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ABSTRACT

Previous work has explored the computational complexity of deriving two fun-
damental types of explanations for ML model predictions: (i) sufficient reasons,
which are subsets of input features that, when fixed, determine a prediction, and
(i1) contrastive reasons, which are subsets of input features that, when modified,
alter a prediction. Prior studies have examined these explanations in different con-
texts, such as non-probabilistic versus probabilistic frameworks and local versus
global settings. In this study, we introduce a unified framework for analyzing
these explanations, demonstrating that they can all be characterized through the
minimization of a unified probabilistic value function. We then prove that the
complexity of these computations is influenced by three key properties of the value
function: (i) monotonicity, (ii) submodularity, and (iii) supermodularity. Our find-
ings uncover some counterintuitive results regarding the nature of these properties
within the explanation settings examined. For instance, although the local value
functions do not exhibit monotonicity or submodularity/supermodularity whatso-
ever, we demonstrate that the global value functions do possess these properties.
This distinction enables us to prove a series of novel polynomial-time results for
computing various explanations with provable guarantees in the global explainabil-
ity setting, across a range of ML models that span the interpretability spectrum,
such as neural networks, decision trees, and tree ensembles. In contrast, we show
that even highly simplified versions of these explanations become NP-hard to
compute in the corresponding local explainability setting.

1 INTRODUCTION

Despite substantial progress in methods for explaining ML model decisions, the literature has
consistently unfortunately found that many desirable explanation types with different provable
guarantees are computationally hard to obtain (Barcelo et al.,2020; [Van den Broeck et al.| [2022), with
the difficulty typically worsening in complex or highly non-linear models (Barcelo et al.,2020; [Adolfi
et al.,|2025;2024)). As a result, the computational complexity of obtaining explanations has become a
central theoretical focus, with many recent works aiming to chart which types of explanations can
be efficiently obtained for different kinds of models, and which remain out of reach (Barcelo et al.,
2020; Wildchen et al.| 2021} |Arenas et al.| 202252023} Marzouk & De La Higuera), 2024;|Ordyniak
et al.,[2023} [Laber, [2024; |Bhattacharjee & Luxburgl 2024; Blanc et al.,[2021};{2022)).

From sufficient to contrastive reasons. Among studies on the computational complexity of generat-
ing explanations, two fundamental types of explanations for ML models were extensively examined:
(1) sufficient reasons and (ii) contrastive reasons (Barcelo et al.,2020; |Arenas et al., 2022} |Audemard
et al.} [2022a; |Arenas et al., 2021} |Barcelo et al., 2025; Marques-Silva & Ignatiev, 2022} [gnatiev,
et al.,[2020b; [Darwiche & Hirth, [2020). A sufficient reason is a subset of input features .S such that
when these features are fixed to specific values, the model’s prediction remains unchanged, regardless
of the values assigned to the complementary set .S. A contrastive reason is a subset of input features
S such that modifying these features leads to a change in the model’s prediction.

Unlike additive attribution methods, which allocate importance scores across features but are often
hard for humans to interpret (Kumar et al.,|2020) or lack actionability (Bilodeau et al.,[2024), sufficient
and contrastive reasons provide discrete, condition-like explanations that directly answer “what is
enough to justify this prediction?” or “what must change to flip it?”. Their intuitive nature has
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given them a central role in many classic XAI methods (Ribeiro et al., |[2018; |Carter et al., 2019
Ignatiev et al., [2019; |Dhurandhar et al., 2018)), shown greater effectiveness in improving human
prediction over additive models (Ribeiro et al.; 2018; Yin & Neubig| |2022; [Dhurandhar et al.| [2018)),
and proved useful for downstream tasks such as bias detection (Balkir et al., [2022; |Carter et al.|
2021} |[La Malfa et al., 2021} [Muthukumar et al., | 2018]), model debugging (Jacovi et al., [2021)), and
anomaly detection (Davidson et al., [2025)). A well-established principle further holds that smaller
sufficient and contrastive explanations enhance interpretability, making minimality a central guarantee
of interest (Ribeiro et al.| 2018} Lopardo et al.| 2023} |Carter et al.l 2019} |Barcel? et al.| 2020; |Arenas
et al., [2022; Blanc et al., [2021; Wildchen et al., 2021).

Barcelo et al.|(2020) conducted one of the earliest studies on the complexity of deriving sufficient
and contrastive reasons. Their work established that finding the minimal-sized sufficient reason for a
decision tree is NP-hard, with the complexity further increasing to ¥:2"-hard for neural networks. In
the case of contrastive reasons, they demonstrated that computing the smallest possible explanation is
solvable in polynomial time for decision trees but becomes NP-Hard for neural networks. Similar
hardness results were later shown to hold for tree ensembles as well (Izza & Marques-Silva, 2021}
Ordyniak et al.| 2024; |/Audemard et al., [2022b)).

From non-probabilistic to probabilistic explanations. A common criticism of the classic definition
of sufficient and contrastive reasons is their rigidity and lack of flexibility, as they hold in an absolute
sense over entire domains and can thus lead to excessively large or uninformative explanations (Ig-
natiev et al., 2019;2020a}; |Arenas et al., 2022} |Waldchen et al., | 2021)). To address these limitations,
the literature has shifted towards a more general definition that incorporates a probabilistic perspective
on sufficient and contrastive reasons (Wéaldchen et al., 2021; |Arenas et al.,[2022; Blanc et al., 2021}
Izza et al.| 2023 | Xue et al.| |2023)). Under this framework, the goal is to identify subsets of input
features that influence a prediction with a probability exceeding a given threshold 4.

Wildchen et al.| (2021)) were the first to study the complexity of probabilistic sufficient reasons,
showing that for CNF classifiers the problem is NPP?-hard. This hardness extends to tree ensembles
and neural networks (Barcel6 et al.| 2020; Ordyniak et al., |2023). A central theoretical insight in the
probabilistic setting is the lack of monotonicity in the probability function (Arenas et al.,|2022; |Izza
et al.}2023), which makes even subset minimal explanations computationally hard. Strikingly, (Arenas
et al.,|2022) show that finding a subset minimal probabilistic sufficient reason is NP-hard even for
decision trees — unlike in the non-probabilistic case, where such explanations are computable in
polynomial time (Huang et al., 2021} [Barcel¢ et al.,|2020).

From local to global explanations. In a more recent study, Bassan et al.|(2024) extend the complexity
analysis from the local (non-probabilistic) setting — where explanations are tied to individual
predictions — to the global (non-probabilistic) setting, which seeks sufficient or contrastive reasons
over entire domains. However, as with other non-probabilistic methods (Ignatiev et al., 2019; Barcelo
et al.| [2020; |Arenas et al.,2021; |[Darwiche & Hirth, [2020), the criteria are extremely strict — arguably
even more so in the global setting than in the local one. For instance, any feature excluded from
a global sufficient reason is deemed strictly redundant (Bassan et al., 2024), often making the
explanation span nearly all input features and thus less informative.

OUR CONTRIBUTIONS

1. We unify previous explanation computation problems — including sufficient, contrastive,
probabilistic, non-probabilistic, as well as local and global — into one framework, described
as a minimization task over a unified value function. We then identify three fundamen-
tal properties of the value function that significantly impact the complexity of this task:
(a) monotonicity, (b) supermodularity. and (c) submodularity.

2. Interestingly, we show that these properties behave in strikingly different manners depending
on the structure of the value function. In particular, we demonstrate the surprising result that
while the local value functions for both sufficient and contrastive reasons are non-monotonic,
their global counterparts are monotonic non-decreasing. Moreover, we identify additional
intriguing properties unique to the global setting: the global sufficient value function is
supermodular, whereas the global contrastive value function is submodular — in contrast to
the local setting, where neither property holds.



Under review as a conference paper at ICLR 2026

3. We leverage these properties to derive new complexity results for explanation computation,
revealing the intriguing finding that global explanations with guarantees can be computed
efficiently, even though computing their local counterparts remains computationally hard.
We demonstrate these findings across three widely used model types that span the inter-
pretability spectrum: (i) neural networks, (ii) decision trees, and (iii) tree ensembles. First,
we prove that while computing a subset-minimal local sufficient/contrastive probabilistic
explanation is NP-hard even for decision trees (Arenas et al.| [2022)), its global counter-
part can be computed in polynomial time. We further extend this result to any black-box
model (including complex models such as neural networks and tree ensembles) when using
empirical distributions. Specifically, we show that obtaining a subset-minimal global suffi-
cient/contrastive explanation is achievable in polynomial time, whereas the local version
remains NP-hard for these models.

4. Finally, we present an even stronger complexity result by exploiting the submodular and
supermodular properties of the value functions in the global setting — properties that do not
hold in the local case. Specifically, we show that it is possible to achieve provable constant-
factor approximation guarantees for computing cardinally minimal global explanations —
even for complex models like neural networks or tree ensembles — when the empirical
distribution is fixed. In sharp contrast, we establish strong inapproximability results for the
local setting, demonstrating that no bounded approximation is possible, even under very
simple assumptions.

Owing to space constraints, we provide an overview of our main theorems and corollaries in the main
text, with full proofs deferred to the appendix.

2 PRELIMINARIES

Setting. We assume a classifier f : F — [c] where ¢ € N is the number of classes and F is the
(discrete or continuous) input space. The explanations that we study are either local or global. In
the local case, the explanations target a specific prediction x € IF, providing a form of reasoning for
why the model predicted f(x) for that instance. In the global case, explanations aim to reflect the
general reasoning behind the behavior of f across a wider region of the input space, independent of
any specific x, and to characterize its overall decision-making logic.

Models. While many results presented in this work are general (e.g., inherent properties of value
functions), we also provide some model-specific complexity results for widely-used ML models.
To broadly address the interpretability spectrum, we chose to analyze models ranging from those
typically considered “black-box” to those commonly regarded as “interpretable”. Specifically, we
focus on: (i) decision trees, (ii) neural networks (all architectures at least as expressive as feed-forward
ReLU networks), and (iii) tree ensembles, including majority-voting ensembles (e.g., random forests)
and weighted-voting ensembles (e.g., XGBoost). Formal definitions are provided in the Appendix.

Distributions. We emphasize that in probabilistic explanation settings, the complexity can vary
significantly with the input distribution. In this work, we focus primarily on three distribution types:
(i) general distributions, which make no specific assumptions and thus encompass all possible distri-
butions. We use these distributions mainly in proofs of properties that hold universally; (ii) empirical
distributions, which include all distributions derived from finite datasets — an approach commonly
employed in XAI (Lundberg & Lee, [2017;|Van den Broeck et al.,|2022); and (iii) independent distri-
butions, which assume that features are mutually independent — another widely adopted assumption
in XAl literature (Arenas et al., 2022} 2023} [Lundberg & Lee, [2017} |Ribeiro et al., [2018)). We note
that empirical distributions do not necessarily imply feature independence; rather, they can represent
complex dependencies extracted from finite datasets (Van den Broeck et al.| [2022). The complete
formal definitions of these distributions are provided in the Appendix.

3 FORMS OF REASONS

In this section, we introduce the explanation types studied in this work, starting with the strict
non-probabilistic definitions of (local/global) sufficient and contrastive reasons, and then extending
to their more flexible and generalizable probabilistic counterparts.
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3.1 Non-Probabilistic SUFFICIENT AND CONTRASTIVE REASONS

Sufficient reasons. In the context of feature selection, users often select the top k features that
contribute to a model’s decision. We examine the well-established sufficiency criterion for this
selection, which aligns with commonly used explainability methods (Ribeiro et al., 2018 |Carter et al.|
2019 [Ignatiev et al., 2019} |Dasgupta et al., 2022)). This feature selection can be carried out either
locally — focusing on a single prediction — or globally — across the entire input domain. Following
standard conventions, we define a local sufficient reason as a subset of features S C {1,...,n}
such that when the features in S are fixed to their corresponding values in X, the model’s prediction
remains f(x) regardless of the values assigned to the remaining features S. Formally, S is a local
sufficient reason for (f, x) iff the following condition holds:

VeeF, f(xsizg) = f(x). M

Here, (xs;zg) denotes a vector where features in S take their values from x, and those in S from
z. A global sufficient reason (Bassan et al.l[2024) is a subset of input features S C {1,...,n} that
serves as a local sufficient reason for every possible input x € [F:

vx,z €F, f(xs;z3) = f(X). )

Contrastive reasons. Another prevalent approach to providing explanations is by pinpointing subsets
of input features that modify a prediction (Dhurandhar et al., 2018} [Mothilal et al., [2020; |Guidotti,
2024])). This type of explanation aims to determine the minimal changes necessary to alter a prediction.
Formally, a subset S C {1,...,n} is defined as a local contrastive reason concerning (f, x) iff:

JzeF, [lasixs) # [(x). 3)

Similarly to sufficient reasons, one can determine a subset of input features that, when altered, changes
the prediction for all inputs within the domain of interest. This type of explanation is also closely
related to methods used for bias identification (Arenas et al.,[2021; |Bassan et al., 2024} [Darwiche &
Hirth, [2020). Formally, we define a subset S as a global contrastive reason with respect to f iff:

vxeF, 3zeF, f(zs;xg)# f(x). @

3.2 Probabilistic SUFFICIENT AND CONTRASTIVE REASONS

As discussed in the introduction, non-probabilistic sufficient and contrastive reasons are often
criticized for imposing significantly overly strict conditions, motivating a shift to probabilistic
definitions (Arenas et al.,[2022; |Ribeiro et al.l 2018} Izza et al., 2023 Waildchen et al., 20215 Bounia
& Koriche}, 2023; [Subercaseaux et al.l 2025b; Wang et al.| 2021} Blanc et al., 2021)), which generalize
these requirements by demanding that the guarantees hold with probability at least § € [0, 1]. The
special case 0 = 1 recovers the original non-probabilistic definitions.

Probabilistic sufficient reasons. We define S C {1,...,n} as a local é-sufficient reason with
respect to {f,x) if, when the features in S are fixed to their corresponding values in x and the
remaining features are sampled from a distribution D,,, the classification remains unchanged with
probability at least . In other words:

Pr,.p,(f(z) = f(X) | zs = x5) > 4. 5)

where zg = xg denotes that the features in .S of vector z are fixed to their corresponding values in
x. We adopt the standard notion of global explanations — by averaging over all inputs in the global
domain — and define a subset S C {1,...,n} as a global §-sufficient reason with respect to (f)
if, when taking the expectation of the local sufficiency probability over samples drawn from the
distribution D, the expectation remains with value at least J. In other words:

Ex~p,[Przup, (f(2) = f(X) |25 = x5)] > . (6)
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Probabilistic contrastive reasons. Similar to the non-probabilistic case, we define a local §-
contrastive reason as a subset of input features that changes a prediction with some probability. Here,
unlike sufficient reasons, we set the features of the complementary set S to their respective values in
x, and when allowing the features in .S to vary, we require the prediction to differ from the original
prediction f(x) with a probability exceeding ¢. Formally:

Pr,op, (f(2) # [(x) | 25 = x5) > 6. ™

For the global setting, we define a subset S to be a global §-contrastive reason, analogous to global
sufficient reasons, by computing the expectation over all local contrastive reasons sampled from the
distribution D,, and requiring that this expected value exceeds §:

EXNDP [PrZNDp (f(Z) # f(X) ‘ z5

xg)] > 0. ®)

4 FORMS OF MINIMALITY

As discussed in the introduction, across all the explanation forms discussed so far — whether sufficient
or contrastive, local or global — a common assumption in the literature is that smaller explanations
are more meaningful, thereby making their minimality a particularly important provable guarantee.
In this study, we explore two central notions of minimality across all our explanation types:

Definition 1. Assuming a subset S C {1,...n} is an explanation, then:

1. S'is a cardinally-minimal explanation (Barceld et al}[2020; |Bassan et al.|[2024) iff S has the
smallest explanation cardinality |S| (i.e., there is no explanation S’ such that |S’| < |S)).

2. S C{1,...,n} is a subset-minimal explanation (Arenas et al.||2022} Ignatiev et al.||2019)
iff S is an explanation, and any S’ C S is not an explanation.

We note that cardinal-minimality is strictly stronger than subset-minimality: every cardinally minimal
S is subset-minimal, but not vice versa (see Appendix for an example). We use the terms subset
and cardinally minimal, rather than local and global minima, to avoid confusion with local vs. global
explanations (input- vs. domain-level reasoning). Both notions apply to al/ explanation forms we
analyze. For instance, a cardinally minimal local probabilistic ¢ sufficient reason is the one with the
smallest |\S|, while a subset-minimal one is any .S where no proper subset S’ C S also qualifies.

5 A UNIFIED OPTIMIZATION TASK

Interestingly, all previously discussed computational problems — local or global, sufficient or
contrastive, probabilistic or not — can be cast as finding a minimal-size subset S such that v(.S) > 4,
where in non-probabilistic settings we set § := 1. We now introduce notation for the value functions:
let v’ denote the local sufficiency probability from equation ie,Pr,op,(f(x) = f(z) | xs = zg),
and define the global variant as vfuff (equation. Similarly, let vfon and v%,, denote the local and
global contrastive probabilities (equations[7]and[§] respectively). Using this notation, we now formally

define the unified task of finding a cardinally minimal d-local/global sufficient/contrastive reason:

Cardinally Minimal /-Explanation:

Input: Model f, a distribution D,,, (possibly, an input X), a general value function v : 2" — [0, 1]
(defined using f, D,, and possibly x), and some § € [0, 1].

Output: A subset S C [n] such that v(S) > 6 and | S| is minimal.

Similarly, for the relaxed condition where the goal is to obtain a subset-minimal rather than a
cardinally-minimal local or global sufficient/contrastive reason, we define the following relaxed
optimization objective:

Subset Minimal ¢-Explanation:

Input: Model f, a distribution D,,, (possibly, an input X), a general value function v : 2" — [0, 1]
(defined using f, Dp, and possibly x), and some § € [0, 1].

Output: A subset S C [n] such that v(S) > § and for any S’ C S it holds that v(S") < .
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Properties of v that affect the complexity. We now outline several key properties of the value
function, which we later show play a crucial role in determining the complexity of generating
explanations. The first property is non-decreasing monotonicity, which ensures that the marginal
contribution v(S U {i}) — v(S) is consistently non-negative. Formally:

Definition 2. We say that a value function v maintains non-decreasing monotonicity if for any
SCA{l,...,n}andanyi € {1,...,n} it holds that: v(S U {i}) > v(S).

The other key properties of supermodularity and submodularity pertain to the behavior of the marginal
contribution v(S U {i}) — v(S). Specifically, in the supermodular case, this contribution forms a
monotone non-decreasing function. In contrast, under the dual definition of the submodular case, the
marginal contribution v(S U {i}) — v(S) is a monotone non-increasing function. Formally:

Definition 3. Let there be some value function v, some S C S C {1,...,n}, andi & S'. Then:
1. v maintains supermodularity iff it holds that: v(S U {i}) — v(S) < v(S" U {i}) — v(9’).
2. v maintains submodularity iff it holds that: v(S U {i}) — v(S) > v(S" U {i}) — v(5’).

6 UNRAVELING NEW PROPERTIES OF THE GLOBAL VALUE FUNCTIONS

Prior work shows that in the local setting of non-probabilistic explanations, subset-minimal sufficient
or contrastive reasons can be computed thanks to monotonicity, which holds only in the restricted
case § = 1. This assumption, however, is highly limiting and lacks practical flexibility. While one
might hope to generalize to probabilistic guarantees for arbitrary J, prior results demonstrate that
monotonicity breaks down in this setting, rendering the computation of explanations computationally
harder (Arenas et al.| 2022} [Kozachinskiy, [2023; Izza et al.| 2023} [Subercaseaux et al., [2025b; [[zza
et al.l [2024).

At the even more extreme case of the global and non-probabilistic setting, Bassan et al.[(2024)) demon-
strated the stringent uniqueness property — i.e., there is exactly one subset-minimal explanation.
However, requiring § = 1 makes this setting highly restrictive, especially in the global case, where
the explanation conditions must hold for all inputs. In fact, Bassan et al.|(2024)) proves that this
unique minimal subset is equivalent to the subset of all features that are not strictly redundant (which
may, in practice, be all of them). We prove that in the general global probabilistic setting — for any §
— this uniqueness property actually does not hold, and the number of subsets can even be exponential.

Proposition 1. While the non-probabilistic case (§ = 1) admits a unique subset-minimal global
sufficient reason (Bassan et al.||2024), in the general probabilistic setting (for arbitrary d), there exist
functions f that have @(z—ﬁ) subset-minimal global sufficient reasons.

Interestingly, although the uniqueness property fails to hold in the general case for arbitrary ¢ (and is
restricted to the special case of § = 1), we show that the crucial monotonicity property holds for the
global value function across all values of §. This applies to both the sufficient (vY ) and contrastive
(v&n) value functions. This finding is surprising as it stands in sharp contrast to the local setting,

where the corresponding value functions (v’ and v% ) do not satisfy this property:

Proposition 2. While the local probabilistic setting (for any ) lacks monotonicity — i.e., the value
functions vt,, and vfuﬁc are non-monotonic (Arenas et al.||2022} [Izza et al.| 2023} Subercaseaux et al.|
20256} Izza et al) 2024) — in the global probabilistic setting (also for any 8), both value functions
v, and vfuﬁ[ are monotonic non-decreasing.

Beyond the surprising insight that monotonicity holds for the global value functions — but fails to hold
in the local one — we identify additional structural properties unique to the global setting, including
submodularity or supermodularity. In particular, we show that under the common assumption of
feature independence, the global sufficient value function v exhibits supermodularity. In contrast,
its local counterpart vfuff fails to exhibit this property even under the much more restrictive assumption
of a uniform (and hence independent) input distribution. Specifically:

Proposition 3. While the local probabilistic sufficient setting (for any §) lacks supermodularity
— even when D, is uniform, i.e., the value function vfuﬁv is not supermodular — in the global
probabilistic setting (also for any ), when D), exhibits feature independence, the value function vfuff
is supermodular.
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Interestingly, for the second family of explanation settings — specifically, that of obtaining a global
probabilistic contrastive reason — we show that the corresponding value function is not supermodular,
but rather submodular. This result is particularly surprising when contrasted with the local setting,
where the value function is neither submodular nor supermodular.

Proposition 4. While the local probabilistic contrastive setting (for any §) lacks submodularity —
even when Dy, is uniform, i.e., the value function vt is not submodular — in the global probabilistic

setting (also for any ), when Dy, exhibits feature independence, the value function v9,, is submodular.

con
7 COMPUTATIONAL COMPLEXITY RESULTS

7.1 SUBSET MINIMAL EXPLANATIONS

In this section, we examine the complexity of obtaining subset minimal explanations (local/global,
sufficient/contrastive) across the different model types analyzed. The key property at play here is
the monotonicity of the value function. The previous section established that monotonicity holds for

both global value functions, v, and v‘s"uff, but does not hold for the local value functions, vfon and

vfuff. This distinction is crucial in showing that a greedy algorithm converges to a subset minimal
explanation in the global setting but fails in the local setting. As a result, we will showcase the
surprising finding that computing various local subset-minimal explanation forms is hard, whereas
computing subset-minimal global explanation forms is tractable (polynomial-time solvable). We will
begin by introducing the following generalized greedy algorithm:

Algorithm 1 Subset Minimal Explanation Search

Input Value function v, and some 6 € [0, 1]
1. S« {1,...,n}
while min;csv(S \ {i}) > ¢ do
j + argmax;cs (S \ {i})
S S\ {j)
end while
return .S > S is a (subset minimal?) §-explanation

AN AN

Algorithm|T]aims to obtain a subset-minimal -explanation. We begin the algorithm with the subset S
initialized as the entire input space {1, ..., n}. Iteratively, we check whether the minimal value that
v(S'\ {¢}) can attain exceeds 0. In each iteration, we remove a feature j from S that minimizes the
decrease in the value function, selecting the feature j that maximizes v(.S \ {j}). Once this iterative
process concludes, we return S.

The key determinant of whether Algorithm [T]yields a subset-minimal explanation is the monotonicity
property of the value function v. The algorithm concludes with a phase in which removing any
individual feature from S results in v(S \ {i¢}) being smaller than §. However, monotonicity
ensures that this holds for any v(S \ S’), providing a significantly stronger guarantee. Given the
monotonicity property of the value functions established in the previous sections, we derive the
following proposition:

Proposition 5. Computing Algorithmwith the local value functions v’,, and vfuﬁ does not always
converge to a subset minimal §-sufficient/contrastive reason. However, computing it with the global
value functions v, or vfuﬁ- necessarily produces subset minimal §-sufficient/contrastive reasons.

Building on this result, we proceed to establish new complexity findings for deriving various forms of
subset-minimal explanations within our framework, considering the different analyzed model types.

Decision trees. We begin by examining a highly simplified and ostensibly “interpretable” scenario.
Specifically, we assume that the model f is a decision tree and that the distribution D,, is independent.
Within this simplified setting, we demonstrate a strict separation: |Arenas et al.[(2022) established the
surprising intractability result that, unless P=NP, no polynomial-time algorithm exists for computing a
subset-minimal local J-sufficient reason for decision trees under independent distributions (even under
the uniform distribution). In contrast, we demonstrate the unexpected result that this exact problem
can be solved efficiently in the global setting, meaning that a subset-minimal global J-sufficient
reason for decision trees can indeed be computed in polynomial time. Formally:
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Theorem 1. If f is a decision tree and the probability term vfuﬁ can be computed in polynomial time
given the distribution D), (which holds for independent distributions, among others), then obtaining
a subset-minimal global §-sufficient reason can be obtained in polynomial time. However, unless
P=NP, no polynomial-time algorithm exists for computing a local §-sufficient reason for decision
trees even under independent distributions.

Neural networks, tree ensembles, and other complex models. We now extend our previous results
to more complex models beyond decision trees. Specifically, we will demonstrate that when the
distribution Dy, is derived from empirical distributions, and under the fundamental assumption that
the model f allows polynomial-time inference, it follows that computing a subset-minimal global
d-sufficient and contrastive reason can be done in polynomial time.

Proposition 6. For any model f, and empirical distribution D,, — computing a subset-minimal
global d-sufficient or §-contrastive reason for f can be done in polynomial time.

This strong complexity outcome, which holds for any model under an empirical data distribution
assumption, allows us to further differentiate the complexity of local and global explanation settings.
Specifically, for certain complex models, computing subset-minimal local explanations remains
intractable even when restricted to empirical distributions. We establish this fact for both neural
networks and tree ensembles, leading to the following theorem on a strict complexity separation:

Theorem 2. Assuming f is a neural network or a tree ensemble, and D,, is an empirical distribu-
tion — there exist polynomial-time algorithms for obtaining subset minimal global §-sufficient and
contrastive reasons. However, unless P=NP, there is no polynomial time algorithm for computing a
subset minimal local d-sufficient reason or a subset minimal local §-contrastive reason.

7.2 APPROXIMATE CARDINALLY MINIMAL EXPLANATIONS

In this subsection, we shift our focus from subset-minimal sufficient/contrastive reasons to the
even more challenging task of finding a cardinally minimal §-sufficient/contrastive reason. We
will demonstrate that in the global setting, the interplay between supermodularity/submodularity
and monotonicity of the value function enables us to establish novel provable approximations for
computing explanations. In contrast, we will show that computing these explanations in the local
setting remains intractable. This result further strengthens the surprising distinction between the
tractability of computing global explanations versus local ones.

A unified greedy approximation algorithm. When working with a non-decreasing monotonic
submodular function, the problem of identifying a cardinally minimal explanation closely aligns with
the submodular set cover problem (Wolsey, [1982)). In contrast, employing a supermodular function
leads to a non-submodular variation of this problem (Shi et al.,2021). These problems have garnered
significant interest due to their strong approximation guarantees (Wolsey, [1982; Iyer & Bilmes| [2013;
Chen & Crawford, [2023)). In the context of submodular set cover optimization, a standard approach
involves using a classic greedy algorithm, which we will first outline (Algorithm 2. This algorithm
serves as the foundation for approximating a cardinally minimal sufficient or contrastive d-reason,
and we will later examine its specific guarantees in both cases.

Algorithm 2 Cardinally Minimal Explanation Approximation Search

Input Value function v, and some § € [0, 1]
1. S« 0
while max;cs v(S U {i}) < d do
J <+ argmin,;cgv(S U {i})
S+ SuU{j}
end while
return S > |S| is a (provable approximation?) of a cardinally minimal d-explanation

A AN A

Algorithm [2] closely resembles Algorithm [T} but works bottom-up rather than top-down. It starts
with an empty subset and incrementally adds features, each time selecting the one that minimizes the
increase in v(.S U 7), stopping when adding any feature would push the value over 4.

Cardinally minimal contrastive reasons. We begin with global contrastive reasons, where mono-
tonicity and submodularity hold, reducing the task to the classic submodular set cover problem and
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allowing us to apply [Wolsey| (1982)’s classic guarantee via Algorithm[2] For integer-valued objec-

tives, the algorithm achieves a Harmonic-based factor, and more generally an O (111 (%) ) -

approximation. Under an empirical distribution D), with fixed sample size, this becomes a constant
approximation, only logarithmic in the sample size, yielding a substantially strong guarantee. By
contrast, in the local setting — even for a single sample point — no bounded approximation exists,
marking a sharp gap between global and local cases.

Theorem 3. Given a neural network or tree ensemble f and an empirical distribution Dy, over a fixed

Vo (7))
minie[n] ’Ugon({i})
O(In(|D))), for computing a global cardinally minimal §-contrastive reason for f, assuming feature
independence. In contrast, unless PTIME=NP, no bounded approximation exists for computing a
local cardinally minimal 6-contrastive reason for any (f,x), even when |D| = 1.

dataset D, Algorithm H yields a constant O <ln ( ))—approximation, bounded by

Cardinally minimal sufficient reasons. Unlike the submodular set cover problem — linked to cardi-
nally minimal global contrastive reasons and admitting strong approximations — the supermodular
variant, tied to global sufficient reasons, is harder to approximate. Still, it offers guarantees when
the function has bounded curvature (Shi et al.,[2021). The total curvature of a function v : 2™ — R

is defined as kf := 1 — minie[n] % Leveraging results from [Shi et al. (2021), we show

that Algorithmachieves an O ( 7 +1n (%) ) -approximation.

Notably, under a fixed empirical distribution, the approximation becomes constant. While contrastive
reasons admit a tighter O(In(|D|)) bound, sufficient reasons incur an extra ;= factor — yet still
yield a constant-factor approximation. In sharp contrast, the local variant remains inapproximable,
lacking any bounded approximation even when |D| = 1.

Theorem 4. Given a neural network or tree ensemble f and an empirical distribution Dy, over a

; ; 1 vag((n]) L
fixed dataset D, Algortthmylelds a constant O (kkf +In (minie[f] oT TN ) ) -approximation for

computing a global cardinally minimal d-sufficient reason for f, assuming feature independence. In
contrast, unless PTIME=NP, there is no bounded approximation for computing a local cardinally
minimal 6-sufficient reason for any {f,x), even when |D| = 1.

Overall, these findings strengthen Subsection[/.1] which showed the tractability of computing subset-
minimal global explanations in stark contrast to local ones. Here, we further show that approximating
cardinally minimal global explanations is tractable, unlike their inapproximable local counterparts.

8 LIMITATIONS AND FUTURE WORK

While many of our most important findings — particularly those concerning fundamental properties
of value functions — hold generally, we also instantiate them to yield concrete complexity results for
specific model classes (e.g., neural networks), distributional assumptions (e.g., empirical distribu-
tions), and explanation definitions within our framework. Naturally, other potential settings remain
open for analysis. Nonetheless, we believe our findings offer compelling insights into foundational
aspects of explanations, along with new tractability and intractability results, which together lay a
strong foundation for investigating a broader range of explainability scenarios in future work.

9 CONCLUSION

We present a unified framework for evaluating diverse explanations and reveal a stark contrast between
local and global sufficient and contrastive reasons. Notably, while the local explanation variants lack
any form of monotonicity, submodularity, or supermodularity, we prove that their global counterparts
exhibit crucial properties: (i) monotonicity, (ii) submodularity in the case of contrastive reasons,
and (iii) supermodularity for sufficient reasons. These proofs form the basis for proving a series
of surprising complexity results, showing that global explanations with provable guarantees can be
computed efficiently, even for complex model classes such as neural networks. In sharp contrast,
we prove that computing the corresponding local explanations remains NP-hard — even in highly
simplified scenarios. Altogether, our results uncover foundational properties of explanations and
chart both tractable and intractable frontiers, opening new avenues for future research.
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Appendix
The appendix contains formalizations and proofs that were mentioned throughout the paper:

Appendix [A] contains the formalizations of the models and distributions used in this work.
Appendix [B|contains the proof of Proposition [I]
Appendix |C|contains the proof of Proposition
Appendix D] contains the proof of Proposition
Appendix [E|contains the proof of Proposition%
Appendix [F| contains the proof of Proposition 5}
Appendix [G]contains the proof of Theorem T}
Appendix [H| contains the proof of Proposition [6]
Appendix [I| contains the proof of Theorem
Appendix |J|contains the proof of Theorem
Appendix [K|contains the proof of Theorem 4|
Appendix L contains an LLM usage disclosure.

A  MODEL AND DISTRIBUTION FORMALIZATIONS

In this section, we formalize the models and distributions referenced throughout the paper. Specifically,
Subsection defines the model families, while Subsection formalizes the distributions.

A.1 MODEL FORMALIZATIONS

In this subsection, we formalize the three base-model types that were analyzed throughout the paper:
(i) (axis-aligned) decision trees, (ii) linear classifiers, and (iii) neural networks with ReLU activations.

Decision Trees. We define a decision tree (DT) as a directed acyclic graph that represents a function
f:F — [c], where ¢ € N denotes the number of classes. The graph encodes the function as follows:
(i) Each internal node v is assigned a distinct binary input feature from the set {1, ...,n}; (ii) Every
internal node v has at most k outgoing edges, each corresponding to a value in [k] assigned to v;
(iii) Along any path « in the decision tree, each variable appears at most once; (iv) Each leaf node
is labeled with a class from [c]. Thus, assigning values to the inputs x € F uniquely determines a
path « from the root to a leaf in the DT, where the function output f(x) corresponds to a class label
i € [c]. The size of the DT, denoted | f], is defined as the total number of edges in the graph. To allow
for flexible modeling, the ordering of input variables {1,...,n} may differ across distinct paths «
and o/, ensuring that no variable is repeated along a single path.

Neural Networks. We present our hardness proofs for neural networks with ReLU activations,
though our tractability results (i.e., polynomial-time algorithms) apply to any architecture that
allows for polynomial-time inference — a standard assumption. Thus, all separation results between
tractable and intractable cases we prove carry over to any neural architecture at least as expressive as
a standard feed-forward ReLU network, encompassing many widely used models such as ResNets,
CNN:s, Transformers, Diffusion models, and more. Moreover, note that any ReLU network can be
represented as a fully connected network by assigning zero weights and biases to missing connections.
Following standard conventions (Barcelo et al.,[2020; [Bassan et al., 2024} |Adolfi et al.| [2025), we thus
assume the network is fully connected. Specifically, our analysis applies to multi-layer perceptrons
(MLPs). Formally, an MLP f consists of t — 1 hidden layers (g%) for j = 1,...,t — 1) and one

output layer ¢(*), where each layer is defined recursively as:

g(j) — U(j)(g(j—l)W(j) + b(j)) 9)
where W) denotes the weight matrix, b\ the bias vector, and ¢/) the activation function of the
j-th layer. Accordingly, the model comprises ¢ weight matrices (W), ... W), t bias vectors
(b, b®), and ¢ activation functions (¢, ..., o®).

The input layer is defined as g(*) = x € {0, 1}", representing the binary input vector. The dimensions
of the network are governed by a sequence of positive integers dy, . . . , d¢, with weight matrices and
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bias vectors given by W) € Q%-1*% and () € Q% respectively. These parameters are learned
during training. Since the model functions as a binary classifier over n features, we set dg = n and
d; = 1. The hidden layers use the ReLU activation function, defined by ReLU(z) = max(0, z).
Although a sigmoid activation is typically used during training, for interpretability purposes, we
assume the output layer applies a threshold-based step function, defined as step(z) = 1 if z > 0 and
step(z) = 0 otherwise.

Tree Ensembles. Many popular ensemble methods exist, but since our goal is to provide post-hoc
explanations, we focus on the inference phase rather than the training process. Our analysis centers
on ensemble families that rely on either majority voting (e.g., Random Forests) or weighted voting
(e.g., XGBoost) during inference. However, as with our treatment of neural networks, our tractability
results — namely, polynomial-time algorithms — extend to any possible ensemble configuration
with polynomial-time inference, encompassing an even broader range of ensemble configurations.

Majority Voting Inference. In majority voting inference, the final prediction f(x) is assigned to
the class j € [c] that receives the majority of votes among the individual predictions f;(x) from all
i € [k] (i.e., from each tree in the ensemble).

f(x) == majority ({ fi(x) | i € [k]}) (10)

where majority(S) denotes the most frequent label in the multiset .S. If there is a tie, it is resolved
by a fixed tie-breaking rule (e.g., lexicographic order or predefined priority).

Weighted Voting Inference. In weighted voting inference, each model in the ensemble is assigned a
weight ¢; € Q representing its relative importance. The predicted class is the one with the highest
total weight across all models. Formally, for any x € F, we define f as:

f(x) —argmaXZQSZ fi(x) = j] (11)

jeld ¢
where I denotes the identity function.

A.2 DISTRIBUTION FORMALIZATIONS

This subsection formalizes the distribution definitions discussed in the main paper.

Empirical Distributions. The distribution D,, over the input features will be defined based on a

dataset D comprising various inputs z*', z, . . ., zIP!. Here, the distribution of any given input x € F

is defined by the frequency of occurrence of x within D, specifically by:

Pr(x) := L Zﬂ(zi =x) (12)

Independent Distributions. Formally, given a probability value p(x;) € [0, 1] defined for each
individual input feature, we say that the distribution D), is independent if the joint probability over

inputs is given by Pr(x) := [ ;¢ p(%i).

We observe that when p(x;) = p(x;) holds for all 4, j € [n], the distribution reduces to the uniform
distribution, a special case of independent distributions.

General Distributions. We note that many of the proofs in this work — particularly those concerning
fundamental properties of value functions — apply broadly over general distribution assumptions.
While empirical distributions (using the training dataset as a proxy) are common in XAlI, alterna-
tive frameworks for approximating distributions include k-NN resampling from nearby points (Li
et al., 2023; |Almanjahie et al., 2018}/ Gweon et al.,|2019), copulas for modeling tabular dependen-
cies (Grofier & Okhrin}2022)), or more advanced conditional generative models such as CTGAN (Xu
et al.,2019) and conditional diffusion models (Huang et al.,2022). Such choices are common in the
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counterfactual explanation and algorithmic recourse literature (Karimi et al.,[2021; [Fokkema et al.|
2024;|2023; [Verma et al., [2024), which are related to contrastive explanations. Furthermore, when the
value function is not computed directly from a structural property of the model (e.g., leaf enumeration
in decision trees) or from empirical distributions, one may instead approximate it using methods such
as Monte Carlo sampling (Hastings |1970), following approaches similar to (Subercaseaux et al.,
2025a; |Lopardo et al.| [2023]).

A.3 SUBSET VS. CARDINAL MINIMALITY

In this subsection, we provide a more detailed discussion of the distinction between cardinal and
subset minimality. Cardinal minimality offers a substantially stronger guarantee, as it corresponds
to a globally minimal explanation size, whereas subset minimality only ensures a local form of
minimality.

To see why cardinal minimality is stronger, note that if S C [n] is a cardinally minimal explanation,
then no smaller set S” with |S’| < |.S| can qualify as an explanation. Hence, no strict subset S’ C S
is an explanation, which means S is also subset minimal.

However, the reverse does not hold. Consider the function:
f=x1V (X2 AX3) (13)

and the assignment x := (1,1, 1), which gives f(1,1,1) = 1. Fixing feature x; = 1 yields a
cardinally minimal (and subset minimal) sufficient reason, since the prediction remains 1 regardless
of X2, x3. But fixing both xo = 1 and x3 = 1 also gives a subset minimal explanation—yet not a
cardinally minimal one. Thus, while every cardinally minimal explanation is subset minimal, not
every subset minimal explanation is cardinally minimal.

B PROOF OF PROPOSITION[T]

Proposition 1. While the non-probabilistic case (§ = 1) admits a unique subset-minimal global
sufficient reason (Bassan et al.| [2024), in the general probabilistic setting (for arbitrary §), there exist

functions f that have @(2—\/%) subset-minimal global sufficient reasons.

Proof. 1t is known that certain Boolean functions admit an exponential number of subset-minimal
local (non-probabilistic) sufficient reasons for some input x [Bassan et al.|(2024). In particular, this
phenomenon was shown to occur in functions of the following form. We demonstrate that the same
function admits an exponential number of global and probabilistic sufficient reasons. Notably, the
mentioned function is a special case of a broader class of threshold Boolean functions described
in|Wegener] (2005)). Specifically, for n = 2k 4 1 with k € N, this function is defined as:

) ._{ T S e | 1

10 otherwise

where X is drawn from a uniform distribution D,,. Notably, the function f is symmetric, in the sense of
symmetric threshold Boolean functions Wegener| (2005)): its output depends solely on the number of
1’s (or, equivalently, 0’s) in the input and is invariant under any permutation of input bits. Furthermore,
the two extreme inputs — the all-zeros vector (0, . ..,0) and the all-ones vector (1,...,1) — each
admit an exponential number of subset-minimal local (non-probabilistic) sufficient reasons.

Since the function f is symmetric, the condition v¥ ((S1) = vZ4(S2) holds for any two subsets
S1,S52 C [n]. Moreover, it can be verified that for any subset S C [n] of size k + 1, we have:

(Vi€ 8). vag(S) > viu(S\ {i}) (15)
We also deliberately set J to satisfy:

v5(S\ {i}) <8 <vl(S), (16)
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and also set k := [ |. Each of these subsets is subset-minimal because any subset of size at most

| 5 ] — 1 fails to be a sufficient reason for (f, x) (with respect to the ¢ threshold). Therefore, we can

directly apply the same analysis as in (Bassan et al., 2024). In particular, there are exactly (LZ J)
2
subset-minimal local sufficient reasons for (f, x). Using Stirling’s approximation, we obtain:

lim a7

n— o0 e2 \/’ﬁ -

ms (b))

2

This yields the corresponding bound on the number of subset-minimal global §-sufficient reasons.

O

C PROOF OF PROPOSITION

Proposition 2. While the local probabilistic setting (for any ) lacks monotonicity — i.e., the value

functions v’, and vfuﬁv are non-monotonic (Arenas et al.||2022; \Izza et al.||2023; \Subercaseaux et al.|

2025b} |Izza et al.| 2024)) — in the global probabilistic setting (also for any 0), both value functions
vd  and vfuﬂ are monotonic non-decreasing.

Proof. In this section, we prove the monotonicity property for both types of global explanations —
sufficient and contrastive. We begin by establishing the property for global sufficiency. To build
intuition, we first focus on the simpler case of Boolean functions, then generalize the result to
functions with discrete multi-valued input domains and multiple output classes. We further extend the
result to continuous input domains and show that the monotonicity property holds for any well-defined
classification function. Finally, we demonstrate how the same monotonicity guarantees apply to
global contrastive explanations. Importantly, none of our proofs rely on the assumption of feature
independence — the monotonicity property holds strongly for any underlying distribution.

Lastly, we present a simple example showing that the monotonicity property does not hold for the
local probabilistic sufficient or contrastive value functions.

Lemma 1. The global sufficient value function vfuﬁ- is monotonic non-decreasing for Boolean
functions, under any data distribution.

Proof. Given an arbitrary set S € [n], and a feature i ¢ .S, we have that:
Pr(x) = Pr(xs,x5) = Pr(xz | xs) - Pr(xs) (18)
Consequently, this implies that:

Pr(x) = Pr(xg5p5y | Xsugy) - Pr(xsuqi)
= Pr(xgggy | Xsuay) - Pr(xs, z;) (19)
= Pr(xgopy | Xsugy) - Pr(z; | xs) - Pr(xs)

Moreover, for any two points X, X’ ~ D,, such that xg = X|g and f(x) = 1 — f(x'), it holds that:

Pr,.p,(f(z) = f(x) | 2s = x5) =1 = Pryup, (f(2) = f(X) | 25 = X§) (20)

To simplify notation, we occasionally omit the distribution notation ~ D,, in the local probability
expression Pr, p, (f(z) = f(x) | Zg = Xg), and use fT and f~ to denote the events f(z) = 1 and
f(z) = 0, respectively.

We begin with a technical simplification of the probability term to facilitate the proof, and then
proceed to establish monotonicity.

17
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Simplifying the probability term. Let Dg denote the distribution restricted to the set S. Given
a point x ~ D,, and a set S, consider all points z ~ D,, such that zg = xg and f(z) = b, where
b € {0,1} — they all share the same local probability Pr,.p,(f(z) = b | zs = Xg). For every
X ~ D, that shares the same zg and the same output b, we marginalize over 5. This yields
Pr(f(x) =b,xs) = Pr(f(x) =b | xs) - Pr(xg), from which we can infer:

Pr,p,(f(z) =b|zs = xs) = Pr(f(x) = b | xs). 2D
Thus, for Exp, [Pr,p, (f(z) = f(X) | zs = Xg)], we get that:

Ex~p,[Prsnp, (f(2) = f(X) | 25 = Xs)]
=Y Pr(ff,xs) Proup,(f* |25 =x5) + ), Pr(f ,xs) Proup,(f |25 =xs)

xs~Ds, [+ xs~Ds,f~

= > Pr(xs) [(Proun, (/T | 25 =x5))" + (Pryun, (/7 | 25 = x5))’]
XsNDS

= Z PI‘(Xs) . [(PrszP (f+ | 75 = XS))2 =+ (1 — PI‘ZN’DP(JH_ | s = Xs))Q],
Xs~Dg

(22)

From which it follows that:

Ex~p,[Prsp, (f(2) = f(X) | Zsuy = Xsu{ry)]
= > Pr(xsup) - [(Pro(fT | zsuge = xsuy))” + (1= Pr,(f* | zsugy = xsuqey)’]

Xsu(t}"‘DSu{t}

= Z Pr(z, =1,x5) - [(Pr,(f" | 25 = xg,2 = 1))2 + (1= Pr,(f" |25 =x5,2 = 1))2] +

Xg N'Ds
=1

Z Pr(z; = 0,xg) - [(Prz(f+ | zs = xg,2: = O))2 + (1 —Pr,(f" |25 = X5,2 = O))2]

Xs NDS
=0

(23)

Proving monotonicity. We now proceed to prove the monotonicity claim, building on the previous
simplification. We begin by introducing a few additional notations. Let g := Pr,.p, (f(z) =
1| zg = xg,2 = 1) and g = Pryup,(f(z) = 1 | 25 = Xg,2 = 0). Similarly, de-
fine P, := Pr(z; = 1 | xg) and Py := Pr(z; = 0 | xg). Then, the following expectations
Exvp, [Priup,(f(z) = f(X) | zs = x5)] and Exwp, [Prsop, (f(2) = f(X) | Zsugy = Xsuge)]
can be simplified accordingly

Exwp, [Prsnp, (f(2) = f(%) [ 25 = X5)]

= Y Pr(xs)-[(Pr-gi +Po-g)’+ 1= (Pr-gf +Po-gf))’
xg~Dg (24)

Z Pr(xs) - [2(P1-gf + Po-g3)* —2(P-gf + Py -gf) +1].

XSNDS

As a result, we obtain the following:

"Note that the notations Py, Py, gfr, and gaL —as well as all others used throughout the paper—are not fixed
constants, but rather depend on the specific input xs. Formally, they should be written as P; (xs), Po(xs), and
so on. However, for readability, we omit the explicit dependence on Xs.

18
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Exwp, [Prsop, (f(2) = f(X) | Zsugey = Xsu{e})]
= > Pr(xs) P ((gf)’+ 1 —-gD))+ DY Pr(xs) Po-((95) + (1 —g)?)

xs~Dg xs~Dg
xe=1 =0

> Pr(xs)-Pr-(2097)° =207 + 1)+ Y Pr(xs)- R (2(g7)> — 295 +1)

Xords oo
— +1\2 + . +\2 + (25)

= Z Pr(xs) - [P1-(2(97)" — 297 + 1)+ Po - (2(95 )" — 295 +1)]

XSNDS
= Y Pr(xs) 2P ((97)* —g7) + 2P ((99)* — 98) + 1]

XSNDS
= > Pr(xs) 2P (g7 + Po- (9)?) —2(Pr-gi + Po-gg) +1].

XSNDS

Let A;(S, f) denote EXNDp [szNDp (f(z) = f(x) | Zsu{ty = XS’U{t})] - EXNDP [PPzNDp(f(Z) =
f(x) | zs = xg)]. Without loss of generality, we assume that both P; and P, are positive. Otherwise,
it can be verified that A;(S, f) = 0. Then, we get:

At(sv f)
= > Pr(xs)- 2P (7)) + Po- (95)°) — 2P - g + Po- g5’
XSNDS

= Z 2-Pr(xs) - (P — PY) (g )+ (Po— P3)(9d)* —2- P - Py g - g7 ] (26)

XSNDS

= Y 2.Pr(xs) PPy (g7 — i)

xg~Dg

> 0.

Note that P, — PZ = P;(1—Py) = P, Py and similarly: Py—PZ = Py(1—Py) = PyPy). Using these
identities along with the previous result, we conclude that Exp, [Pr,~p,(f(2z) = f(X) | zs = X5)]
is monotone, thereby concluding our proof.

O
Lemma 2. The global sufficient value function U'Squﬁc is monotonic non-decreasing for functions with

discrete multi-valued input domains and multiple output classes, under any data distribution.

Proof. Extending the proof from the simplified Boolean case, we now generalize the result to
functions whose input domains and output ranges each consist of a finite set of values. Let X
represent the set of output classes.

We can generalize equation [22] as follows:

Exwp,[Prsup, (f(z) = f(x) | 25 = x3)] =

) 2
> Pr(xs) [ > (Proep,(f(z) =j | 25 = x5)) "] 27)
xs~Dgs jeEK
Given the condition zg = Xg, suppose feature ¢ can take r possible values {vy,...,v,}. Then,

equation [23|can be generalized as follows:
Exp, [Prsup, (f(2) = f(X) | Zsug) = Xsuqey)]

= Z[ Z Pr(xg) - Pr(z; = vy | xg) - [Z(PerDp(f(Z) =jlzs =xs,2 = Uk))ﬂ'

k=1 xg~Dg jeK
Tt=Vg

(28)
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Let Py denote Pr(z; = vy, | xg), Let gi denote Pr,.p,(f(z) = j | zs = X5, 2; = vy), that is, 2
takes the value vy, and the output class is j. Then, we have

Exvp, [Proon, (f(2) = F(x) |25 = xs)] = > Pr(xs)- [ > ( ZPk a)y] @

xs~Dg JjeEK k=1

and

Ex~p, [Prowp, (f(2) = f(X) | 2su) = Xsuy)l = Y Pr(xs) {Z Py (> (4l )}

xs~Dgs JEK

Combining these two implications, we can conclude that:

At(svf)
= 3 et [ R (S - SO0l
xs~Dg jeEK jEK k=1
= Y Prlxs) - [C (P (@) - (B P+ 2 PRl o)
xs~Dg JEK k=1 JEK k=1 k<l (30)
= Z PI‘XS [Zzpk P - gk ZZQPk]Dlgiglj}
xs~Dg JEK k#1 JEK k<l
= Y Pr(xs) Y[ BB (ol df)]
xs~Dg JEK k<l
> 0.

Hence, Ex~p, [Pr;wp,(f(z) = f(X) | Zs = Xg)] is monotone, which completes the proof for this
setting.

O

Lemma 3. The global sufficient value function vfuﬁ is monotonic non-decreasing for functions with
continuous input domains and multiple output classes, under any data distribution.

Proof. We extend the monotonicity results to functions where features are defined over continuous
domains. One approach is to partition the domain of the continuous features into two disjoint
subdomains and then adapt the proofs in lemma [2] by revising the notation accordingly. The core
reasoning remains unchanged when transitioning from the discrete to the continuous case—only the
notation differs.

Alternatively, we provide a direct proof below. Assume all features lie in continuous domains, and let
p(Xs,Xg) denote the corresponding joint probability density function. Moreover, let p(x;) denote the
marginal probability density function of x;, and &; denote the domain of feature <.

We define marginal density as

p(xs) = / p(xs,x3)dxs, 31)
X5€Xs5

where Xg represents the domain of features in S.
And the conditional density is defined as:

p(Xs, xt)
Tt | Xg) i= ———. (32)
plae [ %) p(Xs)
The local probability of S’ given x is defined as
f156X§ I(f(XSa ZS‘) = j) ! p(XSa ZS)dZS

p(xs)

Pr,wp,(f(z) =j|zs =Xs5) = , (33)
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This term can also be decomposed into:

Pr,p,(f(z) =j|2s =x5) = / p(zt | X5)  Proup, (f(z) = j | 25 = X5, 20 = 24)d2
zt €Xt

(34
via an additional feature t & .S.
We then modify equation 27| to
Ex~p, [Pranp, (f(2) = f(x) | 25 = Xs)]
) 2
= [ o) [ (P, (@) = 7 5 = %)) Jaxs. (33)
Xs€Xs

JeK
while equation [28]is changed to
Exwp, [Prop, (f(2) = f(X) | 25011} = Xsuq})]

= /xS&XS p(xs) - [/Zte% p(z | Xs) - (Z(Prz~Dp (f(z) =J|zsupey = XSu{t}))z)dZt} dxs.

jek
(36)

For simplicity, let Y;(t) denote Pr,.p,(f(z) = j | Zs = Xs,2; = v;), and py|g denote p(z; | Xs).
Note that both Y} () and pyg are associated with a fixed x5 ﬂ We prove monotonicity as follows:

At (57 f)
= Exup, [Provp, (f(z) = f(X) | Zsugy = Xsuqe})] — Exup, [Provp, (f(z) = f(X) | Zs = Xs)]

= /xSeXs p(xs) - [/Zte/n Dys - (Z(Prw@p(f(z) =7l zsupy = XSU{t}))2)dZt]dXS' -

jEK
X
/XSGXS S ;C /ZtEXt
/ Z / P|s - dZt (/ Pijs - Y()dzt) )]dXS
XSEXS X, X,

jexk

/xSexs Z 3 ( /X /X s pets - (Y00 - Y;(0)Y; () dzidz )| dxs
pxs) - [ /X / pris - peis - (Yi() = Y (¥)) dzdz ) | dxs

Xs€Xs ]EIC

2
pijs - Prop, (f(z) =j | 2s = x5, 20 = xt)dzt> }dxs

Vv
o

(37
O

Proposition 2. While the local probabilistic setting (for any ) lacks monotonicity — i.e., the value
functions v’,, and Ufuﬁ are non-monotonic (Arenas et al.|[2022} \Izza et al.| |2023} Subercaseaux et al.|
2025b; Izza et al.| [2024)) — in the global probabilistic setting (also for any 0), both value functions

vg,, and vwﬁ are monotonic non-decreasing.

Proof. As a consequence of lemmas|1{to[3] we conclude that the global sufficient value function v?
is monotonic non-decreasing for any well-defined classification function — whether its features are
Boolean, discrete, continuous, or a combination — under any data distribution.

Uéqon(S) =1- Ufuff(‘g) (33)

This implies that v¥%, is monotonic non-increasing with respect to adding features to S. Equivalently,
v&on is monotonic non-decreasing as features are removed from S and added to .S, thus completing
the proof.

2Changing xg alters their values, we omit Xg in the notation for brevity.
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D PROOF OF PROPOSITION 3]

Proposition 3. While the local probabilistic sufficient setting (for any §) lacks supermodularity
— even when Dy, is uniform, i.e., the value function vfuﬂ is not supermodular — in the global

probabilistic setting (also for any ), when D,, exhibits feature independence, the value function vfuﬁ-
is supermodular.

Proof. This section establishes the supermodularity property for both global sufficient and contrastive
explanations. As with monotonicity, we begin with Boolean functions and progressively generalize
to multi-valued discrete and continuous input domains, and finally consider the case of well-defined
classification functions. Unlike the monotonicity property, however, these proofs require the assump-
tion of feature independence. We also provide a counterexample to show that supermodularity may
fail when this assumption is relaxed.

Lemma 4. The global sufficient value function vfuﬁ is supermodular for Boolean functions, under
the assumption of feature independence.

Proof. Particularly, we will prove that:
At(Svf) gAt(S/af)v (39)

where S C 5" and ¢ ¢ S’. That is, A;(S, f) is monotone.

Clearly, if S" = S, then A:(S, f) < A(S’, f) holds. Let S” = S U {i}, where i & S and i # ¢. For
the local probability Pr,.p,(f(z) = f(X) | zs = Xs), under the assumption of feature independence,
we have that the following holds:

= Pr(z = 1) Pr(z = 1) - Pr,(f(2) = /(x) | 25 = x5,2 = L,z = 1) +

Pr(z; =1) -Pr(z =0) -Pr,(f(z) = f(x) | zs =x5,2i =1,2: = 0) + (40)
Pr(z; =0)-Pr(z; = 1) -Pr,(f(z) = f(x) |25 = X5,2; = 0,2, = 1) +
Pr(z; =0) - Pr(ze = 0) - Pry(f(2) = f(x) | 25 = X5,2: = 0,2, = 0).

Let Py, Py, @1, and Qg denote Pr(z; = 1), Pr(z; = 0), Pr(z; = 1), and Pr(z; = 0), respectively.
Moreover, let gf;, giy. gap. and gy denote Prpop, (f(z) = 1 | zs = X5,z = 1,2, = 1),
Pr,.p,(f(z) = 1|25 =Xg5,2; = 1,2 = 0), PrZND (f(z) =1|2zg =Xg,2 =0,z = 1), and
Pr,.p,(f(z) =1|zs =Xg,2; = 0,2 = 0), respectlvely

We further decompose equation 26]into:

AS. ) = S 2 Pr(xs) - PR+ [(Q1- gy + Qo g81) — (@1 - g+ Qo 570))

Xs NDS

3" 2 Pr(xs) PiRo- [Q1- (91 — gio) + Qo - (9 — 9io)]”

Xs NDS

(41)

Similarly, the following also holds:

A(SU{i}, f) = Z 2-Pr(xs) - PPy - [Q1- (911 — 910)* + Qo - (951 — 90)°]- (42)

xsg~Dg

Thus, we get

ASU{i} ) = A(S, f) = > 2-Pr(xs)- PPy 1Qo - (g1; — g1y — 951 + 900)°
xo~Ds (43)

> 0.
This implies that A; (.S, f) is monotone, that is, c(SU{t}, f)—c(S, f) < e¢(S'U{t}, f)—c(S’, f). O
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Lemma 5. The global sufficient value function v’ suff 1S supermodular for functions with discrete multi-
valued input domains and multiple output classes under the assumption of feature independence.

Proof. We extend the results of the previous section to multi-valued discrete functions, again with
the assumption of feature independence We use Py to denote Pr(z; = vy), and @ to denote

Pr(z; = vj,). Moreover, we use g;,, to denote Pr,p, (f(z) = j | Zs = Xs, 2 = v}, 2 = ). We
decompose equation [30]to

= > Pr(xs)- Z[Zpkpl (TZ,Qk"gi’krlek"gi’l)j

xs~Ds jeK k<l k=1 k=1 (ad)
r’ ) N

= 3 Prtxs) Y[ RA (X Q- (ol — i) |-

xs~Dg JEK k<I k'=1

Likewise, we have
At(SU{Z}7f) = Z[ Z Pr XS PI' _Uk Z(ZPkB gk’k gk/l) ):|
k’'=1 xg~Dg JEK k<l
x;=vj,

= 3 Prixs) [z Qw3 (X PP (gl — 1)) @
xs~Ds k=1 jeKk k<l

= Z Pr(xs) Z[Zpkpz ZQk" (g — 9i) }
xs~Ds jeK k<l k=1

Therefore, we get
A(S UL}, f) — Au(S, f)
Z Prixs)- Z [Z Z PyPQuQu - (G — Ty — G + 9?/1)2] (46)

xs~Ds JEK k<l k/'<l
> 0.

O

Proposition 3. While the local probabilistic sufficient setting (for any §) lacks supermodularity
— even when D, is uniform, i.e., the value function vfuﬁ- is not supermodular — in the global

probabilistic setting (also for any 6), when D), exhibits feature independence, the value function vfuﬁ
is supermodular.

Proof. We can generalize the supermodularity results established in Lemma [5|to the continuous case,
assuming that D, satisfies feature independence. One approach is to partition the domain of the
continuous features into two disjoint subdomains and then adapt the proofs in Lemma 5] by revising
the notation accordingly.

Alternatively, we provide a direct proof below. Under this assumption, the marginal and conditional
densities simplify as follows:

Hp ), and p(z; | xg) = p(ay). 47)
i€S

Consequently, the local probability of .S conditioned on x becomes:

Prom, (1) =jl2s =x5)= | Ifxszs) =) T[ptedes. 9

s ieS
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We let Y; (i, t) denote Pr,wp,(f(z) = j | Zs = X5, 2 = 24,2 = ), where i ¢ S, t ¢ Sand i # t.
Evidently,

Y;(i,t) = Y;(t,i), and Y;(t) = /X pi - Y;(4,t)dz;.

‘We have:
At(S7 f)
_ o
:/ p(XS) ' / / ptpt’ J (t )) dthZt/>:|dXS
XsE€Xs jE’C X
:/ p(XS)' 5 / / ptpt'/ 'Yj(i,t)dzi—/ pi-E(i,t’)dzi)detdzt/ﬂdxs
Xs5EXs Xy Xi
_ 1 . .
=/ p(XS)' 5 / / ptpt'/ (Yj(%t)—Yj(lat/))dzi)2d2td2t’)}dxs,
XgEXg X
(49)
where

/ / DD (/ Di - (Y} (’L, t) — n(l, t/))dzi)zdztdzt/

X, Jx,

:/ / / / pepepipi - (Y5(i,t) = Y;(i, ) - (Y5 (¢ ) = Y;(¢', ') dzidzidzdzy .
X

Let S = S U {i}, then we have:
At(Slvf)

:/ p(Xsr) - / / pipe - (Y;(i,t) — Yj(i,t’))2dztdzt/)]dxs,

XS/EXS/ X

:/ p(xs) - Zi/ Di - / / pepe - (Y(i,t) — E(i,t’))QdthZt/)dzi}de (50)
XxsE€Xg . X;

=/ p(x /// pzptpt/- Y;(i,t) — }/j(i,t/))2d2td21t/dzi)j|dXS;
XsEXs Xy

where
/// pipepe - (Y;(i,t) — Yx(i,t'))2dztdzt/dzi
X

. . 2
:/ / / / PiPi'PtPt - (Yj(%t) - Yj(%ﬂ) dzydzy dzidzy.
i il Xt +/

Let a(i,t,t") denote Y;(4,t) — Y;(¢,¢") and 5(4',¢,¢") denote Y (¢',t) — Y;(¢',¢'), we can infer that
A(S", f) - At(S f)

-/ / [ mwenmotatee) - 5000 dudsdadz ) | xs
XSGXS Xy Xt/ X; il

> 0.
(S

Consequently, the global sufficient value function v? ; retains the supermodularity property for any
valid classification function, regardless of whether its features are Boolean, discrete, continuous, or a
mix thereof.

We now demonstrate that the local probabilistic sufficient value function is neither submodular nor
supermodular. As a simple illustration, fix the uniform distribution on the three variables {x1, x2, x5}
and define a Boolean function as follows:

f(331, 332) = (l‘l V .562) N T3. (52)
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Consider the input x = (1, 1, 1) which is classified as 1. For the local probabilistic sufficient value
function v, we have that the following holds:

\ w

vur(0) = <. vir({1}) =
suﬁ({l 2} 17 Uéuff({la }) =1, Uéuff({ 73}) =1, viuff({17273}) =1

Since (véuff({l?2})_vsuff({2})) < ( suff({l}) suff(q))) < (Uéuff({lv3})_U5uff({3})>vthe function

vl is neither supermodular nor submodular.

\/(X)

O

E PROOF OF PROPOSITION [4]

Proposition 4. While the local probabilistic contrastive setting (for any 0) lacks submodularity —
even when D), is uniform, i.e., the value function v is not submodular — in the global probabilistic

con

setting (also for any §), when D,, exhibits feature independence, the value function v3,, is submodular.

Proof. Once we establish that the global sufficient setting is supermodular, it directly follows that the
global contrastive setting is submodular. Let S C [n] be the set of features allowed to change, and
suppose S C S’ with ¢ ¢ S’. To compare the marginal contributions v, (S U {i}) — v&%n(S) and
Véon (8" U{i}) — v&n(S”), we equivalently compare (1 — v (S\ {i})) — (1 —v%(5)) and (1—
08"\ {i})) — (1 — v%(S")). Since S C ', it follows that S" C S, and therefore we obtain:

(Uguff(g suff(S\{ })) ( suff(S ) - suff S \{ })) (53)

Which is equivalent to:

( con(SU{ }) con(S)) 2 ( con(S/ U {Z} con(S/))' (54)

Thus, the global contrastive value function v%, is submodular, hence concluding this proof.

We will now demonstrate that the local probabilistic contrastive value function is neither submodular
nor supermodular. As a simple illustration, fix the uniform distribution on the three variables
{1, 22, x3} and define a Boolean function as follows:

flx1,22) := (x1 V 22) A 3. (55)

Consider the input x = (1, 1, 1) which is classified as 1. For the local probabilistic contrastive value
function v!_,, we have:
1
eon(®) =1, von({1}) = 1, vn({2}) = 1, vn({3}) = 5
1 1
U(lzon({laz}) = Za vcl:on({lag}) = 55 U}:on({253}) = 57 véon({17273}) - q

(%

w

Since (Uéon({LQ}) - Uion({2})) < (Uéon({Lz’S}) - Uéon({273})) < (Uéon({l}) - Uéon(w))’ the

function vl is neither submodular nor supermodular.

O

In the rest of this section, we show that the feature independence assumption is not just sufficient but
also necessary for supermodularity. We illustrate this with the following counterexample.

Define a Boolean function:

fl@1,@2) == a1 (56)
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For this boolean function, it holds that f(00) = 0, f(01) =0, f(10) = 1, and f(11) = 1. Moreover,
define a distribution D, on w1 and x3. Recall that the global sufficient value function is:

Exwp, [Prop, (f(2) = f(x) | 25 =xs)] = ) Pr(x) - Prsup, (f(z) = f(x) | 25 = x5)

x~D,

In addition, if we can show that

Au(S, f) < AuS, ),
where S C S" and t ¢ S/, then the global sufficient value function is supermodular. When S = (), we
have that the following holds:

EXNDP [Przpr (f(z) = f(x) | s = XS)]
=Pr(z; =0,20 =0) - Pryup,(f(z) =0) +Pr(zy =0,220 = 1) - Pryup,(f(z) =0) +
PI‘(JZl = 1,.132 = 0) . PI‘Z,\/DP (f(Z) = 1) + PI‘(],‘l = 1,1‘2 = 1) . PI‘ZNDP (f(Z) = 1)

Which is also equivalent to:

Pr(z; = 0,29 =0) - (Pr(xl =0,29 =0) + Pr(z;1 = 0,29 = 1)) +
Pr(z; =0,20=1) - (Pr(ml =0,20=0)+Pr(z; =0,20 = 1)) +
Pr(z; =1,2,=0) (Pr(z; = 1,22 = 0) + Pr(z1 = 1,2, = 1)) +
Pr(z; =1,z =1) (Pr(z; = 1,22 = 0) + Pr(z; = 1,20 = 1))
= (Pr(xl =0,z =0) 4+ Pr(z1 =0,29 = 1))2 + (Pr(gcl =1,29=0)+Pr(z1 =120 = 1))2

When S = {2}, we have that the following condition holds:

By, [Pryp, (£(2) = /(X) | 25 = X))

=Pr(z; = 0,20 = 0) - Pryup, (f(z) =0 | 22 = 0)
Pr(z; = 0,22 = 1) - Pryop, (f(z) =0 | 22 = 1)
Pr(z; = 1,22 =0) - Pryop, (f(z) =1 | 22 = 0)
Pr(zy = 1,20 =1)-Pryup,(f(z) =1 |22 = 1)

+
+
+

This can also be rearranged as follows:

Pr(z; = 0,25 =0)

Pr(z; = 0,20 =0) + Pr(z; = 1,25 = 0)
Pr(z;1 =0,20=1)

Pr(z;1 =0,20 =1)+Pr(z; = 1,22 = 1)
Pr(z1=1,20=0)

Pr(z; = 0,22 =0) + Pr(z; = 1,22 = 0)
Pr(zy =1,20=1)

Pr(z;1 =0,20=1)+Pr(z; = 1,22 = 1)

_ Pr(z; =0,z =0)? + Pr(z; = 1,22 = 0)> Pr(z; = 0,20 = 1)+ Pr(z; = 1,2, = 1)?

~ Pr(z; =0,29 =0) + Pr(z; = 1,29 = 0) Pr(z1 =0,20 =1)+Pr(z; = 1,20 = 1)

Pr(z; =0,20=0) - +

Pr(z; =0,20=1)-

+

PI‘(l‘l = 171’2 = O) .

+

Pr(z;=1,20=1)-

In contrast, when S = {1}, we have the the following holds:

Exwp,[Proup, (f(z) = f(x) | 25 = X5)]
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This can similarly be rearranged as follows:

Pr(z1 =0,20=0) + Pr(zy = 0,20 = 1)
Pr(z1 =0,22 =0) + Pr(z; = 0,20 = 1)

+

Pr(z; =0,20=0) -

Pr(z; =0,20 =0) + Pr(z; = 0,20 = 1)
P =0 =1)-
r(l’l 12 ) Pr(xl = 071‘2 = 0) + PI‘(Z‘l = 0, To 1) +
PI‘(JL‘l = 171‘2 = O) + PI‘(Q?l = 1,.I‘2 = 1)
P =1 =0)-
vl =122 =0) Pr(z; =1,22 =0) + Pr(z; = 1,20 = 1) *
Pr(z1 =1,20=0)+Pr(z; = 1,20 = 1)
P = ]_ — ]_ . — 1
r(z1 2 ) Pr(z1 =1,20=0)+Pr(z; = 1,22 = 1)
Finally, when S = {1, 2}, we have the following condition:
Exvp, [Prnp, (f(z) = f(X) | 25 = X5)]
=Pr(z; =0,22 =0) - Pryup,(f(z) =0 |21 = 0,20 = 0) +
Pr(z; =0,22 = 1) -Pryup, (f(z) =0 |21 = 0,22 = 1) +
PI‘(l‘l = 171‘2 = O) . Per’Dp(f(Z) =1 | Tr1 = 1,I2 = O) +
(f(z) )

Pr(ﬂfl:l,l‘gzl)'PFZNDpr 1|I1:1,I2:1

This can likewise be reordered as follows:

PI‘(JCl = 0,1‘2 = O)
Pr(z; =0,25 =0)
Pr(z; =1,20=0)
Pr(z1 =1,22=0)

Pr(z1 =0,22=1)
Pr(z1 =0,22=1)
Pr(z; =120 =1)
Pr(z; =1,20=1)

PI‘(.’El =0,20 = 0) . + PI‘(QL‘1 =0,20 = 1) . +

Pr(zy =1,22=0)- +Pr(zy=1,20=1)-
=1

Let ¢t = 2. Evidently, we have A;({1}, f) = 0. Next, let us analyse A.(0, f). We note that if we
assume feature independence, we observe that:
(Pr(ml =0,22 =0) + Pr(z1 =0,20 = 1))2 + (Pr(xl =1,20=0)4+Pr(zy =120 = 1))2
= Pr(z; = 0)* + Pr(z; = 1)%
Additionally, another condition that holds is:
PI‘(Il = O,IQ = 0)2 + PI‘(Il = 1,.172 = 0)2 Pr(xl = 071‘2 = 1)2 + PI‘(Il = 1,562 = 1)2
Pr(z; =0,20 =0) + Pr(z; = 1,25 = 0) Pr(z1 =0,20 =1)+Pr(z; = 1,29 =1
= Pr(z; = 0)> + Pr(z; = 1)%

This implies A¢(0, f) = 0, that is, A¢(, f) < A¢({1}, f). However, without the assumption of
feature independence, we cannot guarantee A;((), f) = 0. For example, let:

Pr(xl = O,.’L‘Q = 0) = Poo, PI‘(.’El = 07.'1,‘2 = 1) = P01
and
Pr(z; =1,20 =0) = Pig, Pr(z1 = 1,20 =1) = Py

Then, by simplifying A(@, f) we get that the following holds:

_ [P+ Ph | Pot+Ph 2 2
A0, f) = {Poo T Pw | P +P11} - [(P00+P01) + (P10 + P11) } (57)

We then let Pyg = 0.4, Py; = 0.2, Pgp = 0.1, and P;; = 0.3, and get that the following holds:

2 2 9 5
A0, f) = {(0-4) 02(0‘1) (0.2) 02(0.3)

This implies that A (@, f) > A;(1, f), indicating that — unlike in the monotonicity setting where it
was not required — feature independence is a necessary condition for supermodularity.

} _ [(0.4+ 0.2)° + (0.1 + 0.3)2} = 0.08. (58)
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F PROOF OF PROPOSITION [3]

Proposition 5. Computing Algorithm with the local value functions v*,, and vfuﬁ does not always
converge to a subset minimal §-sufficient/contrastive reason. However, computing it with the global
value functions v3,, or Ufuﬁc necessarily produces subset minimal §-sufficient/contrastive reasons.
Proof. We note that this proposition follows directly from our proof that both v¥ ;. and v&, are
monotone non-decreasing (as established in Proposition [2), along with other relevant conclusions
drawn in prior work. In the remainder of this section, we elaborate on how this monotonicity property
leads to the stated corollary.

The convergence of Algorithm [Ito a subset-minimal ¢ global sufficient or contrastive reason with
respect to the value functions v, and vsuff follows directly from the monotonicity property, for
which prior work (Ignatiev et al., 2019; Wu et al., 2024} |Arenas et al.,|2022) showed that this type
of greedy algorithm yields a subset-minimal explanation when the underlying value function is
monotone non-decreasing. The algorithm halts when, for all ¢ € S, the value v(S \ {i}) drops
below 4, ensuring that although v(.S) > ¢ (a maintained invariant), removing any element causes the
condition to fail. Due to monotonicity, this implies that no proper subset of S satisfies the condition,
guaranteeing that S is subset-minimal.

We now turn to explain why Algorithm [T] does not converge to a subset-minimal solution in the
local setting. We note that it is well known that the local probabilistic sufficient value function (and
likewise the local probabilistic contrastive value function) is not monotone [Arenas et al.[(2022); [zza
et al.| (2023); |Subercaseaux et al.[(2025b)); Izza et al.| (2024). As a simple illustration, fix the uniform
distribution on the two binary variables {x1, 22} and define a Boolean function as follows:

f(z1,22) := 21 V 29. (59)

Consider the input x = (0, 1) which is classified as 1, then:

3 1
V(D) = vk vh({1}) = > vha({2h) =1, vig({1,2}) = 1. (60)

Because v/ (1) > vl ({1}) < v44({1,2}), the function v’ is not monotone. Likewise, it can be
computed that:

V) = 1, (1) =1, olnl(21) = 5, ela(1,2D) = 5, )

(For v%,,, the S denotes the set of features that are allowed to vary.) Because v’ () > v% ({2}) <
vl ({1,2}), the function v’ is also non-monotone.

con
O

G PROOF OF THEOREM [I]

Theorem 1. If f is a decision tree and the probability term vfuﬂ can be computed in polynomial time
given the distribution D), (which holds for independent distributions, among others), then obtaining
a subset-minimal global -sufficient reason can be obtained in polynomial time. However, unless
P=NP, no polynomial-time algorithm exists for computing a local §-sufficient reason for decision
trees even under independent distributions.

Proof. We begin by noting that for decision trees, assuming that D,, represents independent distribu-
tions, the computation of the value function:

v24(S) = Exup, [Proup, (f(X) = f(2) | X5 = 25)] (62)

Can be carried out in polynomial time using the following procedure. Thanks to the tractability of
decision trees, we can iterate over all pairs of leaf nodes, each corresponding to partial assignments
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xg and zg. For each such pair, if both leaf nodes yield the same prediction under f, we compute the
corresponding term in the expected value Exp,[Pr,wp, (f(X) = f(z) | Xs = z5)] by multiplying
the respective feature-wise probabilities over the shared features of the two vectors. Under the
feature independence assumption, these probabilities decompose, allowing the full expectation to be
computed by summing the contributions of all such matching leaf pairs.

Since all probabilities involved are provided as part of the input and each step involves only
polynomial-time operations, the entire procedure runs in polynomial time. This establishes that every
step in Algorithm I]is efficient, and thus the algorithm as a whole runs in polynomial time. Finally,
combining this with Lemma which proves that v¢ . is monotone non-decreasing, we conclude
that Algorithm [T] converges to a subset-minimal explanation. This is because the algorithm halts
when, for all ¢ € S, the value v(S \ {i}) falls below §, while v(S) > § is preserved throughout. By
monotonicity, this guarantees that no strict subset of S satisfies the condition, ensuring S’ is indeed
subset-minimal.

For the remaining part of the claim, the result follows from (Arenas et al.,2022), which showed that,
assuming P#£NP, there is no polynomial-time algorithm for computing a subset-minimal §-sufficient
reason for decision trees. While this was proven specifically under the uniform distribution, the
hardness clearly extends to independent distributions, which include this case. Combined, these
results establish the complexity separation between the local and global variants, thus concluding our
proof.

O

H PROOF OF PROPOSITION

Proposition 6. For any model f, and empirical distribution D,, — computing a subset-minimal
global §-sufficient or §-contrastive reason for f can be done in polynomial time.

Proof. The computation of the global sufficient probability function:
Vair(S) = Exup, [Pronp, (f(X) = f(2) | x5 = 25)] (63)
or the computation of the global contrastive probability function

0¢on(S) = Ex~p, [Proap, (f(x) # f(2) | x5 = 25)] (64)
Can be performed in polynomial time when D, is selected from the class of empirical distributions.
This is achieved by iterating over pairs of instances X, z within the dataset and running an inference
through f(x) and f(z) to compute the expected values at each step. Consequently, determining
whether the probability function exceeds or falls below a given threshold  can also be accomplished in
polynomial time. Furthermore, leveraging the proof of non-decreasing monotonicity (Proposition [C)
of the global probability function, we can utilize algorithm 1| for contrastive reason search or for
sufficient reason search. By executing a linear number of polynomial queries, a subset-minimal
explanation (whether a subset minimal contrastive reason or a subset minimal sufficient reason) can
thus be obtained in polynomial time.

O

I PROOF OF THEOREM 2]

Theorem 2. Assuming f is a neural network or a tree ensemble, and Dy, is an empirical distribu-
tion — there exist polynomial-time algorithms for obtaining subset minimal global §-sufficient and
contrastive reasons. However, unless P=NP, there is no polynomial time algorithm for computing a
subset minimal local d-sufficient reason or a subset minimal local §-contrastive reason.

Proof. The first part of the proof follows directly from Proposition [6] which established that
this holds for any model, since both v,(S) = Exp, [Prsp,(f(x) = f(z) | X5 = zg)] and
0&on(S) = Ex~p, [Proup, (f(X) # f(z) | X5 = 25)] can be computed in polynomial time from the
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empirical distribution. For the second part, we proceed by proving two lemmas: one establishing the
intractability of computing the sufficient case, and the other addressing the contrastive case.

Lemma 6. Unless PTIME= NP, then there is no polynomial time algorithm for computing a subset
minimal local §-sufficient reason for either a tree ensemble or a neural network, under empirical
distributions.

Proof. We will first prove this claim for neural networks and then extend the result to tree ensembles.
We will establish this claim by demonstrating that if a polynomial-time algorithm exists for computing
a subset-minimal local § sufficient reason for neural networks, then it would enable us to solve the
classic NP-complete CNF-SAT problem in polynomial time. The CNF-SAT problem is defined as
follows:

CNF-SAT:

Input: A formula in conjunctive normal form (CNF): ¢.

Output: Yes, if there exists an assignment to the n literals of ¢ such that ¢ is evaluated to True, and
No otherwise

Our proof will also utilize the following lemma (with its proof provided in Barcel6 et al.|(2020)):

Lemma 7. Any boolean circuit ¢ can be encoded into an equivalent MLP over the binary domain
{0,1}™ — {0, 1} in polynomial time.

Proof. We will actually establish hardness for a simpler, more specific case, which will consequently
imply hardness for the more general setting. In this case, we assume that the empirical distribution
D,, consists of a single element, which, for simplicity, we take to be the zero vector 0,,. Since the
sufficiency of .S in this scenario depends only on the local instance x and the single instance 0,, in
our empirical distribution, the nature of the input format (whether discrete, continuous, etc.) does not
affect the result. Therefore, the hardness results hold universally across all these settings.

Similarly to 0,,, we define 1,, as an n-dimensional vector consisting entirely of ones. Given an input
¢, we initially assign 1,, to ¢, effectively setting all variables to True. If ¢ evaluates to True under
this assignment, then a satisfying truth assignment exists. Therefore, we assume that ¢(1,) = 0. We
now introduce the following definitions:

po:= (1 Nz2 AL y),

65

¢ =0V o ©
@', while no longer a CNF, can still be transformed into an MLP f using Lemma ensuring that
f behaves equivalently to ¢’ over the domain {0, 1}". Given our assumption that computing a
subset-minimal local d-sufficient reason is feasible in polynomial time, we can determine one for the
instance (f,x := 1,), 0 := 1, noting that the empirical distribution D,, is simply defined over the
single data point 0,,.

We now assert that the subset-minimal d-sufficient reason generated for (f, x) encompasses the entire
input space, i.e., S = {1,...,n}, if and only if (¢) ZCNF-SAT.

Let us assume that S = {1,...,n}. Since S is a §-sufficient reason for (f,x), this simply means that
setting the complementary set to any value maintains the prediction. Since the complementary set
is () in this case, this trivially holds. The fact that S is subset-minimal means that any other subset
S’ C S satisfies v(S”) < § = 1. Since the probability function Pr,.p(f(x) = f(z) | xs = zs) is
determined by a single point (the distribution contains only the point 0,,), the probability function
can only take values of 1 or 0. Hence, we also know that v(,S”) = 0. This tells us that, aside from the
subset S = {1,...,n}, for any subset S’ C S, fixing the features in S’ to 1 and the rest to 0 does not
result in a classification outcome of 1. Since the ¢» component within ¢’ is True only if all features
are assigned 1, this directly implies that ¢ is assigned False for any of these inputs. Since we already
know that ¢ does not return a True answer for the vector assignment 1,, (as verified at the beginning),
and now we have established that the same holds for all other input vectors, we conclude that ¢ ¢
CNF-SAT.

Now, suppose that S is a subset that is strictly contained within {1, ..., n}. Given that S is sufficient
under our definitions of the distribution D, with § = 1, we can apply the same reasoning as before to
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conclude that v(S) = 1. This implies that setting the features in .S to 1 while setting the remaining
features to O ensures that the function f evaluates to 1. Since this assignment is necessarily not
a vector consisting entirely of ones, it follows that the ¢ component within ¢’ must be False.
Consequently, the ¢ component must be True, which implies that (¢) € CNF-SAT. This completes
the proof.

We have established that the following claim holds for neural networks. However, extending the
proof to tree ensembles requires a minor and straightforward adaptation. To do so, we will utilize the
following lemma, which has been noted in several previous works (Ordyniak et al., 2024} | Audemard
et al., 2022b):

Lemma 8. Any CNF or DNF ¢ can be encoded into an equivalent random forest classifier over the
binary domain {0,1}™ — {0, 1} in polynomial time.

Proof. We observe that we can apply the same process used in our proof for neural networks, where
we encoded ¢’ into an equivalent neural network. However, ¢’ is no longer a valid CNF due to
our construction (though encoding it into an MLP was not an issue, as any Boolean circuit can be
transformed into an MLP). Nevertheless, since ¢’ consists of a conjunction of only two terms, we can
easily represent it as an equivalent CNF:

(;S/ = (Clv¢2)A(02v¢2)A...(Cmv¢2) (66)

Where each ¢; is a disjunction of a few terms. Consequently, ¢’ is a valid CNF, allowing us to
transform it into an equivalent random forest classifier. The reduction we outlined for MLPs applies
directly to these models as well, thereby completing the proof for both model families.

O

Lemma 9. Unless PTIME= NP, then there is no polynomial time algorithm for computing a subset
minimal local 6-contrastive reason for either a tree ensemble or a neural network, under empirical
distributions.

Proof. We will present a proof analogous to the one in Lemmal[6] Specifically, we will once again
utilize the classical NP-hard CNF-SAT problem defined in Lemmal(6] In particular, given a Boolean
formula ¢, we will demonstrate that determining a subset-minimal contrastive reason — whether for
a neural network or a tree ensemble — allows us to decide the satisfiability of ¢.

First, we check whether assigning all variables in ¢ to 1 evaluates ¢ to True. If so, the formula is
satisfiable, and we have determined its satisfiability. Otherwise, we use Lemma@] to encode the CNF
formula as a neural network f. Next, we compute a subset-minimal d-sufficient reason by setting D),
as the empirical distribution containing only a single data point 0,,, following a similar procedure to
Lemmal6] Additionally, we set § = 1 and compute a subset-minimal J-contrastive reason concerning

{f,%).

We will now demonstrate that if any subset-minimal § contrastive reason obtained for ¢ is satisfiable,
then ¢ itself is satisfiable. Conversely, if no subset-minimal § contrastive reason is obtained, then ¢
is unsatisfiable. The validity of this claim follows a reasoning similar to that provided in Lemma[§]
Specifically, the term Pr,p(f(X) # f(z) | X3 = z35), where the distribution D,, considers sampling
from a single datapoint, can set the probability to either O or 1. Furthermore, since we are searching
for a § = 1 contrastive reason, this is equivalent to asking whether there exists an assignment that
changes the classification of f, which corresponds to modifying the assignment of ¢ from False to
True. If such an assignment exists, then ¢ is satisfiable. However, if no subset-minimal contrastive
reason exists, then no subset of features fixed to zero — when the complementary set is set to ones —
evaluates to true. This is equivalent to stating that no assignment evaluates f (and consequently ¢) to
True, implying that ¢ is unsatisfiable.

To extend the proof from neural networks to tree ensembles, we can follow the same procedure
outlined in Lemma[f] encoding the CNF formula into an equivalent random forest classifier. Conse-
quently, the proof remains valid for tree ensembles, thereby concluding the proof.

O
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J  PROOF OF THEOREM

Theorem 3. Given a neural network or tree ensemble f and an empirical distribution Dy, over a fixed

dataset D, Algorithm 2| yields a constant O (ln (M>>-appmximati0n, bounded by

min e ) von ({i})
O(In(|D))), for computing a global cardinally minimal 6-contrastive reason for f, assuming feature
independence. In contrast, unless PTIME=NP, no bounded approximation exists for computing a
local cardinally minimal §-contrastive reason for any (f,x), even when |D| = 1.

Proof. We divide the proof of the theorem into two lemmas, covering both the approximation
guarantee and the result on the absence of a bounded approximation.

Lemma 10. Given a neural network or tree ensemble f and an empirical distribution D), over a fixed

dataset D, Algorithm E yields a constant O (ln (M))approximation, bounded by

min; () vZon ({i})
O(In(|D))), for computing a global cardinally minimal §-contrastive reason for f, assuming feature
independence.

Proof. We will in fact prove a stronger claim, showing that this holds for any model, provided the
trivial condition that its inference time is computable in polynomial time, along with one additional
mild condition that we will detail later — both of which apply to both our neural network and tree
ensemble formalizations.

We begin by noting that, since we are working with empirical distributions, the computation of the
global contrastive probability value function:

Uon () = Exwp, [Pranp, (f(x) # f(2) | X5 = 23)] (67)

Can be computed in polynomial time by iterating over all pairs X, z in the dataset D, as previously
established in Proposition 2] Since Algorithm [2] performs only a linear number of these polynomial-
time queries, its total runtime is therefore polynomial.

Regarding the approximation, the classical work by Wolsey et al. (Wolsey, |1982)) established a
harmonic-series-based approximation guarantee for monotone non-decreasing submodular func-
tions v with integer values. More generally, their result yields an approximation factor of

@ (ln ( %)) We showed in Proposition [2| that the value function v, is monotone
non-decreasing, and under feature independence, Proposition [4] establishes its submodularity. Com-

bined with the fact that Algorithm [2]runs in polynomial time, this directly yields an approximation
guarantee of O (ln (M) )

min; e ) véon ({i})
However, we must also show that the expression O (ln (%)) is both finite and bounded
by O(In(|D|)), implying that it is effectively constant, due to the assumption of a fixed dataset |D|.
To ensure this, we begin by confirming that the expression is well-defined and finite. We then proceed
to establish the desired bounds. To do so, we introduce a preprocessing step in which we eliminate
“redundant” elements—those that could theoretically cause the denominator min; e, v&n({7}) to be
zero. We begin by formally defining what we mean by redundancy:

Definition 1. Let D, denote some empirical distribution over a dataset D. Then we say that some
feature i € [n] is redundant with respect to D, if for any pair x,z € D it holds that f (X[ 1:}32{:}) =

fx).

Here, the notation f(X[,)\ {i1; Z{;}) indicates that all features in [r] \ {4} are fixed to their values in x,
while feature 7 is set to its value in z. Notably, this is equivalent to defining:

VS Cnl,zeD f(xs;25) = f(Xs\(i}: Z5u(i}) (68)
As before, the notation (xg;zg) indicates that the features in .S are fixed to their values in x, while the
features in S are fixed to their values in z. Thus, in this sense, if we “remove” feature 7 from the input

space and define a new function $f’$ over the reduced space [n'] := [n] \ {¢}, then for any input of
size n/, the output of f’ will exactly match the output of f when applied to the same features [n] \ {i}.
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This removal can be done in polynomial time for both tree ensembles and neural networks: for neural
networks, it involves detaching the corresponding input neuron from the network; for tree ensembles,
it involves removing any splits on that feature from all decision trees. Given the empirical nature of
the contrastive value function v, (.S) — as previously discussed in this proof and in Proposition
— we can compute each v, ({i}) for all i € [n] by iterating over all pairs x,z € D and checking
whether:

F (X3 24ay) # f(x) (69)

If this condition holds, it indicates that feature 7 is not redundant. Conversely, if the condition fails for
all pairs considered during iteration, then ¢ is deemed redundant. Once all redundant features have
been identified with respect to the empirical distribution D,,, we can remove them and construct an
equivalent model f’. As discussed above, this transformation can be performed in polynomial time
for both neural networks and decision trees.

To conclude our proof, we observe that vé’m({z’}) equals O for some empirical distribution D,, if
and only if feature ¢ is redundant with respect to D,. Therefore, once the preprocessing step
removes all redundant features from f and we construct the resulting function f’, we ensure that
minie[n] ’Ugon({i}) > 0.

We now present the more precise bounds referenced in our proof. Specifically, we demonstrate that
the approximation factor is O(In(|DJ)). Given that the empirical distribution D is fixed, this yields a
constant approximation. While tighter bounds may be achievable, our goal here is solely to establish
that the bound is constant — a property that will later sharply contrast with the local explainability
setting, where no bounded approximation exists.

More specifically, we know that the probability function Pr,p, (f(x) # f(z) | x5 = zg) is, by the
definition of empirical distributions, at least 1. Therefore, the definition of Exp, [Pr,p, (f(x) #

DI -
f(z) | xg = zg)] (i.e., the value function vZy;) is at least ﬁ. In particular, this also implies that:
min of, ({i}) > — (70)
i€ln] " ~ |DJ?

Consequently, we obtain that:

I ( von (1)) ) < In(|D|?) = O(In(|D|) (71)

minie [n] Ugon ({Z})

Which concludes our proof.

O

Lemma 11. Unless PTIME=NP, there is no bounded approximation for computing a cardinally
minimal local d-contrastive reason for any (f,x) where f is either a neural network or a tree
ensemble, even when |D| = 1.

Proof. Assume, for contradiction, that there exists a bounded approximation algorithm for computing
a cardinally minimal local d-contrastive reason for some (f,x), where f is a neural network or a
tree ensemble—even when |D| = 1. However, Lemma@]establishes that even with a single baseline
z = 0, (i.e., when the entire dataset is just one instance), deciding whether a contrastive reason exists
is NP-hard unless PTIME = NP. Therefore, if a polynomial-time algorithm could yield a bounded
approximation for a cardinally minimal contrastive reason, it would contradict this result, as such an
approximation would implicitly decide the existence of a contrastive explanation.

O

K PROOF OF THEOREM {4l

Theorem 4. Given a neural network or tree ensemble f and an empirical distribution D,, over a

fixed dataset D, Algorithm yields a constant O (171” +1n ( U5p([n]) ))-approxima tion for

min; e [n] viﬂ({i})
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computing a global cardinally minimal §-sufficient reason for f, assuming feature independence. In
contrast, unless PTIME=NP, there is no bounded approximation for computing a local cardinally
minimal 0-sufficient reason for any {f,x), even when |D| = 1.

Proof. We divide the proof into two lemmas: one establishing the approximation guarantee for the
global case, and the other demonstrating the intractability of the local case.

Lemma 12. Given a neural network or tree ensemble f and an empirical distribution D, over a

fixed dataset D, Algorithm yields a constant O (171kf +1ln (minv:}“/f](g;])({i}) ) ) _approximation for
i€ [n] Ysup

computing a global cardinally minimal §-sufficient reason for f, assuming feature independence.

Proof. The proof will follow a similar approach to that of Lemma [I0] where we showed that
for both neural networks and tree ensembles, Algorithm [2] achieves an approximation factor of

n (mm:?"](%) . After applying the preprocessing step, this ratio is guaranteed to be finite and

bounded by O(In(|DJ)).

Similar to Lemma([I0] we will again prove a stronger claim — namely, that the result holds for any
model, assuming the trivial condition that its inference time is polynomially computable, and the
additional condition concerning the removal of redundant features, as described in Lemma([I0] As
discussed there, both conditions are satisfied by our neural network and tree ensemble formalizations.

Here as well, since we are working with empirical distributions, the computation of the global
sufficient probability value function:

Uar(S) = Exop, [Proap, (f(x) = f(2) | x5 = 25)] (72)

can be computed in polynomial time by iterating over all pairs X, z in the dataset D, as previously
shown in both Lemma[I0|and Proposition[2] Since Algorithm [2Jmakes only a linear number of such
polynomial-time queries, its overall runtime is polynomial.

Unlike Lemma([T0] where the approximation relied on the result by Wolsey et al. (Wolseyl, [1982) for
monotone non-decreasing submodular functions, the setting here requires a different condition due to
the supermodular nature of the function. Specifically, Shi et al.(Shi et al., 2021 provided an approx-
imation guarantee of O (1_1k 7 +1In (mm:{f](i?]f?( {i}))), where k/ := 1 — min,e(, %
We established in Proposition that the value function v is monotone non-decreasing, and under
the assumption of feature independence, Proposition [3| further shows that it is supermodular. Given
that Algorithm [2] runs in polynomial time, this leads directly to an approximation guarantee of
v ([n . v? ([n])—v? n)\{?

O (o7 + I (G isiyy ) ) where b = 1 iy st

To show that this expression is both bounded and constant, we follow the same preprocessing step
as in Lemma [I0] where we remove all redundant features from f — a process that, as previously
explained, can be carried out in polynomial time for both neural networks and tree ensembles. As
before, a feature  is strictly redundant if and only if v({¢}) — v() = 0. This preprocessing yields a
new function f’ that behaves identically to f over the remaining features and ensures that, for every 4,
both vfuff({i}) > O and Ufuff({z}) - vsguff<®) > O hold.

In order for us to show that this expression is both bounded and constant, similarly to Lemma[T0]we
will perform the exact same preprocessing phase (which, as wel explained there, can be performed in
polynomial time both for neural networks as well as tree ensembles) as before where we remove all
redundant features from f. We note that here too, it holds that a feature i is strictly redundant if and
only if v({i}) — v(0) = 0. Hence, this preprocessing phase will give us a new function f’ for which
it both holds that it is equivalent to the behaviour of f for all remaining feautres and also satisfies that
for any i it holds that both v7 ({i}) > 0 and v 4 ({i}) — v7(0) > 0 hold.

Now, following the same reasoning as in Lemma[I0] where the probability term is lower bounded by
= and its expected value byiDlz, we obtain that min;ep,) 03, (1) > 1oz and v(i) — 05 (0) > -

[D| D
This implies, as in Lemma|10} that the first term is lower bounded by O(In(|DJ)), and for the second
term we derive the following:
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Since v is supermodular (Proposition 3), we have that v,([n]) — v (([n] \ {i}). It follows that
1< () — (] \ {3}) < . This implies: 1 < min,c,) (") taalhlD) < |pJ2 ang
therefore, 1 —|D|? < kf < 0. This yields ﬁ < |D|?, demonstrating that the overall approximation
bound based on the one established by Shi et al. is constant. While this bound may be significantly
smaller in practice, our goal here is simply to show that it remains constant — unlike in the local

setting, where no bounded approximation is achievable.

O

Lemma 13. Unless PTIME=NP, there is no bounded approximation for computing a local cardinally
minimal 0-sufficient reason for any (f,x), even when |D| = 1.

Proof. The proof follows a similar approach to Lemma|[T1] Suppose, for contradiction, that there
exists a polynomial-time algorithm that provides a bounded approximation to a cardinally minimal
local §-sufficient reason for some (f, x), where f is either a neural network or a tree ensemble—even
when [D| = 1. Yet, Lemma@ shows that even in the extreme case where the dataset consists of a
single baseline z = 0,,, deciding whether a sufficient reason exists is NP-hard unless PTIME = NP.
Hence, the existence of such an approximation algorithm would contradict this hardness result, as it
would entail the ability to decide the existence of a sufficient reason.

O

L DISCLOSURE: USAGE OF LLMS

An LLM was used exclusively as a writing assistant to refine grammar and typos and improve clarity.
It did not contribute to the generation of research ideas, study design, data analysis, or interpretation
of results, all of which were carried out solely by the authors.
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