
Under review as submission to TMLR

SOA: Strategic Operator Adaptation for Accelerating Joint
In-Context Prompt Optimization

Anonymous authors
Paper under double-blind review

Abstract

Strategic prompt-tuning in Large Language Models (LLMs) presents a formidable challenge
that requires substantial resources and expert human input. Prior research has treated the
tuning of prompt instructions and few-shot examples as distinct and separate problems,
resulting in sub-optimal performance. This work overcomes this limitation by introducing
a joint prompt-tuning approach that optimizes both the instruction and examples simulta-
neously. However, formulating such an optimization in the discrete and high-dimensional
space of natural language poses significant challenges in terms of convergence and computa-
tional efficiency. To address these challenges, we propose, SOA, a novel Strategic Operator
Adaptation framework, designed to accelerate the optimization process by strategically
employing a variety of operators to traverse the prompt space effectively for both zero-shot
and few-shot scenarios. SOA features a quad-phased design that fully exploits the potential
of each phase, alternating between global traversal and local optimization to strike a balance
between exploration and exploitation in this complex space. By adaptively selecting the
best operators for traversal and actively pruning less desirable candidates, SOA is able to
identify the best combination of instructions and examples while minimizing inference costs.
We have conducted a comprehensive evaluation across 35 benchmark tasks, and the results
show that SOA significantly outperforms state-of-the-art baseline methods by a large margin,
achieving an average task performance improvement of 35.47% while significantly reducing
computational costs by 58.67% in the BIG-Bench-Hard tasks. 1

1 Introduction

Large Language Models (LLMs) have exhibited extraordinary performance across various domains and
tasks (Bubeck et al., 2023; Yang et al., 2023b), largely owing to their remarkable ability of in-context
learning (ICL). Prompt engineering seeks to craft effective prompts that unleash the complete capabilities
of LLMs. It is becoming an increasingly popular option for quickly adapting LLMs for downstream tasks
due to its compatibility with black-box APIs (e.g., GPT-4 (OpenAI, 2023) and PaLM 2 (Chowdhery et al.,
2022)), and its cost-effectiveness compared to the conventional fine-tuning paradigm. The two most typical
prompting strategies are zero-shot prompting which contains a task instruction and a query question, and
few-shot prompting which includes additional illustrative examples. A good prompt design can substantially
improve LLM’s performance (Zhu et al., 2023); however, manual prompt tuning and selection is a heavily
time-consuming process that requires significant human effort and expert knowledge.

Automating prompt tuning is a non-trivial optimization task that involves discrete variables and complex
high-dimensional spaces (Zhou et al., 2023). Existing studies treat the tuning of prompt instruction and
in-context examples as separate tasks: one line of research (Pryzant et al., 2023; Chen et al., 2023; Yang et al.,
2023a; Guo et al., 2023) takes the zero-shot prompting approach (Kojima et al., 2022) to focus on tuning
a short instruction that comprises one or few sentences; while the other line of work (Liu et al., 2021; Lu
et al., 2021; 2022; Zhang et al., 2022b; An et al., 2023) emphasizes more the importance of few-shot examples
(Brown et al., 2020) and seeks to selecting the best set of examples from a pre-defined dataset given a fixed

1The source code and datasets are ready to be publicly available for research purposes.

1

Under review as submission to TMLR

instruction. Although such treatment reduces the problem complexity, it overlooks the significance of the
interplay between instruction and in-context examples, resulting in sub-optimal performance (Hsieh et al.,
2023).

Local

GlobalLocal

Global

SOA

Does the provided text contain hate
speech? Return a Boolean
value of True or False

Your task is to evaluate whether the
provided input includes any offensive
language...

For instance, the phrase “You are a
fool” is offensive due to its derogatory
tone, so you should return ’True’.

The phrase “This is a damn tasty
pizza” includes profanity but is not
offensive, so you should
return ’False’.

Is the following text hate
speech? Output Format True
or False

Optimizing instruction and examples

Optimizing instruction onlyTask description

Jointly optimizing
instruction and examples

Figure 1: An illustrative example of the joint prompt-tuning
of instruction and examples, which shows better performance
than instruction-only optimization.

In this work, we tackle two important challenges
of past prompt-tuning strategies: (i) how to
design an automatic pipeline that effectively
traverses the high-dimensional joint space of in-
structions and examples, steering clear of local
minima and ensuring continuous performance
enhancement? (ii) what strategies can be em-
ployed to accelerate joint prompt tuning, en-
abling fast convergence with a reasonable level
of computational cost?

We first introduce a joint prompt-tuning prob-
lem that simultaneously optimizes the prompt
instruction and examples as a whole. As illus-
trated in Figure 1, our formulation does not
impose any restrictions or assumptions on the
style (zero-shot or few-shot) of the prompt,
thereby unlocking the full potential of prompt
traversal in contrast to previous instruction-
only optimization methods (Zhou et al., 2023;
Pryzant et al., 2023; Chen et al., 2023; Guo
et al., 2023; Fernando et al., 2023), Notably,
our formulation not only enables innovative instruction exploration but is also capable of producing novel
examples to enhance the generalizability of LLMs. Consequently, our optimal prompt is highly adaptive and
flexible to any style from a simple zero-shot instruction-only prompt to an elaborative few-shot prompt with
detailed examples, depending on the specific task at hand.

We then propose a novel Strategic Operator Adaptation (SOA) framework aimed at accelerating joint prompt
optimization in high-dimensional spaces while minimizing inference costs. SOA introduces a quad-phased design
that fully excavates all potentials of each phase and alternates between global traversal and local optimization,
striking an optimal balance between exploration and exploitation within the challenging high-dimensional
space. This is accomplished by thoroughly analyzing a suite of LLM operators to pinpoint their unique
strengths and features. By adaptively choosing the best operators for traversal and actively pruning undesired
candidates, SOA can achieve optimal performance while accelerating convergence speed. Additionally, we
integrate two innovative designs to enhance the performance and efficiency of SOA. Firstly, we introduce
a task-aware similarity metric based on performance-based vectors and hamming distance, proving more
effective than traditional lexical similarity metrics. Secondly, we implement adaptive phase stop criteria
that ensure maximum performance improvement with the current operator before transitioning to the next,
optimizing the overall framework efficiency.

We conduct an extensive evaluation on a total number of 35 benchmark tasks and empirically show that SOA
demonstrates substantial improvements compared to state-of-the-art (SOTA) methods, including APE (Zhou
et al., 2023), APO (Pryzant et al., 2023), OPRO (Yang et al., 2023a), PromptBreeder (Fernando et al., 2023),
EvoPrompt (Guo et al., 2023), and AELP (Hsieh et al., 2023), and these advancements are achieved with
the lowest computational cost among all baselines. For harder tasks like BBH, SOA introduces an average of
35.47% task accuracy improvement while reducing 58.67% of inference costs compared to SOTA methods.

2 Problem Description

Considering the task T specified by a dataset D = (Q, A) of input/output pairs, the LLM L produces the
corresponding output A via prompting with the concatenation of prompt P and a given input Q, i.e., [P ; Q].

2

Under review as submission to TMLR

Phase 1: Feedback Operation Phase 2: Evolution Operation Phase 3: Semantic OperationPhase 0: Initialization

Global Optima Local Optima In-Context Prompt

Global GlobalLocal Local

Figure 2: SOA framework aims at surfacing the globally optimal in-context prompt (instruction and example
combination) by iteratively traversing the high-dimensional discrete space from a pool of candidates and
pruning unpromising candidates along the process. SOA realizes strategic traversal by introducing a dual
exploration-exploitation strategy, i.e., “global exploration” → “local exploitation” → “global exploration” →
“local exploitation” where operators are applied strategically during phases and transitions between phases
are determined adaptively at run time. SOA achieves strategic pruning by employing a greedy-based strategy
looking at the candidate’s performance.

The objective of prompt optimization is to design the best natural language prompt P∗ that maximizes the
performance of L on T .

Typically, an ideal prompt P consists of instruction, denoted by I and examples denoted by E as in-context
learning (ICL) demonstrations. Our goal of joint prompt optimization is to search for the optimal prompt
P∗

(I,E) given L that maximizes the performance towards a performance metric function F (e.g., accuracy).
This can be formally defined as the following optimization problem:

P∗
(I,E) = arg max

P(I,E)∈X
E(Q,A)

[
F(P(I,E); Q, A) | L

]
, (1)

where X denotes the sample space for a natural language prompt, a discrete and intractable space of arbitrarily
large dimension, which makes the optimization problem in Eq. 1 extremely difficult.

3 Proposed Methodology: Strategic Operator Adaptation (SOA)

We propose a novel framework, SOA, that leverages a variety of operators to traverse the prompt space for both
zero-shot and few-shot to surface the best instruction and examples combination. By adaptively choosing the
best operators for traversal and actively pruning undesired candidates, SOA can achieve optimal performance
while accelerating convergence speed.

SOA adaptively switches between two distinct traversal strategies to balance speed and performance: (1)
Exploration, where a specific subset of operators are leveraged for a global search to broadly explore the entire
solution space and prevent entrapment in locally optimal solutions; (2) Exploitation, which involves the use
of another set of operators for local search to expedite convergence and improve efficiency. Instead of blindly
using a fixed set of operators following a pre-defined sequence, or randomly selecting operators, SOA aims to
organize multiple operators adaptively and strategically. The application of the optimal operator at the right
time, combined with active greedy-based pruning, ultimately leads to accelerated performance in both task
accuracy and convergence speed.

3.1 Operator Elaboration

Following the insight of leveraging global search and local search, we introduce five operators that can be
categorized as global operators and local operators. The three global operators are:

3

Under review as submission to TMLR

• Lamarckian Operator is a reverse-engineering operator OL that passes input-output pairs to an LLM
agent and asks the agent to “reverse-engineer” the instruction.

• Estimation of Distribution Operator (EDA) is a function operator OE that takes in a group of
candidates and inquires an LLM agent to output a new candidate by studying the input group. If the
input group is chosen by prioritizing distinctiveness, we call it EDA + Index (EDA+I).

• Crossover Operator (CR) is a function operator OC that takes two parents and asks an LLM agent
to generate a new candidate mixing the traits of both parents. If the parents are chosen by prioritizing
distinctiveness between them, we call it Crossover + Distinct (CR + D).

The two local operators are:

• Feedback Operator is a function operator OF that utilizes two LLM agents. OF first passes in input-
output pairs of tasks where an existing candidate makes mistakes to an “Examiner” agent, whose task is to
examine the places of mistakes and provide remediation strategies. It then uses an “Improver” agent that
takes the remediation strategies and applies them to the existing candidate to generate a new candidate.

• Semantic Operator is a function operator OS that takes in an existing candidate, and modifies the
candidate lexically while preserving its semantic meaning.

To better harness the power of these operators, we compare them along the following five features that are
critical to our exploration-exploitation strategy in terms of performance and efficiency:

• Add or remove examples? This examines whether an operator can add or remove few-shot examples,
to traverse the entire prompt space of both zero-shot and few-shot.

• Probability of improvement. This evaluates the probability (successful rate) of an operator that brings
performance improvement (gain) after iterations. The higher, the better.

• Convergence speed. This metric evaluates how fast (in terms of iterations) an operator needs to traverse
to the current candidate’s local minimum solution.

• Two or more parents? This indicates whether an operator needs two or more parents, which has the
potential to combine traits from diverse ancestor lines, enhancing global exploration capability.

• Inference cost per operation. This is the number of inference calls needed to perform a specific operator
acted by an LLM agent.

Table 1: Elaborated feature analysis of operators. The number of black dots (•) represents a relative
comparison among operators in terms of performance gain, convergence, and computational cost.

Operator Add
examples

Remove
examples

Two or more
parents

Prob of
improvement

Convergence
speed

Inference
cost

Lamarckian ✓ - - - - •
Feedback ✓ ✓ - • • • • • • • •
EDA (EDA+I) - - ✓ • • • • • • •
Crossover (CR+D) - - ✓ • • • • • • •
Semantic - ✓ - • • • • • • •

We conducted a series of experiments (ran each operator 100 times based on 4 different initialization settings)
to assess the performance of each operator regarding the five features, aiming at obtaining a comprehensive
understanding of the inherent strengths and weaknesses of each operator. This allows us to select effective
operators to find optimal solutions in an accelerated manner. As shown in Table 1, we observe that the
Lamarckian operator is a crucial operator that introduces diverse samples, enabling the addition of examples

4

Under review as submission to TMLR

for global initialization. The feedback operator leads to faster convergence (four •) for exploitation and
facilitates the addition or removal of examples but it requires two API/inference calls (two •), higher than
the other operators (one •). EDA and Crossover operators share similar characteristics that indicate a higher
probability of improvement (four •) than the semantic operator (three •) and feedback operator (two •) in
exploring the global space. For a more in-depth discussion on operators, please refer to Appendix C.1 and
C.2.

3.2 SOA Framework

3.2.1 Phase 0: Global Initialization

Our objective is to create diverse candidates as the initial pool to explore the vast joint space of instruction
and example. We provide two types of initialization based on the availability of data (input/output pair) and
human expert knowledge (prompt example).

• Reverse Engineer from input/output pairs. Given a set of input/output pairs S =
{(Q1, A1), ..., (Qm, Am)} from the training set Dtrain for the task T , we define an LLM agent to ap-
ply Lamarckian Operator OL to reverse engineer the prompt from provided demonstrating pairs.

• Human expert prompt example. This way allows humans to jump-start the tuning process by
incorporating prior knowledge. We also perform the semantic operator OS to enhance the diversity of the
initial pool.

3.2.2 Phase 1: Local Feedback Operation

While an initial phase (Phase 0) may result in a diverse pool, each candidate could still be distant from its
local optimal solution. We want to arrive at the local optimal to exhaust the potential of the candidates. To
address this, we employ the Feedback Operator OF to expedite each candidate’s convergence towards their
local minimums, leveraging the “gradient” information. This involves the introduction of an LLM Examiner,
which scrutinizes instances where the current candidate falls short, and subsequently offers improvement
guidance. Such information is taken as the feedback gradient and is further utilized by an LLM Improver, to
generate new candidates by local exploitation. These new candidates contain global information inherited
from the previous phase and can thus be regarded as better initialization for the next optimization phase.

3.2.3 Phase 2: Global Evolution Operation

Phase 1 provides a more refined set of candidates, while some of them might be stuck in local optima. To
address this issue, we prioritize exploration rather than exploitation in Phase 2, which helps to escape from
these restricted localities by conducting a global search. We leverage LLM agents that are inspired by genetic
evolution, specifically EDA (EDA-I) operators OE and CR (CR-D) operators OC to facilitate the increased
interaction of genetic information among candidates on a larger global scale. Rather than employing cosine
similarity as distance metrics, we adopt the Hamming distance (see more discussions in Section 3.3) for
calculating similarity on performance-based vectors such that Phase 2 can promote greater diversity during
iteration.

3.2.4 Phase 3: Local Semantic Operation

Upon completing Phase 2’s exploration, Phase 3 employs local exploitation to hasten the “last mile” of
convergence. As the concluding phase of SOA, the performance of the pool is notably optimized at this stage
relative to earlier phases. Consequently, the Semantic operator OS is selected to expedite more cost-effective
exploitation of the candidates. Finally, we identify the best candidate as our ultimate optimal prompt and
assess its performance on the testing dataset Dtest. The workflow of SOA framework is shown in Algorithm 1.

3.3 SOA Design Schemes

Within the SOA framework, we propose two novel design schemes to improve performance and efficiency.

5

Under review as submission to TMLR

Algorithm 1 SOA for Accelerating Joint In-Context Prompt Optimization
1: requirements: size of pool n, a dev set Ddev, score function F on the base LLM L, phase improvement t and

threshold t∗ and minimum run time for phases Ki, designed operators OL, OF , OE , OC and OS

2: initialization: generate diverse initial prompts P0 = {p0
1, ..., p0

n} by Ol with input/output pairs or Os with
existing prompt, and evaluate initial scores S0 ← {s0

i = F(p0
i ,Ddev)} // Phase 0

3: while t < t∗ or k ≤ K1 do // Phase 1
4: Local Feedback Operation: generate new prompts by feedback operator, Pt ← Of (P0), evaluate St ←
F(P0,Ddev)), and update the pool P1 ← {Pt,P0}, and score set S1 ← {St,S0}

5: while t < t∗ or k ≤ K2 do // Phase 2
6: Global Evolution Operation: select input prompts from the current pool, {pr1 , ..., prk} ∈ P

1, generate a new
prompt by performing EDA operators pt ← Oe(pr1 , ..., prk) or crossover operators pt ← Oc(pr1 , ..., prk), evaluate
on Ddev, st ← F(pt,Ddev), and update P2 ← {P1, pt} and S2 ← {S1, st}

7: while t < t∗ or k ≤ K3 do // Phase 3
8: Local Semantic Operation: generate new prompts by the semantic operator P∗

t ← Os(P2), evaluate
S∗

t ← F(P2,Ddev)), and update P3 ← {P∗
t ,P2}, and S3 ← {S∗

t ,S2}
9: return the optimal prompt p∗, from the final pool P3: p∗ ← arg maxp∈P3 F(p,Ddev)

Design 1: Performance vector with Hamming distance. Operators like EDA and Crossover function optimally
when parents exhibit distinct attributes. In terms of evaluating similarity scores, we adhere to the principle
that similarity should be gauged based on the performance of the prompts rather than their linguistic or
semantic similarities. Inspired by this intuition, we propose to construct candidate vectors based on individual
performance on the evaluation dataset, named “performance vectors”. To exemplify, in an evaluation dataset
comprising five elements, a candidate answering the first three queries correctly and the final two incorrectly
would feature a vector representation of [1, 1, 1, 0, 0].

Rather than calculating the cosine similarity of embedding space, we propose to compute candidate similarity
scores by Hamming distance, which calculates the distance between two vectors of equal length by examining
the number of positions at which the corresponding symbols are different. This way ensures that one candidate
is more likely to be paired with a candidate that does not contain the same mistakes, and thereby generates
a diverse pool with a more diverse set of genetic information.

Design 2: Adaptive Phase Stop Criteria. To ensure that each operation phase is fully conducted before we
transition to the next, the decision to move to the next phase is made adaptively based on two primary
criteria.

• Performance Gain. If no performance gain manifests after implementing the operators in a particular
phase, it’s indicative that the candidate has been thoroughly optimized by the operators. Consequently, we
transition to the next phase.

• Operator-specific Tolerance. As operators inherently vary, for more localized operators, e.g., the
feedback operator, which has high improvement probabilities, if no performance gain is perceived, it
indicates applying the operator for another iteration will unlikely bring additional benefits. However, global
operators might have low initial improvement probabilities but are capable of accessing broader branches
worth exploring. Therefore, we should be more patient by assigning greater tolerance, which will run them
at least for a pre-defined time even without immediate performance improvement. More details about the
stop criteria can be found in Appendix C.2.

4 Experiments

4.1 Experimental Setup

Tasks and Datasets. We curate 35 benchmark tasks from three domains for thorough experiments: 8 Big
Bench Hard (BBH) (Suzgun et al., 2022a); 3 NLP detection tasks, including Ethos (Mollas et al., 2021),
Liar (Wang, 2017), and Sarcasm (Farha & Magdy, 2020); 24 instruction induction tasks (Honovich et al.,
2022). The task and dataset details are in Appendix E.

6

Under review as submission to TMLR

La
m

a
Fe

ed
CR

+D CR
ED

A+
I

ED
A CR ED
A

CR
+D

ED
A+

I
CR CR CR

Se
m

a

Iteration (operator)

0.40

0.45

0.50

0.55

0.60

0.65

Sc
or

e
va

lu
e

Salient Translation

High Avg Low

La
m

a
Fe

ed CR
CR

+D ED
A

ED
A+

I
CR

+D
CR

+D
ED

A+
I

CR
ED

A+
I

ED
A+

I
ED

A+
I

ED
A+

I
Se

m
a

Iteration (operator)

0.4

0.5

0.6

0.7

Sc
or

e
va

lu
e

Causal Judgement

High Avg Low

La
m

a
Fe

ed CR ED
A

ED
A+

I
ED

A+
I

ED
A+

I
CR

+D
ED

A+
I

CR
+D ED

A
Se

m
a

Se
m

a
Se

m
a

Se
m

a

Iteration (operator)

0.6

0.7

0.8

0.9

Sc
or

e
va

lu
e

Hyperbaton

High Avg Low

Figure 3: Iteration history of score values with different operators during optimization. The local and global
operators are strategically and adaptively selected by each iteration.

Baselines. We evaluate SOA against a variety of LLM-based approaches that have achieved state-of-the-art
performance in prompt optimization:

• APE (Zhou et al., 2023) and APO (Pryzant et al., 2023): APE utilizes an iterative Monte Carlo Search
strategy that emphasizes exploration, while APO emphasizes exploitation, which harnesses incorrect
instances as feedback gradient to refine the original prompt.

• OPRO (Yang et al., 2023a): OPRO leverages LLM as optimizers to generate better instruction via
meta-prompt, solution-score pairs, and task descriptions.

• PromptBreeder (Fernando et al., 2023), EvoPrompt (Guo et al., 2023) and AELP (Hsieh et al.,
2023): these methods connect LLMs with evolution algorithms (EAs) to tackle prompt optimization tasks.
Specifically, EvoPrompt implements EAs using genetic algorithm (Holland, 1992) and differential evolution
(Storn & Price, 1997), while PromptBreeder introduces multiple operators inspired by thinking styles.
AELP focuses on long prompt optimization by mutating on a sentence level with a history-guided search.

Implementation Details. We utilized GPT-3.5 to develop LLM agents capable of performing various
operators. We set up training, development, and testing datasets, select the prompt with the highest score
on the dev set, and report its score on the testing set. We compared the performance of multiple LLM agent
models, including PaLM 2, Claude 2, Llama2/3, and Mistral models. More details are provided in Appendix
E.

4.2 Main Results

BBH Tasks. Following the practice of AELP (Hsieh et al., 2023), we conduct 8 BBH tasks to evaluate
the performance of SOA holistically. We consider two initialization schemes SOA-pair and SOA-example and
report the final best prompt results in Table 2. SOA demonstrates substantial improvements compared to
state-of-the-art methods, achieving an average improvement of over AELP (60.4%↑), EvoPromopt (21.7%↑),
and OPRO (24.3%↑). In terms of computational cost, SOA consumes 40% of AELP, 80% of EvoPrompt,
4% of OPRO. Fig. 3 depicts the iterative history of prompt evolution, emphasizing the score variations for
the best candidate, worst candidate, and the pool’s average across iterations. It has been observed that
the Feedback operator yields a performance boost within a single iteration and rarely introduces continual
improvements. Global operators such as EDA and Crossover aid in escaping local minima and offering
additional performance leaps (refer to Hyperbaton). This observation aligns with our initial operator analysis.
The success of SOA lies in the organic organization of these operators, effectively harnessing their advantages
to optimize performance and accelerate convergence.

Detection Tasks. To present a more extensive comparison, we adopted the configuration outlined in APO
(Pryzant et al., 2023) and conducted a comparative analysis against it across three tasks. It should be noted
that data for the fourth task mentioned in the original paper is unavailable. As shown in Table 3, SOA exhibits
marginally superior performance to APO in relatively simple tasks such as Ethos (by 1%) and Sarcasm
(by 4.7%). However, for more complex tasks such as Liar, SOA demonstrates a significant improvement of

7

Under review as submission to TMLR

Table 2: Testing performance of the optimal prompt on 8 representative tasks from BBH.

Method Causal
Judgement

Dis
-ambiguation

Dyck
Languages

Formal
Fallacies Hyperbaton Logical

Five
Color
Reasoning

Salient
Translation

OPRO 71.94 71.53 36.73 49.51 75.92 50.00 65.55 43.88
EvoPrompt 67.24 53.70 47.96 50.81 74.79 61.40 60.90 47.58
AELP 77.77 64.79 10.67 58.25 53.74 73.49 68.14 41.43

SOA-pair 72.13 72.37 8.060 58.87 86.02 48.19 60.52 49.19
SOA-example 89.09 68.47 46.77 58.65 87.51 86.29 80.64 47.59

Over AELP 14.5% ↑ 11.7% ↑ 338.3% ↑ 1.1% ↑ 62.8% ↑ 17.4% ↑ 18.3% ↑ 18.7% ↑
Over EvoPrompt 32.5% ↑ 34.8% ↑ -2.5% 15.9% ↑ 17.0% ↑ 40.5% ↑ 32.4% ↑ 3.4% ↑
Over OPRO 23.8% ↑ 1.2% ↑ 27.3% ↑ 18.9% ↑ 15.3% ↑ 72.6% ↑ 23.0% ↑ 12.1% ↑

27.5% compared to APO. Moreover, we have also provided results for SOA using GPT-4, which demonstrated
performance comparable to those of SOA employing GPT-3.5.

Table 3: Testing performance on three de-
tect tasks used by APO.

Method Ethos Liar Sarcasm

APO 0.95 0.51 0.85
SOA (GPT-3.5) 0.96 0.65 0.87
SOA (GPT-4) 0.96 0.69 0.89

Instruction Induction Tasks. To compare SOA-generated
prompts with manually added few-shot examples, we evaluated
the optimized prompt from SOA against the best prompts from
APE-fewshot (Zhou et al., 2023) and PromptBreeder-fewshot
(Fernando et al., 2023) on APE’s 24 instruction induction tasks.
The results show that SOA outperforms APE in 17 out of 24
tasks and PromptBreeder in 18 out of 24 tasks. The Appendix
F.1 provides complete experimental results. Fig. 4 shows that
few-shot methods do not always outperform zero-shot methods, highlighting the need for a joint in-context
prompt search. Moreover, we observed that the prompts generated by SOA are easier to interpret and align
better with the task description. Appendix F.2 provides more detail on prompt quality.

0.0

0.5

1.0
Antonyms

APE (zero-shot) APE (few-shot) PromptBreeder (few-shot) SOA (zero/few-shot)

0.0

0.5

1.0
Taxonomy Animal

0.0

0.5

1.0
Negation

0.0

0.5

1.0
Second Word Letter

0.0

0.5

1.0
 Sentence Similarity

0.0

0.5

1.0
Synonym

0.0

0.5

1.0
Trans En Es

0.0

0.5

1.0
Word in Context

Figure 4: Test accuracy of SOA on the instruction induction tasks.

4.3 Analysis

Applicability of SOA framework. To study the general applicability of SOA framework, we conduct
end-to-end optimization tasks on a variety of models covering both open-source LLMs and closed-source
LLMs (API calls). As shown in Table 4, three end-to-end runs are implemented per task with the average
performance and standard deviation reported. All experiments are initialized with SOA-pair method. We
observed that GPT-4 performs the best in all tasks, followed by Llama3-70B. Claude 2 is comparable to
GPT-3.5. For open-source LLM models, Mistral-7B and Llama3-8B are comparable to each other, both
outperforming Llama2-7B by a large margin.

Effect of Examples. To compare with more latest work like OPRO and Evoprompt and better understand
whether the performance gain introduced by SOA is largely caused by adding few-shot examples, we conduct

8

Under review as submission to TMLR

Table 4: SOA performance with different LLM models
Method Dis-ambiguation Formal Fallacies Hyperbaton Salient Translation
GPT-3.5 69.99(2.95) 58.49(0.33) 84.35(1.83) 48.39(0.66)
GPT-4 79.34(3.33) 75.91(0.53) 90.58(1.39) 70.45(0.99)
PaLM 2 71.49(0.37) 58.33(1.53) 79.45(0.98) 49.07(3.25)
Claude 2 72.95(2.26) 49.46(1.52) 83.32(1.01) 61.82(0.38)

Mistral-7B 65.89(0.76) 53.23(1.74) 78.76(1.36) 43.84(1.00)
Llama2-7B 42.74(4.61) 56.72(1.37) 53.23(2.37) 21.23(1.01)
Llama3-8B 62.63(3.85) 71.50(4.85) 57.52(4.28) 37.09(2.86)
Llama3-70B 74.73(2.01) 70.93(2.25) 82.26(0.66) 62.90(1.97)

an experiment by randomly adding two few-shot examples to OPRO and EvoPrompt. Our results, as shown
in Table 5, indicated that OPRO exhibited a performance gain on only one out of four tasks while EvoPrompt
showed improvement in two out of four tasks. This suggests the need for caution as performance degrades if
optimized instructions do not align with naive few-shot selection.

Looking at the best prompt generated by SOA in Appendix G, we noted that 4 out of 8 of the optimal prompts
for tasks in Table 2 did not contain any few-shot examples. This observation suggests that SOA’s ability to
arrive at the most effective prompt does not depend on whether or not there are few-shot examples available.
SOA truly optimizes the prompt based on the specific task at hand.

Table 5: Effect of few-shot (fs) examples on 4 BBH tasks.

Method Dis-ambiguation Formal Fallacies Hyperbaton Salient Translation
OPRO 71.53 49.51 75.92 43.88
OPRO-few-shot 66.93 52.41 62.90 37.39
EvoPrompt 53.70 50.81 74.79 47.58
EvoPrompt-few-shot 57.43 43.54 79.83 31.45
AELP 64.70 58.25 53.74 41.43
SOA-pair 72.37 58.87 86.02 48.19
SOA-example 68.47 58.65 87.51 47.59

Effect of Hamming Distance. We examine the impact of hamming distance with the performance-
based vectors in comparison to cosine distance and lexical embedding for similarity calculation. The study
encompasses both approaches carried out in 4 iterations using the same initial pool. Table 6 displays the
outcomes on four BBH tasks. The results indicate that the hamming distance with performance-based
vectors outperforms the cosine distance with lexical embedding, showing higher average and maximum scores,
particularly for Disambiguation (+5.2) and Hyperbaton (+4.6) tasks.

Table 6: Effect of performance vector with hamming distance compared to cosine similarity.

Method Causal Judgement Disambiguation Hyperbaton Salient Translation
Average score High score Average score High score Average score High score Average score High score

Cosine distance 64.70(2.31) 67.86(2.47) 58.96(1.47) 63.30(0.00) 74.70(1.60) 85.7(0.00) 49.56(1.07) 58.80(0.00)
Hamming distance 65.74(2.87) 69.60(2.97) 64.11(1.28) 66.94(2.88) 79.30(4.48) 86.78(2.15) 50.33(2.32) 58.80(0.00)

Initialization Strategy. The SOA can accommodate two types of inputs: input/output pair (SOA-pair) and
prompt example (SOA-example), each bringing its own benefits. When using the input/output pair approach,
the initialization occurs solely based on LLM’s proposal, resulting in greater diversity in the initial pool.
On the other hand, prompt example empowers users to introduce prior knowledge without leaning on LLM
interpretation, and consequently, it performs better in more complex tasks such as Dyck Languages, Logical
Five, and Color Reasoning, as illustrated in Table 2.

9

Under review as submission to TMLR

La
m

a
Fe

ed ED
A

CR
+D CR CR

CR
+D

ED
A+

I
CR CR CR

Se
m

a

0

200

400

600

Av
g

to
ke

n
le

ng
th Antonym

La
m

a
Fe

ed
Fe

ed
CR

+D
ED

A+
I

CR
+D

CR
+D ED

A
ED

A
ED

A CR ED
A

CR
+D

Se
m

a

0

1000

2000

3000 Hyperbaton

La
m

a
Fe

ed ED
A

CR
+D CR CR

CR
+D

ED
A+

I
CR CR CR

Se
m

a

Iteration (operator)

0

200

400

Av
g

to
ke

n
le

ng
th

Trans EN-ES

La
m

a
Fe

ed
Fe

ed
Fe

ed
ED

A+
I

CR
CR

+D CR
CR

+D
CR

+D
ED

A+
I

CR
+D

Se
m

a

Iteration (operator)

250

500

750

1000

Orthography

Figure 5: Variation of prompt length during SOA optimization. The prompt can be varied from zero-shot to
few-shot, and few-shot to zero-shot. The operators are adaptively selected in each iteration.

Effect of Operators on Prompt Length. SOA aims to explore the entirety of the prompt space, spanning
both zero-shot and few-shot scenarios. Understanding the variation in prompt length and the impact of
the operator on this fluctuation is crucial. Fig. 5 provides a visual representation of the average prompt
token length throughout the iterations. Interestingly, the length can either increase, decrease, or oscillate,
which aligns with the “unfettered” expectations of global search. Specifically, we observed the initialization
phase had a significant impact on prompt length. This observation is in agreement with our analysis of the
Lamarckian and Feedback operators, which hold the power to both add and remove examples.

104 105 106

Evaluation (lower is better)

101

102

Ite
ra

tio
n

(lo
we

r i
s b

et
te

r)

APO
APE
PromptBreeder
EvoPrompt
OPRO
AELP
SOA (ours)

Figure 6: Comparison of computational cost on a total
number of evaluations (x-axis) and iterations (y-axis).

Synthetic Few-shot Examples. We observe that
in certain cases SOA would generate novel synthetic
few-shot examples instead of selecting from existing
ones. To verify their veracity, we conduct a manual
evaluation of the accuracy of the few-shot examples
generated by SOA on a total of 24 instruction deduc-
tion tasks. We find that 90 out of the 92 examples
evaluated (97.8%) are accurate. Among them, 24 out
of the 92 (24.09%) are aligned with samples present
in the training set. There are two cases where the
synthetic example is inaccurate: the sentiment of
"A non-mystery mystery" is identified as "neutral"
where the ground truth is "negative", and "Little more
than a well-mounted history lesson" is identified as
"neutral" where the ground truth is "negative".

Computational Cost. We monitor the computational cost of SOA based on two criteria: the number of
model API calls consumed by evaluation and operator application, and the number of iterations. As shown
in Fig. 6, SOA is the most cost-effective method that significantly reduces multiple orders of magnitude
compared to evolution strategies, such as PromptBreeder. SOA also performs competitively in terms of
iterations compared to the gradient descent approach, such as APO.

5 Related Work

In-context prompting is an efficient approach for communicating LLMs but the performance is strongly
affected by the design of the prompt in specifized tasks. Prompt Tuning to find the optimal prompt has

10

Under review as submission to TMLR

thus obtained broader attention. One research direction is the continuous prompt approaches that traverse
the embedding space of input tokens to generate better prompts (Li & Liang, 2021; Zhang et al., 2021; Sun
et al., 2022b;a; Chen et al., 2023). However, the optimized “soft” prompts from this paradigm often fall short
of interpretability and are inaccessible for blackbox APIs. Discrete prompt approaches (Diao et al., 2022;
Prasad et al., 2022), operating discrete tokens directly, offer an interactive interface to humans with better
interpretability and show promising performance in various NLP tasks. Various methods have been proposed
via gradient-based search (Shin et al., 2020), reinforcement learning (Zhang et al., 2022a; Deng et al., 2022;
Sun et al., 2023) and ensemble methods (Hou et al., 2023; Pitis et al., 2023) while these methods encounter
concerns in terms of scalability, reliability and efficiency (Wang et al., 2023).

Recent advancements rely on iterative sampling, scoring, and selection of exceptionally promising prompts,
generating diverse possibilities for prompt optimization (Fernando et al., 2023; Guo et al., 2023; Hsieh et al.,
2023), which proposed leveraging LLMs to implement evolution strategies in prompt searches. Yang et al.
(2023a) demonstrates the capability of LLM as optimizers in prompt design. Pryzant et al. (2023) and
Zhou et al. (2023) utilize natural language feedback to refine prompt instructions. However, these prompt
evolution/refinement strategies largely focus on prompt instructions, typically short sentences. Our research
reformulates the problem by permitting unrestrained tuning of a jointly in-context prompt, incorporating
both instructions and examples, and offering more avenues for improvement, yet it also poses new challenges
in navigating the high-dimensional combined space, while retaining high efficiency. While previous search
and sampling algorithms have been investigated, such as Monte Carlo search (Zhou et al., 2023), Gibbs
sampling (Xu et al., 2023), Beam search (Pryzant et al., 2023), or Evolution Algorithm (Fernando et al.,
2023), we introduce a novel dual exploration-exploitation strategy that leverages the in-depth traits of each
operator, utilizing an intuitive blend of global-local search, conducive to enhancing interactive dynamics
during optimization.

6 Conclusion and Discussion

In this work, we propose a joint prompt-tuning framework that enables the combined optimization of prompt
instruction and examples for LLMs. Benefiting from the global-local phased strategy and the adaptive
selection of operators, SOA achieves state-of-the-art performance over a wide range of benchmark tasks while
significantly reducing the computational cost. Despite having such achievements, SOA still needs thousands of
inference calls in several iterations, which might be insufficient for supporting large-scale applications. Future
work could explore better online strategies to further improve efficiency, and also investigate multi-objective
prompt tuning beyond single accuracy or performance metric, such as safety, security, and robustness.

References
Srivastava Aarohi and BIG bench authors. Beyond the imitation game: Quantifying and extrapolating the

capabilities of language models. Transactions on Machine Learning Research, 2023. ISSN 2835-8856. URL
https://openreview.net/forum?id=uyTL5Bvosj.

Shengnan An, Bo Zhou, Zeqi Lin, Qiang Fu, Bei Chen, Nanning Zheng, Weizhu Chen, and Jian-Guang Lou.
Skill-based few-shot selection for in-context learning. arXiv preprint arXiv:2305.14210, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen
Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris
Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher
Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. “language models are few-shot
learners". 2020.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar, Peter
Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general intelligence: Early
experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

11

https://openreview.net/forum?id=uyTL5Bvosj

Under review as submission to TMLR

Lichang Chen, Jiuhai Chen, Tom Goldstein, Heng Huang, and Tianyi Zhou. Instructzero: Efficient instruction
optimization for black-box large language models. 2023.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm: Scaling language modeling
with pathways. arXiv preprint arXiv:2204.02311, 2022.

Mingkai Deng, Jianyu Wang, Cheng-Ping Hsieh, Yihan Wang, Han Guo, Tianmin Shu, Meng Song, Eric P
Xing, and Zhiting Hu. Rlprompt: Optimizing discrete text prompts with reinforcement learning. arXiv
preprint arXiv:2205.12548, 2022.

Shizhe Diao, Zhichao Huang, Ruijia Xu, Xuechun Li, Yong Lin, Xiao Zhou, and Tong Zhang. Black-box
prompt learning for pre-trained language models. arXiv preprint arXiv:2201.08531, 2022.

Ibrahim Abu Farha and Walid Magdy. From arabic sentiment analysis to sarcasm detection: The arsarcasm
dataset. n Proceedings of the 4th Workshop on Open-Source Arabic Corpora and Processing Tools, with a
Shared Task on Offensive Language Detection,, pp. 32–39, 2020.

Chrisantha Fernando, Dylan Banarse, Henryk Michalewski, Henryk Osindero, and Tim Rocktaschel.
Promptbreeder:self-referential self-improvement via prompt evolution. 2023.

Qingyan Guo, Rui Wang Wang, Junliang Guo Guo, Bei Li, Kaitao Song, Xu Tan, Guoqing Liu, Jiang Bian,
and Yujiu Yang. “connecting large language models with evolutionary algorithms yields powerful prompt
optimizers". 2023.

Mark Hauschild and Martin Pelikan. An introduction and survey of estimation of distribution algorithms.
Swarm and evolutionary computation, 1(3):111–128, 2011.

John H Holland. Adaptation in natural and artificial systems: an introductory analysis with applications to
biology, control, and artificial intelligence. MIT press, 1992.

Or Honovich, Uri Shaham, Samuel R Bowman, and Omer Levy. Instruction induction: From few examples to
natural language task descriptions. 2022.

Bairu Hou, Joe O’connor, Jacob Andreas, Shiyu Chang, and Yang Zhang. Promptboosting: Black-box text
classification with ten forward passes. In International Conference on Machine Learning, pp. 13309–13324.
PMLR, 2023.

Cho-Jui Hsieh, Si Si, Felix X. Yu, and Inderjit S. Dhillon. “automatic engineering of long prompts". 2023.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large language
models are zero-shot reasoners. Advances in neural information processing systems, 35:22199–22213, 2022.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. arXiv preprint
arXiv:2101.00190, 2021.

F. Nelson Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and Percy
Liang. Lost in the middle: How language models use long contexts. 2023.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan, Lawrence Carin, and Weizhu Chen. What makes good
in-context examples for gpt-3? arXiv preprint arXiv:2101.06804, 2021.

Pan Lu, Liang Qiu, Kai-Wei Chang, Ying Nian Wu, Song-Chun Zhu, Tanmay Rajpurohit, Peter Clark, and
Ashwin Kalyan. Dynamic prompt learning via policy gradient for semi-structured mathematical reasoning.
arXiv preprint arXiv:2209.14610, 2022.

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel, and Pontus Stenetorp. Fantastically ordered prompts
and where to find them: Overcoming few-shot prompt order sensitivity. arXiv preprint arXiv:2104.08786,
2021.

12

Under review as submission to TMLR

Ioannis Mollas, Zoe Chrysopoulou, Stamatis Karlos, and Grigorios Tsoumakas. Ethos: An online hate speech
detection dataset. 2021.

OpenAI. Gpt-4 technical report. ArXiv, abs/2303.08774, 2023. URL https://api.semanticscholar.org/
CorpusID:257532815.

Silviu Pitis, Michael R Zhang, Andrew Wang, and Jimmy Ba. Boosted prompt ensembles for large language
models. arXiv preprint arXiv:2304.05970, 2023.

Archiki Prasad, Peter Hase, Xiang Zhou, and Mohit Bansal. Grips: Gradient-free, edit-based instruction
search for prompting large language models. arXiv preprint arXiv:2203.07281, 2022.

Reid Pryzant, Dan Iter, Jerry Li, Yin Tat Lee, Zhu Chenguang, and Michael Zeng. Automatic prompt
optimization with “gradient descent” and beam search. 2023.

Taylor Shin, Yasaman Razeghi, Robert L Logan IV, Eric Wallace, and Sameer Singh. Autoprompt: Eliciting
knowledge from language models with automatically generated prompts. arXiv preprint arXiv:2010.15980,
2020.

Rainer Storn and Kenneth Price. Differential evolution–a simple and efficient heuristic for global optimization
over continuous spaces. Journal of global optimization, 11:341–359, 1997.

Hao Sun, Alihan Hüyük, and Mihaela van der Schaar. Query-dependent prompt evaluation and optimization
with offline inverse rl. arXiv e-prints, pp. arXiv–2309, 2023.

Tianxiang Sun, Zhengfu He, Hong Qian, Yunhua Zhou, Xuan-Jing Huang, and Xipeng Qiu. Bbtv2: towards
a gradient-free future with large language models. In Proceedings of the 2022 Conference on Empirical
Methods in Natural Language Processing, pp. 3916–3930, 2022a.

Tianxiang Sun, Yunfan Shao, Hong Qian, Xuanjing Huang, and Xipeng Qiu. Black-box tuning for language-
model-as-a-service. In International Conference on Machine Learning, pp. 20841–20855. PMLR, 2022b.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung, Aakanksha
Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, et al. Challenging big-bench tasks and whether chain-of-
thought can solve them. arXiv preprint arXiv:2210.09261, 2022a.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung, Aakanksha
Chowdhery, Quoc V. Le, Ed H. Chi, Denny Zhou, and Jason Wei. “large language models as optimizers.
2022b.

William Yang Wang. “liar, liar pants on fire”: A new benchmark dataset for fake news detection. 2017.

Xinyuan Wang, Chenxi Li, Zhen Wang, Fan Bai, Haotian Luo, Jiayou Zhang, Nebojsa Jojic, Eric P Xing,
and Zhiting Hu. Promptagent: Strategic planning with language models enables expert-level prompt
optimization. arXiv preprint arXiv:2310.16427, 2023.

Weijia Xu, Andrzej Banburski-Fahey, and Nebojsa Jojic. Reprompting: Automated chain-of-thought prompt
inference through gibbs sampling. arXiv preprint arXiv:2305.09993, 2023.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V. Le, Denny Zhou, and Xinyun Chen.
“challenging big-bench tasks and whether chain-of-thought can solve them". 2023a.

Jingfeng Yang, Hongye Jin, Ruixiang Tang, Xiaotian Han, Qizhang Feng, Haoming Jiang, Bing Yin, and
Xia Hu. Harnessing the power of llms in practice: A survey on chatgpt and beyond. arXiv preprint
arXiv:2304.13712, 2023b.

Ningyu Zhang, Luoqiu Li, Xiang Chen, Shumin Deng, Zhen Bi, Chuanqi Tan, Fei Huang, and Huajun
Chen. Differentiable prompt makes pre-trained language models better few-shot learners. arXiv preprint
arXiv:2108.13161, 2021.

13

https://api.semanticscholar.org/CorpusID:257532815
https://api.semanticscholar.org/CorpusID:257532815

Under review as submission to TMLR

Tianjun Zhang, Xuezhi Wang, Denny Zhou, Dale Schuurmans, and Joseph E Gonzalez. Tempera: Test-time
prompting via reinforcement learning. arXiv preprint arXiv:2211.11890, 2022a.

Yiming Zhang, Shi Feng, and Chenhao Tan. Active example selection for in-context learning. arXiv preprint
arXiv:2211.04486, 2022b.

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis, Harris Chan, and Jimmy Ba.
Large language models are human-level prompt engineers. 2023.

Kaijie Zhu, Jindong Wang, Jiaheng Zhou, Zichen Wang, Hao Chen, Yidong Wang, Linyi Yang, Wei Ye,
Neil Zhenqiang Gong, Yue Zhang, et al. Promptbench: Towards evaluating the robustness of large language
models on adversarial prompts. arXiv preprint arXiv:2306.04528, 2023.

14

Under review as submission to TMLR

A Appendix

B Operator Definition

Operators are used to generate new candidates. Seven types of operators, broadly categorized into five classes
are used by SOA. The idea is to provide a diverse set of operators so that a broad cognitive space of linguistics
is covered.

B.1 Lamarckian Operator

The Lamarckian operator follows the principles proposed in APE and Prompt Breeder (Zhou et al., 2023;
Fernando et al., 2023). Given a set of input-output pairs for the task, an LLM agent is used to reverse-engineer
the prompt from the provided demonstrating pairs. This type of operator allows a diverse set of prompt
candidates to be generated with no prior knowledge of the task. Any prompt candidate will have to be
induced from the demonstrating pairs. The prompt used by the LLM agent is in Table 11.

(Lamarckian Operator) Given a set of input/output pairs (Q, A) = [(Q1, A1), ..., (Qm, Am)] and a base LLM
L, the Lamarckian operator is to reverse engineer the instruction OL so that OL(Qi) = Ai, i = 1, ..., m.

B.2 Feedback Operator

Inspired by the concept of Gradient Descent in machine learning model training, we introduce an LLM
agent that works as an examiner which examines the cases where the current task prompt fails and provides
improvement guidance. Such guidance will be treated as gradient and be used by another LLM Agent as
an improver to generate a new candidate. Though similar to what is proposed in APO (Pryzant et al.,
2023), instead of only using gradient descent repeatedly, which has a higher probability of arriving at a local
minimum, we take advantage of its fast converge rate to local minimum and combine it with other operators
to target global minimum. When applying the Feedback operator, it will be applied to every candidate in the
current pool. The prompt can be found in Table 12 - 13.

(Feedback Operator) The Feedback operator generates a new prompt p′ based on the existing prompt p ∈ P ,
and where p made mistakes for a task. The feedback operator OF first looks at the cases where the current p
failed to generate a list of advice G, and then asks LLM L to apply such advice G to existing prompt p for
generating the new prompt p′.

B.3 Estimation of Distribution Operator

The next class of operators takes a set of parents as input to generate a modified candidate.

Estimation of Distribution Operator (EDA): Following the principles proposed by (Hauschild & Pelikan,
2011) and work in (Fernando et al., 2023), we use a LLM agent that is fed with a subset of the current pool
to generate new candidate. To ensure the diversity and quality of the subset, we first rank the candidates in
the current pool by their performance in descending order. Then starting from the first item in the ordered
candidates, we only add the candidate to the subset if it does not have a similarity score over a threshold with
any other candidate that is already in the subset. This way candidates with higher performance are more
prone to be added to the subset and the diversity of the subset is achieved. More details on how similarity is
calculated can be found in section 3.3. The subset will be randomized before feeding into the LLM agent so
the candidate’s performance does not dictate its order. The prompt can be found in Table 14.

EDA and Index Operator: This is a variant of the EDA operator above. Based on the observations
that LLM is more prone to use examples that appear late in the in-context learning (Liu et al., 2023;
Fernando et al., 2023), after generating the subset following procedures of EDA, the subset is ordered by
their performance in ascending order. To further balance exploitation and exploration and avoid being too
biased over the candidate with the highest performance (Fernando et al., 2023), we instructed LLM that the
candidates are ranked by their performance in descending order so that the low performance candidates are
taken into consideration. The prompt can be found in Table 15.

15

Under review as submission to TMLR

(Estimation of Distribution Operator - EDA) EDA generates a new candidate based on a list of parents. It is
a function operator OE that performs OE(P,L) = p′. Given a list of prompts P = [p1, ..., pm] and an LLM L,
EDA provides a new prompt p′. Items in P satisfy the restriction that d(pi, pj) < t, where d is a function
that calculates similarity, and t is a predefined threshold. If the items in P are ordered based on certain
criteria, we call it EDA + Index (EDA+I).

B.4 Crossover Operator

This class of operators takes two parents as input to generate a crossover candidate. The prompt can be
found in Table 16.

Crossover Operator(CR): Following the concept of crossover in the evolution algorithm, we introduce an
LLM agent to function as a crossover operator that takes two parents and generates a crossover candidate. It
takes the best two candidates in the current pool, namely the top two candidates with the highest performance,
and performs linguistic crossover.

Crossover with Diversity Operator(CR+D): This is a variance of the Crossover Operator. To provoke
exploration, we follow a similar process in EDA where diversity in parents is considered. Thus it takes the
best candidate and the most distinct individual to it as two parents for crossover operation. The distinctness
between two candidates is measured by a similarity score. More details on how the similarity score is
calculated can be found in section 3.3.

(Crossover Operator - CR) Crossover generates a new candidate based on two parents. It is a function operator
OC that performs OC(p1, p2, L) = p′ where p1, p2 are two prompts selected from a prompt pool P where
P = [p1..., pm], p′ is the generated prompt that hold features from both p1 and p2. If p2 = arg minp∈P d(p1, pi)
is applied for choosing p2, we call it Crossover + Distinct (CR + D).

B.5 Semantic Operator

This class of operators takes a candidate and uses an LLM agent to compose a new candidate that shares its
semantic meaning. When applying the Semantic operator, it will be applied to every candidate in the current
pool. The prompt can be found in Table 17.

(Semantic Operator) The Semantic operator is a function operator OS that performs OS(p, L) = p′ where p′
is the generated prompt that shares the same semantic meaning as p.

16

Under review as submission to TMLR

C Operator Analysis

C.1 Few-Shot Additional / Removal Analysis

The ability to add and remove few-shot examples is crucial in dictating whether it is possible to traverse
the full in-context prompt space. Thus we conduct the few-shot addition/ removal analysis to gauge each
operator’s capabilities. Below are examples of how operators add or remove few-shot examples.

Table 7: Lamarckian Operator Add Few-shot Example

Operator
Input

I gave a friend an instruction and some examples The friend read the instruction and
wrote an output for every one of the inputs.
Here are the input-output pairs:

Example
Input ## : 92 24
Output ##: [’68’]

The instruction was:

Operator
Output

Subtract the second number from the first number and write the result. If the result
is negative, write the absolute value of the result.

Here are the input-output pairs:

Input: 10 5
Output: [’5’]

Input: 50 75
Output: [’25’]

Input: 100 100
Output: [’0’]

Input: 7 20
Output: [’13’]

Input: 0 5
Output: [’5’]

Input: -10 5
Output: [’15’]

Input: 92 24
Output: [’68’]

Input: 50 -75
Output: [’125’]

17

Under review as submission to TMLR

Table 8: Feedback Operator Add Few-shot Example: In this operation, few-shot examples are added based
on the feedback. Individual feedback and their corresponding changes are colorcoded.

Original
Prompt

For each word, find its antonym and write it as the output.

Generated
Feedback

1. Clarify the definition of "antonym" to ensure that the prompt is asking for the op-
posite meaning of the word, rather than just a different word that is related in some way.

2. Provide more specific instructions for determining the antonym, such as in-
dicating whether the opposite meaning should be an adjective or a noun.

3. Add a list of common antonyms for each word to help users who may not
be familiar with all possible opposites.

4. Provide a context or sentence for each word to help users determine the
appropriate antonym.

Generated
Prompt

For each word, find its antonym, which is a word that has the opposite meaning, and
write it as the output. The antonym should be a word that is commonly used to
express the opposite meaning of the given word, and it should be of the same part of
speech (e.g. noun, verb, adjective, adverb).

To help you identify the antonym, we have provided a list of common antonyms for
each word. Additionally, we have included a context or sentence for each word to help
you determine the appropriate antonym.

Example:
Word: Hot
Antonym: Cold
Context: The soup is too hot to eat.

Please note that some words may have multiple antonyms depending on the context,
so use your best judgment to determine the most appropriate one.

18

Under review as submission to TMLR

Table 9: Feedback Operator Remove Few-shot Example: In this operation, few-shot examples are removed
based on the feedback. Individual feedback and their corresponding changes are colorcoded.

Original
Prompt

For each word, remove the prefix or suffix that indicates a negative or opposite
meaning, and write the resulting word as the output.

For example, for the input "destabilize," remove the prefix "de-" which indi-
cates a negative meaning, and the resulting word is "stabilize

Generated
Feedback

1.Clarify the prompt to specify that it only applies to words with a negative or
opposite prefix or suffix. This will prevent confusion and mistakes when dealing with
words that do not have such affixes.

2. Provide examples of common negative or opposite prefixes and suffixes,
such as "un-" or "-less," to help users identify them more easily.

3. Include a check to ensure that the resulting word is a valid English word,
to avoid outputs like "ane" or "direct" that are not actual words. This could be done
by cross-referencing the output with a dictionary or word list.

4. Consider adding an option to retain the original word if no negative or op-
posite prefix or suffix is present. This would eliminate confusion when dealing with
words like "linear" that do not have such affixes.

Generated
Prompt

For each word that contains a negative or opposite prefix or suffix, remove the affix
and write the resulting word as the output. Common negative or opposite prefixes
and suffixes include "un-," "dis-," "in-," "-less," and "-ful." Please note that this prompt
only applies to words with these specific affixes.

To ensure that the resulting word is a valid English word, we will cross-refer-
ence the output with a dictionary or word list. If the resulting word is not a valid
English word, it will be excluded from the output.

If the original word does not contain a negative or opposite prefix or suffix,
you may choose to retain the original word or exclude it from the output. Please
specify your preference in the input.

19

Under review as submission to TMLR

Table 10: Semantic Operator Remove Few-shot Example

Operator
Input

Order adjectives correctly in English sentences.

Q: Which sentence has the correct adjective order:
Options:
(A) rubber terrible ship
(B) terrible rubber ship
A: Let’s think step by step.
When there is more than one adjective before a noun, the adjectives need to respect
the following order before a noun: "[1. opinion] [2. size] [3. age] [4. shape] [5.
color] [6. origin] [7. material] [8. purpose] noun". Option (A): "rubber terrible
ship". (1) rubber" falls into the material category. (2) "terrible" falls into the
opinion category. Option (A) has the following adjective order: [7. material]
[1. opinion] (or, in numeric terms, 7 1). Because 7 < 1 is not correct, (A)
does not have the correct ordering. Option (B): "terrible rubber ship". Option
(B) has the following adjective order: [1. opinion] [7. material] (or, in numeric
terms, 1 7). Because 1 < 7 is correct, (B) has the correct ordering. So the answer is (B).

Q: Which sentence has the correct adjective order:
Options:
(A) repulsive small Brazilian exercise ship
(B) Brazilian repulsive exercise small ship
A: Let’s think step by step.
When there is more than one adjective before a noun, the adjectives need to respect
the following order before a noun: "[1. opinion] [2. size] [3. age] [4. shape] [5.
color] [6. origin] [7. material] [8. purpose] noun". Option (A): "repulsive small
Brazilian exercise ship". (1) "repulsive" falls into the opinion category. (2) "small"
falls into the size category. (3) "Brazilian" falls into the origin category. (4) "exercise"
falls into the purpose category. Option (A) has the following adjective order: [1.
opinion] [2. size] [6. origin] [8. purpose] (or, in numeric terms, 1 2 6 8). Because
1 < 2 < 6 < 8 is correct, (A) has the correct ordering. Option (B): "Brazilian
repulsive exercise small ship". Option (B) has the following adjective order: [6.
origin] [1. opinion] [8. purpose] [2. size] (or, in numeric terms, 6 1 8 2). Because 6
< 1 < 8 < 2 is not correct, (B) does not have the correct ordering. So the answer is (A).

Q: Which sentence has the correct adjective order:
Options:
(A) blue gold wonderful square shoe
(B) wonderful square blue gold shoe
A: Let’s think step by step.
When there is more than one adjective before a noun, the adjectives need to respect
the following order before a noun: "[1. opinion] [2. size] [3. age] [4. shape] [5. color] [6.
origin] [7. material] [8. purpose] noun". Option (A): "blue gold wonderful square shoe".
(1) "blue" falls into the color category. (2) "gold" falls into the material category. (3)
"wonderful" falls into the opinion category. (4) "square" falls into the shape category.
The adjective order that Option (A) has is [5. color] [7. material] [1. opinion] [4.
shape] (or, in numeric terms, 5 7 1 4). Because 5 < 7 < 1 < 4 is not correct, (A) does
not have the correct ordering. Option (B): "wonderful square blue gold shoe". Option
(B) has the following adjective order: [1. opinion] [4. shape] [5. color] [7. material]
(or, in numeric terms, 1 4 5 7). Because 1 < 4 < 5 < 7 is correct, (B) has the correct
ordering. So the answer is (B).

Operator
Output

Rearrange the adjectives in the given sentence in the correct order.

20

Under review as submission to TMLR

C.2 Operator Feature Analysis

To study the features of each operator we conduct a preliminary experiment where we study four operators:
EDA Operator, Crossover, Feedback Operator, and Semantic Operator.

Initialization: As the initialized points have a tremendous impact on optimization problems. We randomly
use four different seeds to create four initial pools for four different tasks: Causal Judgement, Salient Translation
Error Detection, Disambiguation QA, and Hyperbaton. The idea is to provide various initialization points so
that the performance of operators can be averaged to rule out the influence of initialization.

Operator Applications: For each initialization, we apply the following procedure for all four operators.

• For one round, starting with the initial pool, we consecutively apply the operator 5 times. This is to
study the value of applying the operator consecutively.

– For EDA and CrossOver, as they require multiple parents, we keep a pool size of 5 for each
iteration after applying the operator. Performance gain is defined as whether the average
performance of the pool is improved.

– For Feedback Operator and Semantic Operator, as they only need one parent, we apply them to
a random candidate from the initial pool and use the new candidate as the base for the next
round. Performance gain is defined as whether the new candidate has a higher performance than
its parent.

• To reduce the impact of randomness, we run this process 5 rounds for each operator.

Thus for each operator, it will be run a total of 4 tasks * 5 rounds * 5 application = 100 times.

EDA Crossover Feedback Semantic
0

10

20

30

40

50

60

70

80

Co
un

t

Figure 7: Operator Improvement Count

Analysis: There are two aspects we are particularly interested in. The first is what the likelihood of
performance gain when applying an operator is (Probability of Improvement), and the second is how
fast each operator can continuously bring improvement (Convergence Speed).

• Probability Of Improvement: Figure 7 shows the number of times performance is improved by
each operator. Crossover and EDA Operator introduces improvements in more steps with Semantic
Operator ranking third. Feedback Operator introduces the least number of improvements. This
result helps populate the Prob column in table 1.

• Convergence Speed: Figure 8 shows that for each operator, as they are applied in 5 consecutive
steps, the number of times improvement is introduced for each step. Figure 9 shows the average
percentage of performance gain operators brought in each step.

21

Under review as submission to TMLR

– For EDA Operator and Crossover, each 5 step has a similar number of contributions for
performance gains as shown in figure 8. From figure 9 we can also observe the first step brings
the most improvement and the first 4 steps bring a similar improvement ratio.

– For Feedback Operator and Semantic Operator, the first step has a significantly higher chance
of introducing improvement as shown in figure 8. This is especially true for Feedback Operator
where step 1 accounts for over 34% of the total improvement counts. As for the improvement
ratio, the first step for both Feedback Operator and Semantic Operator introduces significantly
more improvements than the rest of the steps shown in figure 9.

Based on the tests, we learned that the value gained for applying Feedback Operator and Semantic
Operator is significantly reduced after the 1st application. We interpret it as Feedback Operator
and Semantic Operator can jump to the local minimum pretty fast, namely in 1 step,
thus leading to less possibility of improvement for steps 2 - 5. Whereas for EDA Operator and
Crossover, as they are merging genetic information between candidates, the likelihood of improvement
is relatively randomized. So even if the first round of applying them renders no improvement, there
is still a chance of performance gain in the following run. In other words, we should be more
patient with EDA Operator and Crossover. Thus the operator tolerance (described in section
3.3-design 2) for EDA and Crossover is set to 4 and for Feedback Operator and Semantic Operator is
1. These learnings help populate the Speed column in table 1.

EDA Crossover Feedback Semantic
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Co
un

t

Step 1
Step 2
Step 3
Step 4
Step 5

Figure 8: Operator Improvement Pattern: EDA Operator and Crossover have similar improvement counts for
each step whereas for Feedback Operator and Semantic Operator, the first step introduced significantly more
times of improvement compared to the others.

22

Under review as submission to TMLR

EDA Crossover
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Im
pr

ov
em

en
t P

er
ce

nt
ag

e

Feedback Mutation Semantic
0

20

40

60

80

100

120

140

Im
pr

ov
em

en
t P

er
ce

nt
ag

e

Step 1
Step 2
Step 3
Step 4
Step 5

Figure 9: Improvement Ratio: On the left, for EDA and Crossover, we observe an almost equal improvement
ratio for the first four steps. Improvement Ratio is defined as the relative percentage of improvement in the
average performance for the entire pool. On the right, for Feedback and Semantic Operator, we observe the
first round contributes significantly more improvement compared to the others. As Feedback and Semantic
Operators take one input candidate, Improvement Ratio is defined as the relative performance improvement
percentage for the candidate after applying the operator.

23

Under review as submission to TMLR

D Operator Prompts

Operator Implementation: The state-of-art frameworks such as APO, EVOPROMPT, and AELP have
already implemented operators such as feedback operator, crossover operator, and semantic operator with
LLM. However, these implementations inflict restrictions on LLM with prompts. For example, in APO when
implementing the feedback operator, the prompt specifically identified the use case to be zero-shot. (Pryzant
et al., 2023) In EVOPROMPT-DE, when applying crossover operators, the focus is to only change the parts
that two parents differentiate from each other. (Guo et al., 2023) In AELP, when applying semantic operators,
it is restricted to a sentence level, not the whole prompt. (Hsieh et al., 2023). In SOA, we pay special attention
not to apply any restrictions in our operator prompt, realizing the full potential of LLMs.

Table 11: Lamarckian Operator Prompt

I gave a friend an instruction and some input. The friend read the instruction and
wrote an output for every one of the inputs. Here are the input-output pairs:

Example
{input output pairs}

The instruction was:

Table 12: Gradient Descent Generation Prompt: Unlike APO which is also using gradient descent, we are
NOT adding restrictions such as "zero-shot classifier prompt.", nor providing any differentiation between
instructions and examples. Instead, we specifically ask LLM to output multiple feedback in one go. Also
as are passing in the existing prompt as a whole, thus feedback should be on the paragraph/prompt level
instead of the sentence/instruction level. We highlight the design that helps us achieve this below.

You are a quick improver. Given an existing prompt and a series of cases where it
made mistakes. Look through each case carefully and identify what is causing the
mistakes. Based on these observations, output ways to improve the prompts based on
the mistakes.

Existing Prompt
{existing prompt}

Cases where it gets wrong:##
{wrong cases}

ways to improve the existing prompt based on observations of the mistakes in the cases
above are:

24

Under review as submission to TMLR

Table 13: Gradient Descent Application Prompt: Following the principle of optimizing prompt as a whole,
our operator prompts take input and output on the entire prompt level

You are a quick improver. Given an existing prompt and feedback on how it should
improve. Create an improved version based on the feedback.

Existing Prompt
{existing prompt}

Feedback##
{feedback}

Improved Prompt##

Table 14: EDA Prompt

You are a mutator. Given a series of prompts, your task is to generate another prompt
with the same semantic meaning and intentions.

Existing Prompts
{existing prompt}

The newly mutated prompt is:

Table 15: EDA+Index Prompt: The difference between EDA + Index and EDA is that EDA + Index takes
advantage of the in-context learning technique and informs the order of the passed-in prompts

You are a mutator. Given a series of prompts, your task is to generate another prompt
with the same semantic meaning and intentions. The series of prompts are ranked by
their quality from best to worst.

Existing Prompts
{existing prompt}

The newly mutated prompt is:

25

Under review as submission to TMLR

Table 16: Cross Over Prompt

You are a mutator who is familiar with the concept of cross-over in genetic algorithm,
namely combining the genetic information of two parents to generate new offspring.
Given two parent prompts, you will perform a cross-over to generate an offspring
prompt that covers the same semantic meaning as both parents.

Example
Parent prompt 1: Now you are a categorizer, your mission is to ascertain the sentiment
of the provided text, either favorable or unfavorable

Parent prompt 2: Assign a sentiment label to the given sentence from [’nega-
tive’, ’positive’] and return only the label without any other text.

Offspring prompt: Your mission is to ascertain the sentiment of the provided
text and assign a sentiment label from [’negative’, ’positive’].

Given
Parent prompt 1: {prompt 1}
Parent prompt 2: {prompt 2}
Offspring prompt:

Table 17: Semantic Operator Prompt: To provoke LLM’s creativity, we do not restrict to the semantic level
but expand that to intentions, allowing LLM to not stick to a sentence-by-sentence modification.

You are a mutator. Given a prompt, your task is to generate another prompt with the
same semantic meaning and intentions.

Example:
current prompt: Your mission is to ascertain the sentiment of the provided text and
assign a sentiment label from [’negative’, ’positive’].
mutated prompt: Determine the sentiment of the given sentence and assign a label
from [’negative’, ’positive’].

Given:
current prompt: {existing prompt}
mutated prompt::

26

Under review as submission to TMLR

E Details of Experiments

E.1 Baselines

• APE (Zhou et al., 2023) uses LLM agent for instruction induction tasks. It proposes forward mode
generation and reverse mode generation and uses log probability to generate and evaluate candidates.

• APO (Pryzant et al., 2023) uses feedback provided by LLM as gradients to approach prompt optimization.
It uses beam search to find the best candidate.

• PromptBreeder (Fernando et al., 2023) uses the evolution algorithm to tackle prompt optimization tasks
and utilizes thinking styles, and mutation prompts to surface the best task prompt.

• AELP (Hsieh et al., 2023) uses existing prompts (Suzgun et al., 2022b) to target long prompt optimization
and improves them by mutating on a sentence level with history-guided search.

• EVOPROMPT (Guo et al., 2023) uses crossover mutation and semantic mutation with an evolution
algorithm to find the best prompt.

• OPRO (Yang et al., 2023a) uses meta prompt, solution-score pairs, and task descriptions to generate
candidates.

E.2 Benchmark tasks

• 24 Instruction Induction Tasks: These 24 instruction tasks (Honovich et al., 2022) span many facets
of language understanding, from simple phrase structure to similarity and causality identification. Both
training and testing data are provided for these tasks and we create our training and evaluation data set
from the available training data and use the provided testing data set as is. Depending on the task, we use
up to 50 training data and up to 50 evaluation data. We use input/output pair format for these tasks.

• Ethos: Ethos (Mollas et al., 2021) is an online English hate speech detection data set with 997 online
comments and hate speech labels. We select 50 for training, 50 for evaluation, and 150 for testing. We use
prompt example format for this data set following the practice of APO (Pryzant et al., 2023).

• Liar: Liar (Wang, 2017) is an English fake news detection data set with 4000 statements, context, and lie
labels. We select 50 for training, 50 for evaluation, and 150 for testing. We use prompt example format for
this data set following the practice of APO (Pryzant et al., 2023).

• Sarcasm: Sarcasm (Farha & Magdy, 2020) is an Arabic sarcasm detection data set with 10,000 online
comments and sarcasm labels. We select 50 for training, 50 for evaluation, and 150 for testing. We use
prompt example format for this data set following the practice of APO (Pryzant et al., 2023).

• BBH: BBH (Aarohi & bench authors, 2023) is a collaborative benchmark that aims to quantitatively
measure the capabilities and limitations of language models. We followed the same practice in the AELP
paper with the same tasks and randomly selected 50 for training, 50 for evaluation, and 125 for test. (Hsieh
et al., 2023)

E.3 SOA Setting

• Pool Size: In the experiments, for phase 0: Global initialization we set the pool size to be 15. For the rest
phases, we set the pool to be 5.

• Operator Tolerance: Based on operator analysis in section C.2, the tolerance for Feedback Operator
and Semantic Operator is set to 1. The tolerance for EDA Operator and Crossover is set to 4. Thus the
minimum number of times operators will be applied in phase 2: global evolution operation is 8.

• Model Configuration: For operators, we set the temperature to 0.5 to tap into LLM’s creativity. For
evaluations, we set the temperature to 0.

27

Under review as submission to TMLR

• Performance Gain in Stop Criteria: To improve efficiency, when evaluating performance gain to decide
whether we should move to the next phase, we are only looking at the best candidate in the current pool.

• Candidate Selection: To improve efficiency, after getting new candidates, we combine them with the
current pool and use a greedy algorithm to select the top performer to be the new pool.

F Additional Experiment Results

F.1 24 Instruction Induction Tasks

Table 18 shows the comparison between APE, PromptBreeder, and SOA evaluated by the best prompt on 24
instruction induction tasks. SOA outperforms 21/24 tasks over APE zero shot, 17 / 24 tasks over APE few
shot and 18 / 24 tasks on Prompt Breeder. SOA generated few-shot prompts for 20 / 24 tasks and zero-shot
examples for 4 / 24 tasks. For the full set of generated prompts please refer to table 26.

Table 18: 24 Instruction Induction Task in APE

Task APE (zero-
shot)

APE (few-
shot)

PromptBreeder
(few-shot) SOA-3.5 SOA-4

Antonyms 0.83 0.86 0.87 0.89 0.91
Cause
Effect 0.84 1 1 0.96 1

Common
Concept 0.27 0.32 0 0.23 0.28

Diff 1 1 1 1 1
First Word
Letter 1 1 1 1 1

Informal
Formal 0.65 0.70 0.07 0.6 0.67

Large Ani-
mal 0.97 0.97 0.97 0.96 0.94

Letters List 0.99 1 0.99 1 1
Taxonomy
Animal 0.66 0.79 1 0.96 1

Negation 0.83 0.9 0.9 0.94 0.88
Num Verb 1 1 1 1 1
Active Pas-
sive 1 1 1 1 1

Singular
Plural 1 1 1 1 1

Rhymes 1 0.61 1 1 1
Second
Word Let-
ter

0.87 0.69 0.95 1 1

Sentence
Similarity 0.36 0.43 0.56 0.38 0.55

Continuation of Table 18

28

Under review as submission to TMLR

Continuation of Table 18
Sentiment 0.94 0.93 0.93 0.94 0.94
Orthography
Starts 0.68 0.69 0.71 0.72 0.94

Sum 1 1 1 1 1
Synonym 0.22 0.14 0.43 0.46 0.38
Trans En
De 0.72 0.86 0.87 0.83 0.96

Trans En
Es 0.86 0.91 0.91 0.92 0.94

Trans En
Fr 0.78 0.9 0.91 0.88 0.93

Word in
Context 0.62 0.63 0.65 0.66 0.7

F.2 Generated Prompt Comparison

We notice that the prompts generated by SOA are easier to understand by humans. Below is a
comparison between prompts generated for task Rhymes. The task description is: "Write a word that rhymes
with the input word."

The prompt generated by APE and Instruct Zero does not fit the task. The prompt generated by Prompt
Breeder is not easy to understand how it relates to rhyme. The prompt generated by SOA is easy to understand
with few shot examples added.

Table 19: Generated Prompt Comparison for task "Rhymes"

Framework Generated Prompt

APE write a function that takes in a string and outputs the string with the first letter
capitalized.

Instruct
Zero Write a function that takes a word as input and returns the output word.

Continuation of Table 19

29

Under review as submission to TMLR

Continuation of Table 19

Prompt
Breeder

Prompt 0: If the last letter of the input is ’e’, remove it.
Prompt 1: remove the last two letters of the input and add the letters \xc2 \x93mote
\xc2 \x94.
Contexts
Context 0:
Q. pea
A. If the last letter of the input is ’e’, remove it.
A. If the last letter of the input is ’s’, remove it.
A. If the last letter of the input is ’y’, remove it.
A. If the last letter of the input is
remove the last two letters of the input and add the letters \xc2 \x93mote \xc2 \x94.
Therefore, the correct answer is (a) pea.
Context 1:
Q. night
A. If the last letter of the input is ’e’, remove it.
A. If the last letter of the input is ’t’, remove it.
A. If the last letter of the input is ’h’, remove it.
A. If the last letter of the input is
remove the last two letters of the input and add the letters \xc2 \x93mote \xc2 \x94.
Therefore, the correct answer is (The answer is night.
Context 2:
Q. add
A. If the last letter of the input is ’e’, remove it.
A. If the last letter of the input is ’d’, remove it.
A. If the last letter of the input is ’a’, remove it.
A. If the last letter of the input is
remove the last two letters of the input and add the letters \xc2 \x93mote \xc2 \x94.
Therefore, the correct answer is (The answer is added.

Continuation of Table 19

30

Under review as submission to TMLR

Continuation of Table 19

SOA

Create a list of words that rhyme with the given word. To ensure that your rhymes are
accurate, make sure that the words have the same vowel sound and ending consonant
sound. For example, "cat" rhymes with "bat" and "hat," but not with "dog" or "mat."

To get started, here are some examples of words that rhyme with the given
word:

- Love: dove, glove, above, shove, of
- Time: rhyme, chime, climb, mime, prime

To find more rhyming words, you can use a rhyming dictionary, online re-
sources, or brainstorm with friends. Be creative and try to use a variety of different
rhyming words instead of repeating the same one multiple times.

To avoid common pitfalls, make sure to double-check your spelling and pro-
nunciation of the words. Also, avoid using words that only partially rhyme or have a
different stress pattern.

After you’ve created your list, ask for feedback on the quality of your rhymes. This
can help you to improve and refine your skills.

For an added challenge, consider generating rhyming words that fit a particu-
lar theme or context. This can help you to focus your creativity and generate more
interesting and relevant rhymes.

31

Under review as submission to TMLR

G Few-shot Add/ Removal Examples

Below are cases listing examples where few-shot examples are added or removed with SOA.

G.1 Zero-shot to Few-shot

Table 20: Add Few-shot Example: added examples are highlighted.

Task Ethos
Input
Prompt

Is the following text hate speech? \n ## Output Format ## True or False

Output
Prompt

Your task is to evaluate whether the provided input includes any offensive language.
This could be language that is sexist, racist, discriminatory, or advocates violence
or harm. Offensive language can also be identified by an aggressive or belittling
tone. However, remember that the mere presence of profanity does not necessar-
ily make a statement offensive. The context and intention behind the statement
should also be taken into account. If none of these conditions are fulfilled, return ’False’.

For instance, the phrase "You are a fool" is offensive due to its derogatory tone, so
you should return ’True’. On the other hand, the phrase "This is a damn tasty pizza"
includes profanity but is not offensive, so you should return ’False’. Similarly, a phrase
like "All people of X race are lazy" is offensive because of its racist undertones, so
you should return ’True’. In contrast, a phrase like "I dislike the color yellow" is not
offensive, so you should return ’False’.

G.2 Zero-shot to Zero-shot

Table 21: Zero-shot to Zero-shot

Task Ethos
Input
Prompt

Is the following text hate speech? \n ## Output Format ## True or False

Output
Prompt

Classify the given text as hate speech or not and generate a binary output of 1 for
Yes and 0 for No.

G.3 Few-shot to Zero-shot

Table 22: Few-shot to Zero-shot

Task Hyperbaton
Continuation of Table 22

32

Under review as submission to TMLR

Continuation of Table 22

Input
Prompt

Order adjectives correctly in English sentences.

Q: Which sentence has the correct adjective order:
Options:
(A) rubber terrible ship
(B) terrible rubber ship
A: Let’s think step by step.
When there is more than one adjective before a noun, the adjectives need to respect
the following order before a noun: "[1. opinion] [2. size] [3. age] [4. shape] [5. color]
[6. origin] [7. material] [8. purpose] noun".
Option (A): "rubber terrible ship". (1) rubber" falls into the material category. (2)
"terrible" falls into the opinion category. Option (A) has the following adjective order:
[7. material] [1. opinion] (or, in numeric terms, 7 1). Because 7 < 1 is not correct, (A)
does not have the correct ordering.
Option (B): "terrible rubber ship". Option (B) has the following adjective order: [1.
opinion] [7. material] (or, in numeric terms, 1 7). Because 1 < 7 is correct, (B) has
the correct ordering. So the answer is (B).

Q: Which sentence has the correct adjective order:
Options:
(A) repulsive small Brazilian exercise ship
(B) Brazilian repulsive exercise small ship
A: Let’s think step by step.
When there is more than one adjective before a noun, the adjectives need to respect
the following order before a noun: "[1. opinion] [2. size] [3. age] [4. shape] [5. color]
[6. origin] [7. material] [8. purpose] noun".
Option (A): "repulsive small Brazilian exercise ship". (1) "repulsive" falls into the
opinion category. (2) "small" falls into the size category. (3) "Brazilian" falls into the
origin category. (4) "exercise" falls into the purpose category. Option (A) has the
following adjective order: [1. opinion] [2. size] [6. origin] [8. purpose] (or, in numeric
terms, 1 2 6 8). Because 1 < 2 < 6 < 8 is correct, (A) has the correct ordering.
Option (B): "Brazilian repulsive exercise small ship". Option (B) has the following
adjective order: [6. origin] [1. opinion] [8. purpose] [2. size] (or, in numeric terms, 6 1
8 2). Because 6 < 1 < 8 < 2 is not correct, (B) does not have the correct ordering. So
the answer is (A).
...

Output
Prompt

Identify the sentence with the correct order of adjectives: opinion, size, age, shape,
color, origin, material, purpose.

Table 23: Few-shot to Few-shot

Task Hyperbaton
Continuation of Table 23

33

Under review as submission to TMLR

Continuation of Table 23

Input
Prompt

Order adjectives correctly in English sentences.

Q: Which sentence has the correct adjective order:
Options:
(A) rubber terrible ship
(B) terrible rubber ship
A: Let’s think step by step.
When there is more than one adjective before a noun, the adjectives need to respect
the following order before a noun: "[1. opinion] [2. size] [3. age] [4. shape] [5. color]
[6. origin] [7. material] [8. purpose] noun".
Option (A): "rubber terrible ship". (1) rubber" falls into the material category. (2)
"terrible" falls into the opinion category. Option (A) has the following adjective order:
[7. material] [1. opinion] (or, in numeric terms, 7 1). Because 7 < 1 is not correct, (A)
does not have the correct ordering.
Option (B): "terrible rubber ship". Option (B) has the following adjective order: [1.
opinion] [7. material] (or, in numeric terms, 1 7). Because 1 < 7 is correct, (B) has
the correct ordering. So the answer is (B).

Q: Which sentence has the correct adjective order:
Options:
(A) repulsive small Brazilian exercise ship
(B) Brazilian repulsive exercise small ship
A: Let’s think step by step.
When there is more than one adjective before a noun, the adjectives need to respect
the following order before a noun: "[1. opinion] [2. size] [3. age] [4. shape] [5. color]
[6. origin] [7. material] [8. purpose] noun".
Option (A): "repulsive small Brazilian exercise ship". (1) "repulsive" falls into the
opinion category. (2) "small" falls into the size category. (3) "Brazilian" falls into the
origin category. (4) "exercise" falls into the purpose category. Option (A) has the
following adjective order: [1. opinion] [2. size] [6. origin] [8. purpose] (or, in numeric
terms, 1 2 6 8). Because 1 < 2 < 6 < 8 is correct, (A) has the correct ordering.
Option (B): "Brazilian repulsive exercise small ship". Option (B) has the following
adjective order: [6. origin] [1. opinion] [8. purpose] [2. size] (or, in numeric terms, 6 1
8 2). Because 6 < 1 < 8 < 2 is not correct, (B) does not have the correct ordering. So
the answer is (A).
...

Continuation of Table 23

34

Under review as submission to TMLR

Continuation of Table 23

Output
Prompt

Adjective Order Practice:

In English grammar, the order of adjectives is important to convey accurate
and effective descriptions. Here are two examples of sentences with adjectives.
Determine which sentence has the correct adjective order.

Example 1:
a) The big, red, round ball bounced down the street.
b) The round, red, big ball bounced down the street.

Example 2:
a) The delicious, homemade, chocolate cake was devoured by the guests.
b) The chocolate, homemade, delicious cake was devoured by the guests.

Choose the letter of the sentence with the correct adjective order as your an-
swer.

Note: Adjective order generally follows the pattern of opinion, size, age, shape, color,
origin, material, and purpose. If the adjectives do not fit into this pattern, the order
is determined by the speaker’s preference.

If you choose the incorrect sentence, we will explain why it is wrong to help
you learn from your mistakes. Good luck!

35

Under review as submission to TMLR

H Generated Prompts

In this section, we list the prompts generated by SOA with the best performance for each task. All prompts
are generated by gpt-3.5. We observe a mix of few-shot prompts and zero-shot prompts for different tasks.
This indicates both LLM’s ability to perform in-context prompt optimization and SOA’s ability to traverse
the whole problem space to find optimal solutions.

We also notice that the few-shot examples in the final prompts are largely generated by LLM instead of
copied from example instruction or training sets. Thus it serves as further proof of LLM’s capability of
in-context prompt optimization and SOA’s credibility in this problem space.

Table 24: BBH Prompts

Causal
Judgment

Provide reactions to intentional actions in diverse scenarios, while also consider-
ing causation and its complexities. To assist with determining causation, provide
specific guidelines and examples for each scenario. To avoid any confusion or
misinterpretation, precise language and definitions will be used throughout
the prompt. Additionally, feedback from experts and individuals with relevant
experience in the field of causation will be incorporated to ensure accuracy and
relevance. To challenge users’ critical thinking skills, include diverse and com-
plex scenarios that require creative problem-solving and a deeper understanding
of causation in various areas of life.

Dyke Lan-
guages

Correctly close all brackets, including nested brackets, in the provided sequence
in the proper order from innermost to outermost. Mistakes such as forgetting
to close a bracket or closing brackets in the wrong order can result in an error.
If an error is made, a clear and concise message will indicate which bracket is
not properly closed and suggest how to correct it. A visual representation of
the correct sequence of closed brackets is provided below:
[([()])]

Examples of valid and invalid inputs:

Valid input: [()]
Valid input: [([])]
Invalid input: [([)]
Warning message: The bracket at position 8 is not properly closed. Please close
the bracket to ensure proper syntax.
Suggested correction: [([])]

Invalid input: [([])]
Warning message: The bracket at position 8 is not properly closed. Please close
the bracket to ensure proper syntax.
Suggested correction: [([])]

Formal Fal-
lacies

Read the given argument carefully and determine whether it is deductively valid
or invalid based on the explicitly stated premises. Provide a justification for
your answer.

Dis-
ambiguation
QA

For each sentence with a gender-neutral pronoun, determine the antecedent or
state if it is ambiguous. Use (A) for the first option, (B) for the second option,
or (C) for ambiguous. Additionally, provide an explanation of the antecedent
(the person or thing the pronoun refers to) for each sentence.

Continuation of Table 24

36

Under review as submission to TMLR

Continuation of Table 24

Hyperbaton

Test your knowledge of adjective order in English sentences with interactive
exercises and quizzes. Learn the rule of opinion-size-age-shape-color-origin-
material-purpose noun and apply it to different types of nouns such as animals,
objects, and people. Practice constructing your own sentences and receive
feedback on incorrect answers to improve your skills. By the end of this exercise,
you’ll be able to confidently order adjectives and communicate accurately in
English.

Continuation of Table 24

37

Under review as submission to TMLR

Continuation of Table 24

Logical
Deduction
Five

On a plate, there are three fruits: a red apple, a yellow banana, and a green
pear. The banana is positioned to the immediate left of the apple, meaning
there are no other fruits between them. The pear is the rightmost fruit,
meaning it comes last in the order.

Which of the following statements is true?

(A) The red apple is the leftmost fruit.
(B) The yellow banana is the leftmost fruit.
(C) The green pear is the leftmost fruit.

Explanation:
To solve this prompt, pay attention to the precise language used to describe
the relationships between the fruits and their positions in the order. The
banana is to the immediate left of the apple, meaning it is directly adjacent to
it and there are no other fruits between them. The pear is the rightmost fruit,
meaning it comes last in the order.

Therefore, the correct answer is (B) The yellow banana is the leftmost
fruit.

To further practice this concept, here are some additional examples:

1. On a plate, there are three different colored balls: a blue ball, a
red ball, and a green ball. The red ball is directly to the left of the blue ball,
meaning there are no other balls between them. The green ball is the rightmost.
Which of the following statements is true?
(A) The blue ball is the leftmost ball.
(B) The red ball is the leftmost ball.
(C) The green ball is the leftmost ball.

2. In a row of three houses, there is a blue house, a yellow house, and
a green house. The blue house is in the middle, and the yellow house is directly
to the left of the green house, meaning there are no other houses between them.
Which of the following statements is true? (A) The blue house is the leftmost
house.
(B) The yellow house is the leftmost house.
(C) The green house is the leftmost house.

Feedback:
If you selected the wrong answer, here’s why:
(A) The red apple is not the leftmost fruit. The yellow banana is directly to its
left.
(C) The green pear is not the leftmost fruit. The banana and the apple come
before it in the order.

To avoid confusion, use precise language to describe the relationships
between objects and their positions in the order. Avoid using vague terms like
"newer" or "older" without specifying their exact relationship to other objects in
the order. Provide more context or details to help clarify any ambiguities in
the prompt. Make sure the order of the objects is clearly defined and consistent
throughout the prompt.

Continuation of Table 24

38

Under review as submission to TMLR

Continuation of Table 24

Reasoning
Colored
Objects

Identify the color of objects arranged in a row on a surface.
Q: On the desk, there is a black stapler, a green highlighter, a yellow ruler, a
blue pen, and a purple marker. What color is the pen?
Options:
(A) red
(B) orange
(C) yellow
(D) green
(E) blue
(F) brown
(G) magenta
(H) fuchsia
(I) mauve
(J) teal
(K) turquoise
(L) burgundy
(M) silver
(N) gold
(O) black
(P) grey
(Q) purple
(R) pink
A: Let’s think step by step.
According to this question, the objects are arranged in a row, from left to right,
as follows: (1) a black stapler, (2) a green highlighter, (3) a yellow ruler, (4) a
blue pen, and (5) a purple marker.
The pen is the fourth item on the list, namely (4). The color of the pen is blue.
So the answer is (E).

Salient
Transla-
tion Error
Detection

Read the following translations from German to English and identify the type of
error present in each one. The error can be one of the following types: Named
Entities, Numerical Values, Modifiers or Adjectives, Negation or Antonyms,
Facts, or Dropped Content. Write the corresponding letter for each error type
in the options provided.

For example:
Source: Der Hund ist braun.
Translation: The cat is brown.
The translation contains an error pertaining to:
Options:
(A) Modifiers or Adjectives
(B) Numerical Values
(C) Negation or Antonyms
(D) Named Entities
(E) Dropped Content
(F) Facts

Output: (D)

Continuation of Table 24

39

Under review as submission to TMLR

Continuation of Table 24

Causal
Judgment

Provide reactions to intentional actions in diverse scenarios, while also consider-
ing causation and its complexities. To assist with determining causation, provide
specific guidelines and examples for each scenario. To avoid any confusion or
misinterpretation, precise language and definitions will be used throughout
the prompt. Additionally, feedback from experts and individuals with relevant
experience in the field of causation will be incorporated to ensure accuracy and
relevance. To challenge users’ critical thinking skills, include diverse and com-
plex scenarios that require creative problem-solving and a deeper understanding
of causation in various areas of life.

Dyke Lan-
guages

Correctly close all brackets, including nested brackets, in the provided sequence
in the proper order from innermost to outermost. Mistakes such as forgetting
to close a bracket or closing brackets in the wrong order can result in an error.
If an error is made, a clear and concise message will indicate which bracket is
not properly closed and suggest how to correct it. A visual representation of
the correct sequence of closed brackets is provided below:
[([()])]

Examples of valid and invalid inputs:

Valid input: [()]
Valid input: [([])]
Invalid input: [([)]
Warning message: The bracket at position 8 is not properly closed. Please close
the bracket to ensure proper syntax.
Suggested correction: [([])]

Invalid input: [([])]
Warning message: The bracket at position 8 is not properly closed. Please close
the bracket to ensure proper syntax.
Suggested correction: [([])]

Formal Fal-
lacies

Read the given argument carefully and determine whether it is deductively valid
or invalid b5rased on the explicitly stated premises. Provide a justification for
your answer.

Dis-
ambiguation
QA

For each sentence with a gender-neutral pronoun, determine the antecedent or
state if it is ambiguous. Use (A) for the first option, (B) for the second option,
or (C) for ambiguous. Additionally, provide an explanation of the antecedent
(the person or thing the pronoun refers to) for each sentence.

Hyperbaton

Test your knowledge of adjective order in English sentences with interactive
exercises and quizzes. Learn the rule of opinion-size-age-shape-color-origin-
material-purpose noun and apply it to different types of nouns such as animals,
objects, and people. Practice constructing your own sentences and receive
feedback on incorrect answers to improve your skills. By the end of this exercise,
you’ll be able to confidently order adjectives and communicate accurately in
English.

Continuation of Table 24

40

Under review as submission to TMLR

Continuation of Table 24

Logical
Deduction
Five

On a plate, there are three fruits: a red apple, a yellow banana, and a green
pear. The banana is positioned to the immediate left of the apple, meaning
there are no other fruits between them. The pear is the rightmost fruit,
meaning it comes last in the order.

Which of the following statements is true?

(A) The red apple is the leftmost fruit.
(B) The yellow banana is the leftmost fruit.
(C) The green pear is the leftmost fruit.

Explanation:
To solve this prompt, pay attention to the precise language used to describe
the relationships between the fruits and their positions in the order. The
banana is to the immediate left of the apple, meaning it is directly adjacent to
it and there are no other fruits between them. The pear is the rightmost fruit,
meaning it comes last in the order.

Therefore, the correct answer is (B) The yellow banana is the leftmost
fruit.

To further practice this concept, here are some additional examples:

1. On a plate, there are three different colored balls: a blue ball, a
red ball, and a green ball. The red ball is directly to the left of the blue ball,
meaning there are no other balls between them. The green ball is the rightmost.
Which of the following statements is true?
(A) The blue ball is the leftmost ball.
(B) The red ball is the leftmost ball.
(C) The green ball is the leftmost ball.

2. In a row of three houses, there is a blue house, a yellow house, and
a green house. The blue house is in the middle, and the yellow house is directly
to the left of the green house, meaning there are no other houses between them.
Which of the following statements is true? (A) The blue house is the leftmost
house.
(B) The yellow house is the leftmost house.
(C) The green house is the leftmost house.

Feedback:
If you selected the wrong answer, here’s why:
(A) The red apple is not the leftmost fruit. The yellow banana is directly to its
left.
(C) The green pear is not the leftmost fruit. The banana and the apple come
before it in the order.

To avoid confusion, use precise language to describe the relationships
between objects and their positions in the order. Avoid using vague terms like
"newer" or "older" without specifying their exact relationship to other objects in
the order. Provide more context or details to help clarify any ambiguities in
the prompt. Make sure the order of the objects is clearly defined and consistent
throughout the prompt.

Continuation of Table 24

41

Under review as submission to TMLR

Continuation of Table 24

Reasoning
Colored
Objects

Identify the color of objects arranged in a row on a surface.

Q: On the desk, there is a black stapler, a green highlighter, a yellow
ruler, a blue pen, and a purple marker. What color is the pen?

Options:
(A) red
(B) orange
(C) yellow
(D) green
(E) blue
(F) brown
(G) magenta
(H) fuchsia
(I) mauve
(J) teal
(K) turquoise
(L) burgundy
(M) silver
(N) gold
(O) black
(P) grey
(Q) purple
(R) pink

A: Let’s think step by step.
According to this question, the objects are arranged in a row, from left to right,
as follows: (1) a black stapler, (2) a green highlighter, (3) a yellow ruler, (4) a
blue pen, and (5) a purple marker.
The pen is the fourth item on the list, namely (4). The color of the pen is blue.
So the answer is (E).

Continuation of Table 24

42

Under review as submission to TMLR

Continuation of Table 24

Salient
Transla-
tion Error
Detection

Read the following translations from German to English and identify the type of
error present in each one. The error can be one of the following types: Named
Entities, Numerical Values, Modifiers or Adjectives, Negation or Antonyms,
Facts, or Dropped Content. Write the corresponding letter for each error type
in the options provided.

For example:
Source: Der Hund ist braun.
Translation: The cat is brown.
The translation contains an error pertaining to:

Options:
(A) Modifiers or Adjectives
(B) Numerical Values
(C) Negation or Antonyms
(D) Named Entities
(E) Dropped Content
(F) Facts

Output: (D)

43

Under review as submission to TMLR

Table 25: APO Prompts

Ethos Does the provided text contain hate speech? Return a boolean value of True or False.

Liar

Analyze the context and other information provided to determine the truthfulness of
the statement. To do so, consider the following guidelines:

1. Identify key sources of information, such as reputable news outlets or gov-
ernment reports, and consider the credibility of the sources. Look for corroborating
evidence and consider any potential biases or conflicts of interest.

2. Conduct additional research or seek out expert opinions when necessary
to determine the truthfulness of a statement. Use resources or links to relevant
information provided, and consider consulting with subject matter experts or
fact-checking organizations.

3. Note that the determination of truthfulness may not always be possible
based on the information provided, and that additional research or analysis may be
required. Use your best judgment and be transparent about any uncertainties or
limitations in your analysis.

4. Consider specific examples or scenarios to help you apply the prompt in
different contexts. For instance, you might analyze a political statement, a scientific
claim, or a news article. Be aware of common pitfalls or errors, such as relying on
unreliable sources or failing to consider alternative explanations.

Output Format: Assign 0 for true and 1 for false. Note that this determina-
tion is based on the information provided and may not be definitive.

Sarcasm

Determine if the input contains any language that could be considered derogatory
or discriminatory towards a particular group based on their race, ethnicity, gender,
sexual orientation, religion, or any other protected characteristic. If such language is
found, output True. If not, output False. The prompt should be trained on a diverse
dataset to improve its accuracy and reduce errors.

44

Under review as submission to TMLR

Table 26: APE Prompts

Antonyms

"Provide a list of adjectival antonyms for each of these words, keeping in mind the
given context:"

Input ##: hot (in the context of weather)
Output ##: [’cold’, ’cool’, ’chilly’]

Input ##: happy (in the context of emotions)
Output ##: [’sad’, ’unhappy’, ’depressed’, ’miserable’]

Input ##: big (in the context of size)
Output ##: [’small’, ’tiny’, ’little’, ’miniature’]

Input ##: fast (in the context of speed)
Output ##: [’slow’, ’sluggish’, ’leisurely’, ’gradual’]

Input ##: old (in the context of age)
Output ##: [’young’, ’new’, ’fresh’, ’modern’]

Cause
Effect

Determine the sentence that is the cause in each pair. Remember to thoroughly
comprehend the meaning of each sentence before selecting the cause. Additionally,
verify your output to ensure that you only include the sentence that is the cause. To
aid in identifying cause and effect relationships, consider using keywords or phrases
that indicate causality, analyzing the context of each sentence, and practicing with
feedback and interactive activities.

Common
Concept

For each input, come up with a category or characteristic that they have in common
and write it as the output. Use your knowledge and experience to make educated
guesses and be creative in your thinking. Also, try to keep the output concise and
clear.

Diff Subtract the second number from the first number and give me the result. Make sure
to double check your calculations and write the answer as a string in a list format.

Continued next page for Table 26

45

Under review as submission to TMLR

Continuation of Table 26

First Word
Letter

Write a program that takes in a word and returns a list containing the first letter of
the word as a string. The program will be used to label items in a game.

Make sure to handle cases where the input word is empty or only contains
whitespace. You can use the string method ‘strip()‘ to remove any leading or trailing
whitespace. If the input is empty or contains only whitespace, return an empty list.

To ensure that your program works correctly, test it with the following exam-
ples:

Example 1:
Input: "apple"
Output: ["a"]

Example 2:
Input: " banana"
Output: ["b"]

Example 3:
Input: ""
Output: []

Example 4:
Input: " "
Output: []

Informal
Formal

Reword the following sentences using more formal language, but also provide
alternative rewordings that are more appropriate for different contexts:

1. "Regrettably, I am unable to attend the meeting tomorrow." (formal)
Alternative: "Unfortunately, I won’t be able to make it to the meeting tomorrow."
(casual)

2. "I must depart now, farewell!" (overly formal)
Alternative: "I have to go now, see you later!" (casual)

3. "I apologize, but I am unable to assist you with that matter." (formal)
Alternative: "I’m sorry, but I can’t help you with that." (casual)

4. "Thank you for the invitation, however, I am unable to attend." (formal)
Alternative: "Thanks for inviting me, but I can’t make it." (casual)

5. "In my opinion, this is the optimal choice." (formal)
Alternative: "I think this is the best option." (casual)

Continued next page for Table 26

46

Under review as submission to TMLR

Continuation of Table 26

Large Ani-
mal

Choose one animal as the output based on its size. For example, if the input pair is
"elephant, mouse", choose "elephant" as the output. If the input pair is "giraffe, lion",
choose "giraffe" as the output. Use the following criteria to choose the output:

- If one animal is significantly larger than the other, choose the larger animal
as the output.
- If the animals are similar in size, choose the animal with the name that comes first
alphabetically as the output.

Here are some examples of correct outputs:

- "whale, dolphin" -> choose "whale" as the output
- "panda, koala" -> choose "panda" as the output
- "tiger, zebra" -> choose "tiger" as the output

Choose the output carefully to avoid confusion and errors.

Letters List

Please write a program that takes in a word as input and outputs a list of its letters
separated by spaces. The output should be a list with one element containing the
separated letters in the same order as the input word.

To ensure the program works correctly, please follow these guidelines:

1. Input validation: Check that the input is a non-empty string containing
only alphabetic characters. If the input is invalid, print an error message and exit the
program.

2. Separating the letters: Use the ‘split()‘ method to separate the letters of
the input word.

3. Expected output format: The output should be a list with one element
containing the separated letters in the same order as the input word.

Here are some examples of valid and invalid input:

Valid input: "hello"
Expected output: ["h", "e", "l", "l", "o"]

Invalid input: "hello world"
Expected output: "Error: Input must be a non-empty string containing only
alphabetic characters."

Invalid input: "123"
Expected output: "Error: Input must be a non-empty string containing only
alphabetic characters."

Continued next page for Table 26

47

Under review as submission to TMLR

Continuation of Table 26

Taxonomy
Animal

"List all the animals from the given inputs."

Input ##: apple, banana, orange, kiwi, grape
Output ##: []

Input ##: dog, cat, fish, bird, hamster
Output ##: [’dog’, ’cat’, ’fish’, ’bird’, ’hamster’]

Input ##: elephant, giraffe, lion, tiger, zebra
Output ##: [’elephant’, ’giraffe’, ’lion’, ’tiger’, ’zebra’]

Input ##: pencil, eraser, notebook, ruler, pen
Output ##: []

Input ##: turtle, snake, lizard, frog, salamander
Output ##: [’turtle’, ’snake’, ’lizard’, ’frog’, ’salamander’]

Negation

For each input, negate the specified part of the statement and write it as an output.

1. Negate the part about using the gold color: "We will use gold as the primary color
for our new logo." Output: "We will not use gold as the primary color for our new logo."

2. Negate the part about Gary Kubiak participating as a player: "Gary Ku-
biak will play as a quarterback in the upcoming game." Output: "Gary Kubiak will
not play as a quarterback in the upcoming game."

Note: When negating statements with proper nouns or names, simply negate
the verb or action associated with the noun or name.

Num Ver-
bal

Convert a given number into its English word representation, including commas for
thousands and negative sign if applicable.

Input 1 ## : 1234
Output 1 ##: [’one thousand two hundred and thirty-four’]

Input 2 ## : 987654321
Output 2 ##: [’nine hundred and eighty-seven million six hundred and fifty-four
thousand three hundred and twenty-one’]

Input 3 ## : 0
Output 3 ##: [’zero’]

Input 4 ## : -42
Output 4 ##: [’negative forty-two’]

Input 5 ##: 999999999
Output 5 ##: [’nine hundred and ninety-nine million nine hundred and
ninety-nine thousand nine hundred and ninety-nine’]

Continued next page for Table 26

48

Under review as submission to TMLR

Continuation of Table 26

Active Pas-
sive

Passive Voice Practice:
In passive voice, the subject of the sentence receives the action instead of performing
it. Rewrite each sentence in passive voice.

Example: The dog chased the cat.
Passive voice: The cat was chased by the dog

1. The teacher graded the exams.
2. The company launched a new product.
3. The chef cooked a delicious meal.
4. The team won the championship.
5. The doctor prescribed medication for the patient.

Instructions:
- Rewrite each sentence in passive voice.
- Make sure the subject of the sentence receives the action instead of performing it.
- Use the examples provided to guide you.
- Check your work for accuracy and clarity.

Feedback:
- If you have any questions or need clarification, please ask.
- Practice makes perfect! Keep practicing to improve your writing skills.
- If you make any mistakes, don’t worry! Learn from them and try again

Continued next page for Table 26

49

Under review as submission to TMLR

Continuation of Table 26

Singular
Plural

Add an "s" or the correct plural form to the end of the input word, depending on the
following rules:

1. If the word ends in "y" with a consonant before it, change the "y" to "ies"
instead of just adding an "s".
2. If the word ends in "f" or "fe", change the "f" or "fe" to "ves" instead of just adding
an "s".
3. If the word is already plural, return the input word as is instead of adding an "s".
4. If the word has an irregular plural form, return the correct plural form instead of
just adding an "s".

Examples:

- Input: cat
Output: cats

- Input: book
Output: books

- Input: car
Output: cars

- Input: tree
Output: trees

- Input: computer
Output: computers

- Input: story
Output: stories

- Input: half
Output: halves

- Input: aircraft
Output: aircraft

- Input: century
Output: centuries

Continued next page for Table 26

50

Under review as submission to TMLR

Continuation of Table 26

Rhymes

Create a list of words that rhyme with the given word. To ensure that your rhymes are
accurate, make sure that the words have the same vowel sound and ending consonant
sound. For example, "cat" rhymes with "bat" and "hat," but not with "dog" or "mat."

To get started, here are some examples of words that rhyme with the given
word:

- Love: dove, glove, above, shove, of
- Time: rhyme, chime, climb, mime, prime

To find more rhyming words, you can use a rhyming dictionary, online re-
sources, or brainstorm with friends. Be creative and try to use a variety of different
rhyming words instead of repeating the same one multiple times.

To avoid common pitfalls, make sure to double-check your spelling and pro-
nunciation of the words. Also, avoid using words that only partially rhyme or have a
different stress pattern.

After you’ve created your list, ask for feedback on the quality of your rhymes. This
can help you to improve and refine your skills.

For an added challenge, consider generating rhyming words that fit a particu-
lar theme or context. This can help you to focus your creativity and generate more
interesting and relevant rhymes.

Second
Word Let-
ter

For each input word with at least two letters, identify and output the second letter.
Please ensure that the input is a valid word in the specified language or dialect to
prevent errors. The prompt is case-insensitive, so it will work for both uppercase and
lowercase letters.

Examples:
- Input: "hello" Output: "e"
- Input: "apple" Output: "p"
- Input: "book" Output: "o"

Please note that the language or dialect of the input should be specified to
avoid confusion with words that have different spellings or pronunciations in different
regions.

Continued next page for Table 26

51

Under review as submission to TMLR

Continuation of Table 26

Sentence
Similarity

Rate the similarity of two given sentences on a scale of 1 to 5, where 1 indicates a
significant difference in meaning and 5 indicates almost identical meaning. Please
consider the following factors when rating:

- The overall message and purpose of the sentences
- The structure and syntax of the sentences
- The use of key words and phrases

Provide a brief explanation for your rating, taking into account any minor
differences in wording or details that may affect the similarity rating. Additionally,
please provide context for the sentences being compared, such as the intended
audience or purpose.

For reference, here are some examples of sentences that fall into each cate-
gory:

Highly similar: "The cat sat on the mat" and "The mat was sat on by the
cat"
Moderately similar: "I enjoy playing soccer" and "Soccer is a fun sport to play"
Not similar at all: "The sky is blue" and "I am going to the beach tomorrow"

Thank you for your evaluation and explanation.

Continued next page for Table 26

52

Under review as submission to TMLR

Continuation of Table 26

Sentiment

Please analyze the following statements and determine their overall sentiment as
either [’negative’, ’neutral’, ’positive’]. Keep in mind the context and any figurative
language used.

1. The sun is shining and the birds are singing.
Output: [’positive’]

2. I failed my exam and now I have to retake the class.
Output: [’negative’]

3. My best friend surprised me with a thoughtful gift.
Output: [’positive’]

4. The traffic on the highway was backed up for miles.
Output: [’negative’]

5. I received a promotion at work and a raise in salary.
Output: [’positive’]

6. A non-mystery mystery.
Output: [’neutral’]

7. Little more than a well-mounted history lesson.
Output: [’neutral’]

8. Too daft by half ... but supremely good natured.
Output: [’positive’]

Note: This prompt uses more sophisticated language analysis techniques to
better understand the sentiment of the input. However, providing more context for
the input is still important for accurate sentiment analysis.

Continued next page for Table 26

53

Under review as submission to TMLR

Continuation of Table 26

Orthography
Starts
With

SIdentify the first word or phrase that starts with the letter given in the input. The
identified word or phrase should not contain any punctuation or special characters,
and should be case-insensitive. If there are no words or phrases starting with the
given letter, return an empty list.

Here are the input-output pairs:

Input: She sang a beautiful song to the audience. [b]
Output: [’beautiful’]

Input: The cat chased the mouse. [c]
Output: [’cat’]

Input: It is important to always be kind to others. [i]
Output: [’important’]

Input: The dog barked loudly, frightening the neighbors. [l]
Output: [’loudly’]

Input: The book is on the shelf. [s]
Output: [’shelf’]

Input: The baby cried all night. [n]
Output: []

Input: The teacher gave a long lecture on the history of art. [l]
Output: [’lecture’]

Input: The car drove down the street, passing by many shops. [s]
Output: [’street’]

Input: To the boy’s delight, he received a new toy for his birthday. [t]
Output: [’toy’]

Note: If there are multiple words or phrases starting with the given letter,
the prompt will return the first one encountered. If the input contains multiple
sentences or clauses, the prompt will identify the first word or phrase that starts with
the given letter in the entire input text. The output will be in lowercase

Sum

"Write a program that takes two numbers as input and returns their sum as a string
in a list. Make sure to test your program with different inputs to ensure it works
correctly. Remember to convert the input numbers to integers before adding them
together, and then convert the sum back to a string before putting it in a list. Also,
make sure to use the correct syntax for creating a list with one element (i.e. use square
brackets around the string). Good luck!"

Continued next page for Table 26

54

Under review as submission to TMLR

Continuation of Table 26

Synonym

Please provide a list of synonyms for the given words that convey a similar meaning
and are commonly used in everyday language. Be sure to double-check your spelling
and grammar before submitting.

For example, if the word is "happy," acceptable synonyms could be "joyful,"
"pleased," or "content."

Please use gender-neutral language and avoid using words with different con-
notations or meanings. If you notice any incorrect synonyms, please flag them and
provide feedback for improvement.

Words to avoid using as synonyms include those with different connotations
or meanings, such as "ecstatic" for "happy" or "depressed" for "sad."

Trans En
De

Translate the following English words into German.

Input ## : happy
Output ##: [’glücklich’]
Input ## : love
Output ##: [’Liebe’]
Input ## : cat
Output ##: [’Katze’]
Input ## : dog
Output ##: [’Hund’]
Input ## : house
Output ##: [’Haus’]
Input ## : tree
Output ##: [’Baum’]
Input ## : water
Output ##: [’Wasser’]
Input ## : sun ## Output ##: [’Sonne’]
Input ## : moon
Output ##: [’Mond’]
Input ## : star
Output ##: [’Stern’]

Trans En
Es

Convert these English terms into their corresponding Spanish translations.

Input ## : happy
Output ##: [’feliz’]
Input ## : beach
Output ##: [’playa’]
Input ## : computer
Output ##: [’computadora’]
Input ## : book
Output ##: [’libro’]
Input ## : music
Output ##: [’música’]

Continued next page for Table 26

55

Under review as submission to TMLR

Continuation of Table 26

Trans En
Fr

Translate the following English words into French.

Input ## : happy
Output ##: [’heureux’]
Input ## : love
Output ##: [’amour’]
Input ## : family
Output ##: [’famille’]
Input ## : friend
Output ##: [’ami’]
Input ## : music
Output ##: [’musique’]
Input ## : beach
Output ##: [’plage’]
Input ## : book
Output ##: [’livre’]
Input ## : movie
Output ##: [’film’]
Input ## : food
Output ##: [’nourriture’]
Input ## : travel
Output ##: [’voyage’]

Word In
Context

Compare the usage of a given word in two different sentences and determine if they
have the same or different meanings based on the context of the sentences. Write
"same" or "not the same" as the output.

To avoid ambiguity and ensure clarity, please provide sufficient context for
the sentences. If the word has multiple meanings depending on the context, please
indicate all correct answers.

For example, consider the word "bank." In the sentence "I need to deposit
my paycheck at the bank," and "I sat on the bank of the river and watched the sunset,"
the word "bank" has different meanings. Therefore, the correct answer would be "not
the same."

Please note that the comparison should be based on the context of the sen-
tences, not just the isolated word

56

	Introduction
	Problem Description
	Proposed Methodology: Strategic Operator Adaptation (SOA)
	Operator Elaboration
	SOA Framework
	Phase 0: Global Initialization
	Phase 1: Local Feedback Operation
	Phase 2: Global Evolution Operation
	Phase 3: Local Semantic Operation

	SOA Design Schemes

	Experiments
	Experimental Setup
	Main Results
	Analysis

	Related Work
	Conclusion and Discussion
	Appendix
	Appendix
	Operator Definition
	Lamarckian Operator
	Feedback Operator
	Estimation of Distribution Operator
	Crossover Operator
	Semantic Operator

	Operator Analysis
	Few-Shot Additional / Removal Analysis
	Operator Feature Analysis

	Operator Prompts
	Details of Experiments
	Baselines
	Benchmark tasks
	SOA Setting

	Additional Experiment Results
	24 Instruction Induction Tasks
	Generated Prompt Comparison

	Few-shot Add/ Removal Examples
	Zero-shot to Few-shot
	Zero-shot to Zero-shot
	Few-shot to Zero-shot

	Generated Prompts

