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ABSTRACT

In classification tasks, the area under the ROC curve (AUC) is a key metric for
evaluating a model’s ability to discriminate between positive and negative sam-
ples. An AUC-maximizing classifier can have significant advantages in cases
where ranking correctness is valued or when the outcome is rare. While ensem-
ble learning is a common strategy to improve predictive performance by combin-
ing multiple base models, direct AUC maximization for aggregating base learn-
ers leads to an NP-hard optimization challenge. To address this challenge, we
propose a novel stacking framework that leverages a linear combination of base
models through a surrogate loss function designed to maximize AUC. Our ap-
proach learns data-driven stacking weights for base models by minimizing a pair-
wise loss-based objective. Theoretically, we prove that the resulting ensemble is
asymptotically optimal with respect to AUC. Moreover, when the set of base mod-
els includes correctly specifiedmodels, ourmethod asymptotically concentrates all
weight on these models, ensuring consistency. In numerical simulations, the pro-
posed method reduces the AUC risk by up to 20% compared to existing ensemble
methods, a finding that is corroborated by real-data analysis, which also shows a
reduction of over 30%.

1 INTRODUCTION

The Receiver Operating Characteristic (ROC) curve is a fundamental tool in machine learning for
evaluating the trade-off between sensitivity and specificity in classification models. The area under
the ROC curve (AUC) serves as a widely-adopted metric for assessing the generalization perfor-
mance of classifiers, particularly valued for its robustness to class imbalance. While classification
accuracy remains a common evaluation measure, it can be misleading under class distribution skew,
whereas AUC provides a more reliable indicator of model discrimination capability for imbalanced
data. Moreover, Huang & Ling (2005) theoretically and empirically demonstrated the superiority of
AUC over accuracy when selecting metrics for classification model predictive performance.

Over the past two decades, a plethora of research aimed at optimizing AUC has emerged, includ-
ing representative works on full-batch optimization methods (Yan et al., 2003; Freund et al., 2003;
Joachims, 2005), online incremental learning methods (Gao et al., 2013), stochastic optimization
methods (Ying et al., 2016; Liu et al., 2018), and more recently, deep learning methods (Liu et al.,
2020; Yuan et al., 2021), etc. A comprehensive survey of recent advances in AUC optimization can
be found in (Yang & Ying, 2022).

In practical applications, practitioners often have access to multiple base models, raising the impor-
tant question of how to best leverage these models to achieve optimal predictive performance. En-
semble learning emerges as a natural strategy to address this challenge, with stacking representing a
particularly powerful approach that trains a meta-model to optimally combine predictions from di-
verse base learners. By transforming base model outputs into meta-features through cross-validation,
stacking enables the meta-learner to capture complex relationships between these predictions and the
target variable.

However, a significant challenge persists: even within the stacking framework which linearly com-
bines base models, direct optimization of AUC for determining model combination weights leads
to an NP-hard optimization problem. This computational intractability motivates our proposed ap-
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proach of employing a convex and differentiable surrogate loss function to approximate AUC opti-
mization.

In this paper, we propose an Ensemble Learning method for AUCMaximization (ELAM), a novel
stacking-based framework that maximizes AUC through surrogate loss optimization. Our method
determines data-driven stacking weights by minimizing aK-fold cross-validation objective based on
pairwise surrogate loss, without imposing restrictions on base model structures. Our contributions
can be summarized as follows:

• We address the NP-hard challenge of direct AUC optimization for ensemble weighting by propos-
ing a surrogate loss-based approach within a stacking framework.

• We establish theoretical guarantees demonstrating that our method achieves asymptotic optimality
in both surrogate risk minimization and AUC maximization.

• We prove that when correctly specified models exist among the base learners, ELAM asymptoti-
cally concentrates stacking weight allocation on these optimal models.

• Empirical evaluations on real-world datasets and simulation data demonstrate significant improve-
ments in AUC performance compared to competing methods.

• To the best of our knowledge, this represents the first work to provide theoretical foundations for
AUC maximization in ensemble learning methods.

2 PRELIMINARIES

2.1 STACKING FRAMEWORK AND AUC MAXIMIZATION

Consider n independent and identically distributed (i.i.d.) observations Dn = {(yi,xi); i =
1, . . . , n}, where the joint distributionD of (yi,xi) is unknown. xi ∈ Rq denotes the feature vector
with unknown marginal distribution P . The binary label yi ∈ {0, 1}, where yi = 1 indicates a posi-
tive instance and 0 otherwise, with Pr(yi = 1) = p and p remains unknown. The likelihood function
for these n observations is:

L(θ) =

n∏
i=1

P (yi|xi,θ),

where P is an unknown conditional probability distribution function and θ is an unknown parameter
vector.1

We aim to predict new observations while maximizing the area under the ROC curve (AUC) without
restricting the structure of base models. Consider M base models, each characterized by a quasi-
likelihood function:

n∏
i=1

P(m)(yi|xi,θ(m)), (1)

where θ(m) denotes the parameter vector for the m-th model and it is unknown. We allow P(m) to
be mis-specified, meaning P(m) may differ from the true conditional distribution P .

Let θ̂(m) be the parameter estimate obtained by fitting the m-th model to Dn. Define the weight
vector w = (w1, . . . , wM )⊤, whose components satisfy 0 ≤ wm ≤ C, i.e., w ∈ W = {w ∈ RM :
w ∈ [0, C]M}, where C is a constant. For a new observation xn+1, the weighted combination of
the predicted probabilities from each base model, P(m)(yn+1 = 1|xn+1, θ̂(m)), yields the stacking
prediction of the new observation:

P̂xn+1
(w) =

M∑
m=1

wmP(m)

(
yn+1 = 1

∣∣xn+1, θ̂(m)

)
=

M∑
m=1

wmP̂(m),xn+1
= w⊤P̂xn+1

, (2)

where P̂xn+1
= (P̂(1),xn+1

, . . . , P̂(M),xn+1
)⊤ collects the base model predictions.

1This paper adopts the convention: P denotes conditional probability, Pr denotes marginal probability.
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For a classifier f that produces real-valued classification scores, we assume that for any two inde-
pendent samples (y,x) and (y′,x′), Pr

(
f(x) = f(x′)

)
= 0. The AUC is defined as:

AUC(f) = Ex+∼P+,x−∼P− [I{f(x+)− f(x−) ≥ 0}], (3)

where x+ ∼ P+ and x− ∼ P− denote that x+ and x− are independently distributed random
samples from the positive and negative classes, respectively.

We use AUC risk to evaluate prediction models. The corresponding AUC risk is R(f) = 1 −
AUC(f), with non-parametric empirical estimator:

R̂(f) =
1

N+N−

N+∑
i=1

N−∑
j=1

I{f(x+
i )− f(x−

j ) < 0}. (4)

In Eq. 4 , we partition all observationsDn into positive and negative sample subsetsS+ andS− based
on the label y: S+ = {(y+1 ,x

+
1 ), . . . , (y

+
N+

,x+
N+

)}, S− = {(y−1 ,x
−
1 ), . . . , (y

−
N−

,x−
N−

)}, where
N+ and N− represent the number of positive and negative samples in the n samples, respectively,
and

∑N+

i=1

∑N−
j=1 denotes summation over all positive-negative sample pairs.

According to the above definitions, maximizing AUC is equivalent to minimizing AUC risk. There-
fore, these two will not be distinguished hereafter. Our objective is to determine weights w that
maximize the ensemble AUC:

AUC(w) = Ex+∼P+,x−∼P− [I{w⊤P̂x+ −w⊤P̂x− ≥ 0}], (5)
where the expectation operator E covers all random variables in the expression. This notation will
be used throughout the remainder of this paper, wherever no confusion arises.

Similarly, maximizing Eq. 5 is equivalent to minimizing:

R(w) = Ex+∼P+,x−∼P− [I{w⊤P̂x+ −w⊤P̂x− < 0}]. (6)
Ideally, one could derive the optimal weight by directly maximizing Eq. 5, but this is infeasible as
it depends on the unknown distribution of random samples. We therefore propose a surrogate loss
approach based onK-fold cross-validation. Furthermore, note that both AUC(w) andR(w) defined
in Eq. 5 and 6 are scale-invariant, satisfying AUC(w) = AUC( w

∥w∥1
) and R(w) = R( w

∥w∥1
) for

any w ∈ W , where ∥w∥1 =
∑M

m=1 |wm|.

2.2 RELATED WORKS

Ensemble learning in statistics. In statistics, model averaging represents a closely related ensem-
ble approach that linearly combines base model predictions. Early work by Bates & Granger (1969)
applied model averaging to airline demand forecasting, while Buckland et al. (1997) introduced
smoothed AIC and BIC weighting schemes. A significant advancement came from Hansen (2007),
who established asymptotic optimality for Mallows model averaging. Subsequent research has ex-
tended these ideas to various settings (Zhang et al., 2016; Feng et al., 2024b; Wang et al., 2024; You
et al., 2024; Zhang & Liu, 2023; Yu et al., 2025). However, theoretical foundations for AUC-optimal
ensemble methods in classification remain underdeveloped.

Surrogate objectives for AUC maximization. To circumvent the NP-hard nature of direct AUC
optimization, one often replaces the indicator function in the non-parametric estimators of AUC
risk defined above by a surrogate loss function ϕ(f(x+) − f(x−)) of I{f(x+) − f(x−) ≤ 0}
to formulate the objective function (Yang & Ying, 2022). As a result, we can define the surrogate
objective as

R̂(f) =
1

N+N−

N+∑
i=1

N−∑
j=1

ϕ(f(x+
i )− f(x−

j )). (7)

Gao & Zhou (2015) proposed the definition of AUC consistency for surrogate loss functions: For
any distribution D of samples (y,x), for any sequence of classifiers {f ⟨n⟩(x)}n≥1:

if Rϕ(f
⟨n⟩) → inf

f∈σ(x)
Rϕ(f), then R(f ⟨n⟩) → inf

f∈σ(x)
R(f),

3
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where σ(x) represents the set of all measurable functions with respect to x. They identified that
exponential loss ϕ(x) = e−x and logistic loss ϕ(x) = ln(1+ e−x) are consistent with AUC. Subse-
quently, Gao et al. (2013) proved that ϕ(x) = (1− x)2 is also consistent.

Research on AUC in Ensemble Learning. Existing ensemble methods for AUC maximization are
as follows. LeDell et al. (2016) proposed a stacking method that, based onK-fold cross-validation,
derives the stacking weights of base models by minimizing the average empirical AUC risk of the
ensemble model on K validation sets. Figini et al. (2016) proposed a stacking method that weights
base models based on their non-parametric estimator of AUC values. However, these methods lack
theoretical guarantees, and the former method will lead to an NP-hard optimization problem.

3 STACKING METHOD BASED ON K-FOLD CROSS-VALIDATION

We now present our proposed method, ELAM (Ensemble Learning for AUC Maximization), which
leverages K-fold cross-validation to determine optimal combination weights by minimizing a pair-
wise surrogate loss objective.

3.1 CROSS-VALIDATION SCHEME

TheK-fold cross-validation procedure for generating out-of-sample predictions proceeds as follows:

• Randomly partition the dataset into K mutually exclusive folds of equal size, where 2 ≤
K ≤ n, and each fold contains J = n/K observations.

• For k = 1, . . . ,K ,
– Designate the k-th fold as the validation set, with the remainingK − 1 folds forming
the training set D[−k]

n .
– Train each base modelm = 1, . . . ,M on D[−k]

n to obtain parameter estimates θ̂[−k]
(m) .

– Generate predictions for the validation samples using the trained models. For the j-th
observation in the k-th fold (j = 1, . . . , J ), the prediction from base modelm is:

P̃
[−k]
(m),j = P(m)

(
y(k−1)×J+j = 1 | x(k−1)×J+j , θ̂

[−k]
(m)

)
.

The combined vector of prediction fromM base models for this observation is denoted
as:

P̃ [−k]
x(k−1)×J+j

= (P̃
[−k]
(1),j , . . . , P̃

[−k]
(M),j)

⊤. (8)
• Aggregate the cross-validation predictions across all folds to form the complete set of out-
of-sample predictions for each base model.

This procedure ensures that each observation is predicted by models trained on independent data,
providing unbiased estimates of base model performance.

3.2 SURROGATE LOSS OPTIMIZATION

The ideal objective for AUC maximization would minimize the empirical AUC risk:

CVK(w) =
1

N+N−

N+∑
i=1

N−∑
j=1

I{w⊤P̃x+
i
−w⊤P̃x−

j
< 0}, (9)

where P̃x+
i
and P̃x−

j
denote the cross-validation predictions for positive and negative instances de-

fined in Eq. 8, respectively. The strict notation for P̃x+
i
and P̃x−

j
should be P̃ [−σ(i)]

x+
i

and P̃
[−τ(j)]

x−
j

,

where σ(i) is a mapping indicating that x+
i belongs to the σ(i)-th fold in cross-validation, and τ(j)

similarly indicates that x−
j belongs to the τ(j)-th fold. Henceforth we simply write P̃x+

i
and P̃x−

j

hereafter, wherever no confusion arises.

However, this objective involves the non-convex indicator function, leading to an NP-hard optimiza-
tion problem. To overcome this problem, we employ a smooth, differentiable and convex function

4
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ϕ : R → R+ that approximates the indicator function. The resulting surrogate risk for the stacking
classifier is:

Rϕ(w) = Ex+∼P+,x−∼P−

[
ϕ
(
w⊤P̂x+ −w⊤P̂x−

)]
. (10)

Accordingly, we define the cross-validation objective using the logistic loss ϕ(x) = ln(1 + e−x),
which enjoys established consistency properties for AUC optimization (Gao & Zhou, 2015):

CV K
ϕ (w) =

1

N+N−

N+∑
i=1

N−∑
j=1

ϕ
(
w⊤P̃x+

i
−w⊤P̃x−

j

)
, (11)

while using ϕ(x) = e−x or ϕ(x) = (1− x)2 would yield similar results.

The optimal stacking weights are obtained by solving the constrained optimization problem:

ŵ = argmin
w∈W

CV K
ϕ (w),

whereW = {w ∈ RM : w ∈ [0, C]M}. For a new observation xn+1, the final prediction combines
base model outputs using the optimized stacking weights:

P̂xn+1
(ŵ) =

M∑
m=1

ŵmP(m)

(
yn+1 = 1

∣∣xn+1, θ̂(m)

)
. (12)

We summarize our method in Algorithm 1.

Algorithm 1 ELAM: Ensemble Learning for AUC Maximization
Input Dataset Dn = {(yi,xi)}ni=1; base models {P(m)}Mm=1; number of folds K;

surrogate loss ϕ, new observation xn+1.
Cross-Validate for k = 1 toK do

Train each P(m) on D
[−k]
n to get θ̂[−k]

(m)

Predict on fold k: P̃ [−k]
(m),j = P(m)(yj = 1|xj , θ̂

[−k]
(m) )

end for
Aggregate P̃xi

for all i = 1, . . . , n

Optimize Compute CV K
ϕ (w) = 1

N+N−

∑N+

i=1

∑N−
j=1 ϕ

(
w⊤P̃x+

i
−w⊤P̃x−

j

)
Solve ŵ = argminw∈W CV K

ϕ (w)
Finally Train form = 1 toM do

Train P(m) on full Dn to get θ̂(m)

end for
Predict Obtain the prediction P̂xn+1(ŵ) =

∑M
m=1 ŵmP(m)

(
yn+1 = 1

∣∣xn+1, θ̂(m)

)
Output Return P̂xn+1(ŵ)

In finite samples, prediction results can be sensitive to the value of K, especially when K is small.
When bothK and n are large, computational costs increase significantly. Following common prac-
tice in cross-validation literature, we set K = 10 throughout our experiments, balancing computa-
tional efficiency with estimation accuracy. The selection of K is detailed in Zhang & Liu (2023)
and will not be discussed further here.

4 THEORETICAL ANALYSIS

This section establishes the asymptotic properties of the ELAMmethod. We analyze both the surro-
gate risk Rϕ(w) and the AUC risk R(w) of the stacking predictor, providing theoretical guarantees
for its optimality and consistency. We begin by stating the assumptions required for our theoretical
analysis. The limiting process referred to is in the sense of n → ∞.

5
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4.1 ASYMPTOTIC OPTIMALITY UNDER SURROGATE RISK

Assumption 1. Let M ≤ n. The limit value of θ̂(m) is θ∗
(m), i.e., for ∀m ∈ {1, . . . ,M}, θ̂(m) −

θ∗
(m) = Op(n

−1/2M1/2) holds. For θ̂[−k]
(m) , since n and n − n/K are of the same order, we also

have θ̂[−k]
(m) − θ∗

(m) = Op

(
n−1/2M1/2

)
.

Remark: Assumption 1 requires that the estimator of each base model’s parameter θ(m) converges
to some limit value θ∗

(m) at a certain rate. This condition is commonly used when studying the
asymptotic properties of nonlinear model averaging estimators in statistics. Zhang et al. (2016)
assumed a rate ofOp(n

−1/2); Zhang & Liu (2023) allowed the number of base modelsM to diverge
and assumed a rate of Op(n

−1/2M1/2).

Assumption 2. For m = 1, . . . ,M, k = 1, . . . ,K, j = 1, . . . , J , P̃ [−k]
(m),j is differentiable with

respect to θ̂
[−k]
(m) , and there exists a constant ϱ > 0 such that the following holds uniformly for

m = 1, . . . ,M :

E sup
θ⋆∈O(θ∗

(m)
,ϱ)

∥∥∥∥∥∥∂P̃
[−k]
(m),j

∂θ̂
[−k]
(m)

|
θ̂
[−k]

(m)
=θ⋆

∥∥∥∥∥∥
2

= O(1),

where O(θ∗
(m), ϱ) denotes a neighborhood centered at θ∗

(m) with radius ϱ.

Assumption 3. n/N+ = O(1), n/N− = O(1).

Remark:Assumption 2 requires that the base model estimators are differentiable and their gradients
are bounded, which is also assumed in Zhang & Liu (2023) and Feng et al. (2024a). Assumption 3
requires that the ratio of positive to negative samples among the n observations be bounded away
from zero, equivalently, there exists a constant c ∈ (0, 1) such that min{N+,N−}

n ≥ c.

For a new observation xn+1, the prediction of the m-th base model at the limit value of parameter
θ∗
(m) is P

∗
(m),xn+1

= P(m)

(
yn+1 = 1

∣∣xn+1,θ
∗
(m)

)
. The stacking prediction for the new observation

xn+1 at the limit values is:

P ∗
xn+1

(w) =

M∑
m=1

wmP ∗
(m),xn+1

. (13)

Denote the surrogate risk at the limit values as: R∗
ϕ(w) = Ex+∼P+,x−∼P− [ϕ

(
P ∗
x+(w)−P ∗

x−(w)
)]
,

where P ∗
x+(w) and P ∗

x−(w) are defined as in Eq. 13. Let ξn = infw∈W R∗
ϕ(w) be the infimum of

the surrogate risk of the stacking predictor at the limit values.
Assumption 4. Cn−1/2M3/2ξ−1

n = o(1).

Remark: Assumption 4 puts a bound on the number of models relative to the sample size, and it
specifies that M grows at a rate no faster than C−2/3n1/3ξ

2/3
n . Compared to the existing literature

on model averaging in statistics, assumption 4 is stricter than the common conditions n−1/2ξ−1
n =

o(1)(Zhang et al., 2016)2 or n−1/2Mξ−1
n = o(1)(Zhang & Liu, 2023). This is because in this

work, we extend the weight space from {w ∈ [0, 1]M :
∑M

m=1 wm = 1} to {w ∈ RM : w ∈
[0, C]M}, which necessitates stricter conditions to establish the asymptotic optimality of the stacking
prediction.

Assumption 5. ξ−1
n supw∈W

[
ϕ(P̂x+(w)− P̂x−(w))− ϕ(P ∗

x+(w)− P ∗
x−(w))

]
is uniformly in-

tegrable.

Remark: Assumption 5 is not an intuitive condition. In proving Theorem 1 we show that
ξ−1
n supw∈W

[
ϕ(P̂x+(w)− P̂x−(w))−ϕ(P ∗

x+(w)−P ∗
x−(w))

]
= op(1). This assumption guaran-

tees that the expectation of the left-hand side is o(1).
2The ξn defined in Zhang et al. (2016) is based on the loss of n sample points. The original condition was

n1/2ξ−1
n = o(1); the condition listed here, n−1/2ξ−1

n = o(1), is the result after eliminating the effect of sample
size.
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Assumption 6. Let t(w) = CV ∗
ϕ (w)/R∗

ϕ(w)−1. There exists κT = Op(1) such that for ∀w,w′ ∈
W , |t(w)− t(w′)| ≤ κT ∥w −w′∥1 holds.

Remark: Assumption 6 ensures the stochastic equicontinuity of t(w) with respect to w (Newey,
1991). Yu et al. (2025) first used the concept of stochastic equicontinuity to prove the asymptotic
optimality of model averaging methods in statistics. This assumption is similar to Condition 4 in
Gao et al. (2023) and Assumption 3 in Yu et al. (2025).
Theorem 1. Under Assumptions 1 - 5, the stacking weight ŵ derived by the ELAMmethod satisfies:

Rϕ(ŵ)

infw∈W Rϕ(w)

p−→ 1.

Remark: Theorem 1 establishes that ELAM achieves asymptotic optimality with respect to the
surrogate-risk objective; that is, the prediction built with the optimal stacking weight ŵ asymp-
totically attains the theoretical infimum of the surrogate risk over the stacking-predictor class.

4.2 ASYMPTOTIC OPTIMALITY UNDER AUC RISK

Theorem 1 establishes the asymptotic optimality of the ELAM method in terms of surrogate risk.
Below, we further establish its asymptotic optimality in terms of AUC risk. Denote the AUC risk
at the limit values as R∗(w) = Ex+∼P+,x−∼P− [I

{
P ∗
x+(w) − P ∗

x−(w) < 0
}]
, and let ξ∗n =

infw∈W R∗(w) be the infimum of the AUC risk of the stacking predictor at the limit values.

Assumption 7. For any new sample points (y,x), (y′,x′), fa(w)|∆(w)(x) =
∂Fa(w)|∆(w)(x)

∂x is uni-
formly bounded, Fa(w)|∆(w)(x) is the cumulative distribution function of a(w) given ∆(w), and
ξ−1
n supw∈W{P

(
a(w) + ∆(w) < 0 | ∆(w)

)
− P

(
a(w) < 0 | ∆(w)

)
} is uniformly integrable,

where a(w) = (y − y′)
∑M

m=1 wm(P ∗
(m),x − P ∗

(m),x′) and

∆(w) = (y−y′)

M∑
m=1

wm

[(
θ̂(m) − θ∗

(m)

)⊤ ∂P̂(m),x

∂θ̂(m)

|θ̂(m)=θ⋆
(m),x

−
(
θ̂(m) − θ∗

(m)

)⊤ ∂P̂(m),x′

∂θ̂(m)

|θ̂(m)=θ⋆
(m),x′

]
,

where θ⋆
(m),x,θ

⋆
(m),x′ ∈ O(θ∗

(m), ϱ).

Remark: Assumption 7 is similar to Assumption 6 in Feng et al. (2024a). This assumption ensures
that we can derive: ξ−1

n supw∈W{P
(
a(w)+∆(w) < 0 | ∆(w)

)
−P
(
a(w) < 0 | ∆(w)

)
} = op(1),

and that the result after taking the expectation of this expression is o(1).

Assumption 8. For ∀w ∈ W , R∗(w) − infw∈W R∗(w) ≤ 2
√
R∗

ϕ(w)− infw∈W R∗
ϕ(w), and if

R∗
ϕ(ŵ)− infw∈W R∗

ϕ(w) = op(1), then 2ξ∗n
−1
√
R∗

ϕ(ŵ)− infw∈W R∗
ϕ(w) = op(1).

Assumption 9. Cn−1/2M3/2ξ∗n
−1 = o(1).

Remark: Gao & Zhou (2015) proved that for the logistic loss ϕ(x) = ln(1 + e−x), the
surrogate risk and the AUC risk of any classifier f satisfy: R∗(f) − inff∈σ(x) R

∗(f) ≤
2
√

R∗
ϕ(f)− inff∈σ(x) R

∗
ϕ(f). The first part of Assumption 8 guarantees that this inequality remains

valid when the function space is restricted to the stacking class. The second part ensures that the rate
at which ξ∗n converges to 0 is bounded above by

√
R∗

ϕ(ŵ)− infw∈W R∗
ϕ(w), a condition similar

to Assumption 7 in Feng et al. (2024a). Assumption 9 is similar to Assumption 4 and will not be
elaborated further. The upper-bound restriction C on the stacking weight can be made less binding
by picking C large, which can be done as long as assumption 4 and 9 hold.
Theorem 2. Under Assumptions 1 - 9 , the stacking weight ŵ derived by the ELAMmethod satisfies:

R(ŵ)

infw∈W R(w)

p−→ 1.

Remark: Theorem 2 demonstrates that the asymptotic optimality extends to the original AUC risk
objective, providing the primary theoretical guarantee for our method.
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4.3 WEIGHT CONSISTENCY

We now establish consistency properties when correctly specified models exist among the base learn-
ers. Following Gao & Zhou (2015), define the optimal classifier class B = {f :(f(x) − f(x′)) ×
(η(x) − η(x′)) > 0 if η(x) ̸= η(x′)}, where η(x) = P (y = 1 | x). The m-th base model is
correctly specified if P ∗

(m) ∈ B. Furthermore, let w∗ = argmin
w∈W

R∗
ϕ(w), i.e., w∗ is the weight that

minimizes the surrogate risk at the limit values.
Theorem 3. Under Assumptions 1 - 3, 6 and 8, if w∗ is unique, and n−1/2M3/2 = o(1), then
w∗ = argmin

w∈W
R∗(w), and the weight ŵ derived by the ELAM method satisfies:

ŵ
p−→ w∗.

Remark: Theorem 3 establishes that ELAM consistently identifies the optimal weighting scheme.
When correctly specified models exist, the normalized weights w̃ = ŵ/∥ŵ∥1 concentrate on these
models, i.e.,

∑
m∈D w̃m

p−→ 1, where D contains the indices of correctly specified models. This
weight consistency property ensures that ELAM asymptotically identifies the best possible ensemble
composition.

Furthermore, since the AUC risk of the stacking predictor is scale-invariant, we may use the normal-
ized weight w̃ instead of the original weight ŵ to make a prediction for a new instance xn+1:

P̂xn+1
(w̃) =

M∑
m=1

w̃mP(m)

(
yn+1 = 1

∣∣xn+1, θ̂(m)

)
. (14)

In this case, the stacking prediction P̂xn+1
(w̃) is a standard probabilistic prediction.

5 EXPERIMENTAL RESULTS

In this section, we evaluate the performance of ELAM on two publicly available benchmark datasets:
the Mammographic Mass Dataset Elter (2007) and the Spambase Dataset Hopkins & Suermondt
(1999) from the UCIMachine Learning Repository. Furthermore, extra experiments and simulations
are provided in the appendix.

5.1 EXPERIMENTAL SETUP

The Mammographic Mass Dataset comprises 830 observations (after removing missing values from
the original 961 instances), each with five clinical features describing mammographic mass lesions.
The Spambase Dataset contains 4,601 email samples labeled as spam or non-spam, each character-
ized by 57 attributes.

For the Mammographic Mass Dataset, we consider the complete non-nested model space consisting
of 25 − 1 = 31 distinct feature combinations. For the Spambase Dataset, to maintain computa-
tional tractability with the larger feature set, we restrict ourselves to a nested sequence of 57 models
obtained by sequentially adding features in their original order. In both cases, we employ logistic
regression as the base learner, with model diversity achieved through feature subset selection.

Besides the ELAM method, this paper also considers the following competing methods: (1) Lo-
gistic regression model using all covariates, abbreviated as FULL; (2) AIC information criterion
model selection method, abbreviated asAIC; (3) BIC information criterion model selection method,
abbreviated as BIC; (4) Smoothed AIC information criterion weighted averaging method, abbrevi-
ated as SAIC (Buckland et al., 1997); (5) Smoothed BIC information criterion weighted averaging
method, abbreviated as SBIC (Buckland et al., 1997); (6) Model ensemble method proposed by
LeDell et al. (2016), in which 10-fold cross-validation is also employed, abbreviated asME (Model
ensemble); (7) Stacking method proposed by Figini et al. (2016), abbreviated as AUCW (AUC
weighted); (8) Simple averaging method that sets the stacking weights of each base model equal,
abbreviated as SA (Simple averaging). We randomly split the sample into training and testing sets
in a 7:3 ratio, and calculate the relative empirical AUC risk of each method through 200 repeated
experiments.
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5.2 RESULTS AND ANALYSIS

Figure 1 presents the empirical AUC risk distributions across all methods on both datasets. ELAM
demonstrates consistent superiority, achieving the lowest AUC risk in both experimental settings.

On the Mammographic Mass Dataset, ELAM reduces average AUC risk by substantial margins
compared to all competitors: 13.40% versus ME, 7.87% versus AUCW, 7.99% versus SA, 11.62%
versus FULL, 10.98% versus SAIC, 11.36% versus SBIC, 10.56% versus AIC, 11.16% versus BIC.

The performance advantage remains pronounced on the Spambase Dataset, with relative risk reduc-
tions of 23.23% (ME), 38.64% (AUCW), 42.22% (SA), 14.94% (FULL), 4.45% (SAIC), 4.47%
(SBIC), 4.50% (AIC), 4.61% (BIC).

Figure 1: Empirical AUC risk of models on theMammographicMass Dataset and Spambase Dataset.

These results demonstrate ELAM’s robust performance across different data characteristics and
model configurations. The method particularly excels in the non-nested setting (Mammographic
Mass), where its ability to intelligently combine diverse base models yields significant gains over
selection, averaging and existing ensemble approaches.

6 CONCLUSION

This paper has introduced ELAM, a novel stacking framework for AUC maximization in binary
classification tasks. Our method addresses the fundamental computational challenge of direct AUC
optimization through a surrogate loss approach, while providing strong theoretical guarantees for
asymptotic optimality and weight consistency. Real data and numerical simulation results show that
the proposed method has significant advantages over other competing methods in maximizing AUC.

While this work provides a solid theoretical and empirical foundation for AUC-optimal ensem-
ble learning, several important directions warrant further investigation. Firstly, the current for-
mulation focuses on binary classification. Extending the framework to multi-class AUC optimiza-
tion represents an important direction for future research. Secondly, our theoretical analysis as-
sumes fixed parameter dimensions (Assumption 1). Developing extensions that accommodate high-
dimensional settings where parameter dimensions grow with sample size would significantly en-
hance the method’s applicability.

Despite these limitations, ELAM represents a significant step forward in ensemble learning method-
ology, providing both theoretical guarantees and practical benefits for AUCmaximization in classifi-
cation tasks. The framework opens several promising avenues for future research at the intersection
of ensemble methods and performance metric optimization.

9
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7 ETHICS AND REPRODUCIBILITY STATEMENT

This work presents a methodological contribution in the area of ensemble learning and AUC opti-
mization. The research was conducted in accordance with the ICLR Code of Ethics.

• Datasets: Our empirical evaluation utilizes publicly available benchmark datasets from the
UCI Machine Learning Repository. These datasets are widely used in the machine learning
community for non-commercial research purposes and are pre-anonymized.

• Compliance: The proposed method does not present any foreseeable direct negative so-
cietal impact. It is designed to improve the ranking performance of classifiers, which is
particularly beneficial in domains like medical diagnosis, where accurate ranking of posi-
tive instances is crucial.

• Competing Interests: The authors declare no competing interests, financial or non-
financial, related to this work.

• Reproducibility: To ensure the reproducibility, we have provided detailed descriptions
of our algorithm, theoretical assumptions, and experimental setup. The use of standard
datasets and base learners (logistic regression) further facilitates replication of our results.
The code will be released on Github after the double-blind review.

8 LLM USAGE STATEMENT

The authors used a large language model (LLM) solely for the purpose of improving the readability
and language of this manuscript. Specifically, the LLMwas employed to assist with grammar check-
ing, rephrasing for clarity, and ensuring fluency in English. All ideation, theoretical development,
algorithmic design, experimental execution, data analysis, and conclusions remain the original work
of the authors. The LLM was not used to generate any scientific content, creative ideas, or data
interpretations. The authors take full responsibility for the entire content of this paper.
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A APPENDIX

A.1 LEMMA

Lemma 1 ((Zhang, 2010),(Gao et al., 2019)). AssumeW is a weight set. If: ŵ = argmin
w∈W

{R(w)+

an(w) + bn}, where an(w) is a term related to w, and bn is a term unrelated to w. If:

sup
w∈W

|an(w)|/R∗(w) = op(1),

sup
w∈W

|R∗(w)−R(w)|/R∗(w) = op(1),

and there exists a constant c and a positive integer N∗ such that for n ≥ N∗, infw∈W R∗(w) ≥
c > 0 holds almost everywhere, then: R(ŵ)

infw∈W R(w)

p−→ 1.

Lemma 2 ((Hoeffding, 1963)). AssumeX1, X2, . . . , Xm are i.i.d. random variables, Y1, Y2, . . . , Yn

are also i.i.d. random variables, andX1, X2, . . . , Xm and Y1, Y2, . . . , Yn are mutually independent.
Consider a random variable of the form:

U =
1

mn

m∑
i=1

n∑
j=1

g(Xi, Yj),

If a ≤ g ≤ b, then the following holds:

Pr{|U − EU | ≥ t} ≤ 2e−2vt2/(b−a)2 ,

where v = min(m,n).

A.2 PROOF OF THEOREM 1

In the proofs of this paper, for notational convenience and where no confusion arises, we omit theK
in CV K

ϕ (w) and denote it simply as CVϕ(w). Note that:

ŵ = argmin
w∈W

CVϕ(w) = argmin
w∈W

Rϕ(w) + CVϕ(w)−Rϕ(w),

According to Lemma 1, we only need to prove:

sup
w∈W

∣∣∣Rϕ(w)−R∗
ϕ(w)

∣∣∣
R∗

ϕ(w)
= o(1), (A.1)

sup
w∈W

|CVϕ(w)−Rϕ(w)|
R∗

ϕ(w)
= op(1), (A.2)

If Eq. A.1 is proven, and we also have:

sup
w∈W

∣∣∣CVϕ(w)−R∗
ϕ(w)

∣∣∣
R∗

ϕ(w)
= op(1), (A.3)

then Eq. A.2 can be directly obtained. Thus, we only need to prove Eq. A.1 and Eq. A.3 .
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We first prove Eq. A.1 :

ξ−1
n sup

w∈W
|ϕ(P̂x+(w)− P̂x−(w))− ϕ(P ∗

x+(w)− P ∗
x−(w))|

≤ξ−1
n sup

w∈W

∣∣∣(P̂x+(w)− P̂x−(w)
)
− (P ∗

x+(w)− P ∗
x−(w))

∣∣∣
=ξ−1

n sup
w∈W

∣∣∣(w⊤P ∗
x+ −w⊤P̂x+

)
−
(
w⊤P ∗

x− −w⊤P̂x−

)∣∣∣
=ξ−1

n sup
w∈W

∣∣∣∣∣
{

M∑
m=1

wm(θ∗
(m) − θ̂(m))

⊤ ∂P̂(m),x+

∂θ̂(m)

|θ̂(m)=θ⋆
(m),x+

}
−

{
M∑

m=1

wm(θ∗
(m) − θ̂(m))

⊤ ∂P̂(m),x−

∂θ̂(m)

|θ̂(m)=θ⋆
(m),x−

}∣∣∣∣∣
≤Cξ−1

n MOp(n
−1/2M1/2)

=Op(Cξ−1
n n−1/2M3/2)

=op(1),
(A.4)

where θ⋆
(m),x+ and θ⋆

(m),x− are both withinO(θ∗
(m), ϱ) defined in Assumption 2. The first inequality

uses the fact: ϕ(x) = ln(1 + e−x),

|ϕ(x1)− ϕ(x2)| = | ln(1 + e−x1)− ln(1 + e−x2)| ≤ |x1 − x2|, (A.5)

the second equality uses Assumption 2, the second inequality uses Assumptions 1 and 2, and the last
equality uses Assumption 4.

From this, we get:

sup
w∈W

∣∣∣Rϕ(w)−R∗
ϕ(w)

∣∣∣
R∗

ϕ(w)

≤ξ−1
n sup

w∈W

∣∣Rϕ(w)−R∗
ϕ(w)

∣∣
=ξ−1

n sup
w∈W

∣∣∣Ex+∼P+,x−∼P− [ϕ(P̂x+(w)− P̂x−(w))− ϕ(P ∗
x+(w)− P ∗

x−(w))]
∣∣∣

≤Ex+∼P+,x−∼P−

(
ξ−1
n sup

w∈W
|ϕ(P̂x+(w)− P̂x−(w))− ϕ(P ∗

x+(w)− P ∗
x−(w))|

)
=o(1),

The second inequality uses Assumption 5, and the last step is due to Eq. A.4 and Assumption 5.
Eq. A.1 is proven.

Next, we prove that Eq. A.3 holds. Note that:

sup
w∈W

∣∣∣CVϕ(w)−R∗
ϕ(w)

∣∣∣
R∗

ϕ(w)

≤

 sup
w∈W

∣∣∣CVϕ(w)− CV ∗
ϕ (w)

∣∣∣
R∗

ϕ(w)
+ sup

w∈W

∣∣∣CV ∗
ϕ (w)−R∗

ϕ(w)
∣∣∣

R∗
ϕ(w)

 .

(A.6)
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For the first part of Eq. A.6,

sup
w∈W

∣∣∣CVϕ(w)− CV ∗
ϕ (w)

∣∣∣
R∗

ϕ(w)

≤ξ−1
n sup

w∈W

∣∣CVϕ(w)− CV ∗
ϕ (w)

∣∣
=ξ−1

n sup
w∈W

∣∣∣∣∣∣ 1

N+N−

N+∑
i=1

N−∑
j=1

[
ϕ
(
w⊤P̃x+

i
−w⊤P̃x−

j

)
− ϕ

(
w⊤P ∗

x+
i

−w⊤P ∗
x−

j

)]∣∣∣∣∣∣
≤ξ−1

n sup
w∈W

1

N+N−

N+∑
i=1

N−∑
j=1

∣∣∣(w⊤P̃x+
i
−w⊤P̃x−

j

)
−
(
w⊤P ∗

x+
i

−w⊤P ∗
x−

j

)∣∣∣
=ξ−1

n sup
w∈W

1

N+N−

N+∑
i=1

N−∑
j=1

∣∣∣∣∣∣


M∑
m=1

wm

(
θ∗
(m) − θ̂

[−σ(i)]
(m)

)⊤ ∂P̃
[−σ(i)]

(m),x+
i

∂θ̂
[−σ(i)]
(m)

|
θ̂
[−σ(i)]

(m)
=θ⋆

(m),i,+


−


M∑

m=1

wm

(
θ∗
(m) − θ̂

[−τ(j)]
(m)

)⊤ ∂P̃
[−τ(j)]

(m),x−
j

∂θ̂
[−τ(j)]
(m)

|
θ̂
[−τ(j)]

(m)
=θ⋆

(m),j,−


∣∣∣∣∣∣

≤Cξ−1
n MOp(n

−1/2M1/2)

=Op(Cξ−1
n n−1/2M3/2)

=op(1),

where σ(i) is a mapping indicating that x+
i belongs to the σ(i)-th fold in the original n observation

samples, and τ(j) is similar. θ⋆
(m),1,+, . . . , θ

⋆
(m),N+,+ and θ⋆

(m),1,−, . . . , θ
⋆
(m),N−,− are all within

O(θ∗
(m), ϱ) defined in Assumption 2. The second inequality is due to Eq. A.5, the second equal-

ity uses Assumption 2, the third inequality uses Assumptions 1 and 2, and the last equality uses
Assumption 4.

For the second part of Eq. A.6, to prove supw∈W
|CV ∗

ϕ (w)−R∗
ϕ(w)|

R∗
ϕ(w) = op(1), according to Corollary

2.2 in Newey (1991), we only need to prove: (i)W is compact, (ii) for ∀w ∈ W , CV ∗
ϕ (w)−R∗

ϕ(w)

R∗
ϕ(w) =

op(1), (iii) there exists κT = Op(1) such that for ∀w,w′ ∈ W , |t(w) − t(w′)| ≤ κT ∥w − w′∥
holds, where t(w) = CV ∗

ϕ (w)/R∗
ϕ(w)− 1.

(i) is obviously true, (iii) is Assumption 6, so we only need to prove (ii). Below we prove (ii). For
∀w ∈ W , for ∀δ > 0:

Pr

(∣∣∣∣∣CV ∗
ϕ (w)−R∗

ϕ(w)

R∗
ϕ(w)

∣∣∣∣∣ ≥ δ

)
≤Pr

(∣∣CV ∗
ϕ (w)−R∗

ϕ(w)
∣∣ ≥ δξn

)
=Pr

∣∣∣∣∣∣ 1

N+N−

N+∑
i=1

N−∑
j=1

ϕ
(
w⊤P ∗

x+
i

−w⊤P ∗
x−

j

)
− Ex+∼P+,x−∼P−

[
ϕ
(
w⊤P ∗

x+ −w⊤P ∗
x−

)]∣∣∣∣∣∣ ≥ δξn


≤2e

− 2vδ2ξ2n
(C+1)2M2

=o(1),

where the first inequality is because
∣∣∣CV ∗

ϕ (w)−R∗
ϕ(w)

R∗
ϕ(w)

∣∣∣ ≤ ξ−1
n

∣∣∣CV ∗
ϕ (w)−R∗

ϕ(w)
∣∣∣. The sec-

ond inequality uses Lemma 2 and the fact: 0 < ϕ

(
w⊤P ∗

x+
i

−w⊤P ∗
x−

j

)
< (C + 1)M and

v = min(N+, N−). The last equality is due to Assumptions 3 and 4.
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This proves supw∈W
|CV ∗

ϕ (w)−R∗
ϕ(w)|

R∗
ϕ(w) = op(1). So far, Eq. A.3 is proven, and the proof of Theo-

rem 1 is completed.

A.3 PROOF OF THEOREM 2

Note that ξ∗n = infw∈W R∗(w), and:

ξ∗−1
n

(
R(ŵ)− inf

w∈W
R(w)

)
=ξ∗−1

n

(
R(ŵ)−R∗(ŵ)

)
+ ξ∗−1

n

(
R∗(ŵ)− inf

w∈W
R∗(w)

)
+ ξ∗−1

n

(
inf

w∈W
R∗(w)− inf

w∈W
R(w)

)
,

If we can prove:

ξ∗−1
n

(
R(ŵ)−R∗(ŵ)

)
= op(1), (A.7)

ξ∗−1
n

(
R∗(ŵ)− inf

w∈W
R∗(w)

)
= op(1), (A.8)

ξ∗−1
n

(
inf

w∈W
R∗(w)− inf

w∈W
R(w)

)
= o(1), (A.9)

then we can get:

ξ∗−1
n

(
R(ŵ)− inf

w∈W
R(w)

)
= op(1), ξ∗−1

n inf
w∈W

R(w) = 1 + o(1),

From this, Theorem 2 follows immediately:

R(ŵ)

infw∈W R(w)

p−→ 1

First, we prove:
ξ∗n

−1 sup
w∈W

|R(w)−R∗(w)| = o(1), (A.10)

If Eq. A.10 is proven, then Eq. A.7 and Eq. A.9 follow directly. Eq. A.10 is proven as follows:

ξ∗−1
n sup

w∈W
|R(w)−R∗(w)|

=ξ∗−1
n sup

w∈W

∣∣∣Ex+∼P+,x−∼P− [I{P̂x+(w)− P̂x−(w) < 0}]− Ex+∼P+,x−∼P− [I{P ∗
x+(w)− P ∗

x−(w) < 0}]
∣∣∣

=
1

p(1− p)
ξ∗−1
n sup

w∈W

∣∣∣Ex∼P,x′∼P [I{P̂x(w) < P̂x′(w)}I(y > y′)]− Ex∼P,x′∼P [I{P ∗
x(w) < P ∗

x′(w)}I(y > y′)]
∣∣∣

=
1

2p(1− p)
ξ∗−1
n sup

w∈W

∣∣∣Ex∼P,x′∼P [I{(P̂x(w)− P̂x′(w))(y − y′) < 0}]− Ex∼P,x′∼P [I{(P ∗
x(w)− P ∗

x′(w)) (y − y′) < 0}]
∣∣∣

=
1

2p(1− p)
ξ∗−1
n sup

w∈W

∣∣∣∣∣Pr
[
(y − y′)×

M∑
m=1

wm(P̂(m),x − P̂(m),x′) < 0

]
− Pr

[
(y − y′)×

M∑
m=1

wm(P ∗
(m),x − P ∗

(m),x′) < 0

]∣∣∣∣∣
=

1

2p(1− p)
ξ∗n

−1 sup
w∈W

|Pr(a(w) + ∆(w) < 0)− Pr(a(w) < 0)|

=
1

2p(1− p)
ξ∗−1
n sup

w∈W

∣∣E∆(w)[P (a(w) + ∆(w) < 0|∆(w))− P (a(w) < 0|∆(w))]
∣∣

≤ 1

2p(1− p)
E∆(w)

(
ξ∗−1
n sup

w∈W
|[P (a(w) + ∆(w) < 0|∆(w))− P (a(w) < 0|∆(w))]|

)
,

(A.11)
where the second equality uses the fact:

Ex∼P,x′∼P [I{P̂x(w) < P̂x′(w)}I(y > y′)] = p(1−p)Ex+∼P+,x−∼P− [I{P̂x+(w)−P̂x−(w) < 0}],
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the third equality uses the fact:

Ex∼P,x′∼P [I{(P̂x(w)− P̂x′(w))(y − y′) < 0}] = 2Ex∼P,x′∼P [I{P̂x(w) < P̂x′(w)}I(y > y′)],

the sixth equality is the law of total probability, and the last inequality uses Assumption 7.

Furthermore, we have:

ξ∗−1
n sup

w∈W
|[P (a(w) + ∆(w) < 0|∆(w))− P (a(w) < 0|∆(w))]|

=ξ∗−1
n sup

w∈W

∣∣(Fa(w)|∆(w)(−∆(w))− Fa(w)|∆(w)(0))
∣∣

=ξ∗−1
n sup

w∈W

∣∣∆(w)fa(w)|∆(w)(ς)
∣∣

=Op(CM3/2n−1/2ξ∗−1
n )

=op(1),

(A.12)

where the second equality is the mean value theorem, ς is between 0 and −∆(w), the third equality
uses Assumptions 1, 2, and 7, and the last equality uses Assumption 9.

Therefore, from Eq. A.11 and Eq. A.12, we have:

ξ∗−1
n sup

w∈W
|R(w)−R∗(w)|

≤ 1

2p(1− p)
E∆(w)

(
ξ∗−1
n sup

w∈W
|[P (a(w) + ∆(w) < 0|∆(w))− P (a(w) < 0|∆(w))]|

)
=o(1),

where the last step uses Eq. A.12 and Assumption 7. Eq. A.10 is proven.

According to Eq. A.10, we can immediately obtain Eq. A.7 and Eq. A.9. The derivation of Eq. A.7 is
straightforward. The derivation of Eq. A.9 is as follows:

inf
w∈W

(R∗(w)−R(w)) ≤ inf
w∈W

R∗(w)− inf
w∈W

R(w) ≤ sup
w∈W

(R∗(w)−R(w)) .

Next, we prove that Eq. A.8 holds. According to Assumption 8:

ξ∗n
−1

(
R∗(ŵ)− inf

w∈W
R∗(w)

)
≤ 2ξ∗n

−1
√

R∗
ϕ(ŵ)− inf

w∈W
R∗

ϕ(w),

We only need to prove
R∗

ϕ(ŵ)− inf
w∈W

R∗
ϕ(w) = op(1), (A.13)

to obtain Eq. A.8.

According to Theorem 1 and the already proven Eq. A.1, we get:

ξ−1
n

(
R∗

ϕ(ŵ)− inf
w∈W

R∗
ϕ(w)

)
= op(1),

From this, Eq. A.13 follows immediately. This completes the proof of Eq. A.8. So far, Eq. A.7, A.8,
and A.9 are all proven, and Theorem 2 is proven.

A.4 PROOF OF THEOREM 3

Theorem 3 can be divided into two parts: w∗ = argmin
w∈W

R∗(w) and ŵ
p−→ w∗. We first prove

ŵ
p−→ w∗. According to Theorem 5.7 in Van der Vaart (2000), we only need to prove that the

following holds:
sup
w∈W

∣∣CVϕ(w)−R∗
ϕ(w)

∣∣ = op(1), (A.14)

Combined with w∗ = argmin
w∈W

R∗
ϕ(w) and the uniqueness of w∗, we get ŵ p−→ w∗. The proof of

Eq. A.14 is similar to that of Eq. A.3 and will not be repeated here.
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Then we prove w∗ = argmin
w∈W

R∗(w). According to Assumption 8, we have: R∗(w∗) −

infw∈W R∗(w) ≤ 2
√
R∗

ϕ(w
∗)− infw∈W R∗

ϕ(w). Combined with w∗ = argmin
w∈W

R∗
ϕ(w), we im-

mediately get w∗ = argmin
w∈W

R∗(w). The proof of Theorem 3 is complete.

A.5 NUMERICAL SIMULATION

In this section, we evaluate the performance of our ELAM method in two experimental settings: (i)
when correct model is a part of the base model space, and (ii) when correct model is not included in
the base model space.

A.5.1 SIMULATION SETTING 1: VERIFICATION OF WEIGHT CONSISTENCY

To empirically validate the weight consistency property established in Theorem 3, we adapt the sim-
ulation framework from Zhang & Liu (2023) to a binary classification setting. The data-generating
process is specified as:

P (yi = 1|xi) =
exp(ηi)

1 + exp(ηi)
,

where ηi =
∑q

j=1 βjxji, xi = (x1i, . . . , xqi)
⊤ ∼ N(0,Ω), the diagonal elements of Ω are 1, and

the off-diagonal elements are 0.5. The true model only has the first p coefficients nonzero. We set
p = 4, q = 20. The regression coefficient β = (1, 1, 1, c, 0, . . . , 0)⊤, where the parameter c takes
values in {0.01, 0.1, 0.2, ..., 0.99}.
We consider two base models: a correctly specified model including all q features, and amisspecified
model including the first p − 1 features. This design allows us to examine how ELAM’s weight
allocation responds to varying degrees of model misspecification, controlled by parameter c.The
misspecified and correctly specified models are denoted as Incorrect and Correct, respectively. The
larger the parameter c, the greater the impact of the missing covariate on the misspecified base model.

According to the scale-invariance of the AUC risk of the stacking estimator, let w̃ = ŵ
∥ŵ∥1

. If
the weight w̃ placed on the correct base model converges to 1 as the sample size and parameter c
increase, Theorem 3 is verified.

For each combination of sample size n ∈ {100, 500, 2000, 5000} and parameter c, we repeatedly
generate 200 independent datasets, employing a 70%-30% train-test split. Performance is evaluated
via relative empirical AUC risk, normalized against ELAM’s performance, called relative empirical
AUC risk. This metric less than 1 indicates that the method’s predictive performance is better than
ELAM.

Figure 2 shows that when the sample size n = 100, the empirical AUC risk of the correct base
model is significantly higher than that of the incorrect base model. When the sample size increases
to n = 500 or 2000, for smaller parameter values c, the predictive performance of the correct base
model is still worse than that of the incorrect base model, but the situation reverses as the parameter
value c increases. When the sample size n = 5000, the correct base model is almost consistently
better than the incorrect base model. For the proposed ELAM method, when the sample size is 100,
its predictive performance is close to that of the better incorrect base model. When the sample size
is 500, the ELAM method is significantly better than both base models for larger parameter values
c. When the sample size is 2000 or 5000, the ELAM method always tends to perform as well as, or
even better than, the best base model.

Figure 3 provides direct evidence for Theorem 3’s weight consistency guarantee. ELAM’s weight
allocation to the correctly specified model increases monotonically with both sample size and mis-
specification severity c, approaching 0.83 for n = 5000 and c = 0.99. This empirical validation
confirms that ELAM successfully identifies and leverages correctly specified models when sufficient
data is available.
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Figure 2: Relative empirical AUC risk of methods in Simulation Setting 1.

Figure 3: Average normalized weight placed on the correct base model in Simulation Setting 1.
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A.5.2 SIMULATION SETTING 2: ROBUSTNESS UNDER MODEL MISSPECIFICATION

We further examine ELAM’s performance under a more challenging misspecification scenario, em-
ploying the data-generating process:

P (yi = 1|xi) =
I(x⊤

i β0 > − 1
4 )

1 + (1 + 4x⊤
i β0)−

1
4

,

where xi = (xi1, xi2, ..., xip)
⊤, xik = z2ik − 1, k = 1, 2, . . . , p. zi = (zi1, zi2, . . . , zip)

⊤ is a p -
dimensional multivariate normal vector with mean 0 and covariance matrixΣ = (Σi,j) = (0.5|i−j|).
Fix p = 9. The regression coefficient β0 = (1, 1, 0.1, 0.1, 0, 0, 0, c)⊤, and we let the parameter
c vary over {0.01, 0.1, 0.2, ..., 0.99}. We assume the last dimension covariate is unobserved. We
consider nested (8 models) and non-nested (28 − 1models) cases, both with logistic regression base
learners.

For each parameter c, we randomly generate 1000 samples from the aforementioned distribution. As
in Simulation Setting 1, randomly split the sample into training and testing sets in a 7:3 ratio, and cal-
culate the relative empirical AUC risk of each method through 200 repeated simulation experiments.
Tables 1 and 2 show the results for nested and non-nested base models, respectively. In both cases,
ELAM demonstrates robust performance across both nested and non-nested settings, achieving best
or second-best performance in 19 of 22 configurations. The advantage is particularly pronounced in
the non-nested case, where ELAM outperforms the ME method by up to 25.7%. These results high-
light ELAM’s ability to effectively navigate complex model spaces while maintaining computational
tractability.

Table 1 Simulation Setting 2, Nested Base Models
ELAM ME AUCW SA FULL SAIC SBIC AIC BIC c

1.0000 0.9936 1.0057 1.0068 1.0805 1.0176 0.9968 1.0337 1.0098 0.01
1.0000 0.9940 1.0032 1.0039 1.0753 1.0137 0.9993 1.0286 1.0108 0.1
1.0000 0.9932 1.0006 1.0017 1.0609 1.0129 1.0019 1.0298 1.0159 0.2
1.0000 0.9962 1.0015 1.0015 1.0591 1.0169 1.0016 1.0335 1.0112 0.3
1.0000 1.0010 1.0036 1.0035 1.0513 1.0196 1.0063 1.0361 1.0123 0.4
1.0000 1.0023 0.9977 0.9978 1.0308 1.0158 1.0035 1.0334 1.0102 0.5
1.0000 1.0063 1.0047 1.0052 1.0225 1.0162 1.0119 1.0345 1.0162 0.6
1.0000 1.0010 1.0060 1.0064 1.0290 1.0160 1.0133 1.0316 1.0170 0.7
1.0000 1.0077 1.0055 1.0056 1.0252 1.0158 1.0158 1.0296 1.0212 0.8
1.0000 1.0059 1.0105 1.0108 1.0115 1.0112 1.0236 1.0242 1.0282 0.9
1.0000 1.0094 1.0098 1.0104 1.0119 1.0142 1.0207 1.0269 1.0257 0.99
Bold numbers and underlined numbers indicate the best and second best items, respectively

Table 2 Simulation Setting 2, Non-nested Base Models
ELAM ME AUCW SA FULL SAIC SBIC AIC BIC c

1.0000 1.2574 1.0239 1.0423 1.0688 1.0147 0.9887 1.0419 1.0040 0.01
1.0000 1.2402 1.0179 1.0354 1.0642 1.0126 0.9876 1.0439 1.0051 0.1
1.0000 1.2105 1.0217 1.0389 1.0559 1.0091 0.9895 1.0339 1.0082 0.2
1.0000 1.2257 1.0240 1.0398 1.0546 1.0086 0.9875 1.0371 1.0058 0.3
1.0000 1.1659 1.0159 1.0283 1.0466 1.0087 0.9934 1.0332 1.0161 0.4
1.0000 1.1439 1.0091 1.0198 1.0312 1.0082 1.0034 1.0288 1.0259 0.5
1.0000 1.1375 1.0097 1.0188 1.0349 1.0054 1.0060 1.0240 1.0188 0.6
1.0000 1.1071 1.0107 1.0188 1.0308 1.0046 1.0031 1.0243 1.0152 0.7
1.0000 1.1316 1.0056 1.0115 1.0233 1.0055 1.0070 1.0188 1.0261 0.8
1.0000 1.1021 1.0070 1.0134 1.0302 1.0071 1.0007 1.0211 1.0205 0.9
1.0000 1.0954 1.0093 1.0147 1.0232 1.0024 1.0048 1.0146 1.0198 0.99
Bold numbers and underlined numbers indicate the best and second best items, respectively
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A.6 EXTRA EXPERIMENTS

In this section, we evaluate the performance of ELAM on two extra real datasets: the MONK’s Prob-
lems Dataset Wnek (1993) and the Credit Approval Dataset Quinlan (1987) from the UCI Machine
Learning Repository.

The MONK’s Problems comprises 432 observations, each with 6 features. The Credit Approval
Dataset contains 653 credit card application records (from an original 690 instances after prepro-
cessing), each characterized by 15 financial and demographic attributes.

Follow the base model set in section 5, for the MONK’s Problems Dataset, we consider the complete
non-nested model space consisting of 26 − 1 = 63 distinct feature combinations. For the Credit
Approval Dataset, we restrict to a nested sequence of 15 models obtained by sequentially adding
features based on their original order. In both cases, we employ logistic regression as the base learner.

We randomly split the sample into training and testing sets in a 7:3 ratio, and calculate the relative
empirical AUC risk of each method through 200 repeated experiments. Figure 4 presents the em-
pirical AUC risk distributions across all methods on both datasets. ELAM demonstrates consistent
superiority, achieving the lowest AUC risk in both experimental settings.

On the MONK’s Problems Dataset, ELAM reduces average AUC risk by substantial margins com-
pared to all competitors: 34.39% versus ME, 3.66% versus AUCW, 3.85% versus SA, 7.13%
versus FULL, 4.22% versus SAIC, 2.87% versus SBIC, 5.41% versus AIC, 5.96% versus BIC.

The performance advantage remains pronounced on the Spambase Dataset, with relative risk re-
ductions of 3.73% (ME), 9.96% (AUCW), 13.43% (SA), 2.76% (FULL), 1.75% (SAIC), 8.04%
(SBIC), 2.76% (AIC), 10.96% (BIC).

Figure 4: Empirical AUC risk of models on the MONK’s Problems Dataset and Spambase Dataset.

20


	Introduction
	Preliminaries
	Stacking Framework and AUC Maximization
	Related works

	Stacking Method Based on K-fold Cross-Validation
	Cross-Validation Scheme
	Surrogate Loss Optimization

	Theoretical Analysis
	Asymptotic Optimality under Surrogate Risk
	Asymptotic Optimality under AUC Risk
	Weight Consistency

	Experimental Results
	Experimental Setup
	Results and Analysis

	Conclusion
	Ethics and Reproducibility Statement
	LLM Usage Statement
	Appendix
	Lemma
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Numerical simulation
	Simulation Setting 1: Verification of Weight Consistency
	Simulation Setting 2: Robustness Under Model Misspecification

	Extra Experiments


