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Abstract

Unsupervised Domain Adaptation (UDA) technique has
been explored in 3D cross-domain tasks recently. Though
preliminary progress has been made, the performance gap
between the UDA-based 3D model and the supervised
one trained with fully annotated target domain is still
large. This motivates us to consider selecting partial-yet-
important target data and labeling them at a minimum cost,
to achieve a good trade-off between high performance and
low annotation cost. To this end, we propose a Bi-domain
active learning approach, namely Bi3D, to solve the cross-
domain 3D object detection task. The Bi3D first develops a
domainness-aware source sampling strategy, which identi-
fies target-domain-like samples from the source domain to
avoid the model being interfered by irrelevant source data.
Then a diversity-based target sampling strategy is devel-
oped, which selects the most informative subset of target do-
main to improve the model adaptability to the target domain
using as little annotation budget as possible. Experiments
are conducted on typical cross-domain adaptation scenar-
ios including cross-LiDAR-beam, cross-country, and cross-
sensor, where Bi3D achieves a promising target-domain de-
tection accuracy (89.63% on KITTI) compared with UDA-
based work (84.29%), even surpassing the detector trained
on the full set of the labeled target domain (88.98%). Our
code is available at: https://github.com/PJLab-
ADG/3DTrans.

1. Introduction
LiDAR-based 3D Object Detection (3DOD) [5, 13, 26,

28, 40] has advanced a lot recently. However, the gen-

eralization of a well-trained 3DOD model from a source

point cloud dataset (domain) to another one, namely cross-
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Figure 1. Comparisons among (a) The general 3DOD pipeline,

(b) Self-training based Unsupervised Domain Adaptation 3DOD

pipeline, and (c) Active Domain Adaptation 3DOD pipeline that

selects representative target data, and then annotates them by an

oracle (human expert) for subsequent model refinement.

domain 3DOD, is still under-explored. Such a task in fact

is important in many real-world applications. For example,

in the autonomous driving scenario, the target scene distri-

bution frequently changes due to unforeseen differences in

dynamically changing environments, making cross-domain

3DOD an urgent problem to be resolved.

Benefiting from the success of Unsupervised Domain

Adaptation (UDA) technique in 2D cross-domain tasks [3,

7,10,14,32,45,48], several attempts are made to apply UDA

for tackling 3D cross-domain tasks [15,20,22,36,39,42,46].

ST3D [42] designs a self-training-based framework to adapt

a pre-trained detector from the source domain to a new tar-

get domain. LiDAR distillation [36] exploits transferable

knowledge learned from high-beam LiDAR data to the low

one. Although these UDA 3D models have achieved sig-

nificant performance gains for the cross-domain task, there



is still a large performance gap between these UDA models

and the supervised ones trained using a fully-annotated tar-

get domain. For example, ST3D [42] only achieves 72.94%
AP3D in nuScenes [1]-to-KITTI [8] cross-domain setting,

yet the fully-supervised result using the same baseline de-

tector can reach to 82.50% AP3D on KITTI.

To further reduce the detection performance gap between

UDA-based 3D models and the fully-supervised ones, an

initial attempt is to leverage Active Domain Adaptation

(ADA) technique [6, 17, 29, 37, 38], whose goal is to se-

lect a subset quota of all unlabeled samples from the target

domain to perform the manual annotation for model train-

ing. Actually, the ADA task has been explored in 2D vi-

sion fields such as AADA [29], TQS [6], and CLUE [17],

but its research on 3D point cloud data still remains blank.

In order to verify the versatility of 2D image-based ADA

methods towards 3D point cloud, we conduct extensive at-

tempts by integrating the recently proposed ADA methods,

e.g., TQS [6] and CLUE [17], into several typical 3D base-

line detectors, e.g., PV-RCNN [26] and Voxel R-CNN [5].

Results show that these 2D ADA methods cannot obtain sat-

isfactory detection accuracy under the 3D scene’s domain

discrepancies. For example, PV-RCNN coupled with TQS

only achieves 75.40% AP3D, which largely falls behind the

fully-supervised result 82.50% AP3D.

As a result, directly selecting a subset of given 3D

frames using 2D ADA methods to tackle 3D scene’s do-

main discrepancies is challenging, which can be attributed

to the following reasons. (1) The sparsity of the 3D point

clouds leads to huge inter-domain discrepancies that harm

the discriminability of domain-related features. (2) The

intra-domain feature variations are widespread within the

source domain, which enlarges the differentiation between

the selected target domain samples and the entire source do-

main samples, bringing negative transfer to the model adap-

tation on the target domain.

To this end, we propose a Bi-domain active learning

(Bi3D) framework to conduct the active learning for the

3D point clouds. To tackle the problem of sparsity, we

design a foreground region-aware discriminator, which ex-

ploits an RPN-based attention enhancement to derive a

foreground-related domainness metric, that can be regarded

as an important proxy for active sampling strategy. To

address the problem of intra-domain feature variations
within the source domain, we conceive a Bi-domain sam-

pling approach, where Bi-domain means that data from both

source and target domains are picked up for safe and robust

model adaptation. Specifically, the Bi3D is composed of a

domainness-aware source sampling strategy and a diversity-

based target sampling strategy. The source sampling strat-

egy aims to select target-domain-like samples from the

source domain, by judging the corresponding domainness

score of each given source sample. Then, the target sam-

pling strategy is utilized to select diverse but representative

data from the target domain by dynamically maintaining a

similarity bank. Finally, we employ the sampled data from

both domains to adapt the source pre-trained detector on a

new target domain at a low annotation cost.

The main contributions can be summarized as follows:

1. From a new perspective of chasing high performance

at a low cost, we explore the possibilities of leverag-

ing active learning to achieve effective 3D scene-level

cross-domain object detection.

2. A Bi-domain active sampling approach is proposed,

consisting of a domainness-aware source sampling

strategy and a diversity-based target sampling strat-

egy to identify the most informative samples from both

source and target domains, boosting the model’s adap-

tation performance.

3. Experiments show that Bi3D outperforms state-of-the-

art UDA works with only 1% target annotation bud-

get for cross-domain 3DOD. Moreover, Bi3D achieves

89.63% APBEV in the nuScenes-to-KITTI scenario,

surpassing the fully supervised result (88.98% APBEV)

on the KITTI dataset.

2. Related Works
2.1. LiDAR-based General and UDA 3D Detection

LiDAR-based 3D object detection [2,5,13,18,26–28,40,

41, 43, 47] has attracted increasing attention in real applica-

tions such as autonomous driving and robotics. Grid-based

methods [5, 40] convert disordered point cloud data to reg-

ular grids and extract features by 2D/3D convolution. In-

spired by PointNet [19], Point-based approaches [27, 43]

use set abstraction to extract features and directly gener-

ate proposals from point cloud data. However, these gen-

eral 3D detectors still face serious performance drops in

cross-domain applications, e.g., from Waymo or nuScenes

to KITTI adaptation scenarios. UDA 3D object detection

tackles the cross-domain distribution shift issue by vari-

ous unsupervised methods. ST3D [42] proposes to use

self-training and curriculum data augmentation to generate

pseudo labels on a target domain to mitigate the large do-

main gap. LiDAR Distillation [36] proposes a distillation-

based method, focusing on the knowledge transfer from

high-beam data to low-beam data. However, there is still

a large detection accuracy gap between these UDA meth-

ods [36, 42] and fully-supervised 3D detectors [26, 28, 40].

2.2. Active Domain Adaptation

Inspired by active learning methods [4,11,23–25,33,34,

44] which aim to achieve relatively high recognition accu-

racies only using a small portion of informative data, Active

Domain Adaptation (ADA) [6, 16, 17, 29, 37] has emerged

in 2D vision task, which selects the most informative tar-



get data for annotation and adapts the model to the target

domain by training on the selected data. CLUE [17] pro-

poses to use an uncertainty-weighted clustering strategy to

select informative target data. TQS [6] utilizes a hierar-

chical sampling strategy that performs active learning from

multi-grained criteria such as transferable committee, trans-

ferable uncertainty, and transferable domainness.

Although the ADA technique has achieved great success

in 2D image tasks, its exploration of 3D point cloud tasks

is still insufficient. Furthermore, it is intractable to directly

apply these 2D ADA methods to the 3D point cloud sce-

narios, since these 2D ADA works [6, 16, 17, 29] are not

intended to tackle the distribution difference of point clouds

with various spatial and geometric structures. Besides, pre-

vious ADA methods focus more on how to select samples

from the target domain, ignoring that the source domain

may contain many diverse samples and not all of them are

beneficial for model adaptation to the target domain. In con-

trast, our Bi3D provides a new angle of view for achiev-

ing cross-domain generalization: a Bi-domain active learn-

ing strategy, which samples informative frames from both

source and target domains.

3. Method
The overall Bi3D framework is shown in Fig. 2. To bet-

ter illustrate the Bi3D principle, we first describe our prob-

lem definition and the selected baseline model. Next, we

introduce the proposed Bi3D. Finally, we give the overall

objectives and Bi-domain sampling and training strategies.

3.1. Preliminary

Problem Definition. Given a labeled source domain set

Ds = {(xs
i , y

s
i )}ns

i=1, an unlabeled target domain set Dt =

{xt
j}nt

j=1, and an annotation budget B, where B � nt and

nt denotes the total amount of target domain data. Follow-

ing the standard ADA setting, a labeled target dataset D̃t

is constructed, which is initially empty and will be updated

in R rounds of the sampling process. In the k-th sampling

round where k ≤ R, a subset ΔDk
t is selected from Dt/D̃t

and labeled by an oracle (human expert). Then, D̃t will be

updated as D̃t ← D̃t ∪ ΔDk
t . After R rounds of sampling,

the number of data in D̃t reaches the upper limit of anno-

tation budget B, i.e., |D̃t| = B. Note that different from

previous ADA methods, in this work, we further construct

a source subset D̃s sampled from the original source do-

main Ds. The goal of the proposed Bi3D is to select both

target-domain-like data from Ds and the most informative

data from Dt, to constitute D̃s and D̃t, and make the 3D

detector better adapt to target domain by jointly training on

a mixture set from D̃s and D̃t.

Baseline Introduction. Following previous cross-domain

studies [36, 42] for 3DOD, we use PV-RCNN [26] as our

baseline model. PV-RCNN is a typical two-stage 3D de-

tection framework that takes advantage of both the point-

based network and 3D voxel-based CNN. The overall loss

function of PV-RCNN can be written as follows:

Ldet = Lrpn + Lrcnn + Lseg (1)

where Lrpn denotes the loss of Region Proposal Network

(RPN), Lrcnn represents the proposal refinement loss and

Lseg is the keypoint segmentation loss.

3.2. Bi3D: Bi-domain Active Learning for 3D Object
Detection

To effectively measure the domainness of source and

target samples, we first design a foreground region-aware

discriminator. Then, based on the domain discriminator,

we propose a Bi-domain sampling strategy to adapt a pre-

trained 3D detector from its source domain to a new target

domain.

Foreground Region-aware Discriminator. Considering

that instance-level features lose the contextual relationship

between the instance and its original scene, and meanwhile,

a large number of negative anchors will greatly hinder do-

main discriminator learning, we thus generate scene-level

representations by extracting from Bird-Eye-View (BEV)

features. However, the BEV features extracted using 3D

convolution are very sparse due to the sparse distribution of

point cloud data, causing the traditional discriminator diffi-

cult to localize and learn on informative foreground regions,

thus resulting in a biased domain representation learning.

To address this issue, we design a foreground region-

aware discriminator, aiming at measuring the frame-level

domainness score for both the source and target data by en-

hancing foreground-region features in the scene. Specifi-

cally, let xd
i denote the input point cloud data, where d ∈

[s, t] means that the sample x is from source domain s or

target domain t. Next, the 3D feature volumes are first en-

coded by the 3D backbone F3D and then converted into 2D

BEV features fbev ∈ R
C×H×W , where C denotes the chan-

nel number, H and W are the height and width of the fea-

ture, respectively.

To make the domain discriminator pay more attention

to foreground regions, we first obtain the objectness score

Sobj ∈ R
C′×H×W by the RPN operation, where C′ indi-

cates the number of anchors per location. The objectness

score represents the probability that a default anchor be-

longs to a foreground object. In order to quantitatively eval-

uate the prediction uncertainty of the detector for the cur-

rent scene, inspired by previous methods [6,9,21] using en-

tropy to measure uncertainty, we calculate the entropy score

Sent ∈ R
C′×H×W with the following formula:

Sent = −Sobj log Sobj − (1− Sobj) log(1− Sobj), (2)

where Sent denotes the uncertainty of a spatial location be-

ing classified as an instance object. Based on Eq. 2, a scene-
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Figure 2. The overview of the proposed Bi3D, which employs PV-RCNN as our baseline and consists of domainness-aware source sampling

strategy and diversity-based target sampling strategy. The target-domain-like source data are first selected by the learned domainness score,

and then the detector is fine-tuned on the selected source domain data. Next, diverse and representative target data are selected using a

similarity bank, and then annotated by an oracle. Finally, the detector is fine-tuned on both the selected source and target data.

level attention map can be obtained by combining Sobj and

Sent, which can make the model pay more attention to fore-

ground features. Thus, the foreground region-aware fea-

tures can be calculated as follows:

f̂bev = (1 + (Ŝobj + Ŝent)/2) fbev, (3)

where f̂bev represents the foreground region-aware BEV

features, and Ŝobj and Ŝent are the maximum value of Sobj

and Sent along the channel dimension, respectively.

Based on the foreground region-aware feature maps f̂bev,

a domain discriminator with a convolution block is utilized

to classify whether the data is from the source domain or

target domain. For a detailed structure of the discriminator,

please refer to our supplementary material. The loss func-

tion of the domain discriminator can be written as follows:

Ldom =− Exs∼Ds [log(1−H(f̂s
bev)]

− Ext∼Dt
[log(H(f̂ t

bev)],
(4)

where Ldom is the domainness loss, and H denotes the do-

main discriminator, where we label the source domain and

the target domain as ’0’ and ’1’, respectively.

Domainness-aware Source Sampling Strategy. Previous

DA works mainly focus on how to fully exploit represen-

tative data from the target domain, which actually ignores

that there are a certain number of source samples interfer-

ing with the target domain representation learning. Thus,

we propose a simple but effective domainness-aware source

sampling strategy, aiming at selecting target-domain-like

samples from the source domain to initially strengthen the

model adaptability. In particular, we first calculate scene-

level domainness score ssi of all source data using the afore-

mentioned domain discriminator, where ssi = H(f̂s
bev) and

ssi can be regarded as a similarity metric between source

data and target data. ssi with a relatively high value indi-

cates that the i-th frame data from the source domain com-

plies with the data distribution of the target domain. To

select the source data with a high domainness score, we

simply sort ssi in descending order, thus D̃s can be built

by sampling the sorted data with a proportion or thresh-

old. Please refer to our supplementary material for the study

of the number of selected source data. Note that there is

a smaller domain gap between D̃s and Dt and therefore

by fine-tuning the detector on D̃s, the performance of the

model on the target domain will be improved. As a result,

the detector can extract more accurate instance-level fea-

tures, benefiting to select more informative target data.

Diversity-based Target Sampling Strategy. To make the

detector better adapt to the target domain, we first fine-tune

the detector on D̃s, and select representative data from the

target domain. However, since the adjacent frames in scenes

like autonomous driving are usually similar, traditional

active learning methods (e.g., Query-by-Committee [23],

Query-by-Uncertainty [33]) encounter a major challenge

that they often select the samples with a small between-class

difference, causing redundant frame annotation operations.

Thus, we design a diversity-based target sampling strategy

to select diverse-and-representative target domain data.

Given ROI features Ij = [I1j , I
2
j , ..., I

k
j ] from the j-th

target frame, the corresponding confidence scores dj =

[d1j , d
2
j , ..., d

k
j ] can be easily obtained by the baseline detec-

tor with the standard post-processing process, i.e., Non-



Maximum Suppression (NMS). We first use confidence

scores to re-weight all ROI instance-level features to ob-

tain more accurate instance descriptions Îj in the current

frame xt
j , where Îj = ITj dj , and the domainness score of

target domain stj can be calculated by the designed domain

discriminator H described above. As summarized in Algo-

rithm 1, the basic idea of the diversity-based target sampling

strategy is to maintain a similarity bank, where all unlabeled

target data are clustered based on pairwise similarity of re-

weighted ROI features to ensure the diversity of selected

target data. In particular, we use cosine distance to measure

the similarity α and dynamically update the prototypes of

candidate ROI features using the following formula:

ĉ(Pm, Pn) =
num(Pm)× cm + num(Pn)× cn

num(Pm) + num(Pn)
, (5)

where cm, cn are the m-th and n-th prototypes assigned

according to the preset budget, meaning that each bud-

get is represented by one prototype. Pm and Pn denote

the similarity bank of the above m-th and n-th budget-

wise prototypes, which are used to buffer unlabeled frames,

and num(·) denotes the number of unlabeled frames in the

buffer. After Algorithm 1 is finished, to sample more di-

verse and representative frames from the target domain, we

select one unlabeled frame xt
j with the top-1 domainness

score stj from each updated bank P, to form the full set of

all data for manual annotation.

3.3. Overall Objective and Bi-domain Sampling and
Training Strategy

Overall Objectives. The overall objective can be formu-

lated as follows:

Ldet = Ex∼D̃s∪D̃t
[Lrpn + Lrcnn + Lseg], (6)

where the definition of Lrpn, Lrcnn, Lseg follows Eq. 1.

Bi-domain Sampling and Training Strategy. To adapt the

detector from the source domain to the target domain, our

method includes four steps. 1) Pre-training on source do-
main: The detector is firstly pre-trained on Ds using Eq. 1

to ensure that the detector can learn sufficient knowledge

for model transfer. 2) Training the domain discriminator:
We freeze the parameters from the baseline detector while

training the designed domain discriminator using Ldom in

Eq. 4. 3) Active sampling source domain: In this step, we

select target-domain-like source data and fine-tune the de-

tector on D̃s to reduce the domain gap. 4) Active sampling
target domain: Based on the selected source data and the

fine-tuned detector, we further sample the most informative

target data and re-train the detector on both D̃s and D̃t.

Algorithm 1 Diversity-based Target Sampling Strategy

Input: The j-th unlabeled frame xt
j , where xt

j ∈ Dt/D̃t,

and the k-th round of sampling budget bk
Output: The selected target set ΔDk

t

1: Calculate the re-weighted ROI features Îj with the ob-

tained domainness score stj from the unlabeled frame

xt
j , by stj = H(f̂ t

bev).
2: Initialize the similarity bank P := ∅ and budget proto-

types c := ∅
3: for xt

j in Dt/D̃t do
4: if |ΔDk

t | < bk then
5: Update P := P ∪ xt

j , c := c ∪ Îj
6: else
7: Calculate the similarity αÎj ,c

between Îj and c
8: Calculate the similarity αc of prototypes in c
9: if max(αÎj ,c

) < min(αc) then
10: Merge the most similar banks Pm and Pn

11: and the corresponding prototypes cm and cn
12: using Eq. 5

13: Update P := P ∪ xt
j , c := c ∪ Îj

14: else
15: Merge Îj into Pm, where the corresponding

16: prototype cm is most similar to Îj

17: Select data in each bank by stj and fill the ΔDk
t

18: return Selected target subset ΔDk
t

4. Experiments
4.1. Experimental Setup

Datasets. We conduct experiments on four popular au-

tonomous driving datasets: KITTI [8], Waymo [30],

nuScenes [1] and Lyft [12]. We consider four

cross-domain settings including cross-LiDAR-beam (i.e.
Waymo-to-nuScenes, nuScenes-to-KITTI), cross-country

(i.e. Waymo-to-KITTI), and cross-sensor scenarios (i.e.
Waymo-to-Lyft). Following previous domain adaptation

works [36, 42], we use the KITTI evaluation metric to per-

form all experiments on Car (Vehicle in Waymo) category.

Implementation Details. We evaluate the proposed Bi3D

on two widely-used detectors: PV-RCNN [26] and Voxel R-

CNN [5]. Following [36,42], we only use the coordinate en-

coding (x, y, z) of raw point cloud as the detector input, and

set the voxel size of both PV-RCNN and Voxel R-CNN to

(0.1m, 0.1m, 0.15m) on all datasets. In the stage of active
sampling source domain, we first select the target-domain-

like data from the source domain in the initial training epoch

and fine-tune the detector for the following 15 epochs. In
the stage of active sampling target domain, we mainly

consider the situation that the annotation budget B is equal

to 1% and 5%, respectively, which follows the standard ex-

perimental setting in the ADA task. Our method is imple-



Task Method
PV-RCNN Voxel R-CNN

APBEV / AP3D Closed Gap APBEV / AP3D Closed Gap

Waymo→KITTI

Source Only 61.18 / 22.01 - 64.87 / 19.90 -

ST3D [42] 84.10 / 64.78 +82.45% / +70.71% 65.67 / 20.14 +03.26% / +00.38%

Ours (1%) 85.13 / 71.36 +86.15% / +81.58% 86.35 / 72.70 +87.42% / +83.36%

SN [35] 79.78 / 63.60 +66.91% / +68.76% 71.65 / 61.63 +27.55% / +65.88%

ST3D (w/ SN) [42] 86.65 / 76.86 +91.62% / +90.68% 80.23 / 68.98 +62.52% / +77.49%

CLUE (w/ SN, 1%) [17] 82.13 / 73.14 +75.36% / +84.53% 81.93 / 70.89 +69.43% / +80.50%

TQS (w/ SN, 1%) [6] 82.00 / 72.04 +74.89% / +82.77% 78.26 / 67.11 +54.50% / +74.53%

Ours (w/ SN, 1%) 87.12 / 78.03 +93.31% / +92.61% 88.09 / 79.14 +94.51% / +93.53%

Ours (w/ SN, 5%) 89.53 / 81.32 +102.64% / +97.39% 90.18 / 81.34 +103.01% / +97.00%

Oracle 88.98 / 82.50 - 89.44 / 83.24 -

Waymo→Lyft

Source Only 75.49 / 58.53 70.52 / 53.48 -

ST3D [42] 77.68 / 60.53 +19.96% / +15.20% 72.27 / 54.94 +15.97% / +21.22%

Ours (1%) 79.06 / 63.70 +32.54% / +39.29% 78.39 / 64.50 +71.81% / +160.17%

SN [35] 72.82 / 56.64 -24.34% / -14.36% 68.77 / 52.67 -15.97% / -11.77%

ST3D (w/ SN) [42] 74.95 / 58.54 -04.92% / +00.08% 69.91 / 54.23 -05.57% / +10.90%

CLUE (w/ SN, 1%) [17] 75.23 / 62.17 -02.37% / +27.66% 75.61 / 59.34 +46.44% / +85.17%

TQS (w/ SN, 1%) [6] 70.87 / 55.25 -42.11% / -24.92% 71.11 / 56.28 +05.38% / +40.70%

Ours (w/ SN, 1%) 79.07 / 63.74 +32.63% / +39.59% 77.00 / 61.23 +59.12% / +112.65%

Ours (w/ SN, 5%) 80.12 / 65.54 +42.21% / +53.27% 79.15 / 65.26 +78.74% / +171.22%

Oracle 86.46 / 71.69 - 81.48 / 60.36 -

Waymo→nuScenes

Source Only 34.50 / 21.47 - 32.58 / 16.53 -

ST3D [42] 36.42 / 22.99 +10.32% / +08.89% 34.68 / 17.17 +12.40% / +03.33%

LiDAR Distill [36] 43.31 / 25.63 +47.34% / +24.34% - -

Ours (1%) 45.52 / 30.75 +59.22% / +54.30% 44.86 / 29.52 +72.45% / +67.63%

SN [35] 34.22 / 22.29 -01.50% / +04.80% 29.43 / 19.21 -18.60% / +13.95%

ST3D (w/ SN) [42] 36.62 / 23.67 +11.39% / +12.87% 32.77 / 22.21 +01.12% / +29.57%

CLUE (w/ SN, 1%) [17] 38.18 / 26.96 +19.77% / +32.12% 37.27 / 25.12 +39.49% / +44.72%

TQS (w/ SN, 1%) [6] 35.47 / 25.00 +05.01% / +20.66% 36.38 / 24.18 +22.43% / +39.82%

Ours (w/ SN, 1%) 45.00 / 30.81 +56.42% / +54.65% 45.29 / 29.70 +75.03% / +68.56%

Ours (w/ SN, 5%) 48.03 / 32.02 +72.70% / +61.73% 47.02 / 31.23 +85.24% / +76.52%

Oracle 53.11 / 38.56 - 49.52 / 35.74 -

nuScenes→KITTI

Source Only 68.15 / 37.17 - 67.27 / 30.54 -

ST3D [42] 78.36 / 70.85 +49.02% / +74.30% 74.16 / 35.55 +31.08% / +09.51%

Ours (1%) 84.91 / 71.56 +80.64% / +75.87% 86.10 / 72.75 +84.93% / +80.08%

SN [35] 60.48 / 49.47 -36.82% / +27.13% 44.00 / 25.20 -104.96% / -10.13%

ST3D (w/ SN) [42] 84.29 / 72.94 +77.48% / +78.91% 52.44 / 20.99 -66.89% / -18.12%

CLUE (w/ SN, 1%) [17] 74.77 / 64.43 +37.18% / +60.14% 79.12 / 68.02 +53.45% / +71.12%

TQS (w/ SN, 1%) [6] 84.66 / 75.40 +79.26% / +84.34% 77.98 / 66.02 +48.31% / +67.32%

Ours (w/ SN, 1%) 87.00 / 77.55 +90.49% / +89.08% 87.33 / 77.24 +90.48% / +88.61%

Ours (w/ SN, 5%) 89.63 / 81.02 +103.12% / +96.73% 88.15 / 79.06 +94.18% / +92.07%

Oracle 88.98 / 82.50 - 89.44 / 83.24 -

Table 1. Results on different adaptation scenarios under 1% and 5% annotation budget. Following [36,42], we report APBEV and AP3D over

40 positions’ recall for the car category at IoU = 0.7. Source Only denotes that the pre-trained detector is directly evaluated on the target

domain, and Oracle represents the detection results obtained using the fully-annotated target domain. Closed Gap denotes the performance

gap closed by various methods along Source Only and Oracle results. The best adaptation results are marked in bold.

mented using OpenPCDet [31].

4.2. Comparison Baselines

To verify the effectiveness of the proposed Bi3D, we de-

sign several baseline methods including both active learning

and active domain adaptation based methods.

1) Random: We randomly select the target domain data for

performing the manual annotation.

2) Entropy [33]: By measuring the entropy of samples

from the target domain, we select the samples with rela-

tively high entropy scores, which can represent the sample-

level uncertainty predicted by a detector.



3) Committee [23]: By using multiple classifiers to predict

the categories of target samples, the samples with inconsis-

tent prediction scores along with all classifiers are selected.

4) CLUE [17]: CLUE is a representative work under ADA

setting, which proposes Clustering Uncertainty-weighted

Embeddings in order to select informative-and-diverse tar-

get data by means of a re-weighted uncertainty clustering.

5) TQS [6]: TQS is a prior work to explore the transferable

criteria which are specially designed to mitigate the domain

gap. TQS picks up data by combining a series of trans-

ferable sampling strategies (such as committee, uncertainty,

and domainness) to reduce the sampling uncertainty.

4.3. Main Results

Comparison with 2D ADA works. To verify the effective-

ness of our Bi3D and ensure the fairness of experiments,

we first compare our method with two widely used 2D

ADA methods (i.e. CLUE and TQS) under the same cross-

domain setting. As shown in Table 1, it can be seen that

compared with 2D ADA methods, our Bi3D achieves bet-

ter results by a large margin on all cross-domain scenarios,

demonstrating the method’s scalability for 3D point cloud

detection tasks. Meanwhile, we can observe that 2D ADA

methods cannot achieve satisfactory results, and even fall

behind UDA methods (i.e. Waymo→KITTI on PV-RCNN).

A detailed analysis is described in Section 4.4.

Comparison with 3D UDA works. We deeply review the

cross-domain 3D object detection works [36, 42], and find

that previous works mainly focus on the study of UDA 3D

detection. To show the effectiveness of active learning, we

compare our Bi3D with these cross-domain 3D detection

works. For example, ST3D [42] uses self-training to it-

eratively improve the performance on the target domain,

LiDAR Distillation [36] generates the low-beam pseudo

point cloud and distills the knowledge from high-beam data,

which achieves state-of-the-art results on high-to-low beam

adaptation scenario. It can be seen from Table 1 that, the

Bi3D greatly reduces the performance gap between dif-

ferent domains, surpassing all state-of-the-art UDA 3DOD

methods. Note that the Bi3D largely improves the perfor-

mance on the difficult Waymo→nuScenes setting (APBEV:

36.42% → 45.52% compared to ST3D, and 43.31% →
45.52% compared to LiDAR Distillation, AP3D: 22.99%→
30.75% compared to ST3D, and 25.63% → 30.75% com-

pared to LiDAR Distillation). Besides, our experiments are

conducted under 1% target annotation budget, demonstrat-

ing that Bi3D can largely improve the cross-domain detec-

tion performance at a low annotation cost.

Comparison with 3D weakly-supervised DA works.
SN [35] is a typical weakly-supervised DA method, which

uses statistic-level normalization to reduce the domain dif-

ference caused by source-to-target object size variances.

We conduct experiments combining our method with SN.
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Figure 3. Results of various target annotation budgets.

The results are reported in Table 1, which show that

our method outperforms all methods with SN operation.

We find that the result can be further improved espe-

cially on cross-country adaptation setting (i.e. 71.56% →
77.55% on nuScenes→KITTI and 71.36% → 78.03% on

Waymo→KITTI). This is mainly because SN can reduce

the domain shift caused by object size variations and is ben-

eficial to pick up more target-domain-like source data.

4.4. Insightful Analyses

Results of Changing Target Domain Annotation Bud-
get. In this part, we compare our Bi3D with several typi-

cal active learning methods (i.e. query-by-committee [23]

and query-by-uncertainty [33]), and their results demon-

strate that Bi3D can consistently outperform all these meth-

ods. We also conduct experiments on nuScenes→KITTI

and Waymo→KITTI by changing the annotation budget.

As illustrated in Fig. 3, we plot the trend of APBEV at differ-

ent manual annotation budgets. It can be seen that our Bi3D

achieves a promising detection accuracy gain, even outper-

forming many active learning methods. Besides, with the

increase of the number of manually annotated target frames,

the model detection accuracy is constantly improved. Fur-

thermore, when the manually labeled target data reaches 5%
of the total number of unlabeled frames, Bi3D can greatly

improve the cross-domain detection accuracy of the base-

line detector, even surpassing the fully-supervised results

with 100% labeled target data.

As described above, we found that when 2D ADA works

(as shown in Table 1) and 2D active learning works (as illus-

trated in Fig. 3) are deployed to 3D cross-domain scenarios,

their results are unsatisfactory. Here, we analyze why these

methods are not applicable to the cross-domain 3DOD task.

We attribute the reason to the following two aspects. 1) 2D
Density vs. 3D Sparsity: Compared with 2D images, 3D

point cloud is extremely sparse, which makes Globel Aver-

age Pooling (GAP) based feature extractor not suitable for

3D scenes. As a result, directly leveraging CNN on highly

sparse feature maps cannot extract informative features. 2)
2D Diversity vs. 3D Correlation: Unlike 2D natural images

that have more diverse appearances, the point cloud objects



Source Target SN
nuScenes→KITTI Waymo→KITTI

APBEV / AP3D APBEV / AP3D

- - - 68.15 / 37.17 61.18 / 22.01

Ran. - � 58.02 / 31.09 57.49 / 8.78

Act. - � 73.90 / 43.02 68.27 / 28.53

Ran. - � 70.13 / 58.80 71.23 / 56.20

Act. - � 81.84 / 65.40 81.53 / 67.41

Ran. Ran. � 84.42 / 75.12 85.48 / 75.89

Act. Ran. � 85.02 / 75.43 85.70 / 76.12

Ran. Act. � 86.53 / 76.54 86.12 / 76.92

Act. Act. � 84.91 / 71.56 85.13 / 71.36

Act. Act. � 87.00 / 77.55 87.12 / 78.03

Table 2. Component-level ablation studies. Ran. represents ran-

dom sampling and Act. represents active sampling using our

method. The ablation studies are conducted under 1% target an-

notation budget on PV-RCNN.

in autonomous driving are closely related, especially be-

tween adjacent frames in the same sequence. Thus, sim-

ply applying 2D ADA methods to 3DOD will yield similar

importance metric scores of candidate data, resulting in la-

beling redundancy.

Ablation Studies. The effectiveness of two key compo-

nents, including domainness-aware source sampling strat-

egy and diversity-based target sampling strategy, is verified

on nuScenes→KITTI and Waymo→KITTI settings. On

one hand, Table 2 indicates that the sampling strategy de-

signed for the source domain has a better performance than

the random sampling strategy. This is mainly due to that

we pick up a portion of frames whose distribution charac-

teristics are similar to the target domain. On the one hand,

the sampled source data is also beneficial to improve the

detector’s adaptability, further helping to select more rep-

resentative samples from the target domain, as verified by

comparing Source+Act and Source+Ran in Table 2. More-

over, Table 2 also shows that the designed diversity-based

target domain sampling strategy also can significantly boost

the model transferability between domains.

As mentioned in Section 3.2, we enhance the scene-level

foreground features by combining objectness and entropy

scores. In order to verify the necessity of such a design,

we conduct experiments by changing the input features of

the domain discriminator. It can be observed from Table 3

that, combining objectness and entropy scores achieves the

best target-domain accuracy in both cases of only sampling

source data, and sampling source and target data. This

shows that the objectness score and entropy score can pro-

vide the location information of the foreground and make

the model ignore the noisy background.

Combining with UDA Method. Current UDA works [42]

mainly leverage self-training to perform the pseudo-

labeling on the unlabeled target domain, which is orthog-

Score Entropy Dom.
nuScenes→KITTI Waymo→KITTI

APBEV / AP3D APBEV / AP3D

- - S 79.65 / 58.74 77.71 / 55.52

� - S 77.93 / 63.52 82.29 / 54.74

- � S 78.90 / 60.02 79.79 / 58.43

� � S 81.84 / 65.40 81.53 / 67.41
- - S+T 86.13 / 76.65 85.58 / 76.69

� - S+T 86.09 / 77.21 86.71 / 77.91

- � S+T 86.39 / 76.82 85.91 / 77.96

� � S+T 87.00 / 77.55 87.12 / 78.03

Table 3. Ablation study of foreground region-aware discriminator

under 1% target annotation budget. Score and Entropy in this table

denote that we employ the objectness and entropy evaluation met-

rics, respectively. S denotes that only the source domain is used

for the designed active sampling strategy and S+T represents our

Bi3D).

Method
nuScenes→KITTI Waymo→KITTI

APBEV / AP3D APBEV / AP3D

ST3D [42] 84.29 / 72.94 86.65 / 76.86

Ours 87.00 / 77.55 87.12 / 78.03

Ours+ST3D [42] 89.28 / 79.69 87.83 / 81.23
Oracle 88.98 / 82.50 88.98 / 82.50

Table 4. The studies of combining Bi3D with UDA method under

1% target annotation budget on PV-RCNN.

onal to our Bi3D. Therefore, we conduct the experiments

of combining our Bi3D and ST3D [42]. In particular, we

employ Bi3D to actively sample 1% target data to perform

the manual annotation, and utilize ST3D to pseudo-label the

remaining unlabeled target data. Then, we fine-tune the de-

tector using both annotated data and pseudo-labeled data.

It can be seen from Table 4 that, our Bi3D can be flexibly

combined with ST3D, significantly outperforming both the

Bi3D and ST3D methods.

5. Conclusion
In this work, for the first time, we presented a Bi3D

framework, which develops a Bi-domain active sampling

approach to dynamically select important frames from both

source and target domains, achieving domain transfer at

a low data cost. Experimentally, Bi3D achieves consis-

tent accuracy gains on many cross-domain settings, e.g.,

for Waymo-to-KITTI setting, Bi3D re-trained on only 5%
target domain data (KITTI) outperforms the corresponding

baseline model trained using 100% labeled KITTI data.
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