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Abstract

The inherent infra-slow, narrowband signal thwarts the fMRI modality in consider-
ing as an optimal neuroimaging modality to its alternatives, e.g., EEG and MEG,
in investigating the spectral character of cortical activities. To enhance the spectral
resolution of fMRI signal, we put forward a novel linear transformation approach
to encourage both the multivariate fMRI time series and their derived temporal
derivatives to be temporal de-correlated with each other. Thorough empirical val-
idations of our temporal de-correlation approach on multiple independent fMRI
datasets are presented, along with the attached empirical comparison of several
alternative methods. Throughout all employed fMRI datasets, we observe a general
increment on spectral resolution of temporal de-correlated fMRI signals in terms of
wider frequency bandwidth, and more distinctive spectral characters to the original
signals.

1 Introduction

In studying the rhythmic brain oscillations, among common neuroimaging modalities, e.g., electroen-
cephalogram (EEG), magnetoencephalography (MEG), and functional magnetic resonance imaging
(fMRI), the fMRI modality is long been regarded as the least suitable modality in spectral analysis.
As illustrated in Figure 1(a), in comparison with the broad spectral resolutions of EEG and MEG
modalities, the spectral resolution of fMRI modality is confined to 0.01− 0.25 Hz [1] [2], occupied
the mere slow-4 and slow-3 classes among a spectrum of frequency classes [3]. Aside from the
confronted narrowband issue of fMRI modality, relying on our defined spectral character, i.e., the
intrinsic frequency of a signal (see attached Appendix A), the lowered spectral resolution of fMRI
signals is further exacerbated by the presented spectral homogeneity. As reflected in Figure 1(b)(c),
irrespective of the harnessed parcellation atlases, and employed fMRI datasets, the attained spectral
characters of fMRI signals are distributed in a tightly-clustered, indiscriminating manner.

To improve the spectral resolution of fMRI signals in attaining discriminating spectral characters,
we propose a linear transformation approach that aims at reconstructing a temporal de-correlated
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version of the original fMRI signals to encourage both signals and the derived temporal derivatives are
temporally independent. The remaining article is organised as follows. After a detailed description of
our proposed method in §2, the following section §3 presents the empirical validation of our approach
on various fMRI datasets in the face of alternative methods. The final section §4 concludes the article,
and highlights two potential applications in future neuroscientific research.

Figure 1: Spectral limits of fMRI signals. (a) The infra-slow, narrowband fMRI signals. In
comparison with the broadband EEG and MEG signals, the fMRI signals can merely occupy the
slow-4 and slow-3 frequency classes [3]. (b) Spectral homogeneity of fMRI signals with respect to
different parcellation schemes. Taking the example of HCP data [4], irrespective of the harnessed
parcellation atlases, e.g., the Power [5], AAL [6], MODL64 [7] parcellation atlases, the presented
spectral characters of fMRI signals are distributed in forms of tight-clustered, unimodal distributions.
(c) Spectral homogeneity of fMRI signals across multiple fMRI datasets. The previous presented
unimodal distribution of spectral characters is universally seen in fMRI datasets other than HCP, e.g.,
the ABIDE-HC [8] and ACPI-HC datasets. The details on deriving the sub-figures (b) and (c) are
delineated in attached Appendix B.

2 Temporal de-correlation approach

Given I dimensional normalised multivariate time series X , i.e., X(t) = [x1(t), x2(t), ..., xi(t)]
T ,

and, 〈xi(t)〉t = 0, 〈xi(t)2〉t = 1, our temporal de-correlation approach entails the search for a series
of vectorial embedding function G, to project the original time series X onto a novel J dimensional
functional space F , i.e., G(X) = [g1(x), g2(x), ..., gj(x)]T . Hence, as illustrated in the presented
scheme (Figure 5), the original time series is firstly embedded as yj(t) := gj(x(t)) on a new
functional space F .

Armed with J dimensional embedded signals, our task is to find the optimal embedding function that
enforces both embedded signals yj(t), and their temporal derivatives, i.e., ∆(y(t)) := 〈ẏ〉t, to be
temporal de-correlated with each other. Thus, the temporal de-correlation approach can be regarded
as an optimisation problem, which is stated as:

minimize 〈ẏj(t)ẏj′(t)〉t
subject to 〈yj(t)yj′(t)〉t = 0; ∀yj′(t) 6= yj(t), (1)

where 〈·〉t represents the temporal averaging of t length time series.

Assuming G() as a series of linear embedding functions, and the one-to-one mapping between the
original and embedded functional space, i.e., I = J , to search for the optimal linear embedding
function is equivalent of finding the optimal W matrix, where wj indicates its j-th row vector. The
foregoing optimisation problem can be further derived as:

minimize
w

wjw
T
j′Σẋi ˙xi′

subject to wjw
T
j′Σxixi′ = 0; ∀xi′(t) 6= xi(t), (2)

where Σxixi′ , and Σẋi ˙xi′ denote the covariance matrix of the original input X , and the matrix of the
second moments of the temporal derivative of X . Since the assumed one-to-one mapping between
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original and embedding space, two above-mentioned matrices are symmetric, i.e., Σxixi′ ∈ <
I×I ,

and Σẋi ˙xi′ ∈ <
I×I . With two symmetric matrices, the Lagrangian of foregoing optimisation renders

us L = wjw
T
j′Σẋi ˙xi′ − λ(wjw

T
j′Σxixi′ ), in which λ ∈ < acts as the Lagrange multiplier [9]. As a

result, the search for the optimal embedding function to yield our temporal de-correlation objective
can be seen as solving the following generalised eigenvalue problem [10]:

ΦΣẋi ˙xi′ = ΛΦΣxixi′ ; ∀xi 6= xi′ , (3)
where the columns of Φ := [φ1, ..., φi] are the orthogonal eigenvectors, in which diagonal elements
of Λ := diag([λ1, ..., λi])

T are the eigenvalues.

Thence, for any multivariate time series X , we can always find a series of linear transformation G()
in the embedded functional space F to allow the transformed signals to be temporal de-correlated
in terms of their linear correlation and 1st-order temporal derivatives. We refer these transformed
(reconstructed) signals as temporal de-correlated signals

Figure 2: Scheme of the temporal de-correlation approach The implementation of the temporal
de-correlation approach can be divided into three consecutive steps. Firstly, the original time series
are embedded with linear embedding functions with ensured one-to-one mapping. The followed
optimisation step degrades the search for the optimal embedding functions as solving an optimisation
problem with the temporal de-correlate constraint. This can be further realised as solving a generalised
eigenvalue problem. Armed with the derived optimal embedding functions, these output time series
are our targeted temporal de-correlated signals.

3 Empirical experiments on real fMRI datasets

Seeking to validate our approach, we chiefly implement our temporal de-correlation approach on
fMRI signals from the Human Connectome Project (HCP) [4]. For the validation purpose, we also
incorporate the curated fMRI signals of healthy subjects from ABIDE (ABIDE-HC) and ACPI
(ABIDE-HC) databases as two validation datasets. The details of three datasets are rendered in
attached Appendix C. These subject-level fMRI signals are further averaged to produce the group-
level fMRI signals for our analysis.

Focusing on the estimated spectrum of original and temporal de-correlated HCP fMRI signals, as
demonstrated in following Figure 3, a clear spectrum differentiation is observed only in temporal
de-correlated signals, whereas the spectra of original fMRI signals are rendered in a highly similar
manner. The observed spectrum differentiation, in which the transformed signals are encouraged to
be spectral distinctive from each other, suggests the increment on the spectral resolution of temporal
de-correlated fMRI signals.

More evidently, with respect to the distributions of assessed spectral characters, i.e., the intrinsic
frequencies of signals, two types of signals render us two drastically different distributions of spectral
characters. As shown in Figure 4(a), on HCP dataset, the spectral characters of original signals are
presented in the form of a tightly-clustered, unimodal inclined distribution, whereas the spectral
characters of temporal de-correlated signals are distributed in the form of a bimodal distribution (Dip
test statistic [11]: 0.0296 1). Notably, as shown in Figure 4(b), the observed divergent distributions

1A Dip test value less than 0.05 indicates significant bimodality [11].
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Figure 3: Estimated spectrum of the original and temporal de-correlated fMRI signals. Tak-
ing the example of HCP fMRI signals, the estimated spectrum from the original and temporal
de-correlated fMRI signals are presented in the left and right panels, respectively. To ease the
demonstration, the four most representative spectra, e.g., the spectra that are characterised as lowest,
2nd lowest, highest, and 2nd high intrinsic frequencies, are presented here. Abbreviation index: IF:
intrinsic frequency; TD-transformed: temporal de-correlation transformed.

of spectral characters between two types of signals are also reproducible on two validation datasets.
In addition, in the face of other transformation approaches that enforce the similar temporal de-
correlation constraint, it is of rising interest to empirical compare our approach with existing methods,
e.g., the functional principal component analysis (FPCA) [12], the coroICA [13] the second-order
ICA (SOBI) [14]. To interested readers, we attach the conducted empirical comparison among
mentioned models in Appendix D.

Figure 4: Distributions of spectral character from the original and temporal de-correlated
signals. (a) Distributions of assessed spectral characters from the original and temporal de-correlated
HCP fMRI signals. (b) Distributions of assessed spectral characters from the original and temporal
de-correlated ABIDE and ACPI fMRI signals. Abbreviation index: HCP\ABIDE\ACPI-TD: the
temporal de-correlated signals that are transformed from HCP\ABIDE\ACPI datasets.

In addition to the observed spectrum differentiation and bimodal distributed spectral characters,
the improvement on spectral resolution of temporal de-correlated fMRI signals is also indicated
in enlarged spectral dissimilarity, which is assessed through the computed dynamic time warping
distance matrices on estimated spectrum of original and transformed signals (see attached Appendix
E).

4 Conclusion

In summary, the major obstacle in spectral characterisation of fMRI signals lies on their inferior
spectral resolution, thwarting the harnessing of fMRI modality in spectral analysis of recorded cortical
activities. To enhance the spectral resolution of fMRI signals, we put forward a linear transformation
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approach, aiming at producing temporal de-correlated fMRI signals. Validated on three empirical
datasets, a robust, and reliable increment on spectral resolution suggests the potential of our approach
in future research.

With improved spectral resolution, these temporal de-correlated fMRI signals are expected to be
implicated in a wide range of neuroscientific discoveries, including the production of a fine-grained
spectral characterisation of cortical activities on the basis of fMRI modality, and an in-depth probe on
the spectral characterisation of diverse neuropsychiatric disorders.
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A Spectral character: the intrinsic frequency

To define the spectral character of a given time series, we firstly estimate the power spectrum densities
(PSD) of a time series. Having I dimensional time series x(t), the PSD of the i-th x(t) via Fourier
transform can be written as:

xi(f) := δtxi(t)e
−i2πtδ(t),

where the δ(t) denotes the sampling interval, and the e−i2πtδ(t) is a periodic (sinusoid) function.
The power of the i-th time series xi(t) in the frequency band f ± 1

2δtf is approximated as Pi :=
1
δ(t) |xi(f)|2δf .

To reduce the PSD estimation bias, we further utilise the tapering technique [15] to construct a set of
K different orthogonal data tapers ht, i.e., h1t , h

2
t , ..., h

k
t . The multi taper spectral estimate of the i-th

time series xmti (f) is then given by:

xmti (f) :=
1

K

K∑
i=1

x̂i(f)

where

x̂i(f) := δt|hitxi(t)e−i2πtδ(t)|2,

such that the power of xi(f) in its frequency band f ± 1
2δf can be multi taper estimated as Pmti :=

1
T |htxi(t)|

2δtf .

To maximally reserve the spectral information of a time series, spectral filters were not applied in
this spectral estimate. On the basis of the spectral estimate of a time series, its quantification on peak
power frequency fpeak, which carries the maximum energy (power) among all frequencies along the
spectrum, is defined as our spectral character, referring as the intrinsic frequency of a time series.

Figure 5: Scheme of attaining the intrinsic frequency of a time series. To assess the intrinsic
frequency of a given time series, its spectrum is estimated via introduced multi-taper PSD estimation
method. On the estimated spectrum, the peak power frequency is defined as our targeted intrinsic
frequency.

B Spectral homogeneity of fMRI signals

The production of sub-figures (b)(c) in Figure 1 entails the computation of foregoing defined intrinsic
frequencies of fMRI signals over harnessed HCP, ABIDE, and ACPI datasets. As shown in sub-
figure (b)(c), the observed spectral homogeneity of fMRI signals is robust against the choice of
parcellation atlases, and is ubiquitous in fMRI modality. One detrimental effect of the observed
spectral homogeneity is its induced imprecise, coarse-grained spectral characterisation of whole-brain
cortical activities, which cannot serve as a solid precursor for further spectral analysis.

C Datasets & Preprocessing

The resting-state fMRI HCP data from HCP900 release [4] served as our main investigation dataset
on selected subjects (N = 443) with one scanning session (REST-1 of fMRI) and left-to-right phase
encoding direction (1st run of one session). Each 3T scanned subject-wise data lasts for 14 mins and
33s of each with 1200 volumes, 720 ms repetition time (TR), 33.1ms echo time (TE), and 2-mm
isotropic voxel dimensions.
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We adopted the suggested steps in released HCP dataset usage manual 2 to preprocess fMRI HCP
data, including the correction from each T1-weighted image, the spatial alignment, and smoothing
(kernel of 6-mm FWHM, and the Wishart filter), and regressed out the confounds (24 head-motion
parameters).

We also include two independent validation datasets from the public available ABIDE and ACPI
data bases. As the acquiring initiatives of two validation datasets were originated in neuropsychiatric
studies, we then excluded all subjects that were confirmed to any current or history of mental illnesses.
To minimise the multi-site scanning bias, only one site fMRI data were acquired from ABIDE and
ACIP databases, forming two validation datasets: ABIDE-HC and ACPI-HC.

D Empirical comparison with alternative approaches

In attached Figure 6, we demonstrate the empirical performance of implementing our approach
and three alternatives, e.g., the functional PCA, coroICA, and SOBI approaches, on transforming
the original fMRI signals from HCP dataset. With respect to the assessed distributions of spectral
characters, our temporal de-correlation approach leads to the most drastic improvement on the spectral
resolution of signals among four transformation approaches, i.e., the transformed signals have widest
frequency range, and a bimodal distribution of spectral characters.

Figure 6: Empirical comparison between our approach and alternatives.

E Enlarged spectral dissimilarity of temporal de-correlated fMRI signals

Aside from the assessed spectral character, the improvement on spectral resolution of temporal
de-correlated signals is also reflected as the observed enlargement on spectrum dissimilarity among
signals. Since the quantified dynamic time warping (DTW) distance among spectrum is able to inform
us the spectral dissimilarity among signals, as indicated in the following Figure 7, our transformed
temporal de-correlated signals attain much larger spectral dissimilarity than the original ones.

2https://www.humanconnectome.org/storage/app/media/documentation/s900/HCP_S900_
Release_Reference_Manual.pdf
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Figure 7: Pair-wise DTW distance among estimated spectrum from the original and temporal
de-correlated HCP fMRI signals. Abbreviation index: TD TS: temporal de-correlated time series.
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