
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046

Under review as a conference paper at ICLR 2025

LEYOLO: LIGHTWEIGHT, SCALABLE AND EFFICIENT
CNN ARCHITECTURE FOR OBJECT DETECTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Computational efficiency in deep neural networks is critical for object detection, especially
as newer models prioritize speed over efficient computation (Parameters and FLOP). This
trend is evident in the latest YOLO architectures, which focus more on speed at the ex-
pense of lightweight design. This evolution has somewhat left lightweight architecture
design behind for object detection applications. Unlike speed-oriented object detectors in
the literature, SSDLite and low-parameters/FLOP-oriented classifier combinations are the
only proposed solutions, leaving a gap between YOLO-like architectures and lightweight
object detectors. In this paper, we pose the question: Can an architecture optimized for
parameters and FLOPs achieve precision comparable to mainstream YOLO models? To
explore this, we introduce LeYOLO, an efficient object detection model, and propose sev-
eral optimizations to enhance the computational efficiency of YOLO-based models. This
approach bridges the gap between SSDLite-based object detectors and YOLO models,
achieving high precision in a model as lightweight as MobileNets. Our novel model fam-
ily achieves a FLOP-to-accuracy ratio previously unattained, offering scalability that spans
from ultra-low neural network configurations (< 1 GFLOP) to efficient yet demanding ob-
ject detection setups (> 4 GFLOPs) with 25.2, 31.3, 35.2, 38.2, 39.3 and 41 mAP for
0.66, 1.47, 2.53, 4.51, 5.8 and 8.4 FLOP(G).

1 INTRODUCTION

Initially introduced by Redmon et al. (2016), YOLO models are known for their object detection speed.
These models have seen significant improvements in neural network architecture in recent years, taking
advantage of modern computing power like GPUs. Essentially, YOLO models feature a backbone like
that of classifiers, a neck that aggregates multiple levels of semantic information, and a head that refines
detections across these levels. Detections are made on a grid, with spatial information greatly reduced,
meaning detection boxes are aligned pixel by pixel.

Despite their inherent speed, there has been a noticeable shift in the development of YOLO models in recent
years Jocher et al. (2022); Li et al. (2022); Wang et al. (2023); Jocher et al. (2023); Wang et al. (2024).
With rapid advancements in GPU capabilities and new architectural innovations, the focus has shifted from
lightweight models to those prioritizing speed. Consequently, YOLO models have become significantly
faster despite increased parameters and FLOP 1 2.

1We describe floating point operations as FLOP, defining all the number of arithmetical operations the neural net-
work requires to perform inference.

2In our paper, 1 FLOP is roughly 2 MADD or 2 MACC. Thus, the variation in benchmarks such as MobileNet differs
from their original paper.

1

047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093

Under review as a conference paper at ICLR 2025

(a) LeYOLO parameters efficiency. (b) LeYOLO computation efficiency.

Figure 1: LeYOLO compared to other sota object detection with low-parameters (a) and the sota mainline
of low-cost YOLO (b)

On the other hand, research into optimizing parameter counts and computational costs has produced note-
worthy models like MobileNets Howard et al. (2017); Sandler et al. (2018); Howard et al. (2019) and Effi-
cientNets Tan & Le (2019; 2021). While these models are remarkable, they are primarily recognized for their
exceptional classification abilities rather than object detection. Research has mainly focused on lightweight
classifiers with optimized parameters in object detection, often paired with an object detection addon like
SSDLite. Through our study of classification and object detection architectures, we have identified a re-
search gap: there is a lack of focus on optimizing architectures based on parameter counts and FLOP in the
space between state-of-the-art fast object detectors and lightweight classifiers. This gap leaves researchers
with limited options, often leading them to rely on SSDLite Liu et al. (2016).

Fortunately, novel YOLO-based architectures embrace efficient computation, focusing on FLOP and param-
eters efficiency Moosmann et al. (2023); Fang et al. (2020); Ge et al. (2021); Yang et al. (2022); Hajizadeh
et al. (2023); Wang et al. (2020).

Figure 2: Flop-to-speed comparison on Jet-
son TX2.

Research in the object detection community is divided into
three primary goals: inference speed, precision, and optimiz-
ing the precision (mAP) to computational cost (FLOP) ratio.
From the previous statement, we raise several questions.
Why don’t speed and FLOP always correlate? FLOP alone is
insufficient, as it overlooks crucial inference factors like mem-
ory access cost, parallelism, and platform characteristics. The
latest YOLO models Wang et al. (2023); Jocher et al. (2023);
Wang et al. (2024) illustrate this by achieving faster speeds de-
spite higher FLOP usage. Nevertheless, given the strong cor-
relation with parameters, we still view FLOP as a valuable in-
dicator of parameter efficiency in deep neural networks. How-
ever, we value FLOP for parameter efficiency and its valu-
able capacity to show a throughput correlation pattern with a
decreasingly powerful embedded device (See Figure 2).
Why focus on FLOP/parameter efficiency? There are several
reasons. Efficient models often lead to faster inference, which
isn’t always guaranteed due to inherent weaknesses in FLOP
measurements. Models with fewer parameters consume less power, making them ideal for battery-operated
devices. Smaller models reduce the required bandwidth in scenarios where models are transmitted over a

2

094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

Under review as a conference paper at ICLR 2025

network. Moreover, simpler models with fewer parameters are often more interpretable, helping us better
understand neural network architectures. While deep neural networks are robust at generalizing functions
and solving complex problems, crafting highly efficient architectures may offer insights into improving per-
formance and understanding. We place significant importance on the number of parameters, even though
recent studies have focused on maximizing execution speed, sometimes at the expense of parameter effi-
ciency. Despite the reasons outlined previously that highlight other factors affecting execution speed, our
FLOP-based study has enabled us to develop a faster object detection model that uses fewer parameters and
achieves significantly higher accuracy than the state-of-the-art lightweight classifiers.

Furthermore, we demonstrate that our contribution competes with YOLO models at comparable scales. Our
work proves that it is possible to optimize neural network architecture for object detection by proposing
a new scaling approach that sits between lightweight classifiers and YOLO models, which are considered
lightweight in terms of parameters and FLOP count. We present LeYOLO, a conceptually simple yet
efficient architecture that embraces computationally efficient components for object detection, following
the cores of EfficientNets Tan & Le (2019; 2021), MobileNets Sandler et al. (2018); Howard et al. (2017;
2019). Prioritizing efficient scaling, LeYOLO demonstrates superior performance across a broad scope of
neural networks, surpassing ultra-low networks (less than 1 FLOP(G)), mid-range networks (between 1 and
4 FLOP(G)), and even models exceeding 4 FLOP(G) as Figures 1a and 1b shows.

In all its versions, LeYOLO achieves 25.2%, 29%, 31.3%, 35.2%, 36.4%, 38.2%, 39.3%, and 41% mAP on
the MSCOCO validation dataset for 0.66, 1.126, 1.47, 2.53, 3.27, 4.51, 5.8 and 8.4 FLOP(G) and . In com-
parison, LeYOLO notably outperforms EfficientDet with 22% less inference time, 38% fewer parameters,
and 13.6% increased performance. On mobile devices, LeYOLO outperforms the sota of object detectors
from YOLO mainline and lightweight classifiers combined with SSDLite, as seen in Figure 2.

2 RELATED WORK

Our work focuses on finding an optimal architecture for object detection. We have combined two approaches:
object detectors optimized for speed and low-cost classifiers that use well-established techniques to reduce
the number of parameters.

Lightweight classifiers. LeYOLO draws inspiration from elements known for their high efficiency in op-
timizing the number of parameters. Notably, we leverage the performance of inverted bottlenecks, initially
designed in MobileNetv2 Sandler et al. (2018) and later refined by the EfficientNet Tan & Le (2019; 2021)
and GhostNet Han et al. (2020); Tang et al. (2022) families. Inverted bottlenecks, pointwise Lin et al. (2013),
and depthwise convolutions are critical in architecture optimization. They play a crucial role in algorithmic
contributions like MNASNet Tan et al. (2019), and many recent studies focused on hybridization, which
aims to reduce the number of parameters in architectures utilizing self-attention, such as MobileViT Mehta
& Rastegari (2022a) and others Wadekar & Chaurasia (2022); Mehta & Rastegari (2022b); Vasu et al. (2023).
In our paper, we demonstrate that it is still possible to achieve a higher level of optimization, particularly in
object detection, by further refining the use of inverted bottlenecks.
Lightweight object detectors. Originally designed to reduce the cost of object detectors by leveraging
the widely respected VGG Simonyan & Zisserman (2014) feature extractor, SSD Liu et al. (2016) is an
object detector closely related to the early YOLO models Redmon & Farhadi (2018). With the rise of low-
cost classifiers, it became necessary to contribute to this growing field, leading to the creation of SSDLite,
an optimized version of SSD primarily based on the principles of MobileNets with grouped convolutions.
Since then, there hasn’t been a method that surpasses this approach. However, SSDLiteX Kang (2023) has
emerged as an attempt to improve SSDLite’s performance on MobileNets. On the YOLO side, other re-
searchers have also explored optimizing the mainline by incorporating the mentioned elements. Tinyssimo
YOLO Moosmann et al. (2023) seeks to reduce overall costs by building on the earliest YOLO architectures
Redmon et al. (2016). While the optimization is promising, it doesn’t quite compete with even the lowest

3

141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

Under review as a conference paper at ICLR 2025

scaling levels of YOLO or classifiers combined with SSDLite. Similarly, other studies Fang et al. (2020);
Yang et al. (2022); Hajizadeh et al. (2023); Wang et al. (2020) have used lightweight classifier elements like
depthwise convolutions and older techniques such as fire modules Iandola et al. (2016) to reduce the number
of parameters. More recently and notably, YOLOX Ge et al. (2021) and YOLOv9 have offered a solid al-
ternative to their base scaling by presenting a very lightweight model in terms of parameter count. YOLOX
achieves this by using depthwise convolutions instead of standard convolutions, with a kernel size greater
than three and a reduced image size. As for YOLOv9, we are exceptionally inspired by the authors’ sig-
nificant contribution to the parameters and information optimization field. YOLOv9 keeps an optimization
to a mainline YOLO scaling level, discarding mobile-oriented and low-crafted-parameters-oriented neural
networks. There is more discussion on the state-of-the-art deep neural network in Appendix A.3.1.

Discussion on contribution. We introduce LeYOLO, a model inspired by architectures renowned for pa-
rameter optimization. LeYOLO proves that optimizing low-cost object detectors is possible, offering a
strong alternative to the lowest scalings of YOLO models. It also provides a significant performance boost
compared to the state-of-the-art object detectors in downstream tasks, largely reliant on the well-known
SSDLite. Our study offers a highly modular approach compared to existing YOLO solutions and state-of-
the-art lightweight classifiers, with YOLOv9 as an example of a comparable study at a larger scale. Our
focus is on ”mobile” or lightweight neural networks, so our proposal is less optimized for block acceleration
and parallelization techniques, as seen in YOLOv7. Also, the extensive use of depthwise convolution, as
presented in Chapter 3.1.1, might reduce the throughput of our solution, as first introduced in the ShuffleNet
Ma et al. (2018) study.

LeYOLO brings several optimization and contributions: (i) Better classifier downstream performance.
For a given parameter scaling budget, LeYOLO outperforms state-of-the-art low-cost classifiers combined
with SSDLite by reducing the number of parameters and increasing the precision of MSCOCO. Adding
LeYOLO neck and head to sota low-parameters and cost-oriented backbone enables better throughput, ac-
curacy, and much lower parameters for several scaling. (ii) Tiny scaled YOLO alternative. LeYOLO,
with its optimized backbone, neck, and detection head, surpasses nano and tiny-scaled mainline YOLO neu-
ral networks on object detection. The architectural choice of the LeYOLO backbone proves its superiority
compared to other low-cost backbones combined with the LeYOLO neck and head, being better at scaling
and accuracy-to-parameters and FLOP ratio. (iii) Improved throughput. LeYOLO gets better throughput
than sota object detector with low-oriented parameters thanks to its optimized architecture. Both complete
LeYOLO and downstream tasks on low-cost classifiers get better throughput. However, LeYOLO reaches
its peak strength on mobile, embedded, or low-powerful devices, getting closer to what we seek in terms of
parameter efficiency: enabling the power of reliable object detectors directly to inference on small devices,
having few parameters to share within clusters of peripheral devices, bringing YOLO closer to edge AI step
by step.

3 LEYOLO: A LOW-PARAMETERS ORIENTED OBJECT DETECTOR

3.1 LEYOLO ARCHITECTURE

3.1.1 LEYOLO BLOCK.

Regarding parameter and mAP efficiency, surpassing architectures based on depthwise and pointwise con-
volutions is challenging. However, our experiments with the inverted bottleneck block found that optimizing
the number of channels can significantly reduce computational demands, particularly at large spatial feature
map sizes. With careful optimization, the initial pointwise convolutions may even be optional, leading to
a drastic reduction in the number of parameters and FLOPs in the early layers of the neural network, with
minimal impact on accuracy - leading to lower cost scaling, especially at high spatial size. The core block of
LeYOLO is primarily designed to reduce the number of parameters based on an input x ∈ RB,C,H,W . Our

4

188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

Under review as a conference paper at ICLR 2025

block applies a 1x1 convolution followed by an n× n convolution. Finally, a third 1x1 convolution is used
to project or restore the feature map to its original number of channels. The pointwise convolutions mainly
project the feature maps at different dimensions (in our case, d-dimensional, where d ≥ C) by learning
linear combinations of the input channels. However, research on ShuffleNet Ma et al. (2018) and Tishby &
Zaslavsky (2015); Han et al. (2021) has shown that extensive use of pointwise convolutions can decrease
execution speed and potentially reduce accuracy if the expansion is too aggressive or misapplied. To address
this, we propose improving the classic inverted bottleneck by making the first 1x1 convolution optional (if
the dimension d is equal to the input dimension C). We define the input and output dimensions as C and the
expanded dimension as d. For filters W1 ∈ R1,1,C,d, W2 ∈ Rk,k,1,d, and W3 ∈ R1,1,d,C , our approach can
be represented as follows:

y =


W3 ⊗ [W2 ⊗ (W1 ⊗ x)] if d ̸= C

W3 ⊗ [W2 ⊗ (W1 ⊗ x)] if d = C and W1 = True
W3 ⊗ [W2 ⊗ (x)] if d = C and W1 = False

(1)

Similar to the state-of-the-art neural network techniques for object detection Wang et al. (2023; 2024), we
consistently implement the SiLU Elfwing et al. (2018) activation function throughout our model. Appendix
A.3.1 compares state-of-the-art and LeYOLO architecture.

3.1.2 LEYOLO BACKBONE - STRIDE STRATEGY.

We define each layer number of input and output channels as Ci and the expansion dimension of the inverted
bottleneck as di, with d ≥ C for each level of semantic information from P0 = 0 - the model’s input image
- to P5 = 5, the final spatial size after all reductions, with P = [0, 1, 2, 3, 4, 5]. For instance, C1 and d1
represent the number of channels corresponding to the spatial size after one downsampling convolution. We
aim to enrich the information flow from the hidden layer defined as hj at the semantic information level Pi

to the subsequent hidden layer hj+1 as Pi+1 by increasing the channels Ci proportionately to the anticipated
channel expansion from dPi+1

.

SiLU inverted bottleneck

d = 3× Ci h′
j = SILU(bn(W1 ⊗ x+ b)) W1 ∈ R1,1,Ci,d

C = [16, 32, 64, 96] h′′
j = SILU(bn(W2 ⊗ h′

j + b)) W2 ∈ Rk,k,1,d

x = hj hj+1 = bn(W3 ⊗ h′′
j + b) W3 ∈ R1,1,d,Ci+1

SiLU inverted bottleneck with stride (ours)

d = [16, 16, 96, 192, 512] h′
j = SILU(bn(W1 ⊗ x+ b))3 W1 ∈ R1,1,Ci,di+1

C = [16, 32, 64, 96] h′′
j = SILU(bn(W2 ⊗ h′

j + b)) W2 ∈ Rk,k,1,di+1

x = hj hj+1 = bn(W3 ⊗ h′′
j + b) W3 ∈ R1,1,di+1,Ci+1

We find further channel expansion at downsampling levels at P3 and P5 in the LeYOLO backbone.

3.1.3 RELATIONSHIP TO DIMENSION CHOICE.

The information bottleneck principle theory from Tishby & Zaslavsky (2015) highlights two critical aspects
of learning theory concerning information. Firstly, the authors recognize that deep neural networks (DNNs)

3Optional if Ci = di+1

5

235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281

Under review as a conference paper at ICLR 2025

are Markov Chains Gagniuc (2017) as X → X̃ → Y with X , X̃ and Y being the input (X), the minimal
sufficient statistics extracted from X (X̃) and the output (Y) respectively with I(X; X̃) ≥ I(X̃;Y). Con-
sequently, to derive X̃ as the minimal sufficient statistics for extracting meaningful features to address Y ,
DNNs need to learn how to extract features using minimal sufficient statistics, employing the most compact
architecture possible Tishby & Zaslavsky (2015).

Secondly, because DNNs only process inputs from the preceding layer hi−1, a direct implication involves
potentially losing information that subsequent layers cannot regain (equation (2)).

I(Y ;X) ≥ I(Y ;hi) ≥ I(Y ;hi+j) with i+ j ≥ i (2)

Expensive solutions such as column-oriented networks Cai et al. (2023); Hinton (2023) with intensive feature
sharing between each block address this issue by incorporating intensive training blocks or adding additional
detection heads at crucial points of information segmentation, as seen very recently in YOLOv9 Wang et al.
(2024). As achieving equity in the equation above is feasible, the theory Tishby & Zaslavsky (2015) suggests
that each layer should maximize information within itself I(Y ;hi) while minimizing inter-layer information
exchange as much as possible hi → hi+1. Hence, rather than augmenting computational complexity in our
model like Wang et al. (2023; 2024); Hinton (2023); Cai et al. (2023), we opted to scale it more efficiently,
integrating Dangyoon Han’s at al. Han et al. (2021) inverted bottleneck theory which stated that pointwise
convolutions should not overpass a ratio of 6 in inverted bottleneck.

Our implementation involves minimizing inter-layer information exchange in the form of I(X;h1) ≥
I(X;h2) ≥ ... ≥ I(X;hn), with n equal to the last hidden layer of the neural network backbone, by
ensuring that the number of input/output channels never exceeds a difference ratio of 6 from the first hidden
layer through to the last. We define hi all the neurons from one inverted bottleneck as a whole (pointwise
and depthwise convolutions). Therefore, C from hidden layer hn is only 6 times greater than C from hidden
layer h1. In this manner, we minimize inter-layer information exchange hi → hi+1 as h1 → hn. We max-
imize I(Y ;hi) with an expansion of 3 in the whole network inverted bottlenecks, which correspond to an
expansion of 6 from P1 → P4 and 9 from P4 → P5 regarding equations of our SiLU inverted bottleneck
with stride in chapter 3.1.2.

More information on chapter experimental details A.5.

3.1.4 LEYOLO AS A GENERAL-PURPOSE OBJECT DETECTOR

Figure 3: Difference between proposed LeYOLO neck as an efficient semantic feature aggregator. (a)
Correspond to FPN Ghiasi et al. (2019). (b) Represent PANnet Zhao et al. (2017). Finally, (c) is our
proposed solution.

6

282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328

Under review as a conference paper at ICLR 2025

Neck. In object detection, we call the neck the part of the model that aggregates several levels of semantic
information, sharing extraction levels from more distant layers to the first layers. Historically, researchers
have used a PANet Zhao et al. (2017) or FPN Lin et al. (2017) to share feature maps efficiently, enabling
multiple detection levels by linking several semantic information Pi to the PANet and their respective out-
puts as depicted in Figure 3(a).
Figure 3.(i) Semantic information aggregation. In this paper, we are mainly focusing on two competi-
tors: BiFPN Tan et al. (2020) and YOLOF’s SiSO Chen et al. (2021). BiFPN shares our model’s central
philosophy: using layers with low computational cost (concatenation and additions, depthwise and point-
wise convolutions). However, BiFPN requires too much semantic information and too many blocking states
(waiting for previous layers, complex graphs), which makes it difficult to keep up with fast execution speed.
SiSO Chen et al. (2021), on the other hand, is interesting in its approach to object detection. Indeed, we
can see that the authors of YOLOF have decided to use a single input and output for the model neck. Com-
pared with other proposed solutions in YOLOF paper, we observe a significant degradation between a neck
with multiple outputs (Single-in, Multiple-out - SiMO) and a neck with a single output (Single-in, Single-
out - SiSO). We are particularly interested in their work on the potential efficiency of a SiMO, proving the
possibility of improving the first layers of the neck of a YOLO model by optimizing the flow of semantic
information with only one rich input.
We have identified a very important aspect in the composition of deep neural networks. During preliminary
research on blocks specifically designed to reduce parameter count and FLOPs, we observed a recurring pat-
tern in deep neural networks. Similar to the number of channels, it is difficult to determine the usefulness of
a specific number of layer repetitions. However, we noticed that there is consistently a significant repetition
of layers at the semantic level equivalent to P4. We found this in all MobileNets Howard et al. (2017); San-
dler et al. (2018); Howard et al. (2019), in the optimization of inverted bottlenecks in EfficientNets Tan &
Le (2019; 2021) and EfficientDet Tan et al. (2020), as well as in more recent architectures with self-attention
mechanisms like MobileViTs Mehta & Rastegari (2022a;b); Wadekar & Chaurasia (2022), EdgeNext Maaz
et al. (2023), and FastViT Vasu et al. (2023), which are designed for speed. Even more interestingly, models
designed by NAS Tan et al. (2019); Howard et al. (2019); Tan & Le (2019) also utilize this pattern. There-
fore, we support our supposition that P4 is the core of LeYOLO’s neck. The backbone presented in the
previous chapter uses a more intensive repetition of layers at the P4 semantic level.

Figure 3.(ii) Efficient computation. We reduce the computation - especially at P3 level because of the
high spatial size - by removing the first pointwise convolution. After an ablation study performed on the
LeYOLO nano-scaled backbone, we took the opportunity to remove time-costly pointwise convolutions
since the input channels from the backbone P3 concatenated with the upsampled features from P4 results in
the d-dimension required by the in-between depthwise convolution from our optimized inverted bottleneck
presented in equation (1), chapter 3.1.1. Regarding information bottleneck theory, we minimized each
neuron’s interaction much further than the backbone. Each number of input channels, but also the number
of expanded channels from the inverted bottleneck never exceeds 6. Input from P3 is 32C while the very
last hidden layer of the LeYOLOs neck expanded channels d equals 192.

Figure 3.(iii) Standard strided convolution. We improve the accuracy by using careful attention to stride
details. As standard convolutions are not very parameters and computationally friendly, we thought of
a way, in-bound with our low number of channels, and in regards to computation with stridden standard
convolutions, to use them two times. From P3 to P4, and from P4 to P5. The gain of accuracy from
such a choice proves its efficacity, regarding LeYOLO as a whole boost performance but also how LeYOLO
outperforms SSDLite both in terms of parameters and precision as we discover in chapter 3.2.

Decoupled Network in Network Head. Until YOLOv5 Redmon et al. (2016); Redmon & Farhadi (2017;
2018); Bochkovskiy et al. (2020); Jocher et al. (2022), we had single model heads for classification and
object detection. However, since YOLOv6 Li et al. (2022), the model head has become a more power-
ful tool, separating the block into two parts: a branch for classification and object regression. Although
very efficient, this implies an almost doubled cost, requiring convolutions for classification and detection.

7

329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375

Under review as a conference paper at ICLR 2025

Figure 4: LeYOLO Head architecture

We theorize that there is no need to add spatial in-
formation other than to refine the features extracted
by the backbone and neck channels-by-channels us-
ing lightweight depthwise convolutions (Figure 4).
Through YOLO’s point-by-point grid operation,
we theorize that it is possible to simplify detec-
tion heads using pointwise convolution as a sliding
multi-layer perceptron solution pixel by pixel, re-
sembling classification propositions for each pixel.
Several depthwise convolutions for spatial-only in-
structions refine the spatial relationship between
two pointwise classifiers and regress each pixel.
We prove that using only pointwise convolutions at the head of the model yields impressive results with 33.4
mAP at the LeYOLO-Nano@640 scale. Refining spatial information with depthwise convolution between
pointwise convolutions pushes the model to 34.3 mAP.

3.2 EXPERIMENTAL RESULTS

We train each neural network with the same exact hyperparameters and data augmentation, such as SGD,
with a learning rate of 0.01 and momentum of 0.9. We mostly rely on mosaic data augmentation as well as
hsv of {0.015, 0.7, 0.4} and an image translation of 0.1. As for the training specificities, we used a 96-batch
size over 4 P100 GPUs. Performance is evaluated on the validation set using mean average precision. For
more hyperparameters, see the appendix.
For LeYOLO, we offer a variety of models inspired by the architectural base presented above. A classic
approach involves scaling the number of channels, layers, and input image size. Traditionally, scaling em-
phasizes channel and layer configurations, sometimes incorporating various scaling patterns.
LeYOLO scale from Nano to Large version with scaling related to what EfficientDet brought: channels
from 1.0 to 1.33, layers from 1.0 to 1.33, and spatial size for training purpose from 640×640 to 768×768.
Several spatial sizes are used for evaluation purposes, ranging from 320× 320 to 768× 768. Further infor-
mation on scaling is in the appendix.

3.2.1 MOBILE OBJECT DETECTION

Table 1: LeYOLO speed (ms - lower is better) and
accuracy ratio on embedded devices (Onnx GPU run-
time - no trt).

Models Input Size mAP Speed(ms)
LeYOLO Nano 320 25.2 44.7
LeYOLO Nano 640 34.3 74.0
LeYOLO Small 640 38.2 87.9
LeYOLO Medium 640 39.3 106.6
YOLOv8 Nano Jocher et al. (2023) 640 37.3 111.9
YOLOv10 Nano cite 640 38.5 126.6
EfficientDet D0 Tan et al. (2020) 518 34.6 137.0
YOLOv9 Tiny Wang et al. (2024) 640 38.3 144.9
LeYOLO Large 767 41.0 145.2
EfficientDet D1 Tan et al. (2020) 640 40.5 271.57

Computation. LeYOLO outperforms the state-of-
the-art YOLO-type object detectors on embedded
devices or those with limited computational power.
In the appendix, we provide a detailed table showing
the number of FLOPs, and we observe a correlation
between this metric and the execution speed on low-
computation devices, particularly in terms of par-
allelization. LeYOLO is faster than recent YOLO
models designed for speed, achieving better accu-
racy (Table 1).

Downstream tasks results. We integrate several
sota low-parameter backbones with LeYOLO neck
and head, calling the resultant network the con-
cerned backbone + LeYOLO. No matter the back-
bone used, all channel numbers, P3, P4 and P5
repetition specificities stay the same. At P3, the first pointwise convolution is never used, like in vanilla
LeYOLO, resulting in the first filter being the depthwise convolution of the exact size of the backbone

8

376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422

Under review as a conference paper at ICLR 2025

Figure 5: LeYOLO compared to SSDLite, with better parameter and precision efficiency

equivalent input number of channels.
We take inspiration from SSDLite auxiliary parts:
LeYOLO as a downstream object detector for lightweight classifiers keeps at the same number of channels
4 and layer repetition 5 as the LeYOLO Nano version. From a variety of lightweight classifiers with a low
number of parameters and FLOP, LeYOLO outperformed SSDLite in every aspect of what we expect from
a low-cost model - better parameter scaling, better precision, and finally, better throughput 6 - with results
described in table 2 and Figure 5.

Models SSDLite LeYOLO SSDLite LeYOLO
Parameters(M) mAP.95

V3-Small 2.49 1.34 16.0 21.3
V3-Large 4.97 3.33 22 28.1

EfficientDetD0 3.9 3.29 34.6 37.1
V2-0.5 1.54 0.98 16.6 23.3
V2-1.0 4.3 2.39 22.1 28.6

MNASNet 0.35 1.02 0.7 15.6 20.0
MNASNet 0.5 1.68 1.22 18.5 24.6

MNASNet 4.68 2.8 23 28.9

Table 2: LeYOLO performance compared to lightweight classifier on MSCOCO object detection down-
stream tasks with SSDLite

4 CONCLUSION

As we try to offer thorough theoretical insights from state-of-the-art neural networks to craft optimized so-
lutions, we acknowledge several areas for potential improvement, and we cannot wait to see further research
advancements with LeYOLO.

432 to 96 channels with extension ratio of 2
5repetition l = 3
6From the variety of available, fully reproducible and testable model on Jetsons devices with corresponding most

up-to-data Jetpack versions

9

423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469

Under review as a conference paper at ICLR 2025

4.1 DICUSSIONS AND LIMITATIONS

LeYOLO FPANet + DNiN Head: Considering the cost-effectiveness of our FPANet and model head, there
is a significant opportunity for experimentation across different backbones of state-of-the-art classification
models. LeYOLO emerges as a promising alternative to SSD and SSDLite. The promising results achieved
on MSCoco with our solution suggest potential applicability to other classification-oriented models We
focused our optimization efforts specifically on MSCOCO and YOLO-oriented networks. However, we
encourage experimentation with our solution on other datasets as well.

Computational efficiency: We have implemented a new scaling for YOLO models, proving that it is pos-
sible to achieve very high levels of accuracy while using very few computational resources (FLOP). Nev-
ertheless, we are not the fastest in state of the art, as there are speed imperfections due to the (deliberate)
lack of parallelizable architecture like our predecessors Sandler et al. (2018); Howard et al. (2019); Tan et al.
(2020). However, only YOLOv7 and v6 are faster than our solution on a powerful enough GPU to ensure
enough memory space on every YOLO benchmarked. As for the Jetson TX2, it seems LeYOLO is better
blabla-finir. We could further analyze scaling for different edge powers to propose parallelizable column and
block scaling.

4.2 FUTURE WORKS

We encourage further experimentation with our proposal, going deeper into experimental outcomes while
exploring various dataset variants tailored to specific industry needs, such as intelligent agriculture and
medicine.
We aim to provide a broader range of comparisons for LeYOLO in scenarios involving mobile devices
with very limited computational resources, thereby demonstrating the ability of LeYOLO’s low-memory-
cost Neck to compute different levels of centralized semantic information on P4. Finally, as discussed in
the limitations, LeYOLO could occupy a niche between parameter optimization and high execution speed,
further advancing current object detection solutions for embedded systems.

10

470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516

Under review as a conference paper at ICLR 2025

REFERENCES

Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. Yolov4: Optimal speed and accuracy
of object detection. arXiv preprint arXiv:2004.10934, April 2020. doi: 10.48550/arXiv.2004.10934.

Yuxuan Cai, Yizhuang Zhou, Qi Han, Jianjian Sun, Xiangwen Kong, Jun Li, and Xiangyu Zhang. Reversible
column networks. arXiv preprint arXiv:2212.11696, 2023. URL http://arxiv.org/abs/2212.
11696.

Qiang Chen, Yingming Wang, Tong Yang, Xiangyu Zhang, Jian Cheng, and Jian Sun. You only look one-
level feature. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 13039–13048, 2021.

Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-weighted linear units for neural network function
approximation in reinforcement learning. Neural Networks, 107:3–11, November 2018. ISSN 0893-
6080. doi: 10.1016/j.neunet.2017.12.012. URL https://www.sciencedirect.com/science/
article/pii/S0893608017302976.

Wei Fang, Lin Wang, and Peiming Ren. Tinier-YOLO: A Real-Time Object Detection Method for Con-
strained Environments. IEEE Access, 8:1935–1944, 2020. ISSN 2169-3536. doi: 10.1109/ACCESS.
2019.2961959.

Paul A. Gagniuc. Markov Chains: From Theory To Implementation And Experimentation. John Wiley and
Sons, Inc, 2017. ISBN 978-1-119-38755-8. doi: 10.1002/9781119387596.

Zheng Ge, Songtao Liu, Feng Wang, Zeming Li, and Jian Sun. Yolox: Exceeding yolo series in 2021. arXiv
preprint arXiv:2107.08430, August 2021. doi: 10.48550/arXiv.2107.08430.

Golnaz Ghiasi, Tsung-Yi Lin, and Quoc V Le. Nas-fpn: Learning scalable feature pyramid architecture for
object detection. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 7036–7045, 2019.

Mohammad Hajizadeh, Mohammad Sabokrou, and Adel Rahmani. MobileDenseNet: A new approach to ob-
ject detection on mobile devices. Expert Systems with Applications, 215:119348, April 2023. ISSN 0957-
4174. doi: 10.1016/j.eswa.2022.119348. URL https://www.sciencedirect.com/science/
article/pii/S0957417422023661.

Dongyoon Han, Sangdoo Yun, Byeongho Heo, and YoungJoon Yoo. Rethinking channel dimensions for
efficient model design. In Proceedings of the IEEE/CVF conference on Computer Vision and Pattern
Recognition, pp. 732–741, 2021.

Kai Han, Yunhe Wang, Qi Tian, Jianyuan Guo, Chunjing Xu, and Chang Xu. Ghostnet: More features
from cheap operations. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 1580–1589, 2020.

Geoffrey Hinton. How to Represent Part-Whole Hierarchies in a Neural Network. Neural Computation,
35(3):413–452, February 2023. ISSN 0899-7667. doi: 10.1162/neco a 01557. URL https://doi.
org/10.1162/neco_a_01557.

Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun Wang,
Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al. Searching for mobilenetv3. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 1314–1324, 2019.

11

http://arxiv.org/abs/2212.11696
http://arxiv.org/abs/2212.11696
https://www.sciencedirect.com/science/article/pii/S0893608017302976
https://www.sciencedirect.com/science/article/pii/S0893608017302976
https://www.sciencedirect.com/science/article/pii/S0957417422023661
https://www.sciencedirect.com/science/article/pii/S0957417422023661
https://doi.org/10.1162/neco_a_01557
https://doi.org/10.1162/neco_a_01557

517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563

Under review as a conference paper at ICLR 2025

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco
Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for mobile vision
applications. arXiv preprint arXiv:1704.04861, 2017.

Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J Dally, and Kurt Keutzer.
Squeezenet: Alexnet-level accuracy with 50x fewer parameters and¡ 0.5 mb model size. arXiv preprint
arXiv:1602.07360, 2016. doi: 10.48550/arXiv.1602.07360.

Glenn Jocher, Ayush Chaurasia, Alex Stoken, Jirka Borovec, NanoCode012, Yonghye Kwon, Kalen
Michael, TaoXie, Jiacong Fang, imyhxy, Lorna, (Zeng Yifu), Colin Wong, Abhiram V, Diego Montes,
Zhiqiang Wang, Cristi Fati, Jebastin Nadar, Laughing, UnglvKitDe, Victor Sonck, tkianai, yxNONG, Pi-
otr Skalski, Adam Hogan, Dhruv Nair, Max Strobel, and Mrinal Jain. ultralytics/yolov5: v7.0 - YOLOv5
SOTA Realtime Instance Segmentation, November 2022. URL https://zenodo.org/records/
7347926.

Glenn Jocher, Ayush Chaurasia, and Jing Qiu. Ultralytics YOLO, January 2023. URL https://github.
com/ultralytics/ultralytics.

Hyeong-Ju Kang. Ssdlitex: Enhancing ssdlite for small object detection. Applied Sciences, 13(21), 2023.
ISSN 2076-3417. doi: 10.3390/app132112001. URL https://www.mdpi.com/2076-3417/13/
21/12001.

Chuyi Li, Lulu Li, Hongliang Jiang, Kaiheng Weng, Yifei Geng, Liang Li, Zaidan Ke, Qingyuan Li, Meng
Cheng, Weiqiang Nie, et al. Yolov6: A single-stage object detection framework for industrial applications.
arXiv preprint arXiv:2209.02976, September 2022. doi: 10.48550/arXiv.2209.02976.

Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. arXiv preprint arXiv:1312.4400, 2013.
doi: 10.48550/arXiv.1312.4400.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and
C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer Vision–ECCV 2014: 13th
European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13, pp. 740–755.
Springer, 2014.

Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie. Feature
pyramid networks for object detection. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 2117–2125, 2017.

Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, and Alexan-
der C. Berg. Ssd: Single shot multibox detector. In Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling
(eds.), Computer Vision – ECCV 2016, pp. 21–37, Cham, 2016. ISBN 978-3-319-46448-0.

Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. Shufflenet v2: Practical guidelines for efficient
cnn architecture design. In Proceedings of the European conference on computer vision (ECCV), pp. 116–
131, 2018.

Muhammad Maaz, Abdelrahman Shaker, Hisham Cholakkal, Salman Khan, Syed Waqas Zamir,
Rao Muhammad Anwer, and Fahad Shahbaz Khan. EdgeNeXt: Efficiently Amalgamated CNN-
Transformer Architecture forMobile Vision Applications. In Leonid Karlinsky, Tomer Michaeli, and
Ko Nishino (eds.), Computer Vision ECCV 2022 Workshops, Lecture Notes in Computer Science, pp.
3–20, Cham, 2023. ISBN 978-3-031-25082-8. doi: 10.1007/978-3-031-25082-8 1.

Sachin Mehta and Mohammad Rastegari. Mobilevit: Light-weight, general-purpose, and mobile-friendly
vision transformer. In International Conference on Learning Representations, 2022a. URL https:
//openreview.net/forum?id=vh-0sUt8HlG.

12

https://zenodo.org/records/7347926
https://zenodo.org/records/7347926
https://github.com/ultralytics/ultralytics
https://github.com/ultralytics/ultralytics
https://www.mdpi.com/2076-3417/13/21/12001
https://www.mdpi.com/2076-3417/13/21/12001
https://openreview.net/forum?id=vh-0sUt8HlG
https://openreview.net/forum?id=vh-0sUt8HlG

564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610

Under review as a conference paper at ICLR 2025

Sachin Mehta and Mohammad Rastegari. Separable Self-attention for Mobile Vision Transformers, June
2022b. URL http://arxiv.org/abs/2206.02680.

Julian Moosmann, Marco Giordano, Christian Vogt, and Michele Magno. Tinyissimoyolo: A quantized,
low-memory footprint, tinyml object detection network for low power microcontrollers. In 2023 IEEE
5th International Conference on Artificial Intelligence Circuits and Systems (AICAS), pp. 1–5, 2023. doi:
10.1109/AICAS57966.2023.10168657.

Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and Ilya Sutskever. Deep dou-
ble descent: Where bigger models and more data hurt. Journal of Statistical Mechanics: Theory and
Experiment, 2021(12):124003, 2021.

Joseph Redmon and Ali Farhadi. Yolo9000: Better, faster, stronger. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), July 2017.

Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. arXiv preprint arXiv:1804.02767,
2018. doi: 10.48550/arXiv.1804.02767.

Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once: Unified, real-time
object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 779–788, June 2016.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mobilenetv2:
Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 4510–4520, 2018.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recogni-
tion. arXiv preprint arXiv:1409.1556, 2014. doi: 10.48550/arXiv.1409.1556.

Mingxing Tan and Quoc Le. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks.
In Proceedings of the 36th International Conference on Machine Learning, pp. 6105–6114. PMLR, May
2019. URL https://proceedings.mlr.press/v97/tan19a.html.

Mingxing Tan and Quoc Le. EfficientNetV2: Smaller Models and Faster Training. In Proceedings of
the 38th International Conference on Machine Learning, pp. 10096–10106. PMLR, July 2021. URL
https://proceedings.mlr.press/v139/tan21a.html.

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard, and Quoc V.
Le. MnasNet: Platform-Aware Neural Architecture Search for Mobile. In 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 2815–2823, Long Beach, CA, USA, June 2019.
ISBN 978-1-72813-293-8. doi: 10.1109/CVPR.2019.00293. URL https://ieeexplore.ieee.
org/document/8954198/.

Mingxing Tan, Ruoming Pang, and Quoc V Le. Efficientdet: Scalable and efficient object detection. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 10781–10790,
2020.

Yehui Tang, Kai Han, Jianyuan Guo, Chang Xu, Chao Xu, and Yunhe Wang. GhostNetV2: Enhance Cheap
Operation with Long-Range Attention. Advances in Neural Information Processing Systems, 35:9969–
9982, December 2022. URL https://proceedings.neurips.cc/paper_files/paper/
2022/hash/40b60852a4abdaa696b5a1a78da34635-Abstract-Conference.html.

Naftali Tishby and Noga Zaslavsky. Deep learning and the information bottleneck principle. In 2015
IEEE Information Theory Workshop (ITW), pp. 1–5, April 2015. doi: 10.1109/ITW.2015.7133169. URL
https://ieeexplore.ieee.org/abstract/document/7133169.

13

http://arxiv.org/abs/2206.02680
https://proceedings.mlr.press/v97/tan19a.html
https://proceedings.mlr.press/v139/tan21a.html
https://ieeexplore.ieee.org/document/8954198/
https://ieeexplore.ieee.org/document/8954198/
https://proceedings.neurips.cc/paper_files/paper/2022/hash/40b60852a4abdaa696b5a1a78da34635-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/40b60852a4abdaa696b5a1a78da34635-Abstract-Conference.html
https://ieeexplore.ieee.org/abstract/document/7133169

611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657

Under review as a conference paper at ICLR 2025

Pavan Kumar Anasosalu Vasu, James Gabriel, Jeff Zhu, Oncel Tuzel, and Anurag Ranjan. Fastvit: A fast
hybrid vision transformer using structural reparameterization. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pp. 5785–5795, 2023. doi: 10.48550/arXiv.2303.14189.

Shakti N Wadekar and Abhishek Chaurasia. Mobilevitv3: Mobile-friendly vision transformer with simple
and effective fusion of local, global and input features. arXiv preprint arXiv:2209.15159, October 2022.
doi: 10.48550/arXiv.2209.15159.

Chien-Yao Wang, Alexey Bochkovskiy, and Hong-Yuan Mark Liao. Yolov7: Trainable bag-of-freebies
sets new state-of-the-art for real-time object detectors. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 7464–7475, June 2023.

Chien-Yao Wang, I-Hau Yeh, and Hong-Yuan Mark Liao. Yolov9: Learning what you want to learn using
programmable gradient information. arXiv preprint arXiv:2402.13616, 2024. doi: 10.48550/arXiv.2402.
13616.

Zixuan Wang, Jiacheng Zhang, Zhicheng Zhao, and Fei Su. Efficient Yolo: A Lightweight
Model For Embedded Deep Learning Object Detection. In 2020 IEEE Interna-
tional Conference on Multimedia & Expo Workshops (ICMEW), pp. 1–6, July 2020.
doi: 10.1109/ICMEW46912.2020.9105997. URL https://ieeexplore.ieee.
org/abstract/document/9105997?casa_token=3dM7et7rzycAAAAA:-xD_
K4R6um31kq-sqHUGrB4xUm3DgI49Xz8Ru0nHb72IOHci2MWTorIKX7EeEHDM5UpTSd23UJhr.

Wang Yang, Ding BO, and Li Su Tong. TS-YOLO:An efficient YOLO Network
for Multi-scale Object Detection. In 2022 IEEE 6th Information Technology and
Mechatronics Engineering Conference (ITOEC), volume 6, pp. 656–660, March
2022. doi: 10.1109/ITOEC53115.2022.9734458. URL https://ieeexplore.
ieee.org/abstract/document/9734458?casa_token=_hy9gZyUFUMAAAAA:
oAu15djokVRnx8jjHoZqLC5rFil202hG7UtGR94g4crkCgBsfvg8mHDLfrXBkyQG1IIGHa_
w1jYL.

Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, and Jiaya Jia. Pyramid scene parsing net-
work. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2881–2890,
2017.

14

https://ieeexplore.ieee.org/abstract/document/9105997?casa_token=3dM7et7rzycAAAAA:-xD_K4R6um31kq-sqHUGrB4xUm3DgI49Xz8Ru0nHb72IOHci2MWTorIKX7EeEHDM5UpTSd23UJhr
https://ieeexplore.ieee.org/abstract/document/9105997?casa_token=3dM7et7rzycAAAAA:-xD_K4R6um31kq-sqHUGrB4xUm3DgI49Xz8Ru0nHb72IOHci2MWTorIKX7EeEHDM5UpTSd23UJhr
https://ieeexplore.ieee.org/abstract/document/9105997?casa_token=3dM7et7rzycAAAAA:-xD_K4R6um31kq-sqHUGrB4xUm3DgI49Xz8Ru0nHb72IOHci2MWTorIKX7EeEHDM5UpTSd23UJhr
https://ieeexplore.ieee.org/abstract/document/9734458?casa_token=_hy9gZyUFUMAAAAA:oAu15djokVRnx8jjHoZqLC5rFil202hG7UtGR94g4crkCgBsfvg8mHDLfrXBkyQG1IIGHa_w1jYL
https://ieeexplore.ieee.org/abstract/document/9734458?casa_token=_hy9gZyUFUMAAAAA:oAu15djokVRnx8jjHoZqLC5rFil202hG7UtGR94g4crkCgBsfvg8mHDLfrXBkyQG1IIGHa_w1jYL
https://ieeexplore.ieee.org/abstract/document/9734458?casa_token=_hy9gZyUFUMAAAAA:oAu15djokVRnx8jjHoZqLC5rFil202hG7UtGR94g4crkCgBsfvg8mHDLfrXBkyQG1IIGHa_w1jYL
https://ieeexplore.ieee.org/abstract/document/9734458?casa_token=_hy9gZyUFUMAAAAA:oAu15djokVRnx8jjHoZqLC5rFil202hG7UtGR94g4crkCgBsfvg8mHDLfrXBkyQG1IIGHa_w1jYL

658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704

Under review as a conference paper at ICLR 2025

A APPENDIX

CONTENTS

1 Introduction 1

2 Related work 3

3 LeYOLO: A low-parameters oriented object detector 4

3.1 LeYOLO Architecture . 4

3.1.1 LeYOLO Block. 4

3.1.2 LeYOLO Backbone - Stride strategy. 5

3.1.3 Relationship to dimension choice. 5

3.1.4 LeYOLO as a general-purpose object detector . 6

3.2 Experimental results . 8

3.2.1 Mobile object detection . 8

4 Conclusion 9

4.1 Dicussions and limitations . 10

4.2 Future works . 10

A Appendix 15

A.1 Complete State-of-the-art . 16

A.2 Notations . 16

A.3 Extended discussion on related work . 17

A.3.1 Architecture differences . 18

A.4 Overall Architecture . 19

A.5 Experimental details . 20

A.5.1 Models . 20

A.5.2 Experimentations - Image classification . 21

A.5.3 Architecture scaling choice . 22

A.6 Speed tests . 22

A.7 Code . 23

A.8 Training specificity . 23

15

705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751

Under review as a conference paper at ICLR 2025

A.1 COMPLETE STATE-OF-THE-ART

In the paper, we presented comparisons based on criteria specific to each class of object detectors: speed
for the YOLO mainline (Table X) and parameter count for low-cost detectors (Table Z). In this section, we
expand the discussion by comparing the number of FLOPs. Additionally, we have enhanced the analysis
with a more comprehensive comparative study, incorporating different levels of precision measurements.
This section comprehensively compares the state-of-the-art, juxtaposing LeYOLO with YOLO mainline
models, micro neural networks designed for object detection, and the leading classification model, SSDLite,
operating at 320x320 resolution.

We evaluate our performance against others using two primary metrics: mean average precision (mAP) and
FLOPs. The mAP is computed with various parameters, including an IOU of 0.5. For FLOP, somehow the
intertwined nature of MAC and FLOP formulas has resulted in inconsistencies, with researchers erroneously
labeling their models using FLOP instead of MAC. This implies that the computational cost of the model is
at least twice the stated initial amount.

We also added the number of parameters used in a lightweight state-of-the-art model for object detection.
Except for impressive results from YOLOv9-Tiny with two million parameters, our contributions use very
few parameters compared to others. Table 3 shows all results.

Table 3: State-of-the-art lightweight object detector.

Models Input Size mAP mAP50 mAP75 S M L FLOP(G) Parameters (M)
MobileNetv3-SHoward et al. (2017) 320 16.1 - - - - - 0.32 1.77
MobileNetv2-x0.5Sandler et al. (2018) 320 16.6 - - - - - 0.54 1.54
MnasNet-x0.5Tan et al. (2019) 320 18.5 - - - - - 0.58 1.68
LeYOLO-Nano 320 25.2 37.7 26.4 5.5 23.7 48.0 0.66 1.1
MobileNetv3Howard et al. (2019) 320 22 - - - - - 1.02 3.22
YOLOX-NanoGe et al. (2021) 320 25.3 - - - - - 1.08 0.91
NanoDet 23.5 - - - - - 1.2 0.95
LeYOLO-Small 320 29 42.9 30.6 6.5 29.1 53.4 1.126 1.9
LeYOLO-Nano 480 31.3 46 33.2 10.5 33.1 52.7 1.47 1.1
MobileNetv2Sandler et al. (2018) 320 22.1 - - - - - 1.6 4.3
MnasNetTan et al. (2019) 320 23 - - - - - 1.68 4.8
LeYOLO-Small 480 35.2 50.5 37.5 13.3 38.1 55.7 2.53 1.9
Tinier-YOLO 17 34 15.7 4.8 17.3 26.8 2.563 -
MobileNetv1Howard et al. (2017) 320 22.2 - - - - - 2.6 5.1
LeYOLO-Medium 480 36.4 52.0 38.9 14.3 40.1 58.1 3.27 2.4
LeYOLO-Small 640 38.2 54.1 41.3 17.6 42.2 55.1 4.5 1.9
YOLOv5-nJocher et al. (2022) 640 28 45.7 - - - - 4.5 1.9
EfficientDet-D0Tan et al. (2020) 512 33.80 52.2 35.8 12 38.3 51.2 5 3.9
LeYOLO-Medium 640 39.3 55.7 42.5 18.8 44.1 56.1 5.8 1.9
YOLOv7-TinyWang et al. (2023) 416 33.3 49.9 - - - - 5.8 6.2
YOLOX-TinyGe et al. (2021) 416 32.8 50.3 - - - - 6.5 5.06
YOLOv4-tinyBochkovskiy et al. (2020) - 21.7 - - - - - 6.96 6.06
YOLOv9-TinyWang et al. (2024) 640 38.3 53.1 41.3 - - - 7.7 2
LeYOLO-Large 768 41 57.9 44.3 21.9 46.1 56.8 8.4 2.4
YOLOv6-NLi et al. (2022) 640 35.9 51.2 - - - - 11.1 4.3

A.2 NOTATIONS

Throughout the document, we use several notations to describe the essential components of deep learning,
particularly in object detectionfor example, the spatial size of different tensors described as Pi. This chapter
covers all the notations used in the paper. Since there is little to no consensus on Deep Learning notations,
we found it relevant to describe them in more depth in the appendix for readers who need further explanation.

16

752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798

Under review as a conference paper at ICLR 2025

To start, we want to provide more explanation on the main component of this paper: the computation for-
mula. We consistently use the FLOP (Floating Point Operations) metric to compare our work with other
state-of-the-art neural networks throughout the paper. By basing computations on the number of multipli-
cations and additions required for the neural network, we establish a solid foundation for efficient model
comparisons. The FLOP metric remains reliable regardless of the hardware used, making it a good indicator
of computational efficiency. Although we could use other metrics such as speed, these are highly depen-
dent on factors like neural network architecture parallelization, the hardware used, the accelerator software
(TensorRT, CoreML, TFLite), and memory usage and transfer speeds.

The second main element we consistently use throughout the paper is mAP (mean Average Precision).
Researchers widely use this metric to compare object detection-based neural networks. mAP measures
the precision of the model by evaluating the overlap between the proposed bounding boxes and the actual
annotated bounding boxes. While some papers compare models using mAP at a fixed threshold of 50%
overlap (mAP50), we primarily use mAP50-95. This metric averages the precision over different overlap
thresholds, ranging from 50% to 95%, covering a broader range of evaluation criteria.

In object detection, where the spatial size of the feature map is essential, we define Pi as the feature map size
of our deep neural network. The sizes range from P0 (640x640 pixels) to P5 (20x20 pixels) for LeYOLO-
Small to Medium, with i representing the number of strides used. Similarly, Pi−1 denotes the size of the
preceding feature map for the explicitly described feature map i.

Similarly, when describing hidden layers in the neural network, we refer to the entire block rather than a
single convolution. For example, the paper describes a single inverted bottleneck as one hidden layer hj that
consists of two pointwise convolutions and one depthwise convolution. Throughout the paper, this lets us
directly refer to the preceding inverted bottleneck as hj−1.

A.3 EXTENDED DISCUSSION ON RELATED WORK

Sandler et al. (2018); Howard et al. (2019): Inspired by MobileNetv2’s achievements in reducing the num-
ber of parameters and FLOPs in neural networks through inverted bottlenecks, MobileNetv3 demonstrated
once again that it is possible to further leverage this architecture, which dates back to 2018, to significantly
improve accuracy. This idea led to the development of LeYOLO, an optimization of the inverted bottleneck
focused on finding the optimal number and arrangement of layers based on the spatial size of the inputs.
We advanced the concept of a more efficient object detection model by first implementing MobileNetv3-
Small within the YOLOv8 API Jocher et al. (2023), yielding much more promising results than those
achieved with SSDLite. However, we found the MobileNetv3-Small backbone too slow to reach the ex-
tremely fast execution speeds desired in YOLO-related research.

Tishby & Zaslavsky (2015); Han et al. (2021): Inspired by the study by Tishy et al., we compared the layer
count of MobileNetv3 with a more reduced and consequently faster configuration. This led us logically to
analyze the work of Dooyan et al. Through a deeper examination of layer count to understand its impact, they
concluded that reducing the number of expansion layers rather than extending them, regardless of scaling
is more beneficial. We extended this study by demonstrating that it can improve accuracy with expansions
smaller than 3 throughout the neural network.
In LeYOLO, each part of the model never exceeds an input and output layer count difference of more than 6.
The backbone of LeYOLO starts with 16 layers at P1 and ends with 96 layers. The Neck of LeYOLO has a
layer count between 32 and 96, with a maximum expansion of 192, ensuring that the layer difference never
exceeds 6. Finally, LeYOLOs Head is proportional to the number of input layers and MSCOCO classes.

Nakkiran et al. (2021): Nakkiran et al. demonstrated a new way of observing the scaling of deep neural
networks, primarily addressing why many parameters on very deep neural networks work well for solving
computer vision problems. Their study shows that there is indeed a model scaling that can enhance accuracy

17

799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845

Under review as a conference paper at ICLR 2025

with a very large number of parameters. However, they also observed a phenomenon of double descent
when the training curve is plotted not against the number of epochs on the x-axis but against scaling. A
regime with few parameters can outperform much larger scalings in this scenario. Therefore, this case study
suggests that focusing on a very small number of parameters and performing scaling that fits this range rather
than trying to surpass this barrier is worthwhile.
As a result, LeYOLO proposes a simple yet controlled scaling approach with a small amplifier for the number
of layers and layer repetitions. The final scaling proposed is not based on the number of parameters in the
neural network but on its input to maintain the integrity of a modest scaling approach.

Howard et al. (2017): MobileNetv4, which came out in the same period we initially worked on LeYOLO,
proposes a similar alternative to the inverted bottleneck as we did. They propose to add an optional convo-
lution in the inverted bottleneck: a new optional depthwise convolution right at the beginning. We are very
interested in the study of MobileNetv4 as they focus on neural architecture search with speed rewards on
mobile devices, and we raised the question, does focusing on mobile hardware speeds reduce the number of
parameters and FLOP of the neural network?
MobileNetv4 is very fast but uses many more parameters than previously done in the state-of-the-art
lightweight neural network but paved a very interesting way into shaping a more speed-efficient inverted
bottleneck.

We consider LeYOLO and MobileNetv4 complementary as we prove that inverted bottleneck might still be
more parameters-efficient, reaching better accuracy with a much smaller number of parameters and compu-
tation cost.

A.3.1 ARCHITECTURE DIFFERENCES

We propose a comparison between our proposition and several inverted bottleneck-inspired backbones. De-
spite being disregarded by most contemporary state-of-the-art object detectors, MobileNetv2 Sandler et al.
(2018), MobileNetv3 Howard et al. (2019), and EfficientNets Wang et al. (2020); Tan & Le (2021); Tan et al.
(2020) share the philosophy of employing inverted bottlenecks for object detection.

As mentioned in the introduction, advancements in GPUs have enabled the development of powerful and
rapid neural networks. However, inverted bottlenecks provide limited depth for parallelizing multiple com-
putation blocks. Parallelizing deep neural networks on embedded devices remains challenging, but there
is optimism for the future. Research primarily focuses on reducing MAC and FLOP costs and occasion-
ally even memory access costs. Naturally, execution speed remains a significant concern. Nevertheless, we
aim to briefly compare our backbone (Table 4) using consistent notation with models that exhibit ”similar”
architecture (Tables 6, 5 and 7), particularly those utilizing inverted bottlenecks.

Through this comparison, we can observe the stride-inverted bottleneck strategy. Upon code verification,
we indeed notice a contrast in channel expansion when transitioning from one layer (hi;Pi) to another
(hi+1;Pi+1) with a stride greater than one. Additionally, most inverted bottlenecks utilize an expansion
ratio of 6, whereas we only expand to 3 within a block. This reduces overall computation and allows the
inverted bottleneck stride strategy to expand the number of channels one last time before the stride within
the depthwise convolution.

18

846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892

Under review as a conference paper at ICLR 2025

Table 4: LeYOLO backbone (base scale: nano).

Input Operator exp size out size NL s
P0 conv2d, 3x3 - 16 SI 2
P1 conv2d, 1x1 16 16 SI 1
P1 bneck, 3x3, pw=False 16 16 SI 2
P2 bneck, 3x3 96 32 SI 2
P3 bneck, 3x3 96 32 SI 1
P3 bneck, 5x5 96 64 SI 2
P4 bneck, 5x5 192 64 SI 1
P4 bneck, 5x5 192 64 SI 1
P4 bneck, 5x5 192 64 SI 1
P4 bneck, 5x5 192 64 SI 1
P4 bneck, 5x5 576 96 SI 2
P5 bneck, 5x5 576 96 SI 1
P5 bneck, 5x5 576 96 SI 1
P5 bneck, 5x5 576 96 SI 1
P5 bneck, 5x5 576 96 SI 1

Table 5: MobileNetv3 backbone.

Input Operator exp size out size NL s
P0 conv2d, 3x3 - 16 HS 2
P1 conv2d, 1x1 16 16 RE 2
P2 bneck, 3x3 72 24 RE 2
P3 bneck, 3x3 88 24 RE 1
P3 bneck, 5x5 96 40 HS 2
P4 bneck, 5x5 96 40 HS 1
P4 bneck, 5x5 240 40 HS 1
P4 bneck, 5x5 240 40 HS 1
P4 bneck, 5x5 120 48 HS 1
P4 bneck, 5x5 144 48 HS 1
P4 bneck, 5x5 288 96 HS 2
P5 bneck, 5x5 576 96 HS 1
P5 bneck, 5x5 576 96 HS 1

Table 6: MobileNetv2 backbone.

Input Operator exp size out size NL s
P0 conv2d, 3x3 - 32 RE 2
P1 bneck, 3x3 16 16 RE 1
P1 bneck, 3x3 96 24 RE 2
P2 bneck, 3x3 144 24 RE 1
P2 bneck, 3x3 144 32 RE 2
P3 bneck, 3x3 192 32 RE 1
P3 bneck, 3x3 192 32 RE 1
P3 bneck, 3x3 192 64 RE 2
P4 bneck, 3x3 384 64 RE 1
P4 bneck, 3x3 384 64 RE 1
P4 bneck, 3x3 384 64 RE 1
P4 bneck, 3x3 384 96 RE 1
P4 bneck, 3x3 576 96 RE 1
P4 bneck, 3x3 576 96 RE 1
P4 bneck, 3x3 576 160 RE 2
P5 bneck, 3x3 960 160 RE 1
P5 bneck, 3x3 960 320 RE 1
P5 conv, 1x1 1920 320 RE 1

Table 7: EfficientNet-B0 (EfficientDet-D0 and
D1) backbone.

Input Operator exp size out size NL s
P0 conv2d, 3x3 - 32 RE 2
P1 bneck, 3x3 16 16 RE 1
P1 bneck, 3x3 96 24 RE 2
P2 bneck, 3x3 144 24 RE 1
P2 bneck, 5x5 144 40 RE 2
P3 bneck, 5x5 240 40 RE 1
P3 bneck, 3x3 240 80 RE 1
P3 bneck, 3x3 480 80 RE 1
P3 bneck, 3x3 480 80 RE 1
P3 bneck, 5x5 480 112 RE 2
P4 bneck, 5x5 672 112 RE 1
P4 bneck, 5x5 672 112 RE 1
P4 bneck, 5x5 672 192 RE 2
P5 bneck, 5x5 1152 192 RE 1
P5 bneck, 5x5 1152 192 RE 1
P5 bneck, 5x5 1152 192 RE 1
P5 bneck, 3x3 1280 320 RE 1

A.4 OVERALL ARCHITECTURE

For the sake of readability, we have omitted a discussion of the semantic shcostg strategy in the neck. In
the bottom-up pathway, we employ lightweight blocks for upsampling the feature map, while the top-down
pathway utilizes standard convolutions. Despite their pronounced cost, strived standard convolutions prove
efficient in this context due to their low spatial size and the restrained number of channels used.

We experimented with inverted bottlenecks instead of convolutions but found them more costly and less
accurate. Additionally, we refrain from using any convolutions before the first 20x20 upsampling, diverging
from the approach taken in most YOLO architectures. We question the necessity of another convolution
after the Spatial Pyramid Pooling Fusion (SPPF) Jocher et al. (2022; 2023), as it may already be sufficiently
efcostent in the backbone. Lastly, the 80x80 aspect is resource-intensive and requires careful consideration.
Following similar reasoning, we avoided computation for the 80x80 top-down pathway, as the cost seemed
disproportionate to the marginal accuracy improvement, as demonstrated in ablation studies on FPANet’s
80x80 pointwise component. Figure 6 represents the complete architecture of LeYOLO.

19

893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939

Under review as a conference paper at ICLR 2025

Figure 6: We present a visual decomposition of the LeYOLO network’s comprehensive architecture, ex-
plaining its backbone, neck, and head components.

A.5 EXPERIMENTAL DETAILS

A.5.1 MODELS

To observe the effectiveness of our theories presented in the chapter on the information bottleneck with a
relatively low parameter scaling, we propose using a family of architectures in the form of a ”toy model,”
as seen in the ”Deep Double Descent” paper Nakkiran et al. (2021), with an inverted bottleneck as the basic
block.

Inverted Bottleneck. Our inverted bottleneck is structured similarly to the backbone of LeYOLO. It consists
of three convolutions: two pointwise and one depthwise placed between them. The first two convolutions
are followed by batch normalization and SiLU activation. The final pointwise convolution only uses nor-
malization without activation.
Architecture. The overall architecture of the toy model begins with a standard 3x3 convolution to a channel
count of k, followed by a pointwise convolution that maintains the same number of channels, similar to
the input processing in LeYOLO. The core of the backbone consists of four layers inspired by the work
of Nakkiran et al. (2021). Each layer comprises two inverted bottlenecks, with the first one applying its
corresponding stride and the number of channels expanding from k to k = [k, 2k, 4k, 8k], using strides of
s = [1, 2, 2, 2]. The expansion factor in the inverted bottleneck is capped at 3, with e = [3, 3, 3, 3].

We are studying the capacity of the information bottleneck, as described in Chapters 3.1.2 and 3.1.3, with
hi, 0 ≤ i < n where n = 4 refers to the four layers of the toy model.

20

940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986

Under review as a conference paper at ICLR 2025

A.5.2 EXPERIMENTATIONS - IMAGE CLASSIFICATION

To validate our ideas on the information bottleneck, particularly regarding the optimization of layers hi

for I(Y ;hi) while minimizing the interconnection between layers from hi to hi+1 from chapter 3.1.3 and
chapter 3.1.2, we propose this experiment with k varying from 16 to 64 as the starting point for our toy
model on CIFAR10.
As indicated in the chapter on the information bottleneck, we minimize hi → hi+1 in the form of h1 → hn,
and in our experiments, we adjust the scaling from k = [k, 2k, 4k, 8k] to k = [k, 2k, 4k, 6k]. This aligns
with the idea of not expanding the input and output information too much, maintaining a global difference
of 6 or less.
We focus on increasing the channels in the inverted bottleneck to maximize hi as much as possible. We
propose comparing the model’s performance with an expansion ratio e between e = 3 and e = 6.
Finally, we combine this study with our strategy to maximize hi in an inverted bottleneck with a stride.
In the state-of-the-art approach, this is typically capped at the current layer’s k value, not the one targeted
after the stride. We then implement a comparison using an expansion of e = 6 for strides >= 2, and
e = 3 as the standard expansion for the other inverted bottlenecks. The solution we implemented for
LeYOLO, which optimizes its information bottlenecks, also demonstrates its superiority on the CIFAR10
testbed, outperforming all other state-of-the-art approaches for channel expansion using inverted bottlenecks,
as shown in Figure 7 (label: max x6 x3dw x6 stride).

Figure 7: CIFAR10 Information bottleneck experimentation with inverted bottlenecks with k varying from
16 to 64

max x8 x3dw x3stride. Base experimentation with k = [k, 2k, 4k, 8k], e = [3, 3, 3, 3], s = [1, 2, 2, 2].
max x8 x6dw x6stride. Experimentation with k = [k, 2k, 4k, 8k], e = [6, 6, 6, 6], s = [1, 2, 2, 2].
max x8 x6dw x3stride. Experimentation with k = [k, 2k, 4k, 8k], e = [6, 6, 6, 6] with strided convolution
and e = [3, 3, 3, 3] for non-strided ones, s = [1, 2, 2, 2].
max x6 x3dw x6stride. Experimentation with k = [k, 2k, 4k, 6k], e = [6, 6, 6, 6] with strided convolution
and e = [3, 3, 3, 3] for non-strided ones, s = [1, 2, 2, 2].

21

987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033

Under review as a conference paper at ICLR 2025

Table 8: LeYOLO base training scaling architecture with their respective results

Models Nano Small Medium Large
Input spatial size 640 640 640 768
Channels ratio x1 x1.33 x1.33 x1.33

Layer ratio x1 x1 x1.33 x1.33
mAP 34.3 38.2 39.3 41

A.5.3 ARCHITECTURE SCALING CHOICE

This section provides more insight into the model scaling proposed in our contributions. As discussed in the
chapter 3.2, we propose four different scaling methods, compressing the architecture below 10 FLOP(G).
Table 8 illustrates the four training scaling possibilities (Nano to Large), and Table9 shows the eight final
proposed scaling for inferences.

Table 9: Architecture scaling with different parameter multipliers.

Models Nano Nano Small Small Small Medium Medium Large
Input spatial size 320p 480p 320p 480p 640p 480p 640p 768p
Channels ratio x1 x1 x1.33 x1.33 x1.33 x1.33 x1.33 x1.33
Layer ratio x1 x1 x1 x1 x1 x1.33 x1.33 x1.33

We can effectively transfer the core architecture from the previously mentioned ablation study to different
input sizes during inference and validation. For instance, a neural network explicitly trained at 640p might
yield better results when compressed and validated at 320p than a neural network trained from scratch at
320p. Consequently, we tested various scales of LeYOLONano, Small, Medium, and Large trained neural
networks from Table 8 to determine the optimal input and training combinations. The results presented in
Table 10 highlight the best outcomes from this study.

Table 10: Ablation study on best training and validation input size

Models training dim validation dim mAP FLOP(G)
LeYOLO-Nano 320 320 24.1 0.66
LeYOLO-Nano 640 320 25.2 0.66
LeYOLO-Nano 480 480 30.9 1.47
LeYOLO-Nano 640 480 31.3 1.47
LeYOLO-Nano 640 640 34.3 2.65
LeYOLO-Small 640 320 29.0 1.126
LeYOLO-Small 640 480 35.2 2.53
LeYOLO-Small 640 640 38.2 4.51

LeYOLO-Medium 640 320 30.0 1.45
LeYOLO-Medium 640 480 36.4 3.27
LeYOLO-Medium 640 640 39.3 5.8

LeYOLO-Large 768 768 41 8.4

A.6 SPEED TESTS

As discussed in the paper, we proposed a highly efficient family of neural network models, focusing solely
on FLOP computation and disregarding execution speed. Inverted bottlenecks inherently reduce the par-
allelization potential of the neural network, causing GPUs to wait for subsequent operations sequentially.

22

1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080

Under review as a conference paper at ICLR 2025

Table 11: Execution speed of reproducible YOLOs and our contribution (sorted by queries per second).

Models QPS FLOP(G) mAP(%)
LeYOLO-Nano@320 99.56 0.66 25.2
LeYOLO-Small@320 75.36 1.126 29
LeYOLO-Nano@480 51.39 1.47 31.3
LeYOLO-Small@480 39.29 2.53 35.2
YOLOv5n 38 4.5 28
YOLOv6n 37.935 11.1 35.9
YOLOv8n 33.650 8.7 37.3
LeYOLO-Medium@480 32.83 3.27 36.4
YOLOv7-Tiny 24.8 5.8 33.3
LeYOLO-Small@640 24 4.5 38.2
LeYOLO-Medium@640 19.89 5.8 39.3
YOLOX-s 14.6 26.8 40.5
LeYOLO-Large@768 14.2 8.4 41

Consequently, while our models may not be the fastest in the state-of-the-art using TensorRT, they offer
various models with varying execution speeds. We focus on object detectors on embedded devices, so we
propose a comparison using a 4GB Jetson TX2 coupled with the TensorRT software accelerator to observe
the state-of-the-art parallelization capability. We can find details of execution speed, accuracy, query per
second, FLOP, and qps in Table 11. However, not all models are fully compatible with TensorRT accelera-
tions, and most use special tricks to make it work; therefore, the mAP can’t be solely verified. LeYOLO, on
the other hand, is fully compatible with TensorRT; no further graph surgeon is necessary.

A.7 CODE

As we could use PyTorch, Tensorflow, or any other API, we are using the Ultralytics code on the YOLOv8
version to develop our version of LeYOLO. Using these tools and implementing the code will be simple,
centralizing research on a single tool.

A.8 TRAINING SPECIFICITY

Training on MSCOCO. We train our model on the MSCOCO dataset Lin et al. (2014) using the standard
data augmentation [49] with stochastic gradient descent (SGD) and batch size of 128 on four GPUs. Learning
rate is initially set to 0.01 with a momentum set to 0.9. Weight decay is set to 0.001.

Mosaic data augmentation : throughout the training, we found through multiple experiments that there
is minimal variation in accuracy attributable to Mosaic data augmentation. This phenomenon primarily
arises from small objects with limited data samples, such as toothbrushes in MSCOCO, where Mosaic
augmentation could potentially have adverse effects. Across our experiments, we noted a potential variance
of 0.4 mAP.

1. epochs: 500

2. patience: 50

3. batch: 128

4. imgsz: 640

5. gpu count: 4

23

1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127

Under review as a conference paper at ICLR 2025

6. workers: 8
7. optimizer: SGD
8. seed: 0
9. close mosaic: 10

10. training iou: 0.7
11. max detectections: 300
12. lr0: 0.01
13. lrf: 0.01
14. momentum: 0.9
15. weight decay: 0.001
16. warmup epochs: 3.0
17. warmup momentum: 0.8
18. warmup bias lr: 0.1
19. box: 7.5
20. cls: 0.5
21. dfl: 1.5
22. pose: 12.0
23. kobj: 1.0
24. label smoothing: 0.0
25. nbs: 64
26. hsv h: 0.015
27. hsv s: 0.7
28. hsv v: 0.4
29. degrees: 0.0
30. translate: 0.1
31. scale: 0.5
32. shear: 0.0
33. perspective: 0.0
34. flipud: 0.0
35. fliplr: 0.5
36. mosaic: 1.0
37. mixup: 0.0
38. copy paste: 0.0
39. erasing: 0.4
40. crop fraction: 1.0

24

	Introduction
	Related work
	LeYOLO: A low-parameters oriented object detector
	LeYOLO Architecture
	LeYOLO Block.
	LeYOLO Backbone - Stride strategy.
	Relationship to dimension choice.
	LeYOLO as a general-purpose object detector

	Experimental results
	Mobile object detection

	Conclusion
	Dicussions and limitations
	Future works

	Appendix
	Complete State-of-the-art
	Notations
	Extended discussion on related work
	Architecture differences

	Overall Architecture
	Experimental details
	Models
	Experimentations - Image classification
	Architecture scaling choice

	Speed tests
	Code
	Training specificity

