharmacological dataset.

The left side of Figure 7 tells us that for all initial conditions, the shape of the predicted trajectory is
going to be the same, namely (s+−b, s−−b, s−+h). As the composition map has only one branch,
we have only one property map, and it is visualized on the right of the composition map. It consists
of four subplots. Going from left to right, we have the t-coordinates of the transition points, x-
coordinates of the transition points, values of the derivatives at the boundary transition points, and
the properties of the unbounded motif. In our case, the unbounded motif is a convex, decreasing
function with a horizontal asymptote, and it is described by the value of the horizontal asymptote and
its “half-life”, which is the t-coordinate of the point where the value of x is in the middle between
the last transition point and the asymptote. By looking at this representation, we can readily see
how the trajectory changes with respect to the initial condition. We see that the t-coordinates of the
transition points remain fairly constant, whereas x-coordinates increase linearly. In particular, we
can see how the maximum of the trajectory (x(t1)) increases linearly from 0.6 up to 1.3. Arriving at
similar observations about the discovered ODEs requires significant time and expertise. In particular,

9

Published as a conference paper at ICLR 2025

we do not know what the composition map of the discovered ODEs looks like. Thus, we cannot be
sure whether the model behaves correctly.

6.3 EDITING

Often, the fitted model does not satisfy all our requirements. A very important requirement in
pharmacology would be to make sure that the model is biologically possible. In particular, the
predicted concentration should decay to 0 as t→∞. The horizontal asymptote of our model is close
to 0 but not exactly. That is why the extrapolation error for t > 1 is substantially higher than for
t ≤ 1. Fortunately, we can edit the property map directly. We can impose the value of the horizontal
asymptote to be equal to 0 and retrain the model. The new property map can be seen in Figure 8.
Importantly, as shown in the last row of Table 2, the extrapolation error dropped to levels comparable
with the in-domain error. In two-step modeling, it may be challenging to verify and impose such
requirements for the predicted equations, especially the longer ones. As a result, we may end up with
a model that does not obey crucial domain-specific rules.

6.4 FLEXIBILITY AND ROBUSTNESS TO NOISE

As Semantic ODE does not assume that the trajectory is governed by a closed-form ODE, it may
fit systems that are not described by those. In particular, we show in Table 3 how, beyond standard
ODEs (logistic growth model), it can fit systems governed by a general differential equation ẋ(t) =
f(x(t), t), where f does not have a compact closed-form representation, a multidimensional ODE
where only one dimension is observed (pharmacokinetic model), delay differential equation (Mackey
& Glass, 1977), and an integro-differential equation (integro-DE). We compare our approach to
SINDy (Brunton et al., 2016b) and WSINDy (Reinbold et al., 2020; Messenger & Bortz, 2021a)
as implemented in PySINDy library (de Silva et al., 2020; Kaptanoglu et al., 2022). We consider
variants constrained to 5 terms (in a linear combination) to ensure compactness (SINDy-5, WSINDy-
5) and where the number of terms is fine-tuned and may no longer be compact (SINDy, WSINDy).
We also include a standard symbolic regression method, PySR (Cranmer, 2020), adapted for ODE
discovery and constrained to 20 symbols. We also compare with three black box approaches: Neural
ODE (Chen et al., 2018), Neural Laplace (Holt et al., 2022), and DeepONet (Lu et al., 2020).
Semantic ODE is more or equally robust to noise and performs better than the methods constrained
to compact equations in most cases. Moreover, its performance could possibly be further improved
by incorporating semantic inductive biases and model editing as discussed earlier. Additional
experiments can be found in Appendix B. Details on experiments are available in Appendix E.

Table 3: Comparison of Average RMSE obtained by different models. Average performance over 5
random seeds and data splits is shown with standard deviations in the brackets.

Logistic Growth General ODE Pharmacokinetic model Mackey-Glass (DDE) Integro-DE
Method low noise high noise low noise high noise low noise high noise low noise high noise low noise high noise

SINDy-5 0.012(.002) 0.222(.004) 0.053(.012) 0.103(.010) 0.093(.004) 0.230(.014) 0.238(.023) 0.248(.025) 0.431(.051) 0.268(.019)
WSINDy-5 0.010(.000) 0.222(.009) 0.066(.009) 0.102(.008) 0.211(.009) 0.415(.299) 0.272(.032) 0.300(.061) 0.160(.066) 0.452(.365)
PySR-20 0.012(.002) 0.224(.007) 0.078(.029) 0.119(.029) 0.053(.015) 0.242(.039) 0.261(.021) 0.288(.031) 0.027(.011) 0.393(.144)
SINDy 0.012(.001) 0.218(.011) 0.068(.013) 0.115(.012) 0.020(.001) 0.209(.010) 0.252(.026) 0.257(.028) 0.318(.172) 0.248(.016)
WSINDy 0.010(.001) 0.217(.016) 0.062(.009) 0.112(.009) 0.038(.006) 0.219(.016) 0.200(.035) 0.207(.031) 0.152(.086) 0.300(.082)
Neural ODE 0.023(.004) 0.197(.005) 0.029(.005) 0.075(.006) 0.036(.008) 0.203(.007) 0.177(.010) 0.194(.010) 0.073(.007) 0.215(.009)
Neural Laplace 0.126(.036) 0.230(.017) 0.108(.030) 0.138(.023) 0.100(.022) 0.229(.013) 0.057(.006) 0.094(.009) 0.075(.044) 0.249(.014)
DeepONet 0.184(.040) 0.306(.023) 0.160(.033) 0.195(.027) 0.058(.010) 0.212(.005) 0.107(.014) 0.132(.012) 0.100(.015) 0.230(.014)
Semantic ODE 0.015(.005) 0.198(.007) 0.016(.003) 0.068(.002) 0.015(.001) 0.197(.006) 0.037(.003) 0.077(.004) 0.025(.003) 0.204(.007)

7 DISCUSSION

Limitations and open challenges As Semantic ODE is the first model that allows for direct
semantic modeling, we focused solely on 1-dimensional systems and we describe a possible roadmap
to higher-dimensional settings in Appendix G.2. The current definition of semantic representation
assumes that the trajectory has a finite composition, i.e., it cannot have an oscillatory behavior (like
sin). Of course, we could fit a periodic function on any bounded interval, but it would fail to predict
the oscillatory behavior outside of it. We discuss more limitations in Appendix G.1.

Direct semantic modeling as a new way for modeling dynamical systems In this work we
outlined the main principles of direct semantic modeling, discussed its advantages, and illustrated
how it can be achieved in practice through Semantic ODE. We believe this approach can transform the
way dynamical systems are modeled by shifting the focus from the equations to the system’s behavior,
making the models not only more understandable but also more flexible than other techniques.

10

Published as a conference paper at ICLR 2025

Ethics statement In this paper, we introduce a novel approach for enhancing the comprehensibility
of a dynamical system’s behavior through direct semantic modeling, with a practical implementation
called Semantic ODE. Improved transparency of machine learning models is crucial for tasks such as
model debugging, ensuring compliance with domain-specific constraints, and addressing potential
harmful biases. However, such techniques, if misused, can lead to a false sense of security in
model decisions or be leveraged merely for superficial regulatory compliance. As our approach is
applicable to high-stakes domains like medicine and pharmacology, it is vital to conduct a thorough
evaluation before deploying the model in such contexts. This evaluation must ensure that the model’s
behavior aligns with ethical considerations and does not support decisions that could negatively
impact individuals’ health and well-being.

Reproducibility statement All mathematical definitions are provided in Sections 4 and 5 and Ap-
pendix A.2. The proofs are provided in Appendix D. The implementation, including a block
diagram and pseudocode, is discussed in Section 5 and Appendices C and D. The experimen-
tal details are discussed in Section 6 and Appendix E. All experimental code is available at
https://github.com/krzysztof-kacprzyk/SemanticODE.

Acknowledgments This work was supported by Roche. We would like to thank Max Ruiz
Luyten, Harry Amad, Julianna Piskorz, Andrew Rashbass, and anonymous reviewers for their useful
comments and feedback on earlier versions of this work.

REFERENCES

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna:
A next-generation hyperparameter optimization framework. In Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, 2019.

Henrik André-Jönsson and Dushan Z Badal. Using signature files for querying time-series data.
In Principles of Data Mining and Knowledge Discovery: First European Symposium, PKDD’97
Trondheim, Norway, June 24–27, 1997 Proceedings 1, pp. 211–220. Springer, 1997.

Dimitris Bertsimas and Wes Gurnee. Learning sparse nonlinear dynamics via mixed-integer opti-
mization. Nonlinear Dynamics, 111(7):6585–6604, 2023.

L. Biggio, T. Bendinelli*, A. Neitz, A. Lucchi, and G. Parascandolo. Neural Symbolic Regression
that Scales. In 38th International Conference on Machine Learning, July 2021.

J. Bongard and H. Lipson. Automated reverse engineering of nonlinear dynamical systems. Pro-
ceedings of the National Academy of Sciences, 104(24):9943–9948, June 2007. ISSN 0027-8424,
1091-6490. doi: 10.1073/pnas.0609476104.

Murray Bourne. Solving Integro-Differential and Simultaneous Differential Equations.
https://tinyurl.com/bourneintegrode, 2018.

Steven L. Brunton and J. Nathan Kutz. Data-Driven Science and Engineering: Machine Learning,
Dynamical Systems, and Control. Cambridge University Press, May 2022. ISBN 978-1-00-911563-
6.

Steven L. Brunton, Joshua L. Proctor, and J. Nathan Kutz. Discovering governing equations from data
by sparse identification of nonlinear dynamical systems. Proceedings of the National Academy
of Sciences, 113(15):3932–3937, April 2016a. ISSN 0027-8424, 1091-6490. doi: 10.1073/pnas.
1517384113.

Steven L. Brunton, Joshua L. Proctor, and J. Nathan Kutz. Sparse Identification of Nonlinear
Dynamics with Control (SINDYc). IFAC-PapersOnLine, 49(18):710–715, January 2016b. ISSN
2405-8963. doi: 10.1016/j.ifacol.2016.10.249.

J. C. Butcher. Numerical Methods for Ordinary Differential Equations. John Wiley & Sons, August
2016. ISBN 978-1-119-12150-3.

11

https://github.com/krzysztof-kacprzyk/SemanticODE

Published as a conference paper at ICLR 2025

Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural Ordinary
Differential Equations. In Advances in Neural Information Processing Systems, volume 31. Curran
Associates, Inc., 2018.

J. T. Y. Cheung and G. Stephanopoulos. Representation of process trends—Part I. A formal rep-
resentation framework. Computers & Chemical Engineering, 14(4):495–510, May 1990. ISSN
0098-1354. doi: 10.1016/0098-1354(90)87023-I.

Miles Cranmer. PySR: Fast & parallelized symbolic regression in Python/Julia. Zenodo, September
2020.

Stéphane D’Ascoli, Pierre-Alexandre Kamienny, Guillaume Lample, and Francois Charton. Deep
symbolic regression for recurrence prediction. In Proceedings of the 39th International Conference
on Machine Learning, pp. 4520–4536. PMLR, June 2022.

Brian de Silva, Kathleen Champion, Markus Quade, Jean-Christophe Loiseau, J. Kutz, and Steven
Brunton. PySINDy: A Python package for the sparse identification of nonlinear dynamical systems
from data. Journal of Open Source Software, 5(49):2104, 2020. doi: 10.21105/joss.02104.

F. N. Fritsch and R. E. Carlson. Monotone Piecewise Cubic Interpolation. SIAM Journal on Numerical
Analysis, 17(2):238–246, 1980. ISSN 0036-1429.

Yi Rang Han, Ping I. Lee, and K. Sandy Pang. Finding Tmax and Cmax in Multicompartmental
Models. Drug Metabolism and Disposition, 46(11):1796–1804, November 2018. ISSN 0090-9556,
1521-009X. doi: 10.1124/dmd.118.082636.

Trevor Hastie and Robert Tibshirani. Generalized additive models. Statistical Science, 1(3):297–318,
1986.

Samuel I Holt, Zhaozhi Qian, and Mihaela van der Schaar. Neural Laplace: Learning diverse classes
of differential equations in the Laplace domain. In International Conference on Machine Learning,
pp. 8811–8832. PMLR, 2022.

Krzysztof Kacprzyk and Mihaela van der Schaar. Shape Arithmetic Expressions: Advancing Scientific
Discovery Beyond Closed-form Equations. In Proceedings of The 27th International Conference
on Artificial Intelligence and Statistics. PMLR, 2024.

Krzysztof Kacprzyk and Mihaela van der Schaar. Beyond Size-Based Metrics: Measuring Task-
Specific Complexity in Symbolic Regression. In The 28th International Conference on Artificial
Intelligence and Statistics, 2025.

Krzysztof Kacprzyk, Zhaozhi Qian, and Mihaela van der Schaar. D-CIPHER: Discovery of Closed-
form Partial Differential Equations. In Advances in Neural Information Processing Systems,
volume 36, pp. 27609–27644, December 2023.

Krzysztof Kacprzyk, Samuel Holt, Jeroen Berrevoets, Zhaozhi Qian, and Mihaela van der Schaar.
ODE Discovery for Longitudinal Heterogeneous Treatment Effects Inference. In The Twelfth
International Conference on Learning Representations, 2024a.

Krzysztof Kacprzyk, Tennison Liu, and Mihaela van der Schaar. Towards Transparent Time Series
Forecasting. In The Twelfth International Conference on Learning Representations, 2024b.

Kadierdan Kaheman, J. Nathan Kutz, and Steven L. Brunton. SINDy-PI: A robust algorithm for
parallel implicit sparse identification of nonlinear dynamics. Proceedings of the Royal Society
A: Mathematical, Physical and Engineering Sciences, 476(2242):20200279, October 2020. doi:
10.1098/rspa.2020.0279.

Alan A. Kaptanoglu, Brian M. de Silva, Urban Fasel, Kadierdan Kaheman, Andy J. Goldschmidt,
Jared Callaham, Charles B. Delahunt, Zachary G. Nicolaou, Kathleen Champion, Jean-Christophe
Loiseau, J. Nathan Kutz, and Steven L. Brunton. PySINDy: A comprehensive Python package
for robust sparse system identification. Journal of Open Source Software, 7(69):3994, 2022. doi:
10.21105/joss.03994.

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization, January 2017.

12

Published as a conference paper at ICLR 2025

John R. Koza. Genetic Programming: On the Programming of Computers by Means of Natural
Selection. Complex Adaptive Systems. MIT Press, Cambridge, Mass, 1992. ISBN 978-0-262-
11170-6.

Changhee Lee, Jinsung Yoon, and Mihaela van der Schaar. Dynamic-DeepHit: A Deep Learning
Approach for Dynamic Survival Analysis With Competing Risks Based on Longitudinal Data.
IEEE Transactions on Biomedical Engineering, 67(1):122–133, January 2020. ISSN 1558-2531.
doi: 10.1109/TBME.2019.2909027.

Dong C Liu and Jorge Nocedal. On the limited memory BFGS method for large scale optimization.
Mathematical programming, 45(1):503–528, 1989.

JLEKS Lonardi and Pranav Patel. Finding motifs in time series. In Proc. of the 2nd Workshop on
Temporal Data Mining, pp. 53–68, 2002.

Lu Lu, Pengzhan Jin, and George Em Karniadakis. DeepONet: Learning nonlinear operators for
identifying differential equations based on the universal approximation theorem of operators, April
2020.

Terry Lyons. Rough paths, Signatures and the modelling of functions on streams, May 2014.

Michael C Mackey and Leon Glass. Oscillation and chaos in physiological control systems. Science,
197(4300):287–289, 1977.

Georg S Martius and Christoph Lampert. Extrapolation and learning equations. In 5th International
Conference on Learning Representations, ICLR 2017-Workshop Track Proceedings, 2017.

Daniel A. Messenger and David M. Bortz. Weak SINDy: Galerkin-Based Data-Driven Model
Selection. Multiscale Modeling & Simulation, 19(3):1474–1497, January 2021a. ISSN 1540-3459,
1540-3467. doi: 10.1137/20M1343166.

Daniel A. Messenger and David M. Bortz. Weak SINDy for partial differential equations. Journal of
Computational Physics, 443:110525, October 2021b. ISSN 00219991. doi: 10.1016/j.jcp.2021.
110525.

Dr Mould and Rn Upton. Basic Concepts in Population Modeling, Simulation, and Model-Based
Drug Development. CPT: Pharmacometrics & Systems Pharmacology, 1(9):6, 2012. ISSN
2163-8306. doi: 10.1038/psp.2012.4.

Emre O. Neftci and Bruno B. Averbeck. Reinforcement learning in artificial and biological systems.
Nature Machine Intelligence, 1(3):133–143, March 2019. ISSN 2522-5839. doi: 10.1038/
s42256-019-0025-4.

Brenden K Petersen, Mikel Landajuela Larma, T Nathan Mundhenk, Claudio P Santiago, Soo K Kim,
and Joanne T Kim. Deep Symbolic Regression: Recovering Mathematical Expressions From Data
via Risk-seeking Policy Gradients. In ICLR 2021, 2021.

Michael JD Powell. An efficient method for finding the minimum of a function of several variables
without calculating derivatives. The computer journal, 7(2):155–162, 1964.

Steven Pruess. Shape preserving C 2 cubic spline interpolation. IMA Journal of Numerical Analysis,
13(4):493–507, 1993.

Zhaozhi Qian, Krzysztof Kacprzyk, and Mihaela van der Schaar. D-CODE: Discovering Closed-form
ODEs from Observed Trajectories. The Tenth International Conference on Learning Representa-
tions, 2022.

Markus Quade, Markus Abel, Kamran Shafi, Robert K. Niven, and Bernd R. Noack. Prediction of
dynamical systems by symbolic regression. Physical Review E, 94(1):012214, July 2016. ISSN
2470-0045, 2470-0053. doi: 10.1103/PhysRevE.94.012214.

M. Raissi, P. Perdikaris, and G.E. Karniadakis. Physics-informed neural networks: A deep learning
framework for solving forward and inverse problems involving nonlinear partial differential
equations. Journal of Computational Physics, 378:686–707, February 2019. ISSN 00219991. doi:
10.1016/j.jcp.2018.10.045.

13

Published as a conference paper at ICLR 2025

Maziar Raissi and George Em Karniadakis. Hidden physics models: Machine learning of nonlinear
partial differential equations. Journal of Computational Physics, 357:125–141, March 2018. ISSN
0021-9991. doi: 10.1016/j.jcp.2017.11.039.

Patrick A. K. Reinbold, Daniel R. Gurevich, and Roman O. Grigoriev. Using noisy or incomplete
data to discover models of spatiotemporal dynamics. Physical Review E, 101(1):010203, January
2020. ISSN 2470-0045, 2470-0053. doi: 10.1103/PhysRevE.101.010203.

Samuel H. Rudy, Steven L. Brunton, Joshua L. Proctor, and J. Nathan Kutz. Data-driven discovery of
partial differential equations. Science Advances, 3(4):e1602614, April 2017. ISSN 2375-2548.
doi: 10.1126/sciadv.1602614.

Subham Sahoo, Christoph Lampert, and Georg Martius. Learning Equations for Extrapolation and
Control. In Proceedings of the 35th International Conference on Machine Learning, pp. 4442–4450.
PMLR, July 2018.

Michael Schmidt and Hod Lipson. Distilling Free-Form Natural Laws from Experimental Data.
Science, 324(5923):81–85, April 2009. ISSN 0036-8075, 1095-9203. doi: 10.1126/science.
1165893.

Trevor Stephens. Gplearn: Genetic programming in python, with a scikit-learn inspired and compati-
ble api, 2022.

Sahar Torkamani and Volker Lohweg. Survey on time series motif discovery. WIREs Data Mining
and Knowledge Discovery, 7(2):e1199, 2017. ISSN 1942-4795. doi: 10.1002/widm.1199.

Silviu-Marian Udrescu and Max Tegmark. AI Feynman: A physics-inspired method for symbolic
regression. Science Advances, 6(16):eaay2631, April 2020. ISSN 2375-2548. doi: 10.1126/sciadv.
aay2631.

Silviu-Marian Udrescu, Andrew Tan, Jiahai Feng, Orisvaldo Neto, Tailin Wu, and Max Tegmark. AI
Feynman 2.0: Pareto-optimal symbolic regression exploiting graph modularity. 34th Conference
on Neural Information Processing Systems (NeurIPS 2020), 2021.

Pierre François Verhulst. Recherches mathématiques sur la loi d’accroissement de la population.
Hayez, 1845.

Julia Wilkerson, Kald Abdallah, Charles Hugh-Jones, Greg Curt, Mace Rothenberg, Ronit Simantov,
Martin Murphy, Joseph Morrell, Joel Beetsch, Daniel J Sargent, Howard I Scher, Peter Lebowitz,
Richard Simon, Wilfred D Stein, Susan E Bates, and Tito Fojo. Estimation of tumour regression
and growth rates during treatment in patients with advanced prostate cancer: A retrospective
analysis. The Lancet Oncology, 18(1):143–154, January 2017. ISSN 1470-2045. doi: 10.1016/
S1470-2045(16)30633-7.

Jean-Baptiste Woillard, Brenda C. M. de Winter, Nassim Kamar, Pierre Marquet, Lionel Rostaing, and
Annick Rousseau. Population pharmacokinetic model and Bayesian estimator for two tacrolimus
formulations–twice daily Prograf and once daily Advagraf. British Journal of Clinical Pharmacol-
ogy, 71(3):391–402, March 2011. ISSN 1365-2125. doi: 10.1111/j.1365-2125.2010.03837.x.

Lexiang Ye and Eamonn Keogh. Time series shapelets: A new primitive for data mining. In
Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 947–956, Paris France, June 2009. ACM. ISBN 978-1-60558-495-9. doi:
10.1145/1557019.1557122.

Byoung-Kee Yi and Christos Faloutsos. Fast time sequence indexing for arbitrary Lp norms. 2000.

14

Published as a conference paper at ICLR 2025

TABLE OF SUPPLEMENTARY MATERIALS

1. Appendix A: notation and definitions

2. Appendix B: additional results

3. Appendix C: training of the semantic predictor

4. Appendix D: trajectory predictor

5. Appendix E: experimental details

6. Appendix F: extended related works

7. Appendix G: additional discussion

A NOTATION AND DEFINITIONS

A.1 NOTATION

Symbols used throughout this work can be found in Tables 4 and 5.

A.2 DEFINITIONS

In this section, we provide formal definition of some of the terms introduced in the main text.

From the work by Kacprzyk et al. (2024b).

Definition 3. Let I be a set of intervals on R and let F be the set of interval functions, i.e., real
functions defined on intervals. A motif s is a binary relation between the set of interval functions F
and the set of intervals I (i.e., s ⊂ F × I). We denote (ϕ, i) ∈ s as ϕ|i ∼ s and read it as “ϕ on i
has a motif s”. Each motif needs to be

• well-defined, i.e., for any ϕ ∈ F , and any i ∈ I,

ϕ|i ∼ s =⇒ i ⊂ dom(ϕ) (3)

• translation-invariant, i.e., for any i ∈ I, and any ϕ ∈ F ,

ϕ|i ∼ s⇐⇒ ϕ ◦ (t− q)|(i+ q) ∼ s ∀q ∈ R (4)

In the next definition, we formally define the motifs we use to define semantic representation.

Definition 4. Let x ∈ C2 and let r1, r2 ∈ R such that r1 < r2.

• x|[r1, r2] ∼ s++b if ∀t ∈ (r1, r2) ẋ(t) > 0, ẍ(t) > 0

• x|[r1, r2] ∼ s+−b if ∀t ∈ (r1, r2) ẋ(t) > 0, ẍ(t) < 0

• x|[r1, r2] ∼ s−+b if ∀t ∈ (r1, r2) ẋ(t) < 0, ẍ(t) > 0

• x|[r1, r2] ∼ s−−b if ∀t ∈ (r1, r2) ẋ(t) < 0, ẍ(t) < 0

• x|[r1,+∞) ∼ s++u if ∀t ∈ (r1,+∞) ẋ(t) > 0, ẍ(t) > 0

• x|[r1 +∞) ∼ s+−u if ∀t ∈ (r1 +∞) ẋ(t) > 0, ẍ(t) < 0 and limt→+∞ x(t) = +∞

• x|[r1,+∞) ∼ s−+u if ∀t ∈ (r1,+∞) ẋ(t) < 0, ẍ(t) > 0 and limt→+∞ x(t) = −∞

• x|[r1,+∞) ∼ s−−u if ∀t ∈ (r1,+∞) ẋ(t) < 0, ẍ(t) < 0

• x|[r1 +∞) ∼ s+−h if ∀t ∈ (r1,+∞) ẋ(t) > 0, ẍ(t) < 0 and limt→+∞ x(t) ∈ R

• x|[r1,+∞) ∼ s−+h if ∀t ∈ (r1,+∞) ẋ(t) < 0, ẍ(t) > 0 and limt→+∞ x(t) ∈ R
Definition 5. Let u|, v| be bounded trajectory parts on (t0, tend) and assume v| ≡ (c|, p|), where
(c|, p|) is the bounded part of the semantic representation (c, p). We say that u| seemingly matches
(c|, p|), and write it as u| ∼ (c|, p|), if for any transition point t in (c|, p|)

15

Published as a conference paper at ICLR 2025

Table 4: Notation used throughout the paper (Part 1).

Symbol Meaning

M The number of dimensions in a dynamical system, M ∈ N
m Used for indexing dimensions, m ∈ {1, . . . ,M}
t0 Start of the trajectory, t0 ∈ R
T Time domain, subset of R, (t0,+∞)
x An M -dimensional trajectory, x : T → RM

x A 1-dimensional trajectory, x : T → R
ẋ or ẋ Derivative of x or x with respect to time t
D The number of samples, D ∈ N
d Used for indexing samples, d ∈ {1, . . . , D}
Nd The number of measurements of sample d, Nd ∈ N
t
(d)
n The time of the nth measurement of sample d, t(d)n ∈ T
y
(d)
n The nth measurement of sample d (taken at time t

(d)
n), y(d)

n ∈ RM

x0 The initial condition, the value of x at t0, x0 ∈ RM

f A system of M ODEs, f : RM+1 → RM

f A single ODE, f : R2 → R
C0(T) The set of continuous functions on T
C2(T) The set of twice continuously differentiable functions on T
F A forecasting model predicting an M -dimensional trajectory, Fi : R→ C2

F A forecasting model predicting a 1-dimensional trajectory, F : R→ C2

Fsem A semantic predictor, predicts a semantic representation of trajectory from the initial
condition

Ftraj A trajectory predictor, predict a trajectory from its semantic representation
cx A composition of trajectory x
px A set of properties of trajectory x
tend The last transition point, tend ∈ T
C The set of all possible compositions
Pc The set of all possible properties for composition c
P The set of all possible properties for all compositions
s±±∗ Motifs, formally defined in Definition 4
(cx, px) Semantic representation of x
(CF , PF) Semantic representation of F
◦ Function composition
h Value of the horizontal asymptote in motifs s−+h and +−h

t1/2 “half-life” property of motifs s−+h and +−h

Fprop A property map, Fprop : R→ P
Fcom A composition map, Fcom : R→ C
F

(c)
prop A property sub-map, Fprop : R→ Pc

x ≡ (c, p) x ∈ C2 conforms to (c, p) ∈ C × P , (c, p) = (cx, px)
x ∼ (c, p) x ∈ C2 seemingly matches (c, p) ∈ C × P , Definition 5

• u|(t) = v|(t),

• u̇|(t) = v̇|(t) if t ∈ {t0, tend} or t is a local extremum,

• ü|(t) = v̈|(t) if t = tend or t is an inflection point.

We also say u| seemingly matches v| and write it u| ∼ v|.

B ADDITIONAL RESULTS

B.1 EQUATIONS DISCOVERED BY SINDY

Below are the equations discovered by different variants of SINDy in Section 6.2.

(5)ẋ(t) = −3.06x(t)t

16

Published as a conference paper at ICLR 2025

Table 5: Notation used throughout the paper (Part 2).

Symbol Meaning

X set of trajectories
x| Bounded part of x, x| : [t0, tend]→ R
|x Unbounded part of x, |x : [tend,+∞)
(c|, p|) Bounded part of (c, p), i.e., (c, p) without the unbounded motif and its properties
(|c, |p) Unbounded part of (c, p), i.e., the unbounded motif, its properties, the last transition

point, and derivatives at it
F 0

traj C0 trajectory predictor, F 0
traj : C × P → C0

F 2
traj C2 trajectory predictor, F 2

traj : C × P → C2

C′ Composition library, C′ ⊂ C
I The maximum number of intervals/branches in the composition map Fcom, I ∈ N

(6)ẋ(t) = 5.56− 43.10x(t)t

(7)ẋ(t) = −27.56t+ 14.83 cos(2x(t))− 12.36 sin(2t)− 13.79 cos(3t) + 8.78 exp(x(t))

ẋ(t) = 39828.60− 50679.07t− 1.74x(t)t+ 54549.25 sin(t)− 54591.64 cos(t) + 1.58 sin(2x(t))

+ 16141.41 cos(2t) + 1.63 cos(3x(t))− 1362.80 sin(3t)− 1366.28 cos(3t)

(8)

(9)
ẋ(t) = 8347995.48 + 3372040.53t+ 3.75x(t)t− 3350455.09t2 − 36.16 cos(x(t))

− 4904904.06 sin(t)− 8903838.66 cos(t) + 12.19 cos(2x(t))

+ 889658.07 sin(2t) + 560285.98 cos(2t)− 0.29 sin(3x(t))

− 2.81 cos(3x(t))− 82220.29 sin(3t)− 4394.42 cos(3t)− 5.23 exp(x(t))

B.2 SEMANTIC REPRESENTATION AFTER EDITING

Figure 8 shows semantic representation of Semantic ODE after editing performed in Section 6.3.

t

x

(s+ b, s b, s + h) if < x0 < +
Composition map

0.0 0.2 0.4 0.6 0.8 1.0
x0

0.00

0.05

0.10

Transition points (t-coordinates)

t0
t1
t2

0.0 0.2 0.4 0.6 0.8 1.0
x0

0.0

0.5

1.0

Transition points (x-coordinates)

x(t0)
x(t1)
x(t2)

0.0 0.2 0.4 0.6 0.8 1.0
x0

5

0

5

10

Derivatives

x(tstart)
x(tend)
x(tend)

0.0 0.2 0.4 0.6 0.8 1.0
x0

0.0

0.1

0.2

0.3

Properties of unbounded motif s + h

horizontal asymptote
half-life

Property map for composition (s+ b, s b, s + h)

Figure 8: Property map of the Semantic ODE after imposing the horizontal asymptote to be 0.

B.3 SEMANTIC REPRESENTATION OF THE LOGISTIC GROWTH MODEL

Figure 9 demonstrates a semantic representation of the logistic growth model ẋ(t) = x(t)(1− x(t)
2.8).

B.4 INSIDE OF FITTING A COMPOSITION MAP

Figure 10 shows the logarithm of the loss for each sample and for each considered composition while
fitting a composition map.

17

Published as a conference paper at ICLR 2025

t

x

(s+ + b, s+ h) if < x0 1.40

Composition map

t

x

(s+ h) if 1.40 < x0 2.80

t

x

(s + h) if 2.80 < x0 < +

0.25 0.50 0.75 1.00 1.25
x0

0

1

2

3

Transition points (t-coordinates)
t0
t1

0.25 0.50 0.75 1.00 1.25
x0

0.25

0.50

0.75

1.00

1.25

Transition points (x-coordinates)

x(t0)
x(t1)

0.25 0.50 0.75 1.00 1.25
x0

0.0

0.2

0.4

0.6

Derivatives

x(tstart)
x(tend)
x(tend)

0.25 0.50 0.75 1.00 1.25
x0

1

2

3

4

Properties of unbounded motif s+ h

horizontal asymptote
inverse half-life

Property map for composition (s+ + b, s+ h)

1.5 2.0 2.5
x0

0.04

0.02

0.00

0.02

0.04

Transition points (t-coordinates)
t0

1.5 2.0 2.5
x0

1.5

2.0

2.5

Transition points (x-coordinates)
x(t0)

1.5 2.0 2.5
x0

0.0

0.2

0.4

0.6

Derivatives
x(tstart)
x(tend)
x(tend)

1.5 2.0 2.5
x0

1.0

1.5

2.0

2.5

Properties of unbounded motif s+ h

horizontal asymptote
inverse half-life

Property map for composition (s+ h)

2.75 3.00 3.25 3.50 3.75 4.00
x0

0.04

0.02

0.00

0.02

0.04

Transition points (t-coordinates)
t0

2.75 3.00 3.25 3.50 3.75 4.00
x0

2.75

3.00

3.25

3.50

3.75

4.00
Transition points (x-coordinates)

x(t0)

2.75 3.00 3.25 3.50 3.75 4.00
x0

1.5

1.0

0.5

0.0
Derivatives

x(tstart)
x(tend)
x(tend)

2.75 3.00 3.25 3.50 3.75 4.00
x0

0.5

1.0

1.5

2.0

2.5

Properties of unbounded motif s + h

horizontal asymptote
half-life

Property map for composition (s + h)

Figure 9: Semantic representation of the logistic growth model.

(s+
b, s

b, s
+ h)

(s
b, s

+ h)

(s
b, s

+ b, s
b, s

+ h)
(s

+ h)

(s
+ b, s

b, s
+ h)

(s++ b, s
+

b, s
b, s

+ h)

0.01
0.03

0.081
0.1

0.14
0.16
0.18

0.2
0.24
0.26
0.28

0.3
0.32
0.34
0.36
0.38
0.41
0.43
0.45
0.48
0.51
0.53
0.56
0.58

0.6
0.62
0.64
0.66
0.68

0.7
0.73
0.75
0.77
0.79
0.81
0.83
0.86
0.88

0.9
0.92
0.94
0.97
0.99

4.0

3.5

3.0

2.5

2.0

1.5

Figure 10: Logarithm of loss for each sample for each considered composition while fitting a
composition map to the pharmacokinetic dataset in Section 6.2.

B.5 EXTENSION TO MULTIPLE DIMENSION: PROOF OF CONCEPT

In this section, we show a proof of concept of how semantic modeling can be extended to multiple
dimensions (as was described in Appendix G.2).

18

Published as a conference paper at ICLR 2025

Figure 11: Semantic ODE model extended to multiple trajectories and fitted to data governed by the
SIR epidemiological model. We show three generalized additive models describing the horizontal
asymptote of R (top), the maximum of I (middle), and the time when I is at its maximum (bottom).

We implemented the property maps as described in Appendix G.2 (each property described as a
generalized additive model) and fitted data following an SIR epidemiological model for different
initial conditions. To simplify the problem we specify the composition map (we only train property
maps). We assume S follows (s−−c, s−+h), I follows (s++c, s+−c, s−−c, s−+h), and R follows
(s++c, s+−h). The predicted trajectories and some of the property maps can be seen in Figure 11.
The average RMSE on the test dataset is 0.019 for S trajectory, 0.011 for I and 0.014 for R. Note
that the irreducible error on this dataset (caused by the added Gaussian noise) is 0.01. The shown
property maps let us draw the following insights about the model:

• The time when I is at its maximum tmax(I) is on average just below 0.2. I0 has a relatively large
impact on tmax(I) by increasing it by 0.1 for very low I0 or decreasing it by 0.05 for very high I0.
The larger the I0 the faster the maximum is achieved.

• S0 also has a negative impact on tmax(I) but it is much smaller (±0.02).
• The maximum of I (denoted Imax) increases linearly with both S0 and I0. This time S0 has

slightly bigger impact (±0.1) compared to I0 (±0.04)
• In both tmax(I) and Imax, the impact of R0 is insignificant.
• The horizontal asymptote of R increases linearly with all three initial conditions. In particular,

the shape function associated with R0 has unit slope as expected.

Interesting advantage of our approach is that even though the system is described by three variables,
we do not need to observe all of them to fit the trajectory (similarly to the pharmacokinetic example
in the paper). ODE discovery methods assume that all variables are observed which constrains their
applicability in many settings.

19

Published as a conference paper at ICLR 2025

B.6 DUFFING OSCILLATOR

Chaotic systems usually have some kind of oscillatory behavior (i.e., it cannot be described by a finite
composition). As discussed in Appendix G.1, it means that chaotic systems are currently beyond the
capabilities of Semantic ODEs as they would not be able to correctly predict beyond the seen time
domain. However, we could use it for a prediction on a bounded time domain. We have compared
different models on the Duffing oscillator. The results can be seen in Table 6.

Table 6: Comparison of Average RMSE obtained by different models on the Duffing oscillator
datasets (with two noise settings). Average performance over 5 random seeds and data splits is shown
with standard deviation in the brackets.

Duffing oscillator
Method low noise high noise

SINDy-5 0.278(.032) 0.389(.059)
WSINDy-5 0.262(.033) 0.361(.072)
PySR-20 0.312(.049) 0.396(.020)
SINDy 0.284(.026) 0.386(.022)
WSINDy 0.263(.027) 0.339(.037)
Neural ODE 0.212(.018) 0.291(.021)
Neural Laplace 0.176(.032) 0.299(.017)
DeepONet 0.429(.084) 0.528(.066)
Semantic ODE 0.096(.023) 0.236(.001)

B.7 REAL DATASETS

We compare the performance of Semantic ODE against other baselines on two real datasets. The
tumor growth dataset is based on the dataset collected by Wilkerson et al. (2017) based on eight
clinical trials. We follow the preprocessing steps by Qian et al. (2022). The drug concentration
dataset is based on data collected by (Woillard et al., 2011). The results are shown in Table 7.

Table 7: Comparison of Average RMSE obtained by different models on two real datasets. Average
performance over 5 random seeds and data splits is shown with standard deviation in the brackets.
"Semantic ODE*" is a variant of Semantic ODE where we incorporated a semantic inductive
bias about the shape of the trajectory. We specified the composition to always be (s−+c, s++u)
for the tumor growth dataset and (s+−c, s−−c, s−+h) for the drug concentration dataset. Note,
the implementation of WSINDy we used cannot work with trajectories as sparse as in the drug
concentration dataset.

Tumor growth (real) Drug concentration (real)

SINDy-5 0.243(.019) 0.286(.021)
WSINDy-5 0.237(.015) NaN
PySR-20 0.536(.346) 0.257(.022)
SINDy 0.249(.029) 0.286(.014)
WSINDy 0.236(.016) NaN
Neural ODE 0.228(.018) 0.263(.032)
Neural Laplace 0.243(.029) 0.302(.022)
DeepONet 0.242(.016) 0.265(.020)
Semantic ODE 0.234(.019) 0.264(.021)
Semantic ODE* 0.229(.019) 0.243(.015)

B.8 BIFURCATIONS

We believe that our framework is uniquely positioned to perform quite well on systems exhibiting
bifurcations (when a small change to the parameter value causes a sudden qualitative change in

20

Published as a conference paper at ICLR 2025

the system’s behavior). In our framework, bifurcation occurs when the composition map predicts a
different composition. As discussed in Appendix G.2, in the future, the semantic predictor may take
as input not only the initial conditions but also other auxiliary parameters. We can then represent
the composition map as a decision tree that divides the input space into different compositions. This
decision tree then informs us where bifurcations occur.

We hope the following proof of concept based on the current implementation demonstrates that it
is a viable approach. Instead of predicting a trajectory from its initial condition, we fix the initial
condition to be always the same and predict a trajectory based on the parameter r that we observe in
our dataset. We generate the trajectories given the following differential equation

ẋ = rx− x2 (10)

The initial condition x(0) = 1 and r sampled uniformly from (−1, 2). We choose the set of
compositions to be (s+−h), (s−+h) and record the position of the bifurcation point found by our
algorithm (as opposed to the ground truth). The mean absolute error for different noise settings can
be seen in Figure 12. Note that the range of values of the trajectory is (0, 2), and even in high noise
settings, the location of the bifurcation point can be identified.

10 3 10 2 10 1 100

Noise
0.00

0.02

0.04

0.06

0.08

0.10

M
ea

n
ab

so
lu

te
 e

rro
r

Figure 12: Mean absolute error on the predicted bifurcation point for different noise settings.

B.9 GENERALIZATION

We show in Section 6.3 how our model can extrapolate well to unseen time domains. In this section,
we show how we can make Semantic ODE generalize to previously unseen data points (initial
conditions) by extrapolating the property map. We observe that each property function in Figure 8
looks approximately like a linear function. Thus, we fit a linear function to each of these functions
and then evaluate our model on initial conditions from range (1.0, 1.5). Note that our training set
only contained initial conditions from (0, 1). The semantic representation of the resulting model can
be seen in Figure 13. We compare the performance of this model to ODEs from Table 2. The results
can be seen in Table 8. We can see that our model has suffered only a small drop in performance
even though it has never seen a single sample from that distribution. It also performs much better
than any other ODE tested.

C TRAINING OF THE SEMANTIC PREDICTOR

Training of Semantic ODE requires fitting its semantic predictor (trajectory predictor is fixed). This
is done in two steps. First, we train the composition map Fcom and then the property map Fprop. It

21

Published as a conference paper at ICLR 2025

t

x

(s+ b, s b, s + h) if < x0 < +
Composition map

0.0 0.5 1.0 1.5
x0

0.00

0.05

0.10

Transition points (t-coordinates)

t0
t1
t2

0.0 0.5 1.0 1.5
x0

0.0

0.5

1.0

1.5

Transition points (x-coordinates)

x(t0)
x(t1)
x(t2)

0.0 0.5 1.0 1.5
x0

5

0

5

10

15
Derivatives

x(tstart)
x(tend)
x(tend)

0.0 0.5 1.0 1.5
x0

0.0

0.1

0.2

0.3

Properties of unbounded motif s + h

horizontal asymptote
half-life

Property map for composition (s+ b, s b, s + h)

Figure 13: Semantic representation of the semantic ODE made to generalize to x0 ∈ (0, 1.5).

Table 8: Results of fitting Semantic ODE and SINDy to the pharmacokinetic dataset.
Model Syntactic biases Semantic biases Syntactic

representation
Semantic
representation

x0 ∈ (0, 1) x0 ∈ (1, 1.5)

SINDy ẋ =
∑n

i=1 αigi, n ≤ 1 NA ẋ(t) = −3.06x(t)t NA 0.222(0.041) 0.240(0.035)
SINDy ẋ =

∑n
i=1 αigi, n ≤ 2 NA ẋ(t) = 5.56−43.10x(t)t NA 0.112(0.027) 0.131(0.025)

SINDy ẋ =
∑n

i=1 αigi, n ≤ 5 NA Equation (7) NA 0.101(0.023) 7.764(4.938)
SINDy ẋ =

∑n
i=1 αigi, n ≤ 10 NA Equation (8) NA 0.029(0.005) 0.105(0.056)

SINDy ẋ =
∑n

i=1 αigi, n ≤ 15 NA Equation (9) NA 0.020(0.004) 0.203(0.430)
Semantic ODE NA cx : (s+−b, s−−b, s−+h), h = 0 NA Figure 13 0.018(.003) 0.023(.005)

is possible to adjust the composition map before the property map is fitted or even provide your
own composition map without fitting it. This constitutes one of the ways prior knowledge can be
incorporated into the model. Then the dataset is divided into separate subsets, each for a different
composition—according to the composition map. Then a separate property sub-map is trained on
each of the subsets. A simple block diagram of training a semantic predictor is shown in Figure 6.

C.1 COMPOSITION MAP

To fit a composition map we start with a composition library C′ ⊂ C which a set of compositions
we want to consider. One can use a default set of compositions up to a certain length or filter out
impossible ones to steer and accelerate the search. Then for every sample in our dataset, we measure
how well each of the compositions fits the trajectory by fitting the properties that minimize prediction
error. This gives us a matrix where each row is a sample and each column is a composition. An
example of such matrix can be seen in Figure 10. We then use a dynamic programming algorithm to
find the best split of x0 into up to I intervals, with different compositions on neighboring intervals,
that minimize the overall prediction error for the whole dataset. We also make sure that each interval
is not shorter than a prespecified threshold and contains a minimum number of samples. In our
implementation, we choose the intervals to be at least 10% of the length of the entire domain and
contain at least two samples. The number I is chosen by the user (we use 3 in all our experiments).
This procedure is described in Algorithm 1

C.2 PROPERTY MAP

Property map consists of a few property sub-maps each trained on a different subset of data. Property
sub-map predicts the properties, i.e., the coordinates of the transition points, necessary derivatives, and
properties of the unbounded motif. Every single property is predicted by a different univariate function.
To get these univariate functions we first choose a set of basis functions B. By default, we choose
B-Spline basis functions, identity and a constant. Then we can parameterize a univariate function
using just |B| parameters and efficiently evaluate it using a single matrix-vector multiplication. This
gives us, so-called, raw properties. In practice, we need to pass some of these functions through
different transformations to ensure that the predicted properties make sense. For instance, transition
points are in correct relation to one another or the derivatives have the correct sign. This procedure is
summarized in Algorithm 2.

t-coordinates Instead of predicting the t-coordinates directly, we predict the intervals between
them and the t-coordinate of the last transition point. We use softmax to transform raw properties into
positive values that add up to 1. We then multiply it by the t-coordinate of the last transition point
(that was obtained by passing a raw property through a sigmoid function scaled to cover the interval
of interest). We can then use a cumulative sum over the intervals to get the desired t-coordinates.

22

Published as a conference paper at ICLR 2025

Algorithm 1 Algorithm for learning the Composition Map Fcom.

Input: Dataset {(x(d)
0 , t(d),y(d))}Dd=1, compositions library C′, maximum number of branches I ,

trajectory predictor F 0
traj : C × P → C0

Output: Composition map Fcom : R→ C

1: procedure COMPUTELOSS(d, c, p)

2: loss← 1
Nd

∑Nd

n=1

(
F 0

traj(c, p)(t
(d)
n)− y

(d)
n

)2
3: return loss
4: end procedure
5: Initialize loss table LossTable(d, c), DP table L(d, c, b) and backtracking table B(d, c, b)
6: for d = 1 to D do
7: for all c ∈ C′ do
8: LossTable(d, c)← minp∈Pc COMPUTELOSS(d, c, p)
9: end for

10: end for
11: Sort samples so that x(1)

0 ≤ x
(2)
0 ≤ . . . ≤ x

(D)
0

12: for d = D down to 1 do
13: for all c ∈ C′ do
14: for i = 0 to I − 1 do
15: if d == D then
16: L(d, c, i)← LossTable(d, c)
17: else
18: if i == 0 then
19: L(d, c, 0)← LossTable(d, c) + L(d+ 1, c, 0)
20: B(d, c, 0)← c
21: else
22: Lstay ← LossTable(d, c) + L(d+ 1, c, i)
23: Lswitch ← LossTable(d, c) + min

c′ ̸=c
L(d+ 1, c′, i− 1)

24: if Lstay ≤ Lswitch then
25: L(d, c, i)← Lstay
26: B(d, c, i)← c
27: else
28: L(d, c, i)← Lswitch
29: B(d, c, i)← c′ corresponding to minc′ ̸=c L(d+ 1, c′, i− 1)
30: end if
31: end if
32: end if
33: end for
34: end for
35: end for
36: (c∗, i∗) = argminc∈C′, 0≤i≤I−1L(1, c, i)

37: Initialize composition sequence {c∗d}Dd=1
38: c∗1 ← c∗; i← i∗

39: for d = 1 to D − 1 do
40: c∗d+1 ← B(d, c∗d, i)
41: if c∗d+1 ̸= c∗d then
42: i← i− 1
43: end if
44: end for
45: Define composition map Fcom(x) using switching points at x(d)

0 where c∗d ̸= c∗d+1

x-coordinates Instead of predicting the x-coordinates directly, we predict the absolute value of the
difference between x-coordinates of the consecutive transition points. We do that by passing the raw
property through a softplus function. Then based on the monotonicity of a given motif, we either

23

Published as a conference paper at ICLR 2025

Algorithm 2 Algorithm for Learning the Property Map Fprop.

Input: Dataset {x(d)
0 , t(d),y(d)}Dd=1, trajectory predictor F 0

traj : C × P → C0, composition map
Fcom : R→ C, set of basis functions B

Output: Property map Fprop : R→ P
1: for d = 1 to D do
2: Evaluate basis functions: B(d) = [b1(x

(d)
0), b2(x

(d)
0), . . . , b|B|(x

(d)
0)], where bi ∈ B

3: end for
4: Form matrix B ∈ RD×|B| with rows B(d)

5: for d = 1 to D do
6: Compute composition: c(d) = Fcom(x

(d)
0)

7: end for
8: Partition dataset into subsets {Dc} where Dc = {d | c(d) = c}
9: for each subset Dc do

10: Initialize parameter matrix W (c) ∈ R|B|×P , where P is the number of raw properties
11: Extract corresponding basis evaluations Bc = B[Dc, :]
12: repeat
13: Compute raw properties: P̃c = BcW (c)

14: Use P̃c to predict the properties {F (c)
prop(x

(d)
0)}d∈D i.e.,

15: Coordinates of the transition points
16: Derivatives
17: Properties of unbounded motif

18: L← 1
|Dc|

∑
d∈Dc

1
Nd

∑Nd

n=1

(
F 0

traj(c, F
(c)
prop(x

(d)
0))(t

(d)
n)− y

(d)
n

)2
19: Update parameters W (c) to minimize L (e.g., L-BFGS)
20: until Convergence of optimization
21: end for
22: Define Fprop as Fprop(x0) = F

Fcom(x0)
prop (x0)

add or subtract this number from the previous x-coordinate to obtain all x-coordinates respecting the
composition.

Derivative at the first transition point We pass the raw property through a sigmoid function and
then we scale and translate it to obtain a value in a specific range as described in Table 9.

Derivatives at the last transition point If there is at least one bounded motif in the composition,
then the last transition point needs to be either an inflection point or a local extremum. As such, either
the first or the second derivative vanishes and does not need to be trained. The trajectory during
training is predicted through F 0

traj that can only accept one derivative constraint at the last transition
point. That is why the other derivative (the one that does not vanish) is implicitly determined by this
trajectory predictor instead of being trained explicitly. We first find the trajectory and then look at the
non-vanishing derivative and use it as the value predicted by the property map.

Properties of the unbounded motif All raw properties for the unbounded motifs are passed
through the softmax to make them positive. We then adjust them on a case-by-case basis to make sure
that the motif properties make sense. For instance, instead of predicting the value of the horizontal
asymptote in s−+h directly, we predict the distance between the asymptote and x(tend). As the
predicted distance is positive, after subtracting it from x(tend), we get a valid value for the horizontal
asymptote.

After we get all the properties, we pass it to F 0
traj to predict the trajectory. We calculate mean squared

error between the predicted trajectories and the observed ones. We also add two additional penalty
terms. One discourages too much difference between derivatives at the transition points and the other
discourages too large derivatives at the end. We calculate the total loss and update the parameters. In
our implementation, we use the L-BFGS algorithm (Liu & Nocedal, 1989).

24

Published as a conference paper at ICLR 2025

D TRAJECTORY PREDICTOR

D.1 BOUNDED PART OF THE TRAJECTORY

We decide to define X| as a set of cubic splines. They are piecewise functions where each piece is
defined as a cubic polynomial. The places where two cubics are joined are called knots. Cubic splines
require that the first and second derivatives at the knots be the same for neighboring cubics so that
the cubic spline is guaranteed to be twice continuously differentiable. Cubic splines are promising
because they are flexible, and for a fixed set of knots, the equations for their values and derivatives
are linear in their parameters. Thus by just solving a set of linear equations, it is straightforward to
find a function x| that seemingly matches (c|, p|) (denoted as x| ∼ (c|, p|) and formally defined in
Definition 5 in Appendix A.2), i.e., passes through the transition points in p|, and has the correct first
derivative values at local extrema and boundary points (t0, tend) as well as correct second derivatives
at inflection points and the endpoint (tend). The challenge arises because x| ∼ (c|, p|) may not imply
x| ≡ (c|, p|). This is illustrated in Figure 14 in Appendix D.1. However, it is possible to make the
implication hold by imposing additional conditions. We prove this in Theorem 1.

Theorem 1. Let u|, v| be bounded trajectory parts on (t0, tend) and assume v| ≡ (c|, p|), where (c, p)
is a semantic representation. If both of the following hold for every pair of consecutive transition
points (a, b) of v| then u| ∼ (c|, p|) =⇒ u| ≡ (c|, p|).

• ∀t ∈ (a, b) sign(ü|(t)) = sign(v̈|(t)), and
• if neither of {a, b} is a local extremum, sign(u̇|(t)) = sign(v̇|(t)) for t ∈ {a, b}

Proof. See Appendix D.1.1.

We come up with two different ways of imposing these conditions that lead us to develop two
trajectory predictors: F 0

traj : C × P → C0 and F 2
traj : C × P → C2. We use F 0

traj during training of
Fsem as it is fast and differentiable, but the found trajectory may not be in C2 (only continuous). At
inference, we use F 2

traj that is slower and not differentiable but ensures that the trajectory is in C2.

D.1.1 PROOF OF THEOREM 1

We provide proof of Theorem 1 below. But before we prove it, we need the following lemma.

Lemma 1. Let u|, v| be bounded trajectory parts on (t0, tend) and assume v| ≡ (c|, p|), where (c, p)
is a semantic representation, u| ∼ (c|, p|), and the composition of u| is different from c|. Then there
exists a pair of consecutive transition points (a, b) of v| such that

• ∃t ∈ (a, b) such that sign(ü|(t)) ̸= sign(v̈|(t)) or,
• if neither of {a, b} is a local extremum, ∃t ∈ {a, b} such that sign(u̇|(t)) ̸= sign(v̇|(t))

Proof. First, we will show that there needs to be two consecutive transition points of v|, a, b, where
v| ∼ s|[a, b] and u| ≁ s|[a, b]. Suppose for every pair of consecutive transition points of v|, denoted
a, b, v| ∼ s|[a, b] and u| ∼ s|[a, b] for some bounded motif s. Then necessarily u| has the same
composition as v| (as they are defined on the same interval). Therefore if the composition of u| is
different from c| then there needs to be two consecutive transition points of v|, a, b, where v| ∼ s|[a, b]
and u| ≁ s|[a, b].

We now consider two cases. Either there is a motif s′ ̸= s such that u| ∼ s′|[a, b] or there is no such
single motif.

Case 1.

Let us assume that u| ∼ s′|[a, b], where s′ ̸= s is a different bounded motif. Then, as u| ∼ (c|, p|),
we know that s and s′ have the same monotonicity. If v| is increasing on [a, b] then v|(b) > v|(a),
which implies u|(b) > u|(a). Thus u| is also increasing on [a, b]. Similarly, if v| is decreasing on
[a, b]. Let us assume, without loss of generality, that v| is increasing on [a, b]. If v| is also convex then
u| needs to necessarily be concave (as s′ ̸= s). That means that ∀t ∈ (a, b) sign(ü|(t)) ̸= sign(v̈|(t)).
Thus one of the conditions in Lemma 1 is satisfied. Similarly, if v| is decreasing or concave.

25

Published as a conference paper at ICLR 2025

Case 2.

Let us assume that there is no single motif s′ ̸= s such that u| ∼ s′|[a, b]. That means that u| has a
non-empty set of transition points Q ⊂ (a, b).

If a or b is a local extremum of v| then there exists q ∈ Q such that q is an inflection point of u|
because we cannot have two local extrema as consecutive transition points. Thus u| changes curvature
at q and necessarily there exists a point t ∈ (a, b) such that sign(ü|(t)) ̸= sign(v̈|(t)).

If neither a nor b is a local extremum of v|, then either there is an inflection point in Q and we arrive
at the same conclusion as before or there are no inflection points in Q. In that case, Q contains only
local extrema. However, we cannot have two local extrema as consecutive transition points. Therefore
Q contains only one local extremum. That means that sign(u̇|(a)) ̸= sign(u̇|(b)). But we have
sign(v̇|(a)) = sign(v̇|(b)) or v̇|(a) = 0 or v̇|(b) = 0. In all cases, either sign(u̇|(a)) ̸= sign(v̇|(a))
or sign(v̇|(b)) ̸= sign(v̇|(b)). Which is what we needed to show.

We can now prove Theorem 1.

Proof. Let us assume that u| ∼ (c|, p|). To show u| ≡ (c|, p|) it is sufficient to show that u| has
composition c|. For contradiction, let us assume that the composition of u| is different than c|. By
Lemma 1, there exist two consecutive transition points of v|, denoted a and b, such that ∃t ∈ (a, b)
such that sign(ü|(t)) ̸= sign(v̈|(t)) or, if neither of {a, b} is a local extremum, sign(u′(a)) ̸=
sign(v′(a)) or sign(u′(b)) ̸= sign(v′(b)). This contradicts the assumptions of our theorem. Namely,
that for every pair of consecutive transition points (a, b) of v|, ∀t ∈ (a, b) sign(ü|(t)) = sign(v̈|(t)),
and if neither of {a, b} is a local extremum, sign(u̇|(t)) = sign(v̇|(t)) for t ∈ {a, b}. Thus the
composition of u| is c| and, therefore, u| ≡ (c|, p|).

D.1.2 C0 TRAJECTORY PREDICTOR

Range of values for the derivative at t0 To ensure that the trajectory found by F 0
traj has the correct

semantic representation, we need to constrain the values of the first derivative of x at t0. These values
depend on the slope of the line connecting the first transition point with the second one, i.e., we
define slope κ as κ = x(t1)−x(t0)

t1−t0
. The values also depend on the motif and the nature of the second

transition point. They are presented in the table below.

Motif t1 Range

s++b inflection (0, κ)
s+−b maximum (1.5κ, 3κ)
s+−b inflection (κ, 3κ)
s−+b minimum (3κ, 1.5κ)
s−+b inflection (3κ, κ)
s−−b inflection (κ, 0)

Table 9: Allowed values for ẋ(t0) enforced by F 0
traj.

Trajectory conforms to the semantic representation In this section, we slightly relax the defini-
tion of conformity by allowing the part of the trajectory between two inflection points to be modeled
as a straight line with an appropriate slope. Even though it does not match any of the defined motifs,
in this section, we assume a straight line matches both the convex and concave variants of motifs
with the corresponding monotonicity. That means we can relax the first assumption in Theorem 1 to
∀t ∈ (a, b) sign(ü|(t)) = sign(v̈|(t)) or sign(ü|(t)) = 0 if both a, b are inflection points. To prove
that F 0

traj(c|, p|) ≡ (c|, p|), we first show that F 0
traj(c|, p|) ∼ (c|, p|).

Lemma 2. Let (c, p) ∈ C × P be a semantic representation predicted by Fsem. Then F 0
traj(c|, p|) ∼

(c|, p|).

26

Published as a conference paper at ICLR 2025

Proof. As each motif is described by a separate cubic polynomial, it is defined by four parameters.
To predict the trajectory, we set four constraints. Two for the x-coordinates of the transition points,
and two for the derivatives (one for each transition point). If the transition point is t0 then we set the
first derivative at t0 to the value specified in p|. If it is a local extremum then we set the first derivative
at it to 0. If it is an inflection point then we set the second derivative at it to 0. The only condition
left to satisfy is the second derivative at tend, if tend is a local extremum, or the first derivative at tend
if it is an inflection point. However, as we use F 0

traj for training the semantic predictor Fsem, we are
guaranteed that the “other” automatically matches the one specified in p|. Therefore, by Definition 5,
F 0

traj(c|, p|) ∼ (c|, p|).

We will know prove that F 0
traj(c|, p|) ≡ (c|, p|).

Theorem 2. Let (c, p) ∈ C × P be a semantic representation predicted by Fsem. Then F 0
traj(c|, p|) ≡

(c|, p|).

Proof. By Lemma 2, we get that F 0
traj(c|, p|) ∼ (c|, p|). We will now use Theorem 1 to show that

F 0
traj(c|, p|) ≡ (c|, p|). Let v| ≡ (c|, p|) and let us denote F 0

traj(c|, p|) as u|. Let us take any pair of
consecutive transition points of v| and denote them as a, b.

Let us consider two cases. First, when a ̸= t0 and second, where a = t0.

Case 1. a ̸= t0

At least one of {a, b} is an inflection point, as two local extrema cannot be two consecutive transition
points. Denote this point as q. That means that ü|(q) = v̈|(q) = 0. By definition of F 0

traj, u| is a
cubic on [a, b]. That means ü| is a straight line on [a, b], passing through 0 at q. Now we are going to
consider two subcases. Either the other transition point is a local extremum or it is another inflection
point.

Case 1.1 The other transition point is a local extremum.

Without loss of generality, let us assume that b = q is an inflection point, a is a local extremum, and
that u|(a) < u|(b). That means that at some point t ∈ (a, b), u̇|(t) > 0. We also know that u̇|(a) = 0.
That means that at some point t ∈ (a, b), ü| > 0. As ü| is a straight line passing through 0 at b, we
get that ∀t ∈ (a, b) ü|(t) > 0. This means that ∀t ∈ (a, b) sign(ü|(t)) = sign(v̈|(t)). Similarly for
other cases (where a is an inflection point, or u|(a) > u|(b)).

Case 1.2 Both transition points are inflection points.

If a and b are both transition points, then ∀t ∈ (a, b) ü|(t) = 0. This means u| is a straight line
passing through (a, u(a)) and (b, u(b)). As such sign(u̇|(a)) = sign(u̇|(b)) = sign(u|(b)−u|(a)) =
sign(v|(b)− v|(a)) = sign(v̇|(a)) = sign(v̇|(b)).

Case 2. a = t0

If a = t0 then u̇(a) = u̇(t0) is in the range described in Table 9. Without loss of generality, let us
assume that t0 = 0. Let us describe u| on [a, b] as β3t

3 + β2t
2 + β1t+ β0. Let us denote u|(0) = u0

and u|(t1) = u1. Let us also denote the required first derivative at 0 as u′
0. As u| needs to pass

through both (0, u0) and (t1, u1) and needs to have u̇|(0) = u′
0, we get the following equations.

β0 = u0 (11)

β3t
3
1 + β2t

2
1 + β1t1 + β0 = u1 (12)

β1 = u′
0 (13)

As in Table 9, we denote u(t1)−u(t0)
t1−t0

as κ. Then u1 = u0 +κ× t1. The second equation then reduces
to

β3t
2
1 + β2t1 + u′

0 = κ (14)

Now we have to go by all six cases in Table 9.

Case 2.1 s++b, t1 is an inflection point.

27

Published as a conference paper at ICLR 2025

As t1 is an inflection point, we get that

6β3t1 + 2β2 = 0 (15)

That means
β2 = −3β3t1 (16)

By substituting into the previous equation, we get

β3t
2
1 − 3β3t

2
1 + u′

0 = κ (17)

which gives us

β3 =
(u′

0 − κ)

2t21
(18)

β2 = −3(u′
0 − κ)

2t1
(19)

To satisfy the conditions of Theorem 1, we need to ensure that ü|(t) > 0 for all t ∈ (0, t1). This
holds if

3(u′
0 − κ)

t21
t− 3(u′

0 − κ)

t1
> 0 (20)

This is equivalent to
3(u′

0 − κ)(t− t1) > 0 (21)

As t < t1, this is equivalent to u′
0 − κ < 0 which is equivalent to

u′
0 < κ (22)

As our motif is s++b, u′
0 ≥ 0. Thus 0 ≤ u′

0 < κ as specified in Table 9.

Moreover, as neither t0 nor t1 is a local extremum, we need to check the signs of the first derivatives.
We do not need to check t0, but we need to ensure that u̇|(t1) > 0. But this follows from the fact that
u̇|(t0) > 0 and ü|(t) > 0 for all t ∈ (t0, t1).

Case 2.2 s+−b, t1 is a maximum.

As t1 is a maximum, we get
3β3t

2
1 + 2β2t1 + u′

0 = 0 (23)

That means

β2 =
−u′

0 − 3β3t
2
1

2t1
(24)

By substituting into Equation (14), we obtain

β3t
2
1 + 1/2× (−u′

0 − 3β3t
2
1) + u′

0 = κ (25)

By rearranging, we get

β3 =
u′
0 − 2κ

t21
(26)

β2 =
3κ− 2u′

0

t1
(27)

To satisfy the conditions of Theorem 1, we need to ensure that ü|(t) < 0 for all t ∈ (0, t1). That is
we need

6
u′
0 − 2κ

t21
t+ 2

3κ− 2u′
0

t1
< 0 (28)

which is equivalent to
(6u′

0 − 12κ)t+ (6κ− 4u′
0)t1 < 0 (29)

After rearranging
κ(3t1 − 6t) < u′

0(2t1 − 3t) (30)

28

Published as a conference paper at ICLR 2025

Let us denote t/t1 as t′. Then the previous equation is equivalent to

t′(3u′
0 − 6κ) < 2u′

0 − 3κ (31)

As this is supposed to be true for all t′ ∈ (0, 1), two things need to be true.

2u′
0 − 3κ > 0 (32)

3u′
0 − 6κ < 2u′

0 − 3κ (33)

This gives us

1.5κ < u′
0 < 3κ (34)

as specified in Table 9.

Case 2.3 s+−b, t1 is an inflection.

We follow a similar first step as in Case 2.1. We arrive at the conclusion that to satisfy the condition
of Theorem 1, we need to ensure that ü|(t) < 0 for all t ∈ (0, t1). This holds if

u′
0 > κ (35)

However, we also need to make sure that u̇|(t1) > 0. That is, we need to satisfy

3
u′
0 − κ

2t21
t21 − 2

3(u′
0 − κ)

2t1
t1 + u′

0 > 0 (36)

That is equivalent to
−u′

0 + 3κ > 0 (37)

Thus u′
0 needs to satisfy κ < u′

0 < 3κ as specified in Table 9.

Case 2.4 s−+b, t1 is a minimum.

The steps are very similar to those in Case 2.2. We arrive at equation Equation (31), but the inequality
has a different direction. That is, we need

t′(3u′
0 − 6κ) > 2u′

0 − 3κ (38)

to hold for all t′ ∈ (0, 1). This can only be true if

2u′
0 − 3κ < 0 (39)

3u′
0 − 6κ > 2u′

0 − 3κ (40)

which gives us
3κ < u′

0 < 1.5κ (41)

as specified in Table 9.

Case 2.5 s−+b, t1 is an inflection point.

The steps are analogous to those in 2.3. However, we need to ensure that ü|(t) > 0 for all t ∈ (0, t1)
and that u̇|(t1) < 0. This gives us

3κ < u′
0 < κ (42)

as in Table 9.

Case 2.6 s−−b, t1 is an inflection point.

Analogously to Case 2.1, we get
κ ≤ u′

0 < 0 (43)

D.1.3 C2 TRAJECTORY PREDICTOR

In this section, we describe F 2
traj that predicts a trajectory that is twice continuously differentiable.

29

Published as a conference paper at ICLR 2025

Why is it challenging? A natural idea to find a cubic spline with the corresponding composition
and properties would be to follow a similar approach as in F 0

traj by choosing knots at the transition
points. However, then the problem turns out to be overdetermined, i.e., we are not guaranteed that the
needed cubic spline exists. Indeed, given S motifs in the bounded part of the composition, we have
5 conditions for each of the internal knots (the values for the two cubic, matching first and second
derivative, and the value of one of the derivatives). This is because each internal knot is either a
local extremum (first derivative vanishes) or an inflection point (second derivative vanishes). We also
specify the values of the derivatives at the endpoints, which gives us overall 5(S − 1) + 2 + 3 = 5S
conditions, whereas we only have 4S parameters.

The conclusion is simple: we need more knots. In fact, the general formula for the number of
constraints is 3(K − 1) + 2(S − 1) + 2 + 3 = 3K + 2S where K is the number of cubics, and S is
the number of motifs. By equating this number to 4K, we get the optimal number of cubics is: 2S.
That means that we will need knots between transition points. This, however, poses a new challenge.
Although the resulting cubic will have all the transition points and derivatives as required, i.e., it
will seemingly match the semantic representation, we are in no way guaranteed that it will have the
correct composition! Although we would like the function between two transition points to have a
fixed sign of both derivatives, nothing is stopping our function from adding additional trend changes
in between. This is visualized in Figure 14.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

f(t0) = g(t0)
f ′(t0) = g′(t0)

f(t1) = g(t1) = 0
f ′(t1) = g′(t1) = 0

f(t2) = g(t2)
f ′′(t2) = g′′(t2) = 0

f(t3) = g(t3)
f ′(t3) = g′(t3)
f ′′(t3) = g′′(t3)

f
g
Transition points of f
Additional inflection points of g

Figure 14: f ≡ (c|, p|), g ∼ (c|, p|) but g ̸≡ (c|, p|).

To solve this problem, we propose a completely different approach to fitting cubic splines.

From cubic spline to a piecewise linear function and back In this subsection, we show how we
can describe a cubic spline in terms of its second derivative to reduce the number of parameters and
control its second derivative. A cubic spline consisting of K cubics is uniquely described by its K+1
knots and 4K coefficients (four per every cubic). However, the actual number of degrees of freedom
is much smaller because the spline needs to be twice continuously differentiable at the knots. We
observe that we can decrease the number of parameters by fitting the second derivative of the spline
instead and then integrating it twice to get the required function (Figure 15). The second derivative of
a cubic is a linear function (which can be integrated analytically), so each piece is described by just
two parameters. In fact, we can describe a piecewise linear function by just the values at the knots,
ensuring continuity. The values at two consecutive knots then uniquely determine the linear functions.
Together with the additional two parameters for the integration constants (c and d), we reduced the
number of parameters to K + 3. Formally, we want to find ü ∈ C0 and then define u ∈ C2 as

u(t) =

∫ t

t0

(∫ t′

t0

ü(t′′) dt′′ + c

)
dt′ + d, (44)

where ü is described by (t0, . . . , tK , v0, . . . , vK). This not only helps us decrease the number of
parameters and constraints we need to impose but, crucially, allows us to exactly control sign(ü(t))
by just making sure each vk is either positive or negative.

30

Published as a conference paper at ICLR 2025

𝐾 + 1 knots

4𝐾 parameters
(4 for each cubic 𝑓𝑖)

To guarantee 𝑥 ∈ 𝒞2

we need 3 𝐾 − 1 constraints

𝑥: ℝ → ℝ ሷ𝑥: ℝ → ℝ

𝐾 + 1 knots

𝐾 + 3 parameters
(𝑣0, … , 𝑣𝐾 and 𝑐, 𝑑)

Integration guarantees
𝑥 ∈ 𝒞2 with no constraints

𝑑2

𝑑𝑡2

ඵ

Figure 15: Traditionally, a cubic spline over K + 1 knots is described by 4K parameters and
3(K − 1) constraints that guarantee that the function is twice continuously differentiable. Instead,
we describe it using its second derivative, which can be parametrized by K + 1 parameters and two
integration constants. Integration guarantees the function is twice continuously differentiable without
any additional constraints.

Fitting the second derivative We observed that the second derivative of a cubic spline is a piecewise
linear function that is entirely defined by its values at the knots. We choose the knots as the transition
points and add one knot between every two of them. The positions of these knots are additional
parameters of our model. Given n transition points, we have 2n− 1 knots (denoted t0, . . . , t2n−2)
and their associated values denoted v0, . . . , v2n−2. As each antiderivative is determined up to a
constant, we need additional parameters c and d as integration constants. Ultimately, ü is described
by (t0, . . . , t2n−2, v0, . . . , v2n−2, c, d). Overall, this gives 4n parameters. However, many of these
parameters are directly determined by the semantic representation of x. In particular, the following
parameters are predetermined.

• t2i for all i ∈ [0 : n− 1] (t-coordinates of the transition points)
• v2n−2 and all v2i where t2i is an inflection point
• c = ẋ(t0)
• d = x(t0)

In addition, for every transition point t2i with a specified first derivative (either a local extremum or
the endpoint), the value of v2i−1 is chosen to enforce the correct value of u̇(t2i). This can be done
by observing that the value of u̇(t2i) is equal to the sum of u̇(t2j), where t2j is a previous transition
point with a specified first derivative, and the integral of ü between those points. Namely,

u̇(t2i) =

∫ t2i

t2j

ü(t) dt+ u̇(t2j) (45)

This integral can be calculated analytically as ü is a piecewise linear function. In the end, we are left
with 2n− 2 parameters obeying the following constraints.

• t2i < t2i+1 < t2i+2 for all i ∈ [0 : n− 2]

• sign(vi) = sign(ẍ(ti))

The goal is to find these parameters such that the resulting u(t2i) = x(t2i) and sign(u̇(t2i) =
sign(ẋ(t2i)) and this can be formed as the following objective.

n−1∑
i=0

(u(t2i)− x(t2i))
2 + λmin(u̇(t2i)× ẋ(t2i), 0) (46)

where λ is chosen to be very large. We then use L-BFGS-B and Powell to optimize this objective three
times for different initial guesses. If the maximum error on the transition points (maxi|u(t2i)−x(t2i)|)
and on the derivatives (maxi|u̇(t2i) − ẋ(t2i)|) is lower than some user-defined threshold (we use
0.001) then we have found a function with the correct semantic representation. If not then we default
to using F 0

traj. The threshold allows the user to choose a trade-off between how smooth the trajectory
needs to be and how faithful it needs to be to its semantic representation.

To make this concrete, we consider an example where the finite part of the compo-
sition is (s+−b, s−−b, s−+b, s++b) (see Figure 16). It is described by 20 parameters

31

Published as a conference paper at ICLR 2025

(t0, . . . , t8, v0, . . . , v8, c, d), but most of them are fixed (denoted by the red color in Figure 16). In par-
ticular, t0, t2, t4, t6, t8 are the t-coordinates of the transition points. v4 = 0 as an inflection point and
v8 = 0 as the last transition point. Moreover, v1, v5, v7 are always chosen to ensure the first derivatives
at t2, t6, t8 have the correct values and c = ẋ(t0) = 1, d = x(t0) = 0. That leaves 8 trainable param-
eters (v0, t1, v2, t3, v3, t5, v6, t7) constrained such that t0 < t1 < t2 < t3 < t4 < t5 < t6 < t7 < t8,
v0, v2, v3 < 0, v6 > 0.

0 1
2

3
2

2

1.0

0.5

0.0

0.5

1.0

A0 A1

A2 A3x0 x1 x2 x3

x4 x5 x6 x7 x8
v0

v1

v2

v3

v4

v5

v6

v7

v8

f ′′

Values of f ′′ (fixed)
Values of f ′′ (trainable)
Transition points (fixed)
Additional knots (trainable)

Figure 16: Example parametrization of u through its second derivative. x has the composition
(s+−b, s−−b, s−+b, s++b). It is described by 20 parameters (t0, . . . , t8, v0, . . . , v8, c, d) where 12 of
them are fixed and 8 are trainable.

D.2 UNBOUNDED PART OF THE TRAJECTORY

In contrast to the bounded part of the trajectory, for the unbounded part we have only one predictor.
It takes the unbounded motif and its properties, as well as the coordinates of the last transition point
and both derivatives at this point, and predicts a trajectory |x. We need the derivatives to guarantee
that the trajectory is twice continuously differentiable at tend. The first challenge is to come up with
useful properties that sufficiently describe the unbounded motif.

D.2.1 PROPERTIES OF UNBOUNDED MOTIFS

Below, we describe the properties of unbounded motifs one by one.

s++u This motif represents an increasing, convex function. We decided to model it as a function
exhibiting an exponential-like behavior. That is, we expect it to double after a fixed time interval. As
it is true for a function such as u(t) = 3× 2

t
5 . In this case u(t+ 5) = 2× u(t). However, we need

to generalize the notion of this doubling time to settings with arbitrary initial conditions, including
negative ones. In that case, the doubling time depends on t. However, we can make it approach a
fixed value asymptotically. Let γ(t) be defined as value such that |x(t + γ(t)) = 2|x(t). As |x is
increasing and convex, γ(t) is well-defined. Then we define our property as limt→∞ γ(t) and call it
“asymptotic doubling time”.

s−−u We describe s−−u using an analogous property that we call “negative asymptotic doubling
time” defined in exactly the same way. The only difference is that, in this case, doubling makes the
trajectory more negative and thus the value decreases.

s+−u This motif represents an increasing, concave function. We decided to model it as a function
that resembles a logarithm. Thus, we expect it to have an inverse behavior to the exponential function.
As we double the input, we expect a constant increase in the function’s value. As with the previous
examples, in general, this increase would depend on the current value of the trajectory, but we can
make it converge as t→∞. Formally, we define γ(t) as a number such that |x(2t) = |x(t)+γ(t). As

32

Published as a conference paper at ICLR 2025

|x increases, this is well defined. Thus, we define the property as limt→∞ γ(t) and call it “asymptotic
incrementing factor”.

s−+u We describe s−+u using an analogous property that we call “asymptotic decrementing factor”.
It is defined as limt→∞ γ(t), where γ(t) is defined as number such that |x(2t) = |x(t)− γ(t).

s−+h This motif represents a decreasing, convex function with a horizontal asymptote. A natural
property is the horizontal asymptote h. However, we decided to include one more property that
describes how quickly the trajectory approaches that asymptote. We define t1/2 as the value of t
where |x is in the middle between the value of the last transition point and the asymptote. Formally,

|x(t1/2) = |x(tend)+h

2 . We call it “half-life” as it would correspond to half-life if modeled as an
exponential decay.

s+−h We describe this motif using the same properties as s−+h. However, as the function increases,
instead of “half-life” we call it “inverse half-life”.

D.2.2 PARAMETRIZATION

Having defined the properties of interest in the previous section, we need to find a parametrization for
each of these motifs that would allow us to choose an arbitrary property as well as the last transition
point and the two derivatives at this point.

s++u We parametrize this motif as

|x(t) = θ1e
θ2(t−tend) + θ3(t− tend) + θ4(t− tend) + θ5 (47)

We can quickly calculate that

|x(tend) = θ1 + θ5 (48)

|ẋ(tend) = θ1θ2 + θ4 (49)

|ẍ(tend) = θ1θ
2
2 + 2θ3 (50)

Now let us define γ(t) as earlier, i.e., γ(t) is the value such that |x(t+ γ(t)) = 2|x(t). We are now
going to prove that limt→∞ g(t) = log(2)

θ2
which we denote as simply γ∗. To do it we first prove that

limt→∞ 2|x(t)− |x(t+ γ∗) = 0.

lim
t→∞

2|x(t)

|x(t+ γ∗)
= lim

t→∞

2
[
θ1e

θ2(t−tend) + θ3(t− tend) + θ4(t− tend) + θ5
]

θ1eθ2(t+γ−tend) + θ3(t+ γ − tend) + θ4(t+ γ∗ − tend) + θ5

= lim
t→∞

2θ1e
θ2(t−tend)

θ1eθ2(t−tend)eθ2γ∗

=
2

eθ2γ∗

=
2

e
θ2

(
log 2
θ2

)
=

2

2
= 1

(51)

From that it follows limt→∞ 2|x(t)− |x(t+ γ∗) = 0. As the function 2|x(t)

|x(t+γ) is continuous in both
t and γ and for every t > tend it is bounded for all γ > 0, it is absolutely continuous in γ. From that
it follows that limt→∞ g(t) = g∗ = log(2)

θ2
.

So we can set the parameters as follows.

θ2 =
log(2)

γ∗
(52)

θ3 = (|ẍ(tend)− θ1θ
2
2)/2 (53)

θ4 = |ẋ(tend)− θ1θ2 (54)

θ5 = |x(tend)− θ1 (55)

33

Published as a conference paper at ICLR 2025

We have some freedom in choosing θ1, but we need to make sure that the function is indeed increasing
and convex for all t > tend. This is true if θ3 > 0 and θ4 > 0. So we choose θ1 to be

θ1 = min(|ẋ(tend)/2θ2, |ẍ(tend)/2θ
2
2, 1) (56)

s−−b We parametrize this motif analogously to the previous one.

|x(t) = −θ1eθ2(t−tend) − θ3(t− tend)− θ4(t− tend) + θ5 (57)

where

θ2 =
log(2)

γ∗
(58)

θ3 = −(|ẍ(tend)− θ1θ
2
2)/2 (59)

θ4 = −|ẋ(tend)− θ1θ2 (60)

θ5 = |x(tend) + θ1 (61)

and θ1 needs to be chosen to make sure that θ3 and θ4 are positive. We choose it to be

θ1 = min(−|ẋ(tend)/2θ2,−|ẍ(tend)/2θ
2
2, 1) (62)

s+−u We parametrize this motif as

|x(t) = θ1 log(θ2(t− tend)
2 + θ3(t− tend) + 1) + θ4 (63)

where

θ1 = γ∗/log(4) (64)
θ3 = |ẋ(tend)/θ1 = log(4)|ẋ(tend)/γ∗ (65)

θ2 = θ23/2 = (log(4)|ẋ(tend)/γ∗)
2/2 (66)

θ4 = |x(tend) (67)

where γ∗ is the property of s+−u that we call asymptotic incrementing factor.

It is easy to verify that this function is indeed increasing and concave. If there is a bounded motif
before it, it has to be s++c, and then tend is an inflection point. Thus

|ẍ(tend) = θ1(2θ2 − θ23) = 0 (68)

as required. If there is no bounded motif before it, there is no way to set the second derivative at tend
to any other value than 0. This property is fixed and not trained in the property map.

Let γ(t) be defined as earlier, i.e.,

γ(t) = |x(2t)− |x(t) (69)

We can compute it as

γ(t) = |x(2t)− |x(t)

= θ1 log(θ2(2t− tend)
2 + θ3(2t− tend) + 1)− θ1 log(θ2(t− tend)

2 + θ3(t− tend) + 1)

= θ1 log

(
θ2(2t− tend)

2 + θ3(2t− tend) + 1

θ2(t− tend)2 + θ3(t− tend) + 1

) (70)

Thus

lim
t→∞

γ(t) = θ1 log

(
4θ2
θ2

)
= θ1 log(4)

= γ∗

(71)

as required.

34

Published as a conference paper at ICLR 2025

s−+u This motif is parametrized analogously to s+−u as

|x(t) = −θ1 log(θ2(t− tend)
2 + θ3(t− tend) + 1) + θ4 (72)

where

θ1 = γ∗/log(4) (73)
θ3 = −|ẋ(tend)/θ1 = − log(4)|ẋ(tend)/γ∗ (74)

θ2 = θ23/2 = (log(4)|ẋ(tend)/γ∗)
2/2 (75)

θ4 = |x(tend) (76)

where γ∗ is the property of s+−u that we call asymptotic decrementing factor.

Let us define γ as earlier, i.e.,
γ(t) = |x(t)− |x(2t) (77)

Then

lim
t→∞

γ(t) = −θ1 log
(
1

4

)
= θ1 log(4)

= γ∗

(78)

as required.

s−+h We parametrize this motif as

|x(t) = h(g(t− tend)) (79)

where
h(t) =

θ1
1 + et

+ θ2 (80)

and g(t) is appropriately defined cubic spline.

First, we need to make sure that |x is actually decreasing and convex.

|ẋ(t) = ḣ(g(t− tend))ġ(t− tend) (81)

ḣ(t) = − θ1e
t

(et + 1)2
< 0 (82)

So to satisfy |x(t) < 0 for t ≥ tend, we need g′(t) > 0 for t ≥ 0. Let us now look at the second
derivative.

|ẍ(t) = ḧ(g(t− tend))ġ(t− tend)
2 + ḣ(g(t− tend))g̈(t− tend) (83)

ḧ(t) =
θ1(e

t − 1)et

(et + 1)3
(84)

For t > 0, this is always positive. Let us assume g(0) = 0, then g(t) > 0 for t > 0. To satisfy
|ẍ(t) > 0 for t > tend, we need g̈(t) < 0 for t > 0. Let us now look at tend.

|x(tend) = h(g(0)) = h(0) = θ1/2 + θ2 (85)

|ẋ(tend) = ḣ(0)ġ(0) = −θ1
4
ġ(0) (86)

|ẍ(tend) = ḧ(0)ġ(0)2 + ḣ(0)g̈(0) = −θ1
4
g̈(0) (87)

In addition, we also need to satisfy the properties, i.e.,

lim
t→∞ |x(t) = h (88)

|x(t1/2) = (|x(tend) + h)/2 (89)

As g is increasing,
lim
t→∞ |x(t) = θ2 (90)

35

Published as a conference paper at ICLR 2025

Thus θ2 = h. From that follows that θ1 = 2(x(tend)− h). From the “half-life” property, we get

2(|x(tend)− h)

1 + eg(t1/2−tend)
+ h = (|x(tend) + h)/2 (91)

From that, we get that g(t1/2 − tend) = log(3).

To summarize, we need to find g such that

g(0) = 0 (92)

ġ(0) = −
2|ẋ(tend)

x(tend)− h
(93)

g̈(0) = 0 (94)
g(t1/2 − tend) = log(3) (95)

We impose g̈(0) = 0, so that |ẍ(tend) = 0, which is always the case if there is a bounded motif before.
If it is the only motif, then one of the property maps is fixed and not trained.

To make sure that g̈(t) ≥ 0 for all t ≥ 0 we define it as a piecewise function composed of three cubic
and a straight line. Similar to our approach in Appendix D.1.3, we describe the two cubics using
second derivatives. Thus g̈ is a piecewise linear function with knots at 0, t1, t2 such that

g̈(0) = 0 (96)
g̈(t1) = v1 (97)
g̈(t2) = 0 (98)

(99)

and g̈(t) = 0 for all t ≥ t2. The goal is to now find t1, t2, v1 such that g is increasing, concave, and
g(t1/2 − tend) = log(3).

g is always going to be concave if v1 < 0. However, to make sure it stays increasing, we need to
have ġ(t2) > 0. This requires ġ(0) + (t2 × v1)/2 > 0. If t1/2 − tend < 1.5 log(3)/ġ(0) then we set
t2 = t1/2 − tend otherwise we set t2 = 1.5 log(3)/ġ(0). In both cases, we choose t1 = t2/2. We
used a symbolic Python library sympy to arrive at the following conclusions. In the first case, we set
v1 as follows.

v1 = 4
−(t1/2 − tend)ġ(0) + log(3)

(t1/2 − tend)2
(100)

In the second case, we set it as follows.

v1 = v1 = 4
−(t1/2 − tend)ġ(0) + log(3)

2 ∗ (t1/2 − tend) ∗ (1.5 log(3)/ġ(0))− (1.5 log(3)/ġ(0))2
(101)

From that, we calculate the coefficients of the cubics and the slope and intercept of the straight line.

s+−h This one is analogous to s−+h.

E EXPERIMENTAL DETAILS

All experimental code can be found at https://github.com/krzysztof-kacprzyk/
SemanticODE.

E.1 DATASETS

Pharmacokinetic model The pharmacokinetic dataset is based on the pharmacokinetic model
developed by Woillard et al. (2011) to model the plasma concentration of Tacrolimus. This model

36

https://github.com/krzysztof-kacprzyk/SemanticODE
https://github.com/krzysztof-kacprzyk/SemanticODE

Published as a conference paper at ICLR 2025

consists of a system of ODEs described below.

dCdepot

dt
= −ktrCdepot (102)

dCtrans1

dt
= ktrCdepot − ktrCtrans1 (103)

dCtrans2

dt
= ktrCtrans1 − ktrCtrans2 (104)

dCtrans3

dt
= ktrCtrans2 − ktrCtrans3 (105)

dCcent

dt
= ktrCtrans3 − ((CL+Q) ∗ Ccent/V1) + (Q ∗ Cperi/V2) (106)

dCperi

dt
= (Q ∗ Ccent/V1)− (Q ∗ Cperi/V2) (107)

The values of the parameters and the initial conditions are presented in Table 10.

Table 10: Parameters of the pharmacokinetic dataset.

Parameter Value

CL 80.247
V 1 486.0
Q 79
V 2 271
ktr 3.34
Cdepot(t0) 10
Ccent(t0) x0 × (V1/1000)
Cperi(t0) V2/V1 × Ccent(t0)
Ctrans1(t0) 0.0
Ctrans2(t0) 0.0
Ctrans3(t0) 0.0

We create 100 samples of x0 equally spaced between 0 and 20. We then solve the initial value
problem to obtain a trajectory of Ccent. We then scale it back to appropriate units by multiplying by
1000 and dividing by V1. We observe each trajectory at 20 equally spaced time points between 0 and
24. Then we scale the dataset by dividing the concentrations by 20 and the time points by 24. Finally,
we add a Gaussian noise with a standard deviation σ = 0.01 for the low noise setting and σ = 0.2
for the high noise setting.

The out-domain dataset is created similarly, but each trajectory is observed only at t0 = 0 and at 20
time points between 24 and 48 (1 and 2 after dividing by 24).

Logistic growth The logistic growth dataset is described by the following equation (Verhulst,
1845).

ẋ(t) = x(t)(1− x(t)

2
) (108)

We create 200 samples of x0 equally spaced between 0.2 and 4. We then solve the initial value
problem to obtain a trajectory for each. We observe each trajectory at 20 equally spaced time points
between 0 and 5. Finally, we add a Gaussian noise with a standard deviation σ = 0.01 for the low
noise setting and σ = 0.2 for the high noise setting.

General ODE The general ODE dataset is described by the equation

ẋ(t) = f(x(t), t) (109)

where f is not described by a compact closed form expression. We describe f using a probability
density function of a 2-dimensional mixture of 3 Gaussians. The means, covariances, and weights for
each Gaussian are shown in Table 11.

37

Published as a conference paper at ICLR 2025

Table 11: Parameters of the Gaussians used to define the general ODE dataset.

Weight Mean Covariance matrix

0.4 [0, 0] [[1, 0], [0, 1]]
−0.3 [3, 3] [[1, 0.0], [0.0, 1]]
0.3 [−1,−2] [[2, 0], [0, 2]]

We then define f(x, t) as the value of the probability density function of this mixture multiplied by
50. We create 200 samples of x0 equally spaced between −3 and 3. We then solve the initial value
problem to obtain a trajectory for each. We observe each trajectory at 20 equally spaced time points
between 0 and 5. Then we scale the dataset by dividing x by 3 and the time points by 5. Finally, we
add a Gaussian noise with a standard deviation σ = 0.01 for the low noise setting and σ = 0.2 for
the high noise setting.

Mackey-Glass The Mackey-Glass dataset is described by the following Mackey-Glass equation
(Mackey & Glass, 1977).

ẋ(t) =
β0θ

nx(t− τ)

θn + x(t− τ)n
− γx(t) (110)

We choose the following parameters: θ = 1, β = 0.4, τ = 4.0, n = 4. We create 200 samples of x0

equally spaced between 1.0 and 3.0. We then solve the initial value problem to obtain a trajectory for
each. We observe each trajectory at 20 equally spaced time points between 0 and 30. Then we scale
the dataset by dividing x by 3 and the time points by 30. Finally, we add a Gaussian noise with a
standard deviation σ = 0.01 for the low noise setting and σ = 0.2 for the high noise setting.

Integro-DE The integro-differential equation dataset is described by the following equation (Holt
et al., 2022; Bourne, 2018).

ẋ(t) = −2x(t)− 5

∫ t

0

x(s)ds (111)

We create 100 samples of x0 equally spaced between −1.0 and 1.0. We then solve the initial value
problem to obtain a trajectory for each. We observe each trajectory at 20 equally spaced time points
between 0 and 5. Finally, we add a Gaussian noise with a standard deviation σ = 0.01 for the low
noise setting and σ = 0.2 for the high noise setting.

E.2 METHODS

SINDy We use SINDy (Brunton et al., 2016b) as implemented in the PySINDy package (de Silva
et al., 2020; Kaptanoglu et al., 2022). We pass the variable t as an additional dimension of the
trajectory to allow for a time-dependent solution (not just autonomous systems). We use the following
library of functions:

1, x, t, x2, xt, t2, ex, et, sin(x), sin(t), cos(x), cos(t),

sin(2x), sin(2t), cos(2x), cos(2t), sin(3x), sin(3t)

We use Mixed-Integer Optimized Sparse Regression (MIOSR) (Bertsimas & Gurnee, 2023) for
optimization as it allows us to choose a sparsity level—the number of terms in the equation. In our
experiments, we consider two variants of SINDy, that we denote SINDy and SINDy-5. SINDy-5
enforces the maximum number of terms to be 5 which would hopefully allow for analyzing the
equation. In the SINDy variant, we choose the maximum number of terms during hyperparameter
tuning (between 1 and 20). For both SINDy and SINDy-5, we tune the parameter α of MIOSR that
describes the strength of L2 penalty (between 1e− 3 and 1), and the derivative estimation algorithm.
We choose between the following techniques: finite difference, spline, trend filtered, and smoothed
finite difference as available in PySINDy. The parameter ranges we consider for each of them are
shown in Table 12.

WSINDy We use WSINDy (Reinbold et al., 2020; Messenger & Bortz, 2021a) based on (Reinbold
et al., 2020) as implemented in PySINDy package (de Silva et al., 2020; Kaptanoglu et al., 2022). We

38

Published as a conference paper at ICLR 2025

Table 12: Hyperparameter ranges for each of the derivative estimation methods.

Method Hyperparameter ranges

finite difference k ∈ {1, . . . , 5}
spline s ∈ (1e− 3, 1)
trend filtered order ∈ {0, 1, 2}, α ∈ (1e− 4, 1)
smoothed finite difference window_length ∈ {1, . . . , 5}

pass the variable t as an additional dimension of the trajectory to allow for a time-dependent solution
(not just autonomous systems). We use the following library of functions:

1, x, t, x2, xt, t2, ex, et, sin(x), sin(t), cos(x), cos(t),

sin(2x), sin(2t), cos(2x), cos(2t), sin(3x), sin(3t)

We use Mixed-Integer Optimized Sparse Regression (MIOSR) (Bertsimas & Gurnee, 2023) for
optimization as it allows us to choose a sparsity level—the number of terms in the equation. In
our experiments, we consider two variants of WSINDy, that we denote WSINDy and WSINDy-
5. WSINDy-5 enforces the maximum number of terms to be 5 which would hopefully allow for
analyzing the equation. In the WSINDy variant, we choose the maximum number of terms during
hyperparameter tuning (between 1 and 20). For both WSINDy and WSINDy-5, we tune the parameter
α of MIOSR that describes the strength of the L2 penalty (between 1e− 3 and 1). We choose the
parameter K (the number of domain centers) to be 200.

PySR We adapt PySR (Cranmer, 2020), a well-known symbolic regression method to ODE dis-
covery by first estimating the derivative and then treating it as a label. We choose the derivative
estimation technique and its parameters by hyperparameter tuning (as with SINDy) using the methods
and parameter ranges in Table 12. We use the following operators and functions.

+,−,×,÷, sin, exp, log(1 + |x|)

Following the advice in the documentation, we also put a constraint to prevent nesting of sin functions.
During hyperparameter tuning we allow PySR to search for 15 seconds and then we train the final
model for 1 minute. This is a bit larger but comparable time budget to Sematic ODE and a much
bigger time budget than SINDy and WSINDy require.

NeuralODE We implement a NeuralODE (Chen et al., 2018) model using torchdiffeq library.
We parametrize the ODE as a fully connected neural network. The data is standardized before
fitting. We set the batch size to 32 and train for 200 epochs using Adam optimizer (Kingma & Ba,
2017). We tune hyperparameters using Optuna (Akiba et al., 2019) for 20 trials. Ranges for the
hyperparameters are shown in Table 13.

Table 13: Hyperparameter ranges used for tuning Neural ODE.

Hyperparameter Range

learning rate (1e-5,1e-1)
number of layers (1,3)
units in each layer (separately) (16,128)
dropout rate (0.0,0.5)
weight decay (1e-6,1e-2)
activation function ELU, Sigmoid

DeepONet We implement DeepONet (Lu et al., 2020) using a fully connected neural network. The
data is standardized before fitting. We train for 200 epochs using Adam optimizer (Kingma & Ba,
2017). We tune hyperparameters using Optuna (Akiba et al., 2019) for 20 trials. Ranges for the
hyperparameters are shown in Table 14.

39

Published as a conference paper at ICLR 2025

Table 14: Hyperparameter ranges used for tuning DeepONet.

Hyperparameter Range

learning rate (1e-5,1e-1)
number of layers (1,5)
number of hidden states (10,100)
dropout rate (0.0,0.5)
weight decay (1e-6,1e-2)
batch size {8, 16, 32}

DeepONet We implement Neural Laplace (Holt et al., 2022) using a fully connected neural network.
The data is standardized before fitting. We train for 200 epochs using Adam optimizer (Kingma &
Ba, 2017). We tune hyperparameters using Optuna (Akiba et al., 2019) for 20 trials. Ranges for the
hyperparameters are shown in Table 15.

Table 15: Hyperparameter ranges used for tuning Neural Laplace.

Hyperparameter Range

learning rate (1e-5,1e-1)
number of layers (2,5)
number of hidden states (10,100)
latent dimension (2,10)
dropout rate (0.0,0.5)
weight decay (1e-6,1e-2)
batch size {8, 16, 32}

Semantic ODE In all experiments in Section 6.4 we use a full composition library containing all
compositions up to 3 motifs (with the exception of logistic growth dataset where we only consider
compositions up to 2 motifs). We choose the maximum number of branches for the composition map
to be I = 3. Each univariate function in the property maps is described as a linear combination of 6
basis functions: constant, linear, and four B-Spline basis functions of degree 3. The property maps
are trained using L-BFGS as implemented in PyTorch. We fix the penalty term for the difference
between derivatives to be 0.01 and we perform hyperparameter tuning of each property sub-map to
find the optimal learning rate (between 1e-4 and 1.0) and the penalty term for the first derivative at
the last transition point (between 1e-9 and 1e-1).

E.3 BENCHMARKING PROCEDURE

The experimental results presented in Table 3 are a result of the following procedure. For 5 different
seeds, the dataset is randomly split into training, validation, and test datasets with ratios 0.7 :
0.15 : 0.15. For each method, we perform hyperparameter tuning for 20 trials and then report the
performance on the test set. Each seed results in both a different split and a different random state
of the algorithm (apart from SINDy, which is deterministic). As Semantic ODE splits the training
dataset and trains separate property sub-maps, we pass the combined train and validation set to it.
For each property sub-map, the subset of this set with the corresponding composition is once again
split into training and validation subsets. The validation set is used for hyperparameter tuning and for
early stopping.

F EXTENDED RELATED WORKS

Symbolic regression and discovery of differential equations The discovery of differential equa-
tions is usually considered a part of a broader area called symbolic regression. Symbolic regression is
the area of machine learning whose task is to describe data using a closed-form expression. Traditional
symbolic regression has used genetic programming (Stephens, 2022; Cranmer, 2020) for this take but
recently neural network has also been utilized for that task. That includes representing the equation

40

Published as a conference paper at ICLR 2025

directly as a neural network by adapting the activation functions (Martius & Lampert, 2017; Sahoo
et al., 2018), using neural networks to prune the search space (Udrescu & Tegmark, 2020; Udrescu
et al., 2021), searching for equations using reinforcement learning (Petersen et al., 2021), or using
large pre-trained transformers (Biggio et al., 2021; D’Ascoli et al., 2022). Designing complexity met-
rics and constraints that make sure the equations are simple enough to analyze is itself a challenging
research problem (Kacprzyk & van der Schaar, 2025). Standard symbolic regression can be adapted
to ODE discovery by just estimating the derivative from data and treating it as a target (Quade et al.,
2016). However, many dedicated ODE discovery techniques have been proposed. Among them, the
most popular is SINDy (Brunton et al., 2016b) that describes the derivative as a linear combination of
functions from a prespecified library. This was followed by numerous extensions, including implicit
equations (Kaheman et al., 2020), equations with control (Brunton et al., 2016b), and longitudinal
treatment effect estimation (Kacprzyk et al., 2024a). Approaches based on weak formulation of
ODEs that allow to circumvent derivative estimation have also been proposed (Messenger & Bortz,
2021a; Qian et al., 2022). ODE discovery methods usually cannot be directly used to discover
partial differential equations (PDEs) and thus many dedicated PDE discovery algorithms have been
developed (Rudy et al., 2017; Raissi & Karniadakis, 2018; Messenger & Bortz, 2021b; Kacprzyk
et al., 2023). The challenge of finding compact and well-fitting closed-form expressions inspired
Shape Arithmetic Expressions (Kacprzyk & van der Schaar, 2024) that extend the prespecified set
of well-known functions (e.g., exp or trigonometric functions) in symbolic regression by flexible
and learnable univariate functions that do not have a compact symbolic representation but can be
comprehended by looking at their graph.

Time series representation Semantic representation is closely related to the topic of time series
representation. In particular, apart from the work by Kacprzyk et al. (2024b), there have been
other works that try to symbolically describe the time series. In particular, Symbolic Aggregate
approXimation (Lonardi & Patel, 2002), Shape Description Alphabet (André-Jönsson & Badal,
1997), or the triangular representation of process trends (Cheung & Stephanopoulos, 1990) represent
a time series as a sequence of symbols that resembles the definition of a composition. However,
these methods are mostly used for data mining or classification rather than forecasting. Similarly,
although shapelet-based methods (Ye & Keogh, 2009) and motif discovery (Torkamani & Lohweg,
2017) are concerned with the trajectory’s shape, they are usually aimed at finding subsequences of a
time series that represent the most important or repeating patterns. There are also numerous other
nonsymbolic time series representation techniques ranging from Piecewise Aggregate Approximation
(Yi & Faloutsos, 2000) to signatures (Lyons, 2014).

Shape preserving splines As we describe the bounded part of our trajectory as a cubic spline, and
we want it to have a specific shape, this may seem related to an area of machine learning called shape-
preserving splines. Its main goal is to interpolate data while maintaining essential characteristics such
as monotonicity, convexity, or non-negativity (Fritsch & Carlson, 1980; Pruess, 1993). Although their
goal is to interpolate rather than reconstruct, and they rarely consider the exact positions of the local
extrema and inflection points, ideas from this field may prove useful in designing better and more
efficient trajectory predictors in the future.

Neural ODEs Neural ODEs (Chen et al., 2018) provide a flexible way to model continuous
dynamical systems by parameterizing the derivative function of an ODE with a neural network.
While this allows Neural ODEs to capture complex system behaviors, they often operate as black-box
models, making the task of analyzing to obtain the semantic representation even more difficult than
in the case of closed-form ODEs.

G ADDITIONAL DISCUSSION

G.1 LIMITATIONS

Finite compositions Throughout our work we implicitly assume that the compositions are finite.
However, that is not always the case. In particular, any trajectory that has an oscillatory/periodic
behavior has an infinite composition. For instance, sin. Although Semantic ODE can fit such a
trajectory on any bounded interval, it cannot yet predict it into the future. This could possibly
be addressed by extending the definition of semantic representation by an additional layer that

41

Published as a conference paper at ICLR 2025

describes periodic trajectories. The idea is to take the infinite composition (infinite sequence of
motifs) and represent it using some finite representation. For instance, a trajectory sin(t) would be
described as a meta-motif (s+−c, s−−c, s−+c, s++c) repeating forever, where the meta-properties
may include the “frequency” and “amplitude” that may also vary with time and be itself described
using compositions. This extension still assumes there is some underlying pattern behind the infinite
sequence of motifs that can be “compressed” into a shorter representation. If the infinite sequence of
motifs is algorithmically random, then motif-based representation may not be useful.

Long compositions The current implementation may struggle if the ground-truth composition is
finite but long. In that case, it may fall outside of the chosen set of compositions.

Chaotic systems Chaotic systems usually have some kind of oscillatory behavior (i.e., it cannot be
described by a finite composition). As discussed above, it means that chaotic systems are currently
beyond the capabilities of Semantic ODEs. They would not be able to correctly predict beyond
the seen time domain. However, we could use it for a prediction on a bounded time domain. We
have included such an experiment in Appendix B.6. Although our method achieves decent results,
this performance would drop drastically if we tried to predict beyond the training time domain. In
general, Semantic ODE can model big changes in the trajectory following a small change in the
initial condition (as is characteristic for chaotic systems). As the composition map is discontinuous at
points where the composition changes, it can model a sudden change in the shape of the trajectory.

Training of the composition map The composition map determines how the dataset is split and
which property maps are trained. Thus, it is very important to do it well. Currently, we evaluate how
well a particular composition fits a trajectory individually for every sample. However, then we fit
property sub-maps where these properties vary smoothly between samples. Thu,s the neighboring
samples should be taken into consideration when evaluating how well a particular composition fits a
trajectory. If the same composition fits two neighboring samples well but for very different property
values, this may not be a good match.

Ubounded motifs The type of unbounded motifs we choose and how we decide to parameterize
them influences how well we can fit trajectories. For instance, we describe s++u as behaving like
an exponential function in the long term. This may not work well if the actual trajectory behaves
like a quadratic function, for instance. To address it, we should have more motifs available, so that
we can be more certain that we can find a well-fitting motif. However, this also makes training the
composition map more difficult. This emphasizes why finding an effective and efficient training
procedure for the composition map is essential.

One-dimensional systems The current implementation of Semantic ODE works only for one-
dimensional systems. We describe a possible roadmap for realizing direct semantic modeling for
multi-dimensional systems in Appendix G.2.

G.2 ROADMAP FOR DIRECT SEMANTIC MODELING IN MULTIPLE DIMENSIONS

Although Semantic ODE realizes direct semantic modeling for one-dimensional trajectories, we
believe direct semantic modeling can be successfully applied to trajectories with multiple dimensions.
To realize that, we first need to allow for multi-dimensional inputs to the semantic predictor. As
the composition map is just a classification algorithm and the property maps are just sets of static
regression models, this should be possible. We could imagine a composition map represented as a
decision tree and the properties being predicted by, for instance, generalized additive models (GAMs)
(Hastie & Tibshirani, 1986). In that way, we can still have an understandable model representation.
The major challenge is to come up with an efficient optimization procedure that would not only
search this complex space but also make sure that every predicted semantic representation is indeed
valid. An additional challenge is to keep the model in an appropriate form and design an interface to
edit the property maps as it is done in a Semantic ODE.

The easiest way to model multiple trajectories (or multidimensional trajectories) is to model each
trajectory dimension independently but conditioned on the multidimensional initial condition x0 ∈
RM , i.e., for M trajectories, we want to fit M forecasting models, F1, . . . , FM such that for each

42

Published as a conference paper at ICLR 2025

m ∈ [M], Fm : RM → C2. Each Fm can still be represented as Ftraj ◦ F (m)
sem , where Ftraj is the

same as described in the paper and Fm
sem : RM → C × P . Fm

sem can similarly be represented using
a composition map and property maps for each predicted composition. A proof of concept of this
approach is demonstrated in Appendix B.5. This approach should scale to multiple dimensions as it
is very modular. Each Fm

sem can be analyzed independently. Each property map of Fm
sem corresponding

to a particular composition can be analyzed independently. And finally, each shape function for
each of the predicted properties can be analyzed independently. We believe this modularity is one
of the reasons why even systems with multiple dimensions can remain understandable and, more
importantly, can be edited as each change has a localized impact. In contrast, changing a single
parameter in a system of ODEs may result in a change of all the trajectories in ways that may be
difficult to predict without a careful analysis.

Another extension would be to model some dimensions jointly. For instance, we could try to
characterize the shape of a two-dimensional curve. This would require extending the current definition
of semantic representation.

Computational cost The computational cost of extending semantic modeling to M dimensions
depends on the exact approach taken. We will try to do our best guess assuming the approach remains
as similar as possible to the one we describe in the paper.

With our current ideas, the added cost from having multiple dimensions comes mostly from the need
to perform the same tasks M times. For M trajectories, we need to fit M composition maps and M
property maps.

We do not expect the time to fit a single composition map to increase significantly. The main
computational burden of the current implementation comes from fitting a composition to each sample
to see how well it fits. For the same number of samples, the computation cost is going to be the same.
Although there will be an added cost to find optimal decision boundaries in multiple dimensions (as
opposed to one), we do not think this will be a significant burden given current efficient classification
algorithms.

Fitting of each property map will require M times the number of parameters. However, it is important
to note that in most cases, the current property maps have just tens of parameters, so this number
is still likely to be a few hundred at most. It is possible that the number of property maps needed
to be fitted (for each of the compositions) is going to be larger. However, a user would still like to
narrow it down to a reasonable number (likely less than 10) to make sure that the composition map is
understandable.

Overall, we suspect the training time to increase at least linearly with the number of dimensions, but
we do not expect any combinatorial explosion as often happens in symbolic regression, so for the
number of trajectories we may be interested (probably less than 10), the computational costs should
not be a major concern.

G.3 GRANULARITY OF INFORMATION

We believe the granularity of information (in terms of the shape of the trajectory, its maxima,
minima, and asymptotic behavior) should be comparable between direct semantic modeling and other
approaches, as long as all approaches are framed as solutions to finding a forecasting model. The key
difference is that direct semantic modeling gives immediate access to the semantic representation of
the model without any further analysis and allows us to easily edit the model as well as incorporate
semantic inductive biases during training.

There is, however, one way in which ODEs may offer more granular information by assuming a
particular causal structure. Note: it may not be correct, and it makes them less flexible. For a
discretized ODE we can write the underlying causal graph as x(t0) → x(t0 +∆t) → . . . → x(t).
Whereas our model assumes a more general x(t0)→ x(t). This generality is useful (as we show in
Section 6.4) and it does not negatively impact the performance. However, this model does not allow
us to do interventions where we change the value of x at a particular t and predict the future. ODEs
do allow for this kind of inference but, of course, there is no guarantee that this inference is correct.
For instance, a system governed by a delayed differential equation has a different causal structure.

43

Published as a conference paper at ICLR 2025

We believe direct semantic modeling in the future can be extended to accommodate some kinds of
intervention, where they can be described as additional features beyond the initial conditions.

G.4 PARTIAL DIFFERENTIAL EQUATIONS

Partial differential equations (PDEs) no longer describe trajectories (a function defined on the real
line) but rather fields which are defined on multidimensional surfaces such as planes. Extending direct
semantic modeling to PDEs requires developing a new definition of the semantic representation of a
field. Moreover, as the initial condition is no longer a single number, the semantic predictor needs to
take whole functions as inputs (for both initial and boundary conditions).

G.5 FLEXIBILITY OF MOTIF-BASED SEMANTIC REPRESENTATION

In this section, we will prove the following representation theorem.
Theorem 3. Any function x ∈ C2(t0,+∞) whose second derivative vanishes at a finite number
of points (i.e., |{t : ẍ(t) = 0}|< ∞) can be described as a finite composition constructed from
proposed motifs.

Proof. We call all points in {t : ẍ(t) = 0} the vanishing points. Let ifirst and ilast be the smallest
and largest t such that ẍ(t) = 0. As ẍ vanishes only a finite number of times, such numbers exist.
ẍ is positive or negative for all points in between consecutive vanishing points as well as for all
t < ifirst and t > ilast. That means ẋ is either strictly increasing or strictly decreasing in between
consecutive vanishing points as well as for all t < ifirst and t > ilast. That means there is, at most, one
point between consecutive vanishing points where ẋ = 0. Similarly for t < ifirst and t > ilast. That
means there is a finite number of points where ẋ vanishes. we call such points extrema and denote
the smallest and largest extremum as efirst and elast. For all points between consecutive extrema ẋ is
either positive or negative (similarly for t < efirst and t > elast). That means that x is either strictly
increasing or decreasing between consecutive extrema (similarly for t < efirst and t > elast). We can
now take the union of all vanishing points and extrema and divide (t0,+∞) into intervals such that
on each interval, x is either strictly increasing or decreasing and is either convex or concave. Thus
we can assign to each bounded interval one of the proposed bounded motifs. In the final (unbounded)
interval, x can be strictly increasing and convex (s++u) or strictly decreasing and concave (s−−u).
If it is strictly increasing and concave, then either it approaches a real number (s+−h) or diverges
to infinity (s+−u). If it is strictly decreasing and convex, then either it approaches a real number
(s−+h) or diverges to infinity (s−+u). Thus we are able to describe the whole trajectory as a finite
composition constructed from proposed motifs.

G.6 SHARING SAMPLES BETWEEN PROPERTY MAPS

Each Fprop is trained separately for each composition. They do not share any information. However,
we believe some amount of sharing may improve performance where the two adjacent compositions
are similar, and the exact boundary is uncertain. We consider this an interesting extension for future
work.

44

	Introduction
	Forecasting models and discovery of closed-form ODEs
	From discovery and analysis to direct semantic modeling
	Syntax vs. semantics.
	Two-step modeling and its limitations
	Direct semantic modeling

	Formalizing semantic representation
	Semantic ODE
	Semantic predictor
	Trajectory predictor
	Bounded part of the trajectory
	Unbounded part of the trajectory

	Semantic ODE in action
	Semantic inductive biases
	Comprehensibility
	Editing
	Flexibility and robustness to noise

	Discussion
	Notation and Definitions
	Notation
	Definitions

	Additional Results
	Equations discovered by SINDy
	Semantic representation after editing
	Semantic representation of the logistic growth model
	Inside of fitting a composition map
	Extension to multiple dimension: proof of concept
	Duffing oscillator
	Real datasets
	Bifurcations
	Generalization

	Training of the semantic predictor
	Composition map
	Property map

	Trajectory predictor
	Bounded part of the trajectory
	Proof of Theorem 1
	 C^0 trajectory predictor
	 C^2 trajectory predictor

	Unbounded part of the trajectory
	Properties of unbounded motifs
	Parametrization

	Experimental details
	Datasets
	Methods
	Benchmarking procedure

	Extended Related Works
	Additional Discussion
	Limitations
	Roadmap for direct semantic modeling in multiple dimensions
	Granularity of information
	Partial Differential Equations
	Flexibility of motif-based semantic representation
	Sharing samples between property maps

