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Abstract

The risk of seizures in epilepsy fluctuates in cy-
cles with multiday periodicity. The strength of
these patient-specific seizure risk cycles can be
modulated by disease processes. There is a lack
of computational models of epilepsy that de-
scribe the progression and modulation of multi-
day seizure risk cycles. We developed a state
space model (SSM) for epilepsy progression
that learns individualized multiday seizure risk
cycles from intracranial EEG (iIEEG) data. To
capture the cyclical nature of seizure risk, our

demonstrate the value of the model in develop-
ing brain stimulation treatment, the proposed
SSM was integrated with reinforcement learn-
ing to reduce seizure risk in silico. Our model
holds significant potential for addressing clini-
cally important problems.

Keywords: State space model, cyclical dy-
namics, expectation maximization, epilepsy
progression, multiday cycles

Data and Code Availability We used data from
the NeuroVista study in which intracranial EEG

model incorporated cyclical dynamics by us-
ing a special rotation matrix structure for the
state transition matrix. The model learned
patient-specific multiday cycles using a novel
expectation-maximization algorithm. We eval-
uated the model on real-world data from one of
the longest continuous iEEG recordings in peo-
ple with epilepsy. The model forecast iEEG and
inferred periods of heightened risk of seizures
better than or comparable to baseline mod-
els, and provided novel insight into biological
factors that modulate seizure risk cycles. To
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recordings were obtained in 15 people with epilepsy
for up to 2 years each (Cook et al., 2013). De-
identified data from the study are publicly available
at https://www.epilepsyecosystem.org/. Code:
https://github.com/yuruic2/EpilepsySSM

Institutional Review Board (IRB) This re-
search did not require an IRB approval.

1. Introduction

Abnormalities in brain activity are used by clinicians
to assess the imminent risk of seizures in people with
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epilepsy. The risk of seizures fluctuates in cycles
with multiday periodicity (Baud et al., 2018). Dura-
tions of these seizure risk cycles are patient-specific
and can be several weeks long. The chance of a
seizure occurring can be altered by modulating the
strength (amplitude) of these cycles, for e.g., by dis-
ease processes (Bower et al., 2017) and medications
(Friedrichs-Maeder et al., 2024). There is a lack of
computational models of epilepsy that describe the
progression and modulation of multiday seizure risk
cycles. Such a model can be used to uniquely pre-
dict the cycles for each individual, enabling clinically
useful applications such as forecasting seizures and
developing treatments in silico.

We propose a state space model (SSM) of epilepsy
progression that learns patient-specific multiday
seizure risk cycles and their modulation. We used
a state space formulation because it provides a first-
order linear system that can be run recursively to gen-
erate the complexity of cyclical dynamics in epilepsy.
In our SSM, the latent state represents seizure risk.
The observations, a patient’s brain activity, depend
on the latent seizure risk. To capture the cyclical
nature of seizure risk, we imposed cyclical dynamics
in the latent states by using a special rotation matrix
structure for the state transition matrix. This matrix
is adopted from Matsuda and Komaki (2017).

There are three main challenges in developing the
proposed SSM. (i) Noisy and limited data: Brain
activity measured by intracranial EEG (iEEG) pro-
vides noisy measurements of the seizure risk cycles
(Khambhati et al., 2024). Moreover, it is difficult
to collect long-term iEEG data from people with
epilepsy to estimate weeks-long cycles. (i) Weak
modulation effects: Modulations in seizure risk cy-
cles are small and can be difficult to detect in iEEG.
This makes it challenging to estimate the effect size
of different factors on the cycles. (iii) Unknown model
parameters: Model parameters are not known apriori
and need to be learned from limited data.

We addressed these challenges as follows: (i) Long-
term iEEG data were used from the NeuroVista study
in which iEEG recordings were obtained in 15 peo-
ple with epilepsy for up to 2 years each (Cook et al.,
2013). This is one of the largest datasets of contin-
uous iEEG recordings in epilepsy. The state space
formulation enables inferring (latent) seizure risk cy-
cles from noisy iEEG data using a Kalman filter.

(ii) Factors that modulate seizure risk cycles influ-
ence the latent state in the model. Since the latent
state represents a less noisy estimate of the cycle, it

captures small changes in the cycle amplitude. This
enables estimating factors that modulate cycles.

(iii) Parameters of the SSM were learned from the
iEEG data using a novel Expectation-Maximization
(EM) algorithm. Identifiability of parameters is a
common issue for learning SSM parameters with EM.
Our EM algorithm addresses identifiability by noting
that there is a lower limit to the cycle period that
can be detected based on the temporal resolution of
the model, similar to the Nyquist limit. Imposing
this constraint along with the special rotation matrix
structure of our model allows EM to learn unique pa-
rameters up to a sign. Thus, our approach generalizes
the model proposed in Matsuda and Komaki (2017)
by relaxing the constraint they imposed on the ob-
servation matrix for identifiability.

The value of the proposed model is demonstrated
on four applications using synthetic and real-world
NeuroVista data. On synthetic data, the proposed
EM algorithm recovered the ground truth model pa-
rameters, including the duration (period) of multiday
cycles. (i) On real data, the proposed model identi-
fied ground truth multiday cycles in iEEG features
and forecast iEEG values better than or compara-
ble to baseline models. (ii) The latent state of the
model can be used to compute the risk of seizures at
any given point in time. We found that across pa-
tients, seizures occurring within a short interval of
each other aligned with periods of heightened seizure
risk inferred by the model, highlighting the model’s
value in forecasting seizures. (iii) The learned model
parameters provided novel insight into factors that
can influence seizure risk cycles. (iv) Finally, we as-
sessed the usefulness of the model for treatment op-
timization. We integrated the model with reinforce-
ment learning (RL) to develop a framework for adap-
tive brain stimulation treatment. In in silico experi-
ments, the framework reduced an individual’s seizure
risk while simultaneously minimizing stimulation.

This paper makes the following contributions:

e We developed an SSM of epilepsy progression
that learns personalized multiday seizure risk cy-
cles from iEEG data. To the best of our knowl-
edge, this is among the first models of epilepsy
focusing on the timescale of days to months.

e We derived a custom EM algorithm to learn
the parameters of the SSM and extended the
model proposed in Matsuda and Komaki (2017).
Our approach is broadly applicable for model-
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ing cyclical dynamics in timeseries, which are ob-
served in several biosignals (Gregg et al., 2023).

e The model forecast iEEG, inferred periods of
heightened risk of seizures, and provided novel
insight into biological factors that can influence
epilepsy progression.

e We demonstrated a framework that combined
our SSM with RL and an intuitive reward func-
tion for in silico optimization of brain stimula-
tion treatment.

1.1. Background

Circadian and multiday cycles have been observed in
seizures in people with epilepsy (Baud et al., 2018).
Based on these observations, Gregg et al. (2021) pro-
posed a hypothetical descriptive model of seizure risk
(Figure 1(a)). The hypothetical model states that
seizure risk varies cyclically (or in a combination of
cycles). Seizures can occur when the overall seizure
risk combined across cycles is above a threshold. In
addition, seizure generation is probabilistic. Thus,
seizures might occur only at some times in the entire
duration when the overall seizure risk is above the
threshold (Jirsa et al., 2014). A higher amplitude of
seizure risk cycles increases the times when seizures
are highly likely (Figure 1(a)).

The amplitude of seizure risk cycles can be modi-
fied. Anti-seizure medications can decrease the am-
plitude of multiday seizure risk cycles and reduce
seizures (Friedrichs-Maeder et al., 2024). Moreover,
seizures influence the risk of future seizures through
consolidation, i.e., the brain “learns” to seize because
of past seizures (Bower et al., 2015, 2017). Since
seizure likelihood depends on the cycle amplitude in
the hypothetical model, we assumed that consolida-
tion impacts the amplitude of seizure risk cycles.

2. Model

We assumed that there are D unique cycles in the
model for a patient (Figure 1(b)). Each cycle is rep-
resented by its corresponding angular frequency wy,
for d € {1,...,D}. The cycle denoted by wy has a pe-
riod of 27 /w, days. We assumed that there is a hid-
den seizure risk state Z; € R*P at time t. Each cycle
wq is represented by two elements Z; o4—1, Z: 24 € R
in the latent state Z;, which capture the seizure risk
from cycle wg. When the overall seizure risk, i.e., sum
of the seizure risk state ), Z; ;, is above a certain

threshold 7, seizures are very likely. Since consolida-
tion is key to the model and typically occurs during
sleep (Stickgold, 2005), the timescale of ¢ is a day.
Based on the hypothetical model proposed by
Gregg et al. (2021), we assumed that the latent
seizure risk state changes in cycles. In the model,
that is achieved through the Markovian relationship:

(1)

where A is a matrix with complex eigenvalues. We
assumed that A has a block diagonal structure, with
each block being a rotation matrix corresponding to
a unique cycle. Let,

Ziy1 = AZy,

cos(wq)
sin(wgq)

— sin(wq)

Riwa) = cos(wyq)

(2)
be the rotation matrix which rotates the seizure
risk state vector by wy radians every time. A =
a x diag(R(w1), R(w2), ..., R(wp)) where a € (0,1)
is the norm of the eigenvalues. This structure of A
allows the seizure risk from cycle wy to evolve inde-
pendent of the other cycles.

Seizures (U; € RM) can modulate the cycle am-
plitude through consolidation. Thus, the seizure risk
state at the next time point Z;,1 depends on the cur-
rent seizure risk state Z; and seizures U;.

(3)

where w; ~ N (0, X,,) is the system noise. B mediates
the consolidation effect of seizures on the seizure risk
state. Although seizures U; are generated from the
underlying seizure risk state Z;, we ignored the edge
representing seizure generation for the ease of model
training and inference. We did not consider the effect
of medications on seizure risk cycles because informa-
tion about medications is unavailable in the data.

We assumed that the observed iEEG features
(X; € RM) depend linearly on the latent seizure risk
state Z; with v; ~ N(0,3,) measurement noise. The
overall SSM is as follows:

Ziy1 = AZy + BUy + wy,

Zt+1 = AZt + BUt + wy

Xt = CZt + V¢
we NN(Oa Ew)7vt NN(Ovz’U)aZO NN(.U“Ovzo) (4)
where the model parameters are © =

{A,B,C, %, Xy 10, 20} We use the following
notation to denote the collection of variables over
time: Z = [ZQ, Zl, cey ZN]7 X = [Xo, Xl, ...,AX'N]7 and
U = [Uy,Us,...,Un]. A vanilla SSM has the same
form as Eq. (4) with no constraints on ¥,, and A.
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Figure 1: Overview. (a) Hypothetical model of seizure risk (Gregg et al., 2021). A higher amplitude of
cycles increases the times when seizures are more likely. (b) Modeling and analysis pipeline. The
SSM leverages iEEG data to forecast future iEEG and to infer periods of heightened seizure risk.

3. Expectation-Maximization 3.2. M-step

We used Expectation-Maximization (EM) to esti-
mate model parameters ©. Our EM calculations
were inspired by Soulat et al. (2022); Wang et al.
(2022b) (Appendix A). We assumed that X = 031,
Yuw = O’%UI and ¥, = 031 where 0g, 0, 0, are scalars.  H0 = Zév
Without loss of generality, we set o2, = 0.01. 1

The complete log likelihood £(Z,X|U;©): oG = wtr((ZéV = 10)(Z5" = o) + PON)

N —1
L(Z,X|U;0) = logp(Z,X|U;0) (th ZN) ) <Z zN(zM" +PtN)>
t=0

The expectation of the complete log likelihood with N
respect to the posterior over the latent variables is: 52— 1 Z [ (
v (N+1)M &

G(©) = Eyzix,ue)[L(Z,X|U; 0)] =

Maximizing G(©) with respect to the parameters ©
results in the following update equations:

-0z (X -0z

+CcpPNCT]
EM alternates between (i) computing G(©) by in- { — (rt(Rd+<I>d)) if rt(Rat®a) -
Wq =

ferring latent states Z (E-step) for the current value tr(fta—Pa) tr(Ra—®a) =
of ©, and (ii) updating the model parameters © by 7+ tan~! <%) , otherwise
maximizing G(0) (M-step). The E- and M-steps are

N -1
repeated alternatively until convergence. ( N \prT
B = Z( - AZ, U4 ZUt 1Ut 1
t=1
3.1. E-step
The posterior over the latent states p(Z|X,U;©) is In the update for wy, R = Zi\]ﬂ J\i L+

obtained via Kalman smoothing. The posterior dis-
tribution is Gaussian with parameters: mean Z¥ =
E[Z|X], and covariance P\, = E[Zy,, Z,|X]. Th
expectation of complete log likelihood is:

ZN(ZN )T and & = SN, ZN (BU, )7 are 2D x
2D matrices. Ry is the d** 2 x 2 block in matrix R.

Ry — Rog—124-1 Rod—1,24
1 Rad,2q-1 Raq,24
G(0) = —54 Gljuo, o) + G(C,5,) + G(A, B, 5)

The functions of a 2 x 2 matrix V are defined as:
The form of each term is provided in Appendix A. rt(V) = Va1 — Vig and tr(V') = Vig + Vao.
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3.3. Identifiability
A vanilla SSM solved using EM does not have a

unique solution. For an invertible matrix W:
\I/Zt+1 = \I]A\I/71\I/Zt+\I/BUt + \I/U)t
X, =CU 107, + Ty,
Tw, ~ N(0, U2, 07) Ty, ~ N(0, 05, 07)

()

which maps onto a vanilla SSM for parameters 0
A = VAU~ B = UB, " = CU~L, puf = Wpy,
Yy = U807, % =%, 07, and ¥, = U%, 07,

We placed additional constraints on the proposed
model for identifiability. (i) We assumed %, = 0.011.
Thus, UW7T = I ie., ¥, must be an orthonormal ma-
trix. (ii) By constraining A to have a block diagonal
structure with rotation matrices R(wq),d = 1...,D
on the diagonals, we further restricted ¥ only to be
a permutation matrix which can shuffle the blocks.
(iii) Both rotation matrices R(wgy) and R(—wq) can
fit the data by appropriately adjusting the sign of
the columns of U (Appendix A.3). Note that —wq
is equivalent to 2m — wy and corresponds to a cycle
duration between 1 to 2 days, which is faster than
the Nyquist limit of 2 days for a model with a tem-
poral resolution of one day. Therefore, we restricted
wq € [0, 7] Vd since we studied cycles that were slower
than two days in the data. (iv) On A, we imposed the
constraint that wi; > ws > ... > wp, i.e., the blocks
are ordered from the largest angle (fastest cycle) to
the smallest angle (slowest cycle).

Using the above constraints, for a solution O for
the model, we can recover the permutation matrix
U by inspecting the ordering of the blocks in A’. ©
can then be obtained as follows: A = VTA'¥, B =
VB C=C'W, o = 9T ). These constraints allow
the identification of a unique solution up to a sign for
each cycle independent of other cycles.

4. Experimental setup
4.1. Synthetic data

We generated synthetic data using Eq. (4) to assess
whether the proposed EM algorithm could recover
ground truth (known) parameters (Appendix B).

4.2. Real-world data: NeuroVista study

We used iEEG recordings of nine participants from
the NeuroVista study (Table 2). iEEG was sampled
at 400 Hz from 12 bipolar-referenced electrodes. De-
tailed methods are provided in Appendices C, D, E.

Seizures: Seizures were detected from iEEG using
a published method (Sladky et al., 2022), resulting in
404.2 £ 322.4 seizures per patient. U; was obtained
by extracting features from seizure iEEG and aggre-
gating them across seizures on day ¢t (Appendix C).

iEEG feature timeseries: iEEG features were
obtained for each day by pre-processing the data and
extracting univariate and bivariate features in seven
non-overlapping frequency bands using a methodol-
ogy similar to Saboo et al. (2023) (Appendix C). To
obtain X;, we selected six to nine iEEG features for
each patient that demonstrated multiday cycles based
on the cycle period of seizures (Appendix C).

Ground truth cycle periods: Ground truth cy-
cle period for seizures was determined using r-value
analysis (Appendix E) (Gregg et al., 2021). Seizures
were divided into clustered or isolated based on the
interval between adjacent seizures. In this dataset,
multiday cycles were observed in clustered seizures
in 8/9 patients, whereas cycles in isolated seizures
were observed only in 2/9 patients. We obtained
the ground truth multiday cycle period in iEEG fea-
tures’ timeseries using wavelet analysis (Appendix
D). iEEG multiday cycles with period similar to
seizure cluster cycles were observed in all the patients.

4.3. Model training and comparison

Data split: Each patient’s data was divided chrono-
logically with a 80:10:10 training-validation-test split.
We used Ntrem  Nvalid  and Ntest to denote the
length of training, validation, and testing data, re-
spectively. The feature timeseries were detrended and
normalized to have unit variance based on the mean
and standard deviation of the training data.
Parameter initialization: During training, A
was initialized by uniformly sampling D cycles in the
range 2 —64 days, where D is the number of multiday
cycles. We set the norm of A’s eigenvalues a = 0.999
based on preliminary analysis. B and C' were initial-
ized with uniform random values. At initialization,
03,012) =1, 02 = 0.01, and g = 0. pg, o for the

validation data was the filtered latent state Z]]\\,[,t::n

For the test data, pg, 2g

Ntrain y nvalid
ZNM‘ain+Nvalid

in

. tra
and covariance was Pa;rain -

were the filtered latent state and co-

. Nt'r‘ain_,’_Nvalid .
variance Py qin 4 Nwatid > respectively.

Hyperparameters: For synthetic data, 100 ini-
tializations (seeds) of the model were trained for 200
epochs each. For real data, 60 initializations were
trained for 300 epochs each. For each seed, the model
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corresponding to the minimum validation negative
log likelihood was considered. For each patient, the
seed that achieved the lowest mean squared error in
recovering the angles wy of the multiday cycles was
chosen for further analysis. The number of multiday
cycles D = 2 or 3 for each patient (Appendix E).

Baseline models: We compared with three base-
line models. (i) Vanilla SSM: An SSM with no con-
straint on the structure of A and trained with vanilla
EM. (ii) MK SSM: The SSM proposed by Matsuda
and Komaki (2017), which used the same structure
of the A matrix as the proposed model and placed an
additional constraint that at least one iEEG feature
must include all the multiday cycles. (iii) LSTM: A
vanilla long short-term memory model with 2D hid-
den states, matching the dimensionality of Z;. EM
calculations for vanilla SSM are provided in Appendix
A and implementation details of the baseline models
are provided in Appendix F.

4.4. Reinforcement learning for stimulation

The proposed SSM can be used for in silico opti-
mization of brain stimulation by leveraging the same
biological mechanism as seizure consolidation, but in-
stead to reduce seizure risk cycles. We combined our
SSM with RL to select stimulation Y; V t that affects
latent seizure risk state Z;. Stimulation Y; affects Z;
via the input matrix B, which captures the effect of
seizure consolidation.

Ziy1 = AZy + BUy + BY; + wy, (6)

RL was setup as follows: (1) State: The latent
seizure risk state Z; € R?P. (2) Action: Stimula-
tion Y; € RM. (3) Reward: The agent was penal-
ized when the overall seizure risk was above 95% of
the seizure threshold 7. The agent was encouraged
to reduce the magnitude of stimulation Y;, assum-
ing that the magnitude reflects the total stimulation
delivered. Overall, the reward function was given by:

r(t) = —max(O,ZZt,j —0.95%7) —[[V3|2  (7)
J

(4) Environment: Eq. (6) was implemented in the
environment to assess the effect of Y; on Z; and to
provide the state and reward to the RL agent.

In practice, the latent seizure risk Z; can be es-
timated using the observations Xi,...,X; using a
Kalman filter in the environment when observations
are available. After stimulation, the latent seizure
risk can be estimated using Eq (6). See Appendix F
for implementation details of the RL framework.

5. Results

5.1. Model fitting on synthetic data

Proposed EM and vanilla EM both estimated cycle
periods accurately (ground truth cycle periods: 10,
25, 45 days; cycle periods estimated by proposed EM:
10.00, 24.96, 45.02 days; by vanilla EM: 10.05, 25.27,
44.50 days). However, due to identifiability issues, A
recovered from vanilla EM had a higher mean squared
error (MSE) than proposed EM (Figure 3, Appendix
B). Consequently, the proposed EM also achieved a
lower MSE in estimating matrices B and C'. Accurate
estimation of A enabled the proposed SSM to identify
periods of heightened seizure risk better than vanilla
SSM (Figure 5). These results highlight the value of
the proposed EM in learning cyclical dynamics.

To further assess the proposed EM, we varied the
synthetic data characteristics and estimated param-
eters of these variants. Proposed EM estimated
ground truth parameters accurately for different (i)
data duration (), (ii) missingness, (iii) system noise
(02 1), and (iv) eigenvalue norm (a) (Appendix B.3).

5.2. Model fitting on real data

The proposed SSM identified ground truth cycle pe-
riod better than vanilla SSM and MK SSM (Table 1).
Across patients, no initialization (seed) of the vanilla
SSM or MK SSM recovered all the ground truth cy-
cles. We observed that A recovered by vanilla EM for
several initializations had real eigenvalues > 1 (cycle
period = o0), which resulted in model divergence.
For four patients, A estimated by the vanilla EM had
at least one eigenvalue with norm > 1 in all seeds.
In contrast, the constraint on A with a < 1 ensured
that the proposed model did not diverge. MK SSM’s
requirement that at least one iIEEG feature must con-
tain all the D cycles was not satisfied for most pa-
tients. This might explain its poor performance in
recovering cycles. We did not compare with LSTM
because it does not provide cycle periods explicitly.
The proposed SSM also recovered the cycle peri-
ods specific to each iEEG feature. Each iEEG fea-
ture only contained a subset of all the cycles mod-
eled in a patient. We studied the coefficients of the
learned C' to evaluate whether the model recovered
the correct subset of cycles for each iEEG feature. In
theory, if a cycle w; is present in an iEEG feature ¢,

then the coefficients /C?,, | + C7Fy; > 0, and if the

cycle is absent, then |/C7y; | +C7y; = 0. In the
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Figure 2: Estimated model parameters for synthetic (a) and real data (b, ¢). (a) Proposed EM (PM) achieved
a lower MSE in estimating model parameters compared to vanilla EM (VM). (b) Coeflicients of
the observation matrix C were larger for a cycle present in an iEEG feature than for a cycle that
was absent, thus, capturing the characteristics of the underlying iEEG data. (c) Coefficients of the
input matrix B for Patient 9 were largest for delta (4) and sigma (o) bands, which are associated

with consolidation. Feature name abbreviation format: type

estimated C' across patients, we observed that coeffi-
cients of C corresponding to a cycle present in iEEG
were larger than coefficients of C' corresponding to cy-
cles not present in iIEEG (Wilcoxon rank-sums test,
p < 1074, Figure 2(b)). Thus, the estimated model
parameters reflect the underlying data.

5.3. Forecasting iEEG timeseries

Since the SSM captures the generative process of
iEEG features X;, we can forecast iEEG values us-
ing the trained model. For each patient, the training
and validation data was used to forecast the test data
iEEG features. The proposed model achieved com-
parable or lower forecasting MSE than the baseline
models for majority of the patients (Table 1). LSTM
achieved slightly lower MSE for 3 patients and sub-
stantially better MSE for just one patient compared
to the proposed model. We speculate that the com-
petitive performance of the proposed SSM to LSTM
could be because of the limited data size. Among
SSMs, the proposed model performed better than
MK SSM for 7 out of 9 patients and better or com-
parable to vanilla SSM for 7 patients. This could
be because the proposed SSM learned the underlying
cyclical dynamics from a small timeseries due to the
additional constraints on the proposed EM algorithm.

5.4. Alignment between inferred seizure risk
and seizure clusters

Identifying periods of heightened seizure risk is clin-
ically important. We compared the alignment be-
tween the occurrence of seizure clusters with the over-

— band.

electrode(s)

all seizure risk inferred by the model (3_; Zy;). We
focused on seizure clusters because they lead to worse
disease outcomes (Haut, 2015) and since clusters oc-
curred in cycles in this dataset. Overall seizure risk
was inferred using the entire iIEEG timeseries of a pa-
tient because there were few clustered seizures in the
test set. We used the filtered latent states to estimate
overall seizure risk, i.e., X;,Vt < t’ was used to esti-
mate Z;, which can be valuable to predict the risk of
clusters in the next 24 hrs (Khambhati et al., 2024).

For each patient, we computed a metric that we
refer to as Z-distance, which measures the differ-
ence between the distribution of overall seizure risk
when seizure clusters occurred with the overall seizure
risk when clusters did not occur (Appendix F). A
higher Z-distance implies that the overall seizure risk
is higher at times when seizure clusters occurred com-
pared to times when seizure clusters did not occur.
Thus, the overall seizure risk is a meaningful readout
of the chance of seizure occurrence, as expected based
on the hypothetical model (Figure 1(a)). LSTM was
excluded from this analysis because, unlike the SSMs,
it does not provide a latent seizure risk state Z;.

The proposed SSM had a higher Z-distance com-
pared to the vanilla SSM and MK SSM for 5/9 pa-
tients (Table 1). Two possible reasons for the differ-
ence in performance are: (i) In many patients, the
vanilla SSM and MK SSM did not recover the mul-
tiday cycle whereas the proposed SSM did. (ii) For
the vanilla SSM, cycles of different periods may not
be represented independently in the latent state Z;,
resulting in errors in the estimation of the phase of
each cycle at t (Figure 5, Appendix B). As a result,
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Table 1: Results on real data of each patient (ID): Performance of the proposed SSM (PM), vanilla SSM

(VM), MK SSM (MK

), and LSTM in recovering ground truth (GT) multiday cycles (col: Multi-

day cycle period), forecasting iEEG (col: Forecast iEEG), and inferring heightened seizure risk (col:
Overall sz. risk). (—) denotes patients for whom the model diverged. Better performance is in bold.
Multi-day cycle period and Overall sz. risk were unavailable for LSTM due to model structure.

ID Multi-day cycle period (days) Fore((islssté;jEG O‘(’;ils tsazT;czl)Sk

GT PM VM MK PM VM MK LSTM| PM VM MK
1 (16 28, ) (15, 32, 35) — (21 25 707) 2.6 — 3.5 5.2 |10.46 — 0.20
2 (16 29) (17 35) — ( ) 11.4 — 13.3 10.8 |1.33 - 0.11
3 1(22.32) (22,31) (2,9 (5 24) 34.6 259 888 11.1 |0.14 0.04 0.24
4 [ (26,43, 55) (24, 44, 47) (2,3,8) (43,46,47) | 1.8 16 21 1.3 |0.03 0.05 0.10
5 | (18, 32,51) (19, 30, 43) - (25,27,35) | 0.9 - 14 0.9 |0.08 - 0.5
6 |(5,31) (5, 29) (3,16) (8, 8) 1.0 1.0 1.0 1.0 |0.25 0.40 0.04
7 1(18,28) (18, 32) (3,31) (2,20) 446.2 446.2 446.2 471.1 [1.27 025 0.59
8 [(7,22,50) (7,21,42) - (2,72,85) | 9.4 - 117 98 |010 - 0.24
9 |(20, 40, 50) (20, 45, 45) (2,2, 10) (4, 23, 57) 204.6 204.6 1323.2 202.4 |0.74 0.63 0.22

the overall seizure risk will not align with seizures. In
the proposed SSM and MK SSM, the block diagonal
structure of A ensures that cycles of different periods
are independent, which helps with the estimation of
overall seizure risk. Since the inferred seizure risk cy-
cles track seizure clusters, the proposed model could
potentially forecast seizure clusters.

5.5. Model interpretation: Features related
to consolidation modulate cycles

We interpreted the learned input matrix B to iden-
tify the iEEG features that modulated seizure risk
cycles. In Figure 2(c), a darker square indicates a
larger coefficient in B and suggests a larger effect of
the corresponding iIEEG feature on seizure risk cy-
cles. For Patient 9, the three features that had the
largest coefficient in B were delta (0.5 — 4Hz) and
sigma (12 — 16Hz) band features. Therefore, seizures
with larger feature value in those bands had a larger
impact on seizure risk cycles for Patient 9. At least
one of the three largest coefficients of B corresponded
to a sigma or delta band feature in 7 out of 9 patients
(Appendix F). Interestingly, activity in the delta and
sigma bands has been linked to sleep-related consol-
idation (Fogel and Smith, 2011). Thus, our data-
driven approach suggested that seizures with larger
activity in the bands associated with consolidation
have a larger impact on seizure risk cycles. This lends
support to the effect of consolidation on seizure risk

and can help identify patient-specific factors driving
consolidation. Further investigation of consolidation
using insights from the model can help identify novel
treatments, as shown in Section 5.6.

5.6. RL-based treatment optimization

Since the model captures the effect of consolidation
on seizure risk cycles, we investigated whether it can
enable in silico development of consolidation-based
treatment for epilepsy. Stimulation can affect seizure
risk through long-term plasticity (Khambhati et al.,
2021), which is related to consolidation. We com-
bined the proposed model with RL to drive adap-
tive brain stimulation applied to Patient 9’s model
from day 50 onwards (Appendix F). We observed
that adaptive stimulation reduced the amplitude of
all the seizure cycles but, to a greater extent, the 45-
day cycle (Figure 10(b)). Within 105 days of stim-
ulation (day 155), the overall seizure risk was below
the seizure threshold 7 for most days, implying that
the patient receiving this stimulation wouldn’t have
experienced any further clustered seizures. The mag-
nitude of stimulation also varied over time (Figure
10(c)), demonstrating its adaptive nature.

A limitation of this analysis is that we don’t have
access to real data from stimulation in Patient 9 to
validate the results. We assumed that the input ma-
trix B captures the causal effect of stimulation on
epilepsy, which needs to be assessed with real-world
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data from stimulation. Moreover, stimulating the
brain in a way that generates the Y; values obtained
from this framework may be non-trivial. Neverthe-
less, this experiment demonstrates how an SSM that
learns biologically relevant processes can enable in
silico development of treatments (Hu et al., 2023).

6. Related work

Modeling epilepsy: Computational models of
epilepsy range from biophysically realistic models of
neuronal activity (Raikov and Soltesz, 2017, 2019;
Liou et al., 2020) to phenomenological models that
abstract away the biophysical details and only focus
on capturing salient dynamical behaviors of epilepsy
(El Houssaini et al., 2020; Kalitzin et al., 2010). Most
of these studies model epilepsy-related activity at the
short timescale of seconds to minutes. The proposed
SSM focuses on a longer timescale of days to months.
Rosch et al. (2024) recently proposed a control the-
oretic approach that models slow (multiday) seizure
risk cycles in a single iEEG feature using faster cycles
in the same feature. Our approach is demonstrably
extensible allowing multiple applications and differs
in two main ways. (i) It is unclear how their approach
can be extended to handle multiple iEEG features.
We observed that, in general, a single iEEG feature
did not capture all the multiday seizure cycles. In-
cluding multiple features can help forecast seizure risk
much better. (ii) The proposed SSM incorporates the
effect of other factors (e.g., consolidation) in modu-
lating cycles, whereas their model is driven by the
dynamics of a single feature.

Modeling cyclical dynamics: Matsuda and Ko-
maki (2017) developed a SSM to model circular dy-
namics in the latent states by using rotation matri-
ces as blocks in the state transition matrix. Soulat
et al. (2022) and Wodeyar et al. (2021) applied their
model to estimate phase-related features of neural
signals. For parameter identifiability, their model re-
quires that at least one observed variable must in-
clude all the cycles of interest. This requirement is
relaxed in the EM algorithm proposed in our work,
making our SSM more broadly applicable.

7. Discussion

We developed an SSM of epilepsy progression that
learns multiday seizure risk cycles and their modu-
lation from iEEG data and demonstrated its utility
for several clinically important problems. Cycles in

seizures are widely observed across people with differ-
ent kinds of epilepsy (Baud et al., 2018; Gregg et al.,
2021; Wang et al., 2022a). In principle, our model
can be applied to other people with epilepsy beyond
the current dataset.The proposed SSM can also be
used to model other biosignals that consist of mul-
tiday cycles to forecast seizures. Multiday cycles in
temperature, heart rate, electrodermal activity, ac-
celerometry data collected from wearables have been
linked to seizures (Gregg et al., 2023).

Our approach was applied to chronic data from
people with drug-resistant epilepsy. Chronically im-
planted devices that deliver brain stimulation are
proven to reduce seizures, and a viable treatment
option for the 30% of epilepsy patients with drug-
resistant epilepsy (Ryvlin et al., 2021). The next
generation of brain stimulation devices will leverage
technological advances to improve outcomes (Denison
and Morrell, 2022; Borton et al., 2020). Our approach
is suitably positioned to leverage the growing use of
these devices and address the need for analytical tech-
niques which handle the complex brain activity data
collected from these devices to optimize treatment.

7.1. Limitations

Model: (i) We assumed a linear SSM because of the
limited data size. Incorporating non-linear relation-
ships in the observation space could enable the model
to capture more variance in the data. (ii) The norm
of eigenvalues of A (a) was fixed. Allowing a to be
learned during EM will enable the model to better fit
the data. Incorporating non-cyclical dynamics in the
latent states by adding another block in A will also
make the proposed model more flexible. Our EM
algorithm can be extended to learn this more flexi-
ble model based on the EM approaches provided in
Soulat et al. (2022) and Wang et al. (2022b).

Data: (i) We evaluated the model on data from
nine patients implanted with an iEEG recording de-
vice. Although the dataset is one of the longest con-
tinuous iEEG available, validating the model on more
patients is important. (ii) Further validation of the
RL framework using brain stimulation data is needed
(Sladky et al., 2022). (iii) The effect of medications
on disease progression was not modelled because that
information was unavailable in the dataset. For clini-
cal utility, it is important to include medication data
and jointly model the effect of consolidation, medica-
tions, and brain stimulation (when delivered).
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Appendix A. EM calculations

The complete likelihood p(Z, X|U) of the model is:

p(Z,X[U;0)
= p(ZO, Z1y .y ZN, Xo, X1, ...,)(]\]l[]()7 Ui,....,Un; @)
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The complete log likelihood £(Z, X|U;0) is:

L(Z,X|U;0)
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Recall that 3, = 02y where X; € RM is the

Ts—1
AZi1 — BUi)" X, dimensionality of the observed data. Let,

+Y (% -

t=1

X (2~ AZuor = BU) } ©) G(C,%,) = (N + 1) log [S,|
N
A.1. E-step + Ztr (Zvl((xt - CZiv)(Xt - CZtN)T
The Kalman smoother equatlons are as fol-
low. Let ZI™' = E[ZJ{Xy},) and P/ = +CcPNCT)
Cov[Z;|{ Xy} ]. The forward pass is given as fol-
lows: (N +1)Mlogo?
77t = AZ!Z1 4 BU, 1 &
- e =t + = > tr| (X —CZN) (X — Ccz))"
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We can further simplify Eq. (14) based
on the block diagonal form of A = a X
diag(R(w1), R(w2), ..., R(wp)).

Due to A’s block diagonal nature, we can simplify
matrix multiplication with A. For e.g.,

Z tr( AR Z tr Ade
le
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aR wd Rd

where, Ry is the d" block in matrix R.
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Vas: rt(V) =
R(wq)TR(wq) = I. Using this, Eq. (15) gives:

Similarly, for a vector Z}), we can denote ZY, =

[ZtJYQd—h Zgzd] as the two elements of the vector Z}¥
that will get multiplied by aR(wg).
Thus, we can simplify the terms in Eq. (14).
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We get the last equation because for any ma-
trix V, tr(V) = tr(VT) and for matrices Vi, Va,
tr(ViVa) = tr(V2V1). Further simplifying the terms
involving R(wq) as follows:
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We can simplify the cross term between B and A in
Eq. (14). Note that this term is a scalar. Therefore:
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where, ® = YN ZN (BU,_1)T is a 2D x 2D ma-
trix and the trace in the final term (Eq. 17) is ob-
tained from the following simplification:
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— (P2d,2d—1 — P2dg—1,24) sin(wa)
= tr(®g) cos(wq) — rt(Py) sin(wy)

Substituting Eqgs. (16
G(A,B,%,)

) and (17) in Eq (14), we get:
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A.2. M-step

In the M-step, we maximized G(©) to obtain the up-
dated value of the parameters ©. Note that based on
Eq. (10), each parameter depends on only one of the
three terms. For e.g.,

9G(0)

aC

B 1{36‘(#0720) L 9G(C.%,) | 0G(A. B, zw)}
2 ac aC aC
19G(C,%,)

-2 aC

Therefore, we optimized the parameters by simply
considering the term in G(©) in which that parameter
appeared.

A.2.1. UPDATES FOR g, 03

From Eq. (11),

G (o, o)
o
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A.2.2. UPDATES FOR C, 02

From Eq. (12),
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A.2.3. UPDATES FOR A, B
We computed the update for wg,Vd = 1,..., D. From
Eq (18),
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D oL . .
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0121, — 0B
; Thus, the pairs wy and [Z; 1, Z; 2], as well as —wg and
2 N \prT 1t [Zi1,—Z 2] both satisfy the state transition Eq (4),
o2 Z( —AZE)U 5 Z 2BU-1Upy which gives rise to the identifiability issue mentioned

t=1 o t=1 .. . .
at the beginning of this subsection.

N N
2 2 A.4. Update for general A (vanilla EM
< A AT = B U P 8 ( )

Tw 1= w In the general setting in which A is not assumed
=1 to have the block diagonal structure with R(w,) as

N
- B= <Z(ZN AzN ol 1> (Z U, UF 1) blocks, the update for A is giving by the following

t=1 calculation.
(24)
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A.3. Identifiability 94 9A
1 Otr ((S — RAT — ART + AQAT))

Below we describe the identifiability issue of how wy + 07 A
and —wy can both satify the Eq (5) by appropriately
adjusting the sign of the columns of W. In the pro- 4 3UtT BT (2 - AZY,)
posed EM algorithm, we addressed this identifiability a?u — 0A
issue by noting that wq € [0, 7].

For simplicity, let us assume that D = 1 and B = 0, 1 aUT 1B BU;
wy = 0. For a cycle corresponding to wy, the state 721; =
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Appendix B. Synthetic data

B.1. Data generation

We generated synthetic data to assess whether the
proposed EM algorithm could recover ground truth
(known) parameters. We used the forward model
from Eq (4)to generate synthetic data. The parame-
ters were chosen based on preliminary analysis such
that: (i) the synthetic data included multiple cycles
in Z and X and (ii) U demonstrated a significant ef-
fect on progression. A seizure was generated at time
t with a small probability ps, if the overall seizure
risk (ngl Z; ;) was greater than a threshold (7).
ps» and T were chosen to obtain a sufficient num-
ber of seizures to enable a reasonable estimation of
B. Whenever this resulted in the generation of a
seizure in the model, the characteristics of the seizure
(U; € RM) were drawn from a multivariate Gaussian
distribution. U; = 0 if there was no seizure. The
data was of length V.

B.2. Parameter estimation using EM

The proposed EM and vanilla EM both estimated
cycle periods accurately (cycle period (days): ground
truth - (10, 25, 45), proposed - (10, 24.96, 45.02),
vanilla - (10.05, 25.27, 44.5)). However, the estimated
A for vanilla EM was different from the ground truth
(Figure 3), and the estimated A for proposed EM
was similar to the ground truth. This was a conse-
quence of the identifiability issue with vanilla EM.
The structure of A in vanilla EM resulted in cycles
of different periods being represented together with
uneven weights in Z;. As a result, the overall seizure
risk obtained by > j 7, ; did not accurately reflect the
true risk. Even though vanilla EM recovered the cy-

cle periods accurately, it was unable to track seizures
(Figure 5). The proposed EM performed better than
vanilla EM in tracking seizures, as seen visually as
well as reflected numerically by the larger Z-distance
(Figure 5).

B.3. Stability analysis

To further understand the performance of the pro-
posed EM algorithm, we varied the data characteris-
tics and estimated model parameters. Synthetic data
was generated that varied one of (i) data length (IV),
(ii) missingness, (iii) 02, and (iv) norm of eigenval-
ues of A (a). To assess the effect on the EM perfor-
mance, we evaluated the MSE of the estimated B and
C (Figure 4). As the data length N increased, esti-
mation error for C increased. That could be because
for large N, ||Z;||? becomes large, which could lead to
numerical difficulties in estimating C. As expected,
MSE of B and C increased as missing data increased,
highlighting the challenge of estimation when a large
percentage of data is missing.

Appendix C. NeuroVista data
C.1. Intracranial EEG Data

Six out of 15 participants in the NeuroVista study
were excluded from this analysis due to significant
data drops, which could affect the analysis of seizure
clusters. The remaining nine patients had an average
recording duration of 550 £ 208 days (Table 2).

To manage the amount of data used for feature
computation, we extracted one hour of data from
each day (24 hours). To reduce the effect of circa-
dian cycles on the analysis, the same hour of data was
extracted from all the days for a participant. This
patient-specific hour was identified based on domain
knowledge. We consulted a domain expert (V.K.) to
select the hour when seizures were less likely to occur.

C.2. iEEG pre-processing

Each hour of data was divided into 10-second seg-
ments, resulting in 360 segments for each hour. The
following pre-processing steps were applied to each
segment: (i) referencing, (ii) missing data imputa-
tion, (iii) filtering, and (iv) normalization.

1. We referenced the signal using a bipolar montage
by taking the difference of the raw signal from
adjacent contacts on a strip. This resulted in 12
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Figure 3: Synthetic data: A matrix for (left) ground truth, (middle) proposed EM, (right) vanilla EM.
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Figure 4: Synthetic data: MSE of B and C for dif-
ferent data characteristics.

bipolar pairs (Saboo et al., 2023). We refer to

each bipolar pair as an “electrode”.

2. Missing data within a segment was handled in
two ways. If the fraction of missing data within
a segment was < 0.5, the missing values were im-
puted using the median of the signal in that hour.
Otherwise, the entire segment was ignored from
the analysis. Imputation was performed before
filtering and normalization. Imputation within a
segment was performed to enable filtering of the
signal into different frequency bands.

3. The signal from each electrode was filtered
into non-overlapping frequency bands using
forward-backward second-order Butterworth fil-
ters: delta (0.5 - 4Hz) (§), theta (4 - 8Hz) (),
alpha (8 - 12Hz) («), sigma (12 - 16Hz) (o), beta
(16 - 25Hz) (B), low gamma (30 - 60Hz) (), high
gamma (60 - 80Hz) (y4).

4. The signals were normalized to have zero mean
and unit variance to compare them across elec-
trodes and over days. Normalization was done
separately for each segment and electrode.

The order of normalization and filtering was differ-
ent for the univariate and bivariate features. For the
power-in-band univariate feature, the signal was first
normalized and then filtered. This allowed extracting
power in a band relative to other bands. For bivariate
features, the signal was filtered first and then normal-
ized separately for each band. This enabled minimiz-
ing the impact of discrete approximations made for
REN computation. The order of filtering and normal-
ization does not affect PLV or correlation coefficient.

C.3. Feature extraction

Univariate and bivariate features were extracted from
each 10-second segment. Values within a segment
imputed during pre-processing were ignored during
feature computation to minimize the effect of impu-
tation on feature values. We extracted the follow-
ing features: (i) power in band (PIB), which is the
squared amplitude of the signal; (ii) relative entropy
(REN), which is the distance between the ampli-
tude distributions between pairs of electrodes (Saboo
et al., 2022); (iii) phase locking value (PLV), which
is the average instantaneous phase difference between
signals from a pair of electrodes (Khambhati et al.,
2021); and (iv) Pearson correlation coefficient (PCC),
i.e., the correlation between signals at two electrodes.

C.4. Feature aggregation

We obtained features from each of the 360 segments
within an hour. To obtain an aggregate value for
each feature in an hour, we found the median value
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Figure 5: Synthetic data: (Left) Overall seizure risk inferred by the model (blue) and seizures (red). (Right)
Distribution of overall seizure risk when seizures occurred (red) and when seizures did not occur
(blue). Mean of the two distributions used for computed Z-distance is shown. Top panels shows
proposed SSM, bottom panels show vanilla SSM.

of the feature across the 360 segments. We used the
median value because it is more robust to outliers
than the average. Segments with more than 50% of
missing time points were ignored while computing the
median. We ignored segments that overlapped with
seizures or were within 5 minutes before seizure on-
set or within 1 hour after seizure termination. Ag-
gregation was performed separately for each feature,
band, and electrode (pair). Thus, each hour of data
was represented by 1470 features (12 (electrodes) x7
(bands) univariate features + 66 (electrode pairs) x7
(bands) x3 (feature types) bivariate features).

C.5. Feature selection

To obtain X;, we selected a few features that demon-
strated cycles for the ease of model fitting based on
the cycle period of seizures clusters. Feature selec-
tion was done separately for each patient. (i) We ob-
tained the three most prominent multiday cycle peri-
ods of clustered seizures. We selected iEEG features
that had multiday cycles of the same periodicity as
seizure cluster cycles. This resulted in several fea-
tures being selected for each cycle period. (ii) We
further reduced the number of features for each cy-
cle period to balance the representation of each cycle
in the model. For each cycle period, the three iEEG
features with the smallest p-value for the given pe-

riod from the wavelet analysis were obtained. This
resulted in upto nine iEEG features that were repre-
sented by X; in the model.

Table 2: Patient information. Columns: Patient
number, duration of iEEG data, % of sam-
ples missing, number of seizures, number of
clustered seizures.

PID Dat(ezli.,;sr;gth 1:1;/:1;5;2;3 # Sz | # Clus.

1 768 27.84 169 136
2 730 18.36 45 8

3 185 38.70 660 650
4 559 40.43 727 714
5 395 24.56 280 215
6 374 11.23 860 841
7 729 3.28 33 9

8 747 22.19 762 661
9 465 3.65 101 26

C.6. Seizure detection

Seizures were detected from the iEEG recordings us-
ing a published methodology (Sladky et al., 2022).
Seizures detected within a minute of each other were
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combined into a single seizure. This procedure re-
sulted in an average of 404.2 + 322.4 seizures per par-
ticipant. The average duration of the seizures was
40.7 £ 79.7s. Features representing seizures were ex-
tracted as described in below and aggregated across
seizures within a day to obtain Uy.

C.7. Feature extraction for seizures

The pre-processing steps in Appendix C.2 were ap-
plied to seizure iEEG, although segmenting was mod-
ified slightly. Since seizures can be of arbitrary du-
ration, seizures were divided into 10-second segments
from the seizure onset. For the last few seconds of a
seizure that could not fully occupy a 10-second seg-
ment, if the length was less than 3 seconds, it was
included as part of the previous segment. It was con-
sidered a new segment if it was more than 3 seconds.
Feature extraction and aggregation were performed
as described in Appendix C.3.

There can be no or multiple seizures for each day,
and the seizures can be outside the 1-hour window we
picked for feature extraction. Therefore, we prepared
the seizure features U; with the following steps: (i)
We considered seizures that happened anytime dur-
ing the day, no matter whether they fell in the 1-hour
window from which iEEG features were computed or
not. (ii) When there was no seizure during day ¢,
the seizure feature U; was set as a 0 vector. (iii)
When there were multiple seizures during day t, we
extracted the features Ut(z) for each seizure ¢ and com-
puted the seizure feature U; for day ¢ as the summa-
tion of each seizure Uy = ), Ut(l) to accumulate the
strength of multiple seizures.

Appendix D. Cycles in iEEG features

D.1. Approach: Wavelet analysis

We performed wavelet analysis to investigate whether
there were cycles in the iIEEG features. Wavelet anal-
ysis was done separately for each feature and patient
(Figure 6). (i) First, the time series of the feature
over days was linearly detrended to remove any mean
component or linear drift over time. (ii) Secondly, we
computed a continuous wavelet transform (CWT) of
the detrended timeseries using a Morlet wavelet with
wo = 6. The scale of the wavelets spanned five oc-
taves (2-4 days, 4-8 days, ..., 32 - 64 days) with 12
sub-octaves per octave. We restricted the analysis
to periods of up to 64 days to obtain at least 3 cy-

Signal Periodogram
0.100 ;
0.0030{ — Power i
0.075 --=- 95% sig. !
S 0.050 0.0025
s
o 0.025 $ 0.0020
3 2
£ 0.000 & 0.0015
g -0.025
© 0.0010
-0.050{ — X
_0.075 —— windowed X; 0.0005
0 100 200 300 400 2 4 8 16 32 64 128
time (days) Period (days)

Figure 6: Wavelet analysis. (Left) An iEEG feature
of Patient 9. (Right) The given feature’s
wavelet periodogram. Peaks in the peri-
odogram above the significance threshold
are shown in red (6.9 days and 49.5 days).

cles of that period in each participant. (iii) Next, we
computed the power at each scale by averaging the
squared amplitude of the CWT over time to obtain
a periodogram. (iv) We assessed the statistical sig-
nificance of peaks in the periodogram assuming a red
noise model (Torrence and Compo, 1998).

If a feature timeseries had missing data for some
days, then a technique similar to krigging was used
for imputation (Baud et al., 2018). For a gap of con-
tiguous missing values, we obtained windows of data
of the same length as the gap adjacent to the gap on
its left and right. The value at each time point in the
gap was sampled from a Gaussian distribution. The
mean of the distribution changed linearly between the
mean of the left and right windows. The standard de-
viation was the average of standard deviation of the
two windows. Imputation was performed only for the
wavelet analysis.

D.2. Results

Cycles of different periods were detected across iEEG
features and patients (Figure 7). The number of fea-
tures that contained a cycle of a given multiday pe-
riod was different across patient. Cycles were ob-
served across different feature types, electrodes, and
frequency bands. This suggested that multiday cy-
cles are present in inter-ictal (between seizure) iEEG
feature timeseries.
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Figure 7: Histogram of cycle periods in iEEG fea-
tures across all patients.

Appendix E. Cycles in seizures
E.1. Approach: R-value analysis

We investigated whether there were cycles in seizures
in the dataset used for this study. Previous stud-
ies have identified circadian and multidien cycles in
seizure timings (Gregg et al., 2021; Baud et al., 2018;
Karoly et al., 2018). Cycles were identified using R-
value computed for different periods (Gregg et al.,
2021; Baud et al., 2018). R-value measures the cir-
cular non-uniformity of events. We computed the R-
value for integer periods between 2 to 64 days.

Since isolated and clustered seizures have differ-
ent dynamics (Saboo et al., 2022), we investigated
whether they occur in cycles independently. We com-
puted cycles for (i) isolated seizures and (ii) clustered
seizures separately, and also for (iii) all the seizures
combined. Seizures within 24 hours of each other,
i.e., with an inter-seizure interval of < 24 hours, were
considered part of a cluster (Saboo et al., 2022). The
remaining seizures were classified as isolated.

We used a Rayleigh test to assess the statistical
significance of the R-values. The test determines
whether there is a unimodal deviation from circu-
lar uniformity by rejecting the null hypothesis that
events are uniformly distributed around the circle
(Gregg et al., 2021). Rayleigh test was conducted for
each period and seizure type. Multiple comparisons
were accounted for by using FDR correction applied
to all the comparisons within a participant. Among
the periods with significant r-values, we picked the
ones with peak r-values among their neighbors.

E.2. Results

For Patient 9, several R-values were statistically
significant for the clustered seizures and when all
seizures were combined (Figure 8(a)), indicating mul-
tiday cycles. The largest r-value was observed for a
50-day cycle in clustered seizures. No cycles were de-
tected in the isolated seizures.

Cycles in seizure clusters were observed in eight out
of nine patients (Figure 8(b)). Cycles in all seizures
combined were observed in six patients, and cycles in
isolated seizures were observed only in two patients.
Thus, seizure clusters are more likely to occur in mul-
tiday cycles than isolated seizures. Multiday cycle pe-
riods and the number of cycles in clustered seizures
were patient-specific (Figure 8(c)).

For developing and validating the model, we se-
lected the three cycle periods with the largest r-value
for each patient. When a patient only had two multi-
day seizure cycle periods, both were chosen. Patient
2 and Patient 7 only had one multiday cycle. There-
fore, we selected another cycle by picking the one
with the highest r-value and at least 10 days away
from the significant cycle period. Patient 5 had no
significant multiday cycles, so we picked 2 cycle pe-
riods with the highest r-values that were at least 10
days apart from each other.

Appendix F. NeuroVista: Results

F.1. Baseline model

Vanilla SSM: We compared with a vanilla SSM that
did not constrain the structure of A and X, = 0.011.
The model was trained with vanilla EM. The dimen-
sionality of the latent state was the same as the pro-
posed model (2D). Training and hyper-parameter
settings of vanilla SSM were the same as the proposed
SSM except for A’s initialization. For synthetic data,
100 initializations (seeds) of the model were trained
for 200 epochs each. For real data, 60 initializations
were trained for 300 epochs each. For each seed, the
model corresponding to the minimum validation neg-
ative log likelihood was considered. We picked the
seed for which recovered angels wy computed from
the eigenvalues of A were closest to the ground truth
cycle wgs (in the mean squared sense). In several
cases (seeds as well as patients), we observed that the
norm of largest eigenvalue of A was > 1, indicating
that the model diverged. We excluded seeds with the
norm of the largest eigenvalue > 1. There were four
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Figure 8: Cycles in seizure clusters. (a) R-value of seizures for different cycle periods for Patient 9. R-values
are shown for (left) all seizures, (middle) seizure clusters, (right) isolated seizures. Significant R-
values are marked. Peaks of significant R-values correspond to multiday cycles. (b) The number of
multiday cycles for each patient and seizure type. (c) Multiday cycle periods for clustered seizures.

patients for whom no seed obtained a non-divergent
vanilla SSM.

MK SSM: We compared with the Matsuda and
Komaki (2017) model, which also constrains the
structure of A. However, they assumed that at least
one feature includes all the multiday cycles, with the
observation matrix C' defined as:

1 0 1 0 1 0
C21,1 C21,2 (2211 (€222 Ceop1  C2D2

C= .
Cj1,1 Cj1,2 Cj2,1 Cj2.2 Ceyp1 CJD,2

where J is the number of features, and D is the num-
ber of multiday cycles. They fixed the coeflicients
for the first feature to be Os and 1s to ensure pa-
rameter identifiability. In our implementation, we set
3w = 0.011. The dimensionality of the latent state
matched that of the proposed model (2D). The train-
ing process and hyperparameter settings for MK SSM
was the same as those used for the proposed SSM, ex-
cept for the update of C'. The update equation for C
in the EM algorithm was as follows:

N N
Cig = (ZXt,lzJ(ZtN)T> (Z zM(zf

t=0 t=0

1
)T + PtN>

We updated every row in C except for the first row
using all features of X; except for the first one.

LSTM: We compared our model with a nonlin-
ear baseline, the long short-term memory (LSTM)
model. LSTM was designed to take both iEEG fea-
tures X; and seizure features U; as input, with 2D
hidden states and a dense layer to predict the iEEG
features for the following day, matching the structure
of the proposed SSM. We implemented LSTM us-
ing the tensorflow.keras package, trained it with the
Adam optimizer, and used mean squared error (MSE)
as the loss function. The model was trained for 300
epochs with a batch size of 16.

F.2. Alignment between seizure clusters and
inferred seizure risk

We measured the alignment between seizure clusters
and inferred seizure risk. We computed a metric to
compare two distributions, which we referred to as
Z-distance. For a patient, the Z-distance is the dif-
ference in the mean of the normalized overall seizure
risk () when seizure clusters occurred (u.) and when
seizure clusters did not occur (un.). Let the set of
days on which seizure clusters occurred be 7., the
days when seizure clusters did not occur be 7., and
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T = T.U Tpe. Then,

-1 N N
S 22

Z Zt,j — Mz
teT j J
R Zj Zt,j — Mz
Zr=="
Oz
1 . 1 R
//fczizztv Hne = Zzt
7l teT. [Tl t€Tne

Z — distance = |pe — fine|

A higher Z-distance implies that the seizure clusters
occur (on average) when the overall seizure risk is
higher than the average overall seizure risk. This is
in concordance with the hypothetical model of Fig-
ure 1(a). We used magnitude of the difference be-
cause the proposed EM identifies cycles only upto a
sign. Thus, the overall seizure risk could be either
the same sign as the true overall risk, or the negative
of it. Importantly, seizure clusters should occur at
the extremum (or close to it) of the overall seizure
risk. The intuition behind the Z-distance metric can
be see in Figure 5.

Table 3: Results on real data of each patient (PID):
Accuracy of the proposed SSM (PM),
vanilla SSM (VM), and MK SSM (MK) in
recovering multiday cycles. () denotes pa-
tients for whom the model diverged. Better
performance is shown in bold.

had access to the environment, we used TRPO, a
model-free on-policy learning algorithm (Schulman
et al., 2015). The RL agent was trained for 20
episodes with a batch size of 128, with each episode
being 400 time points in duration. The policy net-
work was parameterized using a multi-layer percep-
tron with 2 hidden layers of 16 units each. We used
the default hyperparameters provided for TRPO. The
stimulation mean was set to 5% of the mean ampli-
tude of seizures U;, and the variance was set to 400%
of the variance across seizures.

We determined the seizure threshold 7 as the value
that best separated the distribution of overall seizure
risk (3", Z¢ ;) of days with seizure clusters versus that
of days without seizure clusters.

We investigated the outcome for Patient 9 if a stim-
ulation with RL had been applied from day 50 on-
wards. Kalman filtered Z3) obtained from the real
data was used as the initial state of the system. We
observed that adaptive stimulation reduced the am-
plitudes of the inferred seizure risk cycles in silico
(Figure 10(b)). Within 105 days of stimulation (day
155), the overall seizure risk was below the seizure
threshold 7 for most days. The corresponding reward
of the model also reached close to the maximum (0)
after approximately 105 days.

PID Multi-day cycle period Cycle accuracy
(days) (weighted MSE)
Ground Truth PM VM MK
1 (16, 28, 38) 0.28 - 0.31
2 (16, 29) 0.61 - 0.81
3 (22, 32) 0.01 12.6 0.52
4 (26, 43, 55) 0.50 27.69 0.21
5 (18, 32, 51) 049 - 013
6 (5, 31) 0.09 4.07 0.03
7 (18, 28) 0.27 4.92 0.78
8 (7, 22, 50) 0.49 -  0.20
9 (20, 40, 50) 0.36 195 0.52

F.3. RL-based treatment optimization

We implemented the RL framework using OpenAl’s
Gym framework (Brockman et al., 2016). Since we
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Figure 9: Coeflicients of the input matrix B for all patients. Feature abbrv. format: type jccroge
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Figure 10: In silico adaptive brain stimulation for Patient 9. (a) Overall seizure risk inferred from Patient
9’s iEEG data. Red lines show seizure clusters observed in the data. (b,c,d) show the result if
the patient received stimulation treatment from the RL framework. (b) Overall seizure risk after
stimulation generated by the dynamics in Eq (6). (c) The magnitude of stimulation ||¥;||. (d)
Reward received by the RL agent over time.
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