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Abstract

Periodicity, as one of the most important basic characteristics, lays the founda-
tion for facilitating structured knowledge acquisition and systematic cognitive
processes within human learning paradigms. However, the potential flaws of peri-
odicity modeling in Transformer affect the learning efficiency and establishment
of underlying principles from data for large language models (LLMs) built upon
it. In this paper, we demonstrate that integrating effective periodicity modeling
can improve the learning efficiency and performance of LLMs. We introduce
FANformer, which adapts Fourier Analysis Network (FAN) into attention mecha-
nism to achieve efficient periodicity modeling, by modifying the feature projection
process of attention mechanism. Extensive experimental results on language mod-
eling show that FANformer consistently outperforms Transformer when scaling up
model size and training tokens, underscoring its superior learning efficiency. Our
pretrained FANformer-1B exhibits marked improvements on downstream tasks
compared to open-source LLMs with similar model parameters or training tokens.
Moreover, we reveal that FANformer exhibits superior ability to learn and apply
rules for reasoning compared to Transformer. The results position FANformer as
an effective and promising architecture for advancing LLMs. Our code is available
at https://github.com/YihongDong/FANformer..

1 Introduction

In recent years, large language models (LLMs) have achieved remarkable progress across various
natural language processing tasks, establishing themselves as a cornerstone of modern artificial
intelligence [Brown et al., 2020, Zhao et al., 2023, Minaee et al., 2024]. The decoder-only Transformer
architecture, in particular, has emerged as the de facto standard for LLM development due to its
superior performance and scalability [OpenAI, 2023, DeepSeek-AI et al., 2024a, Groeneveld et al.,
2024]. Besides these advancements, Transformer-based models are also known for their immense
demand for data and computational resources during training [Kaplan et al., 2020, Hoffmann et al.,
2022, Chowdhery et al., 2023]. In comparison, humans are able to accomplish similar learning
tasks with far fewer resources. This discrepancy suggests that existing LLM architectures still suffer
from low learning efficiency, leaving substantial room for improvement in their ability to extract and
generalize the knowledge from data.

Periodicity, characterized by recurring patterns, is a ubiquitous phenomenon in human life and
learning processes [Buzsaki, 2006, Lake et al., 2017]. The human brain leverages pattern recognition
mechanisms to process information and acquire knowledge efficiently [Zalta et al., 2020, Edalati
et al., 2023, Zhan et al., 2018]. However, general network architectures represented by Transformers
have potential flaws in periodicity modeling, which could hinder their learning efficiency [Dong et al.,
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(a) Performance of Transformer and FANformer on periodicity modeling. (b) Performance of FANformer on language modeling.
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Figure 1: The performance of FANformer on periodicity modeling and language modeling. (a) shows
the training loss of Transformer and FANformer on the fitting mod function and their performance
at the 4,000th epoch. (b) shows the average performance of 8 core commonsense tasks between
FANformer-1B and the open-source LLMs with comparable model parameters and training tokens.

2024a, Liu et al., 2020]. As shown in Figure 1 (a), even for a simple mod function, Transformer
demonstrates suboptimal performance despite being provided with sufficient training data and model
capacity1. This inefficiency can be exacerbated during the training process of LLMs to affect their
performance, considering the periodicity hidden in large amounts of language data. Fourier Analysis
Network (FAN) [Dong et al., 2024a] has shown preliminary success in tasks with explicit or implicit
periodic features, but its adaptation to Transformer architectures for large-scale language modeling
remains an open challenge.

In this paper, we present FANformer, a novel foundation architecture for LLMs that adapts FAN
into the attention mechanism of Transformer to improve learning efficiency and model performance
through effective periodicity modeling. It leverages FAN to introduce Fourier principles for capturing
and representing periodic patterns, thereby enhancing the Transformer’s capability to learn and
generalize from data. Specifically, we modify the feature projection process of attention mechanism
to incorporate frequency-domain representations to facilitate modeling periodicity. Figure 1 (a)
demonstrates the significant advantages of FANformer over Transformer on periodicity modeling,
with faster convergence speed and better results. In Figure 1 (b), we can observe that FANformer-1B
achieves superior performance with higher utilization efficiency of model parameters and training
tokens when benchmarked against comparable Transformer-based LLMs.

To comprehensively validate the effectiveness and scalability of FANformer, we conduct extensive
experiments on language modeling tasks. The results of scaling both model parameters and training
tokens highlight that FANformer consistently surpasses Transformer, requiring only 69.2% of model
parameters or 79.7% of training tokens to achieve comparable performance. We also implement
a complete pretraining pipeline to pretrain a 1.1-billion parameter FANformer (FANformer-1B)
on 1 trillion tokens. Experiments on various downstream tasks demonstrate that FANformer-1B
outperforms open-source LLMs of the same size with fewer training tokens, and exceeds LLMs
with three times the parameters when using the same training token. Through further analysis, we
reveal that FANformer is a superior choice compared to other variant architectures and discover three
interesting findings: 1) By observing the training process, we discover the notable enhancements
in FANformer’s learning efficiency over Transformer as the model continues to learn from the data.
2) FANformer facilitates the rule-based reasoning paradigm, mitigating the occurrence of "holes"
inherent in the case-based learning of Transformer [Hu et al., 2024]. Under the stress test of logical
reasoning [Wang et al., 2024], FANformer-1B demonstrates superior performance compared to
OLMo-1B and Qwen2.5-1.5B. 3) FANformer’s representational capacity consistently surpasses that
of Transformer across various layer depths, as evidenced by evaluations of the model’s Lipschitz
constant [Latorre et al., 2020]. These findings underscore the potential of FANformer as an effective
and scalable architecture for advancing LLMs.

The main contributions of our work can be summarized as three points: ❶ We first demonstrate that
integrating effective periodicity modeling can improve the learning efficiency and performance of

1We sample 400K training data from the function of mod 5 and train a 110M Transformer for 4K epochs.
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LLMs. ❷ We propose FANformer, a novel LLM architecture, which uses a simple yet effective
approach to adapt FAN into attention mechanism for efficient periodicity modeling, consistently
outperforming Transformers in scaling model parameters and training tokens. ❸ We pretrain and
open-source FANformer-1B, which surpasses SOTA publicly available LLMs with similar parameter
counts or training token budgets on downstream tasks.

2 Motivation

In this section, we combine formalization with illustrative cases to demonstrate why periodicity
modeling facilitates language modeling and reasoning, thereby elucidating the motivation behind the
development of FANformer.

The essence of periodicity lies in the repetitive manifestation of certain invariance under transfor-
mations, which can be strictly defined through invariance under group actions in Abstract Algebra
Dummit and Foote [2004]. Let X be a set and G be a group acting on X . An element x ∈ X is
said to be periodic with respect to the action of G if there exists a non-identity element p ∈ G such
that p · x = x, where · denotes the group action. The element p is called a period of x. Periodicity
implies that x is invariant under the action of the cyclic subgroup generated by p, denoted by ⟨p⟩.
For example, f(a) = f(a+ T ) can be seen as a specific instance of the abstract definition p · x = x,
where x = f , p = T , and the group action is translation. When the input a and the group G are
extended to higher dimensions or non-temporal domains, the manifestation of the period T also
changes accordingly. Crucially, for many reasoning tasks, the underlying operation or inference rule
remains invariant across structurally similar subproblems, that is, for all inputs belonging to a certain
equivalence class, the same functional rule is applied, which precisely reflects periodic invariance.

Consider addition as an illustrative case: let f represent the addition operation, a denote the digit
position index, and let the period T = 1 correspond to the positional shift in place value. The
reasoning proceeds as:

Example: 357 + 286 = ?
Digit-wise operations: units (7 + 6 = 13→ write 3, carry 1); tens (5 + 8 + 1 = 14
→ write 4, carry 1); hundreds (3 + 2 + 1 = 6→ write 6).
Result: 643

Thus, the periodicity of addition is manifested in the repeated application of the same rule across
different digit positions, where the rule itself remains invariant under positional shifts. It can be
extended to other reasoning, such as logical reasoning, and the scenario is analogous: when a neural
network extracts a feature applicable to specific conditions or premises, it repeatedly applies the same
invariant rules across analogous subproblems. Such periodic invariance allows for enhancing both
the learning efficiency and generalization capability of neural models by reducing redundancy and
reinforcing conceptual regularities.

3 FANformer

We will provide a detailed description of FANformer for sequence modeling and adopt a decoder-only
model to illustrate the architecture.

Given an input sequence s = {s1, s2, · · · , sl}, where si denotes the i-th token and l represents the
length of sequence s, it is first mapped to the input embedding as X0 = [x1,x2, · · · ,xl] ∈ Rl×dh ,
where dh represents the model’s hidden dimension. The embedding is subsequently fed into the
model to obtain the final output XN , with each n-th layer of FANformer processing Xn−1, where
n ∈ [1, N ]. The core of each FANformer layer lies in a revised attention module that incorporates a
modified FAN layer, referred to as the ATtention-Fourier (ATF) module.

3.1 ATF

The attention mechanism serves as a core component of Transformer architectures, enabling dynamic
interaction between tokens through query-key-value (QKV) projections. While effective for general
sequence modeling, its standard implementation exhibits limitations in capturing periodic patterns
due to the inherent locality of linear projections in the time domain. To address this, we propose
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def FANLayer_(X, W_F, p):
# X_p: (B, L, d*p), X_ṗ: (B, L, d*(1-2*p))
X_p, X_p = Linear(X_F, W_F).split([d*p, d*(1-2*p)])
return Concat(cos(X_p), sin(X_p), X_p)

def ATF(X, W_QKV, W_F, p):
# X: (B, L, d), X_F: (B, L, d) 
# W_QKV: (d, 3d), W_F: (d, d*(1-p))
X_F = FANLayer_(X, W_F, p)
QKV_F = Linear(X_F, W_QKV) 
Q_F, K_F, V_F = QKV_F.split([d, d, d]) 
return Softmax((Q_F @ K_F.T) / sqrt(d)) @ V_F

def MultiHeadATF(X, W_QKV, W_o):
Heads = [ATF(X, W_QKVi, W_Fi, p) for i in range(k)]
return Concat(Heads) @ W_o

_

_

Figure 2: Left: The illustration of FANformer’s architecture. Right: The pseudocode of Multi-head
ATF, where p is the hyperparameter that controls the proportion of periodicity modeling for Xp.

the ATF module, which incorporates the operations of FAN into the QKV projection process to
explicitly model periodicity in the frequency domain. Specifically, given the input X ∈ Rl×dh , we
first calculate XF ∈ Rl×dh as:

XF = FANLayer′(X) = [cos(WpX)|| sin(WpX)||(Wp̄X+Bp̄)], (1)

where FANLayer′ represents a variant of the original FAN layer (i.e., Eq. (10)) with the activation
function σ in Eq. (10) replaced by the identity function, i.e., σ(x) = x, in this paper, and hyperpa-
rameter p is defined as the proportion of

dWp

dh
. On this basis, we employ the linear transform to XF

to compute QKV projections, i.e., QF ,KF ,VF ∈ Rl×dh , as follows:

[QF ,KF ,VF ] = XF [WQ,WK ,WV ], (2)

where WQ,WK ,WV ∈ Rdh×dh are learnable parameters. Similar to the standard attention mecha-
nism, the computation of ATF is defined as:

ATF(X|WQ,WK ,WV ) = softmax
(
QFK

⊤
F√

dh

)
VF , (3)

where QF ,KF ,VF are computed using the input X via Eq. (1) and Eq. (2). To enhance the model’s
capacity, we extend the ATF module to multiple heads. Given input X ∈ Rl×dh , the Multi-head ATF
first projects X into k independent heads through the ATF module. For the i-th head, we have:

Headi = ATF(X|Wi
Q,W

i
K ,Wi

V ), (4)

where Wi
Q,W

i
K ,Wi

V ∈ Rdh×dk are learnable parameters for query, key, and value projections
respectively, with dk = dh/k. The outputs of all heads are concatenated and linearly transformed:

MultiHeadATF(X) = [Head1∥...∥Headk]WO, (5)

where WO ∈ Rdh×dh is the learnable parameter of out projection matrix. Note that ATF(X) is
mathematically equivalent to Attention(FANLayer′(X)) (the detailed derivations are provided in
Appendix L). This equivalence enables a simple yet effective implementation of Multi-head ATF as
shown in Figure 2, which can seamlessly incorporate various advancements in traditional attention
mechanisms, such as FlashAttention [Dao et al., 2022].

3.2 Overall Architecture

The FANformer model comprises N stacked FANformer layers, where each FANformer layer consists
of a Multi-head ATF module and a feed-forward network (FFN) module. Following the previous work
[Groeneveld et al., 2024, Touvron et al., 2023a], we employ SwiGLU [Ramachandran et al., 2018,
Shazeer, 2020] and pre-norm [Zhang and Sennrich, 2019] as the enhancements to Transformer-based
LLMs. Specifically, the n-th FANformer layer can be defined as:

Yn = MultiHeadATF(Norm(Xn)) +Xn, (6)

Xn+1 = FFN(Norm(Yn)) +Yn, (7)
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where the MultiHeadATF module is computed via Eq. (5) and the FFN module, which leverages the
SwiGLU activation, is expressed as:

FFN(X) = (Swish(XW1)⊗XW2)W3, (8)

where W1,W2 ∈ Rdh×df , W3 ∈ Rdf×dh are learnable parameters, ⊗ denotes element-wise
multiplication, and df is the intermediate dimension. The overview of FANformer’s architecture is
illustrated in Figure 2.

4 Evaluation

We begin with the implementation details of our experiments (Section 4.1), followed by a compre-
hensive evaluation of FANformer from three distinct perspectives: First, we investigate the scalability
of FANformer by examining its performance trends on language modeling tasks with respect to
model size and training tokens (Section 4.2). Second, we evaluate the capabilities of the pre-trained
FANformer-1B model across multiple downstream tasks (Section 4.3). Third, we conduct an in-depth
empirical analysis of FANformer, including ablation study, learning efficiency, reasoning mechanism,
representational capacity, and more (Section 4.4). See Appendix A-J for more experiments.

4.1 Implementation Details

The experiments are conducted on 80 A100 GPUs. We build FANformer upon the foundation of
OLMo [Groeneveld et al., 2024], as it provides a solid pretraining framework of LLMs, with the
hyperparameter p set to 0.25 by default. For pretraining FANformer-1B, we randomly sample 1T
training tokens from OLMo’s training data, i.e., Dolma [Soldaini et al., 2024]. For other experiments,
we train models on a smaller sample of Dolma, i.e., Dolma v1_6-sample [AllenAI, 2023], with
roughly 10B tokens. The detailed pretraining and experimental setups are provided in Appendix M.

4.2 Scalability of FANformer

We explore the scalability of FANformer compared with Transformer to investigate performance
trends in the construction of much larger models.

Setup. We follow OLMo’s configuration and vary the FFN’s intermediate dimension df to keep the
number of parameters consistent for all models in this experiment. For scaling up model parameters,
we adopt Dolma v1_6-sample as training data and train LLMs from 268M to 7B. We compare
FANformer with the standard Transformer and a variant of FANformer, termed Transformer+ATM,
which uses MLP layer instead of FAN layer in FANformer. For scaling up training tokens, we train
1B LLMs on the first 200 billion of our sampled 1T tokens.

31% Fewer Params
20% Fewer Tokens

Figure 3: Language modeling loss of scaling up
model parameters and training tokens. Left: we train
LLMs from 268M to 7B parameters. Right: we
evaluate LLMs every 20B tokens up to 200B tokens.

Results. As shown in Figure 3, the scaling
law [Kaplan et al., 2020] empirically aligns
well with the results obtained from our FAN-
former, underscoring its superior scalability
properties. Figure 3 (left) reveals that the im-
plementation of FAN consistently surpasses
the performance of the standard Transformer
across a range of model sizes. This finding
highlights FANformer’s enhanced scalability
in terms of parameter efficiency, as it achieves
comparable performance with only 69.2% of
the parameters required by the standard Trans-
former. Notably, the scaling curve of Trans-
former+ATM closely overlaps with that of the
standard Transformer, indicating that merely revising attention mechanisms using MLP Layer is
insufficient. This observation further emphasizes that FANformer’s performance gains are not at-
tributable to network depth increase, but rather to its special architectural design. Figure 3 (right)
demonstrates that FANformer achieves performance parity with the standard Transformer while
utilizing significantly fewer training tokens. Specifically, FANformer requires only 159.6B training
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Table 1: Zero-shot performance of FANformer-1B versus other comparable open-source LLMs on 8
core tasks from the downstream evaluation suite following OLMo. The results of baselines are taken
from the previous works [Groeneveld et al., 2024, Ye et al., 2024, Dong et al., 2024b].

Models Param. Tokens ARC-C ARC-E BoolQ Hella. OBQA PIQA SCIQ Wino. Avg.
LLMs around 1B parameters

Qwen2.5-1.5B 1.5B 18T 41.2 75.5 74.0 50.2 52.4 75.7 94.7 63.3 65.9
R1-Distill-Qwen1.5B 1.5B 18T+ 36.2 54.4 69.1 41.8 35.4 65.1 89.5 55.3 55.9
Llama-3.2-1B 1.1B 9T 31.4 65.6 64.3 47.8 46 74.5 92.3 60.7 60.4
TinyLlama-v1.1 (3T) 1.1B 3T 34.8 53.2 64.6 58.7 43.6 71.1 90.5 58.9 59.4
OLMo-1B 1.1B 2T 34.5 58.1 60.7 62.5 46.4 73.7 88.1 58.9 60.4
LLMs trained on 1T tokens
OpenLLaMA-v2-3B 3B 1T 33.9 67.6 65.7 70.0 26 76.7 92.9 62.9 62.0
StableLM-v2-3B 3B 1T 32.4 67.3 64.6 68.6 26.4 76 89.5 62.1 60.9
TinyLlama-v1.1 (1T) 1.1B 1T 33.1 49.5 58.4 52.5 37.8 70.4 86.4 55.2 55.4
FANformer-1B 1.1B 1T 43.8 72.5 64.9 64.7 48.2 75.5 94.8 61.3 65.6

tokens to match the performance of the standard Transformer trained on 200B tokens, representing a
20.3% reduction in training resource requirements. These findings suggest that FANformer exhibits
superior utilization efficiency in terms of both model parameters and training tokens compared to the
standard Transformer architecture.

4.3 Performance of FANformer-1B

We pretrain FANformer-1B on 1 trillion tokens and report zero-shot performance on a set of com-
monsense downstream tasks, following previous work [Brown et al., 2020, Touvron et al., 2023b,
Groeneveld et al., 2024, inter alia].

Setup. The downstream evaluation suite consists of 8 core commonsense tasks, including ARC-C
[Clark et al., 2018], ARC-E [Clark et al., 2018], BoolQ [Clark et al., 2019], HellaSwag [Zellers et al.,
2019], OBQA [Mihaylov et al., 2018], PIQA [Bisk et al., 2020], SCIQ [Welbl et al., 2017], and
WinoGrande [Sakaguchi et al., 2020]. We compare pretrained FANformer-1B to seven open-source
LLMs with comparable model parameters or training tokens, including Qwen2.5-1.5B [Team, 2024],
R1-Distill-Qwen1.5B [DeepSeek-AI et al., 2025], Llama-3.2-1B [Dubey et al., 2024], TinyLlama-
v1.1-1B [Zhang et al., 2024], OLMo-1B [Groeneveld et al., 2024], OpenLLaMA-v2-3B [Geng and
Liu, 2023], and StableLM-v2-3B [Tow, 2023].

Results. Table 1 presents the evaluation results of our pre-trained FANformer-1B on downstream
tasks. It is evident that FANformer-1B surpasses LLMs with comparable parameter sizes, such
as Llama-3.2-1B, TinyLlama-v1.1-3T, and OLMo-1B, while utilizing significantly fewer training
data. Compared to the base model OLMo-1B, FANformer-1B achieves a relative improvement of
8.8% in the average performance of downstream tasks using only half the training data. On these
tasks, FANformer-1B also demonstrates performance comparable to Qwen2.5-1.5B, which is the
current SOTA LLM around 1B. For LLMs training on 1T tokens, FANformer-1B even exceeds LLMs
with three times the parameters, showing an average relative performance improvement of 6.0-7.9%
across all tasks. Moreover, while R1-Distill-Qwen1.5B shows notable improvements in reasoning
capabilities based on its reported performance, it exhibits significantly weaker general performance
on these commonsense downstream tasks. This observation shows the shortcomings of distillation,
highlighting the necessity of the pre-training stage and the importance of research into more efficient
model architectures.

4.4 Further Analysis

4.4.1 Ablation Study and Variant Analysis

Setup. We compare FANformer to other variant architectures, including 1) the above-mentioned
Transformer+ATM, 2) Transformer+ATL, which use two linear transforms to compute QKV pro-
jection, 3) FANformer (original FAN) that employs Eq. (10) (original FAN layer) instead of Eq. (1)
in FANformer, 4) Transformer (FFN← FAN) where the FFN is replaced with FAN [Dong et al.,
2024a], and 5) standard Transformer as their ablations.
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Table 2: Results of ablation study and variant analysis on LLMs with 1B parameters trained on Dolma
v1_6-sample dataset (about 10B tokens). The complete experimental results can be found in Table 8
and Table 9 of Appendix.

Variants Param. Training
Loss ↓

V2 Eval
Loss ↓

V2 Eval
PPL ↓

V3 Eval
Loss ↓

V3 Eval
PPL ↓

DownStream
Avg Acc. ↑

Transformer 1.0× 2.889 3.33 30.20 3.07 24.28 53.10
Transformer (FFN← FAN) 1.0× 2.880 3.31 29.79 3.05 23.96 53.95
Same Parameter
Transformer + ATM 1.0× 2.890 3.33 30.31 3.07 24.36 53.69
Transformer + ATL 1.0× 2.882 3.31 29.68 3.05 23.97 53.46
FANformer (original FAN) 1.0× 2.893 3.34 30.64 3.07 24.50 53.61
FANformer 1.0× 2.863 3.30 29.40 3.04 23.62 55.19
Same Dimension
Transformer + ATM 1.06× 2.886 3.33 30.18 3.06 24.28 52.86
Transformer + ATL 1.06× 2.879 3.31 29.76 3.05 23.94 54.23
FANformer (original FAN) 1.04× 2.887 3.34 30.57 3.07 24.39 53.13
FANformer 1.04× 2.856 3.29 29.22 3.03 23.47 54.88

Results. From Table 2, we have the following findings: 1) FANformer consistently outperforms
other variant architectures in both scenarios of the same parameter and same dimension on all evalua-
tion metrics. 2) The performance of Transformer+ATM and Transformer+ATL is notably inferior to
that of FANformer, indicating that the core improvement stems from the ATF module we designed.
3) Although Transformer (FFN← FAN) yields some improvement, this enhancement is inferior to
the gains achieved by FANformer, suggesting that integrating periodicity modeling within attention
is more advantageous than FFN on language modeling. 4) Incorporating activation functions such
as GELU into the attention mechanism tends to degrade model performance. Specifically, FAN-
former (original FAN) and Transformer+ATM exhibit weaker performance compared to FANformer
and Transformer+ATL, likely because these activation functions suppress certain features, thereby
hindering subsequent attention operations.

4.4.2 Training Dynamics
train/CrossEntropyLoss
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Figure 4: Training loss of FANformer and
Transformer on early training steps, with the
complete training loss is provided in Figure
7 of Appendix.

We perform a comparative analysis of the loss trends
during the training process between our FANformer
and Transformer, as illustrated in Figure 4. The ex-
perimental results indicate that the loss of FANformer
decreases more slowly in the early stages compared to
Transformer, which we hypothesize may be due to the
initial lack of established periodic modeling. As the
training progresses and periodic modeling gradually
improves, FANformer demonstrates a faster conver-
gence rate, with its loss decreasing more rapidly than
that of Transformer. Intuitively, once the core of se-
mantic knowledge is established, the model’s inherent
periodic modeling lets new concepts attach to existing
representations instead of being learned from scratch,
accelerating subsequent learning. This result suggests
that as the model progressively learns from the data,
the learning efficiency of our FANformer notably sur-
passes the standard Transformer.

4.4.3 Case-based and Rule-based Reasoning

Setup. Following the work [Hu et al., 2024], we evaluate the case-based and rule-based reasoning
of Transformer and our FANformer on two tasks, including: (1) Modular addition: c = (a + b)
mod 113 with a, b ∈ [0, 112]; (2) Linear regression: c = a+ 2b+ 3 with a, b ∈ [0, 99]. We finetune
pretrained LLMs, i.e., OLMo-1B and FANformer-1B, on each task dataset for 500 epochs and their
performance is measured via the Leave-Square-Out method (10 samples per test point).

7



Transformer FANformer

(a) Modular Addition Task

Transformer FANformerTransformer FANformer

(b) Linear Regression Task

Figure 5: Performance of FANformer and Transformer on modular addition and linear regression
tasks, where the darkened regions indicate areas where the model performance approaches zero,
signifying the emergence of the "hole" as described in the work [Hu et al., 2024].

Results. As shown in Figure 10 of Appendix, both Transformer and our FANformer achieve near-
perfect accuracy on the training set of modular addition and linear regression tasks, approaching
approximately 100%. However, a critical divergence emerges in their performance on the test sets.
Specifically, as shown in Figure 5, Transformer exhibits a pronounced failure to generalize, resulting
in a "black hole" in the center of the figure, indicating that its accuracy on the test dataset drops to
nearly zero. This observation is consistent with the findings reported in the work [Hu et al., 2024]. In
contrast, FANformer demonstrates a marked improvement in addressing the "hole" issue. In the linear
regression and modular addition tasks, there is no obvious hole observed, further corroborating the
hypothesis that, relative to the Transformer-based model, FANformer possesses a stronger tendency
to learn underlying rules, thereby achieving superior generalization performance.

4.4.4 LLMs’ Proficiency in Logical Reasoning

Setup. Following the work [Wang et al., 2024], we adopt the ULogic dataset to systematically
evaluate LLMs on their ability to capture underlying inferential logic, where ULogic is constructed
after these LLM’s training data cutoff, which prevents data contamination [Dong et al., 2024c].
We leverage the Law of Non-Contradiction [Priest et al., 2006], each rule is paired with a negated-
conclusion variant; a response is correct only if the model accepts the original and rejects its flip. We
evaluate FANformer-1B, OLMo-1B, Qwen2.5-1.5B, and GPT-4 on the two most challenging levels
of ULogic for stress-testing.

Table 3: Average performance
of different LLMs on ULogic.

Model Acc (%)

GPT-4 65.1
OLMo-1B 0.0
Qwen2.5-1.5B 7.1
FANformer-1B 38.2

Results. Table 3 summarizes the results on ULogic dataset, with
an illustrative case presented in Figure 13 of Appendix. FANformer-
1B substantially outperforms both Qwen2.5-1.5B and OLMo-1B:
OLMo-1B naively labels every rule as True, and Qwen2.5-1.5B
yields largely contradictory answers, whereas FANformer-1B can
affirm the original rule and reject its negated counterpart. These
results highlight FANformer’s superiority in logic reasoning and
underscore the architectural advantages conferred by the periodicity-
aware design of FANformer.

4.4.5 Representational Capacity

+27.3%

Fanformer

Transformer

Figure 6: Representational capacity of MLP, Trans-
former, and FANformer across various layer depths.

Setup. We explain the advantage of FAN-
former architecture from another perspective:
the model’s ability to learn complex functions.
A larger Lipschitz constant L is frequently
linked to greater representational capacity [La-
torre et al., 2020, Bartlett et al., 2017], as it
enables neural networks to approximate more
intricate functional mappings by loosening
smoothness constraints in parameter space.
This relationship stems from the theoretical
framework where less restrictive Lipschitz
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conditions permit sharper decision boundaries and richer expressive power. Formally, L satisfies:

∀x, y ∈ Rn, ∥fmodel(x)− fmodel(y)∥ ≤ L∥x− y∥. (9)

Results. We evaluate the representational capacity of MLP, Transformer, and FANformer across
various layer depths via computing their Lipschitz constant L. Although representational capacity
rises for all three architectures as additional layers are stacked, the growth rates diverge substantially.
FANformer exhibits the steepest trajectory and attains the largest Lipschitz constant L at each depth,
consistently surpassing Transformer by 27.3% in deeper configurations. These findings indicate that
FANformer has markedly richer expressiveness and a superior ability to model complex functions.

5 Related Work

Large Language Models The rapid advancement of LLMs has revolutionized NLP and AI research
[Radford, 2018, Dubey et al., 2024, DeepSeek-AI et al., 2025]. The emergence of GPT-3 [Brown
et al., 2020], with 175B parameters, showcased remarkable few-shot prompting abilities, suggesting
that scaling laws [Kaplan et al., 2020] could unlock emergent capabilities. Recent notable LLMs
like PaLM [Chowdhery et al., 2023], LLaMA [Touvron et al., 2023b], GPT-4 [Chowdhery et al.,
2023], and DeepSeek [Bi et al., 2024] further pushed the boundaries of model size and performance.
Moreover, the open-source release of OLMo [Groeneveld et al., 2024] has provided valuable resources
for the community, enabling more accessible training of LLMs.

Advances in Transformer Architecture Recent advancements in Transformer architecture focus
on overcoming two main limitations: computational inefficiency in long-context processing and
limited expressiveness of attention mechanisms. To address long-context inefficiencies, techniques
such as sparsity [Child et al., 2019] and local attention [Beltagy et al., 2020], along with innovations
in query mechanisms [Shazeer, 2019, Ainslie et al., 2023] and inference acceleration [DeepSeek-AI
et al., 2024b], have been proposed. Hardware-level optimizations like FlashAttention [Dao et al.,
2022] further reduce GPU memory access overhead. To enhance the expressiveness of attention
mechanisms, methods like Probabilistic Attention Keys [Nguyen et al., 2022] and Selective Attention
[Leviathan et al., 2024] improve semantic relationship capture and refine attention by suppressing
irrelevant features. Additionally, approaches like Differential Transformer address attention noise in
long contexts [Ye et al., 2024]. Different from previous work, we improve language modeling by
addressing the challenge of periodicity modeling in Transformers, which can seamlessly incorporate
the aforementioned works for revising the attention mechanism, as demonstrated in the derivation
provided in Appendix L.

Fourier-based Networks Previous research on Fourier-based Networks was aimed at solving some
domain-specific applications [Zuo and Cai, 2005, Tan, 2006, Chen et al., 2022, Li et al., 2021]. Some
studies specifically explored the use of sinusoidal activations (e.g., cosine [Silvescu, 1999] [Ngom
and Marin, 2021] or sine [Parascandolo et al., 2016, Sitzmann et al., 2020]) to approximate periodic
patterns [Liu, 2013]. However, these approaches lacked generalizability beyond narrow domains due
to rigid frequency parameterization and limited scalability [Uteuliyeva et al., 2020, Liu et al., 2020].
Recent work [Dong et al., 2024a] addresses these problems using FAN to introduce Fourier Principle
into neural networks, but its adaptation to LLMs remains an open challenge. FNet [Lee-Thorp et al.,
2022] replaces self-attention with Fourier Transform to achieve linear complexity, but it sacrifices the
performance of LMs. In contrast, we employ effective periodicity modeling to improve LLMs.

6 Conclusion

We propose FANformer, a novel LLM architecture that enhances learning efficiency by adapting
Fourier Analysis Network into attention mechanism for effective periodicity modeling. Experiments
show that FANformer outperforms Transformer when scaling model parameters and training to-
kens, achieving better performance with 31% fewer parameters and 20% fewer tokens. Pretrained
FANformer-1B surpasses open-source LLMs of comparable size or training scale on various down-
stream tasks. The discovery of FANformer’s enhanced scalability, learning efficiency, rule-based
learning advantages, and representational capacity suggests potential pathways for developing more
efficient and high-performance language models.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction accurately present the paper’s contributions and
scope, with claims that are fully supported by the results and discussion.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper thoroughly discusses limitations in Appendix J.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
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tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: Section 2 offers theoretical explanations for why periodicity facilitates lan-
guage modeling and reasoning, Appendix H contains formal proofs of our methodological
claims, and Appendix E presents theoretical analysis of the computational costs associated
with our approach.
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• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We include detailed descriptions of our methodology, model architectures,
hyperparameters, and training procedures in both the main text and appendices.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
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sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We have publicly released our source code at https://anonymous.4open.
science/r/FANformer with comprehensive instructions for data acquisition and experiment
reproduction.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide all implementation details and experimental setups in both the
main text and appendices.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We follow previous work OLMo to report the result of no bias expectation,
which is reproducible.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We report the computational resources used for experiments in implementation
details section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research fully complies with the NeurIPS Code of Ethics, with careful
consideration of all ethical guidelines throughout our work.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our work is foundational research in model architecture design that is not tied
to particular applications or deployments.

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our paper focuses on a fundamental architectural improvement for language
models rather than releasing high-risk models or datasets. While we do release a language
model, it is primarily intended as a demonstration of our technical approach and doesn’t
introduce novel risks beyond those already present in existing language models. Our work
doesn’t involve scraped datasets or image generators that would require special safeguards.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All benchmark datasets are used in accordance with their respective terms of
use, and we’ve ensured compliance with the licensing requirements for all third-party code
and models incorporated in our implementation. Where applicable, we include URLs to the
original sources in our references and implementation details.
Guidelines:

• The answer NA means that the paper does not use existing assets.
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• The authors should citep the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We provide the GitHub repository for our work, including detailed descriptions,
usage instructions, and licensing information in our repository.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We developed and released a 1.0B LLM based on our proposed novel LLM
architecture, which achieves SOTA performance.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for
what should or should not be described.
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A Training Loss Curves of OLMO and FANformer

We present the training loss curves for OLMO and FANformer trained on 1 trillion tokens (i.e., 250K
steps) in Figure 7.

OLMo-19 OLMo-18 OLMo-17 OLMo-16 OLMo-15 OLMo-14 OLMo-13
OLMo-12 OLMo-11 OLMo-10 OLMo-9 OLMo-8 OLMo-7 OLMo-6

OLMo-5 OLMo-4 OLMo-3 OLMo-2 OLMo-1

      
      

    

50k 100k 150k 200k 250k

4

6

8

10

2/13/25, 8:48 PM W&B Chart 2_13_2025, 7_42_58 PM.svg

file:///Users/jiangxue/Downloads/W&B Chart 2_13_2025, 7_42_58 PM.svg 1/1

Final Loss: 2.4944

Step

Lo
ss

(a) Training loss of OLMO-1B

FANformer-9 FANformer-8 FANformer-7 FANformer-6 FANformer-5
FANformer-4 FANformer-3 FANformer-2 FANformer-1

    
   

50k 100k 150k 200k 250k

4

6

8

10

2/13/25, 8:44 PM W&B Chart 2_13_2025, 7_33_33 PM.svg

file:///Users/jiangxue/Downloads/W&B Chart 2_13_2025, 7_33_33 PM.svg 1/1

Final Loss: 2.3769

Step

Lo
ss

(b) Training loss of FANformer-1B

Figure 7: The training process of OLMO and FANformer. The data in Figure (a) is sourced from the
publicly available results of OLMO (https://wandb.ai/ai2-llm/OLMo-1B?nw=nwuserdirkgr).

B Preliminary Knowledge

Fourier Analysis Network (FAN) [Dong et al., 2024a] enhances neural networks by introducing
Fourier principles for effective periodicity modeling. The core component of FAN is its layer design,
which combines periodic basis functions with standard linear transformations. Given a input X, the
FAN layer is defined as:

FANLayer(X) = [cos(WpX)∥ sin(WpX)∥σ(Wp̄X+Bp̄)] (10)

where Wp and Wp̄ are learnable projection matrices, Bp̄ is a bias term, σ denotes an activation
function, and ∥ represents concatenation. Compared to MLP layer, FAN layer explicitly encodes
periodic patterns through Fourier series while maintaining general-purpose modeling capabilities.

C Experiments on Code Generation and Math tasks

We conduct experiments on code generation tasks (i.e., HumanEval and MBPP) and human-written
math tasks (i.e., GSM8K) compared to our baseline, OLMo [Groeneveld et al., 2024]. The results
show that our FANformer achieves clear and consistent improvements compared with OLMo on all
three benchmarks.

Table 4: Comparison of LLMs on coding and math benchmarks.
LLMs Training Tokens HumanEval MBPP GSM8K
OLMo-1B 3T checkpoint 5.2 3.1 8.9
FANformer-1B 1T from scratch 6.3 5.4 15.7

D Effect of hyperparameter p

We systematically investigate the impact of hyperparameter p, which controls the proportion of
periodicity modeling in FANformer, on model performance across its value range. The experimental
results from the 1B-scale FANformer (as shown in Figure 8) demonstrate that our model exhibits
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strong robustness in terms of training loss and downstream task accuracy, with relatively small perfor-
mance fluctuations. Furthermore, regardless of the variation in p-values, FANformer consistently
outperforms the standard Transformer (horizontal baseline). Analysis of experimental results from
models of different scales (300M, 1B, 3B) (as shown in Figure 9) reveals a clear trend: larger models
tend to exhibit higher optimal p values. This observation suggests that more powerful FANformers
are better equipped to extract more intricate latent periodicity features.
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Figure 8: Effect of hyperparameter p in FANformer on its training loss and downstream task
performance, where the red dashed line represents the training loss of Transformer, while the blue
dashed line denotes the performance on downstream tasks of Transformer.
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Figure 9: The impact of hyperparameter p on FANformer models of varying sizes.
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Table 5: Evaluation results of OLMo-1B-SFT and FANformer-1B-SFT on MMLU, AlpacaEval,
ToxiGen, and TruthfulQA (Info+True). Higher values are better for MMLU, AlpacaEval, and
TruthfulQA, while lower values are better for ToxiGen.

Model MMLU AlpacaEval ToxiGen TruthfulQA (Info+True)
0-shot ↑ %win ↑ % Toxic ↓ Accuracy ↑

OLMo-1B-SFT 24.3 1.90 2.8 55.8
FANformer-1B-SFT 26.7 2.51 10.4 83.0

E Instruction Following with SFT

E.1 Models

FANformer-1B-SFT: Our pretrained model on 1 trillion tokens, fine-tuned using supervised fine-
tuning (SFT) on the tulu-3-sft-olmo-2-mixture dataset.

OLMo-1B-SFT: A 1B parameter version of OLMo, pre-trained on 3 trillion tokens and fine-tuned
using supervised fine-tuning (SFT) on the tulu-3-sft-olmo-2-mixture dataset. Model available
at allenai/OLMo-1B-hf.

For both models, we follow the tokenizer’s chat template for prompt formatting when available.

E.2 Evaluation Setup

We evaluate the models on four benchmarks: MMLU, TruthfulQA, AlpacaEval, and ToxiGen. The
evaluation is conducted using the open-instruct evaluation suite, which has been widely adopted for
evaluating instruction-tuned language models. Below, we describe the setup for each benchmark.

MMLU We use the official MMLU evaluation script with 0-shot prompting. The maximum token
length is set to 2048, and we do not employ chain-of-thought (CoT) reasoning. The evaluation reports
the average accuracy across test examples.

AlpacaEval We use the AlpacaEval V1 benchmark with the default setup from the official repository
2. The evaluated models generate responses for 805 prompts, and GPT-4 is employed to compare
the responses with those from the reference model (gpt-4-1106-preview). Given the updates in the
AlpacaEval repository, the default models have changed over time. Currently, the default setup
uses the weighted_alpaca_eval_gpt4_turbo annotator as the annotator and gpt-4-1106-preview as the
reference model. Therefore, our evaluation aligns with the current default configuration in the official
AlpacaEval repository.

ToxiGen For ToxiGen, we focus on the prompts specifically designed to elicit toxic language
(‘hateful’ prompts). To reduce evaluation costs, we use a subset of 500 prompts per group for testing.
The toxicity classifier used is toxigen_roberta. We report the percentage of generations classified as
toxic by the classifier.

TruthfulQA For TruthfulQA, we use the generation setting with the default QA prompt format,
including 6 in-context examples. The judge model for evaluating truthfulness and informativeness is
allenai/truthfulqa-truth-judge-llama2-7B, which is adopted in the open-instruct evalua-
tion suite and OLMo’s evaluation. We report the percentage of responses deemed both informative
and truthful.

F Computational Cost Analysis

We analyze the computational overhead of FANformer compared to standard Transformer under two
settings: (1) when the number of parameters is matched, the computational cost remains unchanged;
(2) when the FFN dimensions remain fixed, the increase in cost is negligible.

2https://github.com/tatsu-lab/alpaca_eval
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To ensure a fair comparison, we maintain the same number of parameters in FANformer as in the
original Transformer by varying the FFN’s intermediate dimension df during our experiments. Under
this configuration, the computational cost remains equivalent between FANformer (same parameter)
and Transformer. We further investigate the setting where FFN dimensions remain unchanged
(Table 6). Even for FANformer (same dimension), the computational cost increases only slightly
compared to the Transformer. Specifically, the ratio of additional computation can be expressed as:

1.5LSD2

L× (24SD2 + 4S2D) + 2SDV
=

1.5D

24D + 4S
≤ 1.5D

24D
= 0.0625, (11)

where L is the number of layers, S is the sequence length, D is the hidden dimension, and V is the
vocabulary size. In practice, the actual additional overhead is much lower than 0.0625, as the term
scales inversely with sequence length. This means the overhead diminishes rapidly as sequences
grow longer. We summarize the detailed comparison of computational costs between Transformer
and FANformer in Table 6.

Table 6: Computational cost of Transformer vs. FANformer (p = 0.25).
Model Self-Attention/ATF FLOPs FFN FLOPs Output FLOPs Total FLOPs

Transformer L× (8SD2 + 4S2D) L× 16SD2 2SDV L× (24SD2 + 4S2D) + 2SDV
FANformer (Same Param) L× (8SD2 + 4S2D + 1.5SD2) L× (16SD2 − 1.5SD2) 2SDV L× (24SD2 + 4S2D) + 2SDV
FANformer (Same Dim) L× (8SD2 + 4S2D + 1.5SD2) L× 16SD2 2SDV L× (25.5SD2 + 4S2D) + 2SDV

G Inference Speed and GPU Memory Usage

We conduct experiments on the inference speed and GPU memory usage of FANformer relative
to Transformer in deployment settings, and have added the experimental results to our revised
manuscript. The results show that it add little latency. The configuration of benchmark test: we run
for 20 iterations on a single GPU of A100 80G with a fixed sequence length of 4096 tokens and
float16 precision.

Table 7: Inference speed and memory usage comparison (Sequence Length=4096).
Metric OLMo-1B FANformer-1B Difference
Forward Pass Time 141.49 ms 142.88 ms +1.39 ms (+0.98%)
Allocated Memory 4642.69 MB 4738.86 MB +96.17 MB (+2.1%)
Peak Memory 6610.70 MB 6706.88 MB +96.18 MB (+1.5%)

H Different with Mamba

First, our approach is fundamentally different from SSMs. SSMs model periodicity along the
sequence dimension, while our FANformer models it along the feature dimension. Second, our
motivation is distinct from that of Mamba. Mamba [Gu and Dao, 2023] is primarily developed to
overcome the quadratic computational complexity of Transformers and improve inference efficiency,
while our approach is designed to improve learning efficiency and performance of Transformers
through effective periodicity modeling.

I Detailed Results of Ablation Study for Section 4.4.1

In ablation study, we report the average results across various tasks on V2 Validation Sets, V3
Validation Sets, and Downstream tasks, with the specific tasks detailed in Section M.3. The complete
results are detailed in Table 8 and Table 9.

J Extended results of Section 4.4.3

The training and testing performance metrics, including loss and accuracy, for case-based and
rule-based reasoning are presented in Figure 11 and Figure 12, respectively.
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Table 8: The detailed results of ablation study (Part One). All models keep the same number of
parameters and are pretrained on Dolma v1_6-sample dataset (about 10B tokens).

Transformer Transformer + ATM Transformer + ATL FANformer + Activation FANformer

V2 Validation Sets

4chan Loss 2.68 2.68 2.66 2.70 2.66
PPL 14.60 14.53 14.36 14.88 14.34

c4_100_domains Loss 3.11 3.11 3.10 3.12 3.08
PPL 22.38 22.52 22.18 22.63 21.87

c4_en Loss 3.27 3.28 3.27 3.29 3.25
PPL 26.40 26.54 26.22 26.78 25.85

gab Loss 3.90 3.90 3.89 3.91 3.87
PPL 49.58 49.64 49.11 50.05 47.83

ice Loss 3.20 3.21 3.19 3.21 3.17
PPL 24.59 24.77 24.25 24.82 23.93

m2d2_s2orc Loss 3.56 3.57 3.56 3.59 3.56
PPL 35.34 35.47 34.99 36.24 35.05

m2d2_wiki Loss 3.14 3.14 3.13 3.15 3.11
PPL 23.17 23.13 22.90 23.29 22.48

manosphere Loss 3.47 3.48 3.46 3.48 3.45
PPL 32.21 32.46 31.85 32.62 31.48

mc4_en Loss 3.02 3.02 3.01 3.03 2.99
PPL 20.53 20.52 20.22 20.76 19.91

pile Loss 2.76 2.76 2.74 2.77 2.73
PPL 15.84 15.74 15.53 15.99 15.30

ptb Loss 3.68 3.70 3.64 3.71 3.66
PPL 39.68 40.51 38.23 40.74 38.75

twitterAEE Loss 4.10 4.10 4.07 4.11 4.07
PPL 60.25 60.18 58.79 61.10 58.54

wikitext_103 Loss 3.33 3.33 3.30 3.35 3.29
PPL 28.03 28.07 27.15 28.48 26.88

Average Loss 3.33 3.33 3.31 3.34 3.30
PPL 30.20 30.31 29.68 30.64 29.40

V3 Validation Sets

c4_en Loss 3.21 3.21 3.20 3.22 3.19
PPL 24.80 24.86 24.60 25.04 24.24

dolma_books Loss 3.56 3.56 3.54 3.57 3.52
PPL 34.98 35.32 34.43 35.57 33.96

dolma_common-crawl Loss 3.23 3.24 3.23 3.24 3.21
PPL 25.32 25.42 25.16 25.47 24.76

dolma_pes2o Loss 2.86 2.85 2.84 2.86 2.83
PPL 17.45 17.35 17.09 17.53 16.88

dolma_reddit Loss 3.44 3.44 3.43 3.45 3.42
PPL 31.13 31.35 30.94 31.42 30.54

dolma_stack Loss 1.42 1.41 1.40 1.42 1.39
PPL 4.13 4.10 4.06 4.13 4.01

dolma_wiki Loss 3.04 3.04 3.03 3.04 3.01
PPL 20.89 20.84 20.62 20.97 20.26

ice Loss 3.19 3.20 3.18 3.20 3.17
PPL 24.41 24.56 24.09 24.63 23.75

m2d2_s2orc Loss 3.70 3.70 3.69 3.70 3.68
PPL 40.35 40.61 40.22 40.56 39.50

pile Loss 2.74 2.73 2.72 2.75 2.70
PPL 15.44 15.35 15.16 15.58 14.92

wikitext_103 Loss 3.34 3.34 3.31 3.35 3.30
PPL 28.21 28.21 27.33 28.57 27.03

Average Loss 3.07 3.07 3.05 3.07 3.04
PPL 24.28 24.36 23.97 24.50 23.62

Downstream Benchmarks

piqa ACC 66.43 66.54 65.45 66.10 66.45
hellaswag ACC 33.87 33.84 34.02 33.75 34.37
winogrande ACC 52.80 51.62 49.96 48.78 51.72
openbook_qa ACC 28.00 28.20 28.00 28.20 29.00
sciq ACC 70.30 72.10 69.00 67.20 71.80
arc_easy ACC 45.44 46.14 47.19 47.02 45.61
copa ACC 62.00 66.00 65.00 66.00 66.00
rte ACC 51.26 52.35 52.71 48.74 57.04
commitment_bank ACC 42.86 41.07 46.43 53.57 44.64
mrpc ACC 81.05 81.22 81.22 81.22 81.47
sst2 ACC 50.11 51.49 49.08 49.08 59.11
Average ACC 53.10 53.69 53.46 53.61 55.19
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Table 9: The detailed results of ablation study (Part Two). All models keep the same dimension and
are pretrained on Dolma v1_6-sample dataset (about 10B tokens).

Transformer Transformer + ATM Transformer + ATL FANformer + Activation FANformer

V2 Validation Sets

4chan Loss 2.68 2.68 2.67 2.68 2.66
PPL 14.60 14.54 14.43 14.63 14.29

c4_100_domains Loss 3.11 3.11 3.10 3.11 3.08
PPL 22.38 22.43 22.11 22.49 21.69

c4_en Loss 3.27 3.28 3.26 3.28 3.24
PPL 26.40 26.51 26.12 26.54 25.61

gab Loss 3.90 3.90 3.89 3.91 3.87
PPL 49.58 49.41 48.97 50.11 47.79

ice Loss 3.20 3.20 3.19 3.21 3.17
PPL 24.59 24.62 24.22 24.90 23.69

m2d2_s2orc Loss 3.56 3.58 3.56 3.58 3.54
PPL 35.34 35.73 35.17 35.78 34.58

m2d2_wiki Loss 3.14 3.14 3.13 3.14 3.10
PPL 23.17 23.04 22.81 23.10 22.27

manosphere Loss 3.47 3.48 3.46 3.48 3.45
PPL 32.21 32.44 31.78 32.43 31.36

mc4_en Loss 3.02 3.02 3.01 3.03 2.99
PPL 20.53 20.51 20.22 20.61 19.86

pile Loss 2.76 2.76 2.74 2.77 2.72
PPL 15.84 15.78 15.54 15.90 15.24

ptb Loss 3.68 3.67 3.67 3.73 3.63
PPL 39.68 39.19 39.15 41.67 37.82

twitterAEE Loss 4.10 4.10 4.08 4.11 4.07
PPL 60.25 60.19 59.12 60.97 58.62

wikitext_103 Loss 3.33 3.33 3.31 3.34 3.29
PPL 28.03 27.96 27.29 28.22 26.98

Average Loss 3.33 3.33 3.31 3.34 3.29
PPL 30.20 30.18 29.76 30.57 29.22

V3 Validation Sets

c4_en Loss 3.21 3.21 3.20 3.21 3.18
PPL 24.80 24.78 24.52 24.82 24.00

dolma_books Loss 3.56 3.56 3.54 3.56 3.52
PPL 34.98 35.10 34.41 35.24 33.64

dolma_common-crawl Loss 3.23 3.23 3.22 3.23 3.20
PPL 25.32 25.25 25.09 25.35 24.55

dolma_pes2o Loss 2.86 2.85 2.84 2.86 2.82
PPL 17.45 17.37 17.12 17.44 16.79

dolma_reddit Loss 3.44 3.44 3.43 3.44 3.41
PPL 31.13 31.22 30.83 31.28 30.31

dolma_stack Loss 1.42 1.41 1.40 1.42 1.39
PPL 4.13 4.09 4.07 4.13 4.02

dolma_wiki Loss 3.04 3.03 3.03 3.04 3.00
PPL 20.89 20.78 20.61 20.88 20.10

ice Loss 3.19 3.20 3.18 3.21 3.16
PPL 24.41 24.44 24.04 24.72 23.55

m2d2_s2orc Loss 3.70 3.70 3.69 3.70 3.67
PPL 40.35 40.50 39.99 40.56 39.17

pile Loss 2.74 2.73 2.72 2.74 2.70
PPL 15.44 15.39 15.17 15.50 14.87

wikitext_103 Loss 3.34 3.34 3.31 3.35 3.30
PPL 28.21 28.12 27.46 28.36 27.12

Average Loss 3.07 3.06 3.05 3.07 3.03
PPL 24.28 24.28 23.94 24.39 23.47

Downstream Benchmarks

piqa ACC 66.43 65.13 66.76 66.38 66.59
hellaswag ACC 33.87 33.96 34.22 33.92 35.15
winogrande ACC 52.80 51.62 50.12 51.07 51.38
openbook_qa ACC 28.00 28.00 28.80 28.60 28.40
sciq ACC 70.30 70.90 70.40 70.20 70.30
arc_easy ACC 45.44 48.60 47.02 44.91 48.95
copa ACC 62.00 67.00 67.00 65.00 69.00
rte ACC 51.26 51.99 54.87 54.51 54.87
commitment_bank ACC 42.86 32.14 41.07 37.50 39.29
mrpc ACC 81.05 81.17 80.59 81.17 81.11
sst2 ACC 50.11 50.92 55.73 51.15 60.55
Average ACC 53.10 52.86 54.23 53.13 54.88
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Figure 10: Training accuracy and test accuracy of FANformer and Transformer on modular addition
and linear regression tasks.
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(b) Training loss of linear regression task

Figure 11: Training loss of FAN and Transformer on case-based and rule-based reasoning.

K Case for Section 4.4.4

We present a case of FANformer and the baselines under a logical reasoning stress-test in Figure 13.

L Formal Proof of ATF(X) = Attention(FANLayer′(X))

Proposition 1. For an input sequence representation X ∈ Rn×d, the ATF operator satisfies
ATF(X) = Attention

(
FANLayer′(X)

)
.

Proof. By the definition of ATF via Eq. (3), we have

ATF(X) = softmax
(
QFK

⊤
F√

dk

)
VF .

Substituting QF ,KF ,VF from Eq. (2)) into Eq. (3) yields

ATF(X) = softmax
(
(XFWQ)(XFWK)⊤√

dk

)
(XFWV )
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(a) Training accuracy on modular addition task
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(b) Test accuracy of modular addition task
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(c) Training accuracy on linear regression task
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(d) Test accuracy of linear regression task

Figure 12: Accuracy of FAN and Transformer during training and testing on case-based and rule-
based reasoning.

Matching to standard attention, for any input Z, multi-head attention (single head shown for clarity)
is defined as

Attention(Z) = softmax
(
ZWQ(ZWK)⊤√

dk

)
(ZWV )

Thus, we have

ATF(X) = Attention(XF ). (12)

Finally, substituting XF = FANLayer′(X) via Eq. (1) into the above formula establishes the claim:

ATF(X) = Attention
(
FANLayer′(X)

)
.
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True or False? Please predict whether the input rule is very likely to be true, and also explain why. Please note that the
rule need not necessarily but just very likely to be true.

Examples:
Input: If Show Y was produced at Time Period Z1, Person X died at a Time Period Z2, and Time Period Z1 is earlier
than Time Period Z2, then Person X had no chance to access Show Y.
Output: False. Because Show Y was available before Person X died.

Input: If Person X lives in Region Z and Animal Y inhabits the same Region Z, then Person X can access Animal Y.
Output: True. Because person and animal exist in the same region.

Input: If Organization X conducts an activity during Time
Period Z1 and Technology Y was invented during Time
Period Z2, and Time Period Z2 is earlier than Time Period
Z1, then Organization X can access Technology Y.

Input: If Organization X conducts an activity during Time
Period Z1 and Technology Y was invented during Time
Period Z2, and Time Period Z2 is earlier than Time Period
Z1, then Organization X cannot access Technology Y.

FANformer FANformer
Output: True. Because technology was invented before 
the activity was conducted.

Output: False. Because Technology Y was invented 
before Organization X conducts the activity.

Qwen2.5-1.5B
Output: True. Because person and animal exist in the 
same region.

Output: True. Because person and animal exist in the 
same region.

Qwen2.5-1.5B

OLMo-1B OLMo-1B

Output: True. Because Organization X can access 
Technology Y. 

Output: True. Because Organization X cannot access 
Technology Y.

Original Conclusion Flipped Conclusion

Case Study

Figure 13: Case of FANformer and the baselines under logical reasoning stress-test.

M Comprehensive Experimental Details

M.1 Detailed training settings of FANformer

We train FANformer-1B using the ZeRO optimizer strategy [Rajbhandari et al., 2020] via PyTorch’s
DDP framework [Li, 2018]. Following OLMo [Groeneveld et al., 2024], we use a constant global
batch size of approximately 4M tokens (2048 instances, each with a sequence length of 2048 tokens).
To improve throughput, we employ PyTorch’s amp module with the bfloat16 format. We employ the
AdamW optimizer [Loshchilov and Hutter, 2019] for the model’s training process. The learning rate
for all LLMs is set to 4.0e-4. We warm up the learning rate over 2000 steps ( 8B tokens) and then
decay it in a cosine manner from there down to a tenth of the peak learning rate over the remainder of
training. We employ FlashAttention [Dao et al., 2022] to accelerate the model training and inference
processes, leveraging its ability to optimize memory usage and computational efficiency. The total
GPU computational cost for pre-training FANformer-1B amounts to approximately 47,600 GPU
hours.

M.2 Detailed Setup for Section 4.2

For different model sizes in Figure 3, the hidden dimension, number of layers, and number of heads
are listed in Table 10.

M.3 Validation Set And Downstream Tasks

Following [Zhu et al., 2024], we use V2 Validation Sets, V3 Validation Sets, and Downstream tasks
to evaluate our approach. The specific tasks included in V2 validation sets, V3 validation sets, and
downstream tasks are listed in Table 11.
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Table 10: Model size and setup used for FANformer in Section 4.2, where Transformers follows the
setups of previous work OLMo [Groeneveld et al., 2024].

Model Size Hidden Dim. Num Layers Num Heads Weight Tying

FANformer-300M 268M 1024 16 16 True
FANformer-600M 604M 1536 16 16 True
FANformer-1B 1.1B 2048 16 16 True
FANformer-3B 2.6B 2560 24 20 False
FANformer-7B 6.7B 4096 24 32 False

M.4 Detailed Setup of Case-based and Rule-based Reasoning.

Following the work [Hu et al., 2024], we focus on binary operations that take two numbers, a and b, as
inputs. Denoting c as the target label, the constructed datasets are in the form of D = {((ai, bi), ci)}
for two mathematical tasks: modular addition and linear regression. The two tasks are defined as
follows:

• Modular addition. The input to the model is “a + b =”, and the output is c, where
c = (a + b) mod P . The values of a and b range from 0 to 112. The constant P is 113
here.

• Linear regression. This task involves the model learning a linear regression function. The
input is given by “(a, b) =”, and the output is c, where c = m · a+ n · b+ p. The values of
a and b range from 0 to 99. The constants are set as m = 1, n = 2, and p = 3.

Leave-Square-Out The work [Hu et al., 2024] employs the Leave-Square-Out method to evaluate
the generalization ability of the Transformer [Dong et al., 2024c]. In this approach, a square
test set is created to isolate the test samples from the training samples. For instance, consider
the center of the square at (ak, bk) with a side length of lk. The square test set is defined as
Tk = {((ai, bi), ci) | ak − lk

2 ≤ ai ≤ ak + lk
2 , bk −

lk
2 ≤ bi ≤ bk + lk

2 }, and all remaining samples
from the training set. This division creates a "hole" in the center of the training set, which is more
challenging for the model compared to a random split. Since there are no similar cases in the training
set to aid the model in solving the problem, this method tests whether the model has truly learned the
underlying rules. In the experiments of the work [Hu et al., 2024], they found that Transformer-based
models fail to generate correct answers for the test set in the "hole". Therefore, we use this method to
assess the generalization ability of FANformer.

Settings We finetune both the Transformer and FANformer models on each dataset for 500 epochs.
The batch size is set to 336, and the learning rate is initialized at 10−4. A warm-up ratio of 0.01 is
used, and we apply cosine decay to adjust the learning rate throughout the training process.

During generation, we set the model temperature to 0.5 and sample 10 generations to evaluate the
accuracy on each test point. The square center (ak, bk) is (50, 50) for linear regression and (56, 56)
for modular addition.

Following the work [Hu et al., 2024], we apply the Leave-Square-Out method to each dataset.
Specifically, we extract a square comprising 441 samples (from a total of approximately 10,000
samples) with a side length of 20 to form our test set, leaving the remainder as the training set. It is
important to note that, despite removing a small portion of training samples, we ensure that all tokens
present in the dataset appear in the training set. This precaution is to prevent the models from failing
simply due to encountering unseen tokens. We then proceed to finetune Transformer and FANformer
models using this specific training-test split for each dataset.

M.5 Assessing LLMs’ Proficiency in Capturing Inferential Rules

Analysis Setup Following the experimental setup proposed by Wang et al. [2024], we adopt the
ULogic framework to systematically evaluate LLMs on their ability to capture underlying inferential
logic. Specifically, we leverage a curated probing subset comprising 1,104 diverse rules drawn from
their rule base. These rules—manually verified by the original authors—span a range of lengths,
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Table 11: Validation Set And Downstream Tasks.
V2 Validation Sets

v2-small-4chan-validation
v2-small-c4_100_domains-validation

v2-small-c4_en-validation
v2-small-gab-validation
v2-small-ice-validation

v2-small-m2d2_s2orc-validation
v2-small-m2d2_wiki-validation
v2-small-manosphere-validation

v2-small-mc4_en-validation
v2-small-pile-validation
v2-small-ptb-validation

v2-small-twitterAEE-validation
v2-small-wikitext_103-validation

V3 Validation Sets
v3-small-c4_en-validation

v3-small-dolma_books-validation
v3-small-dolma_common_crawl-validation

v3-small-dolma_pes2o-validation
v3-small-dolma_reddit-validation
v3-small-dolma_stack-validation
v3-small-dolma_wiki-validation

v3-small-ice-validation
v3-small-m2d2_s2orc-validation

v3-small-pile-validation
v3-small-wikitext_103-validation

Downstream Benchmarks
piqa [Bisk et al., 2020]

hellaswag [Zellers et al., 2019]
winogrande [Sakaguchi et al., 2020]
openbook_qa [Mihaylov et al., 2018]

sciq [Welbl et al., 2017]
arc_easy [Clark et al., 2018]

copa [Roemmele et al., 2011]
commitment_bank [De Marneffe et al., 2019]

mrpc [Dolan and Brockett, 2005]
rte [Dagan et al., 2005]

sst2 [Socher et al., 2013]

polarities, and structural patterns, ensuring broad coverage and high quality. The evaluation is framed
as a binary entailment classification task, where the model must determine whether a given rule
expresses a valid logical entailment. We employ a two-shot Chain-of-Thought (CoT) prompting
method [Wei et al., 2022], in which each input includes one correct and one incorrect example to
minimize label bias. The model is prompted not only to make a binary judgment but also to justify its
reasoning, with an appended instruction such as "and also explain why."

To further enhance the reliability of the evaluation, we incorporate the Law of Non-
Contradiction [Priest et al., 2006], which posits that statements of the form “If X, then Y” and
“If X, then not Y” cannot simultaneously be true. Accordingly, for each original rule, we construct
a flipped version by negating its conclusion. A rule is considered correctly classified only if the
model affirms the original rule as true and rejects the flipped version as false, as illustrated below. We
evaluate the base model of FANformer-1B, OLMo-1B, and Qwen2.5-1.5B, as well as GPT-4 on the
two most challenging levels of ULogic for stress-testing (i.e., Length 3 and Length 4).

If Premise, then Conclusion_original. True
If Premise, then Conclusion_flipped. False
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N Limitations

Our work has several limitations, which we aim to address in our future work:

First, due to constraints in computational resources, we only pretrain the FANformer-1B on 1 trillion
tokens. However, our experimental results regarding FANformer’s scalability indicate that our
FANformer demonstrates favorable scaling behavior during training, suggesting that increasing the
model size and training tokens could lead to more significant performance improvements. To explore
this further, we plan to seek additional computational resources to train larger-scale language models.

Second, our work is orthogonal to the existing approaches for revising the attention mechanism, i.e.,
our work can seamlessly incorporate them, as verified in the derivation provided in Appendix L.
There are numerous variants of attention mechanisms, as discussed in the related work (Section 5),
such as Flash Attention [Dao et al., 2022], MQA [Shazeer, 2019], and MLA [DeepSeek-AI et al.,
2024b]. In this work, we only incorporate Flash Attention for necessary acceleration, while leaving
the exploration of other approaches for future work.

Third, although we have observed that enhancing the ability of language models to model periodic
patterns can improve language modeling performance, the underlying mechanisms responsible for
this improvement remain underexplored. To the best of our knowledge, it has hardly been studied the
role of periodicity or the potential periodic behaviors of LLMs on language modeling. Therefore, in
future work, we will conduct a more comprehensive investigation into the fundamental mechanisms
of periodicity in language modeling.
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