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Abstract
Generative models’ reliability and trustworthiness
critically depend on high-quality training data.
Prominent Large Language Model (LLM) ser-
vices from providers like OpenAI and Google
excel at general tasks but often underperform on
domain-specific applications. Current LLM cus-
tomization services typically require users to up-
load data for fine-tuning, posing significant pri-
vacy risks. While differentially private (DP) data
synthesis presents a potential alternative, its appli-
cation commonly results in low effectiveness due
to the introduction of excessive noise on data for
DP. To overcome this, we introduce Llamdex, a
novel framework that facilitates LLM customiza-
tion as a service, where the client uploads pre-
trained domain-specific models rather than data.
This client-uploaded model, optionally protected
by DP with much lower noise, is inserted into the
base LLM via connection modules. Significantly,
these connecting modules are trained without re-
quiring sensitive domain data, enabling clients to
customize LLM services while preserving data
privacy. Experiments demonstrate that Llamdex
improves domain-specific accuracy by up to 26%
over state-of-the-art private data synthesis meth-
ods under identical privacy constraints and, by
obviating the need for users to provide domain
context within queries, maintains inference effi-
ciency comparable to the original LLM service.

1. Introduction
While Large Language Model (LLM) services, such as Gem-
ini (Team et al., 2023) and ChatGPT (OpenAI, 2023), excel
at general tasks, they often exhibit limitations in domain-
specific applications due to insufficient access to relevant
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Figure 1: Overview of Llamdex customization pipeline

private data. Customizing these LLM services typically in-
volves clients uploading domain data to providers (servers)
like Google or OpenAI for fine-tuning (Hu et al., 2022a),
with the resulting customized LLMs often hosted on plat-
forms such as Gemini’s Gem and OpenAI’s GPT Store.
However, this data-upload requirement introduces signifi-
cant privacy risks, deterring clients in sensitive sectors such
as healthcare and finance, raising concerns on the service’s
trustworthiness.

Existing privacy-preserving approaches for LLM customiza-
tion services often compromise on effectiveness to achieve
privacy. A common method is differentially private (DP)
data synthesis (Hong et al., 2024; Tian et al., 2022; Duan
et al., 2024; Hong et al., 2024). This technique involves
clients uploading synthetic data, generated from their orig-
inal private datasets under DP constraints, to the service
provider. While this approach theoretically provides strong
DP guarantees for the client’s underlying domain data, the
requisite noise injection for achieving such privacy signif-
icantly degrades synthetic data quality. This degradation,
in turn, diminishes the LLM customization service’s effec-
tiveness and reliability, leading to customized LLM services
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that often exhibit notably reduced response accuracy on
domain-specific tasks, a phenomenon termed “disparate im-
pact” (Ganev et al., 2022).

To improve this privacy-effectiveness trade-off in LLM cus-
tomization services, we propose a novel framework named
Large language model with domain expert (Llamdex). This
framework enables clients to customize the LLM service
by uploading a domain-specific model instead of potentially
sensitive data, thereby offering superior privacy compared
to data-sharing methods. An overview of the Llamdex ser-
vice architecture, illustrated for financial inquiry applica-
tions, is presented in Figure 1. This architecture involves
the client providing a pre-trained, domain-specific model
(termed the expert model) to the server. The server then in-
serts this expert model into an intermediate layer of the base
LLM via learnable connecting modules. Concurrently, a
data schema detailing each column’s name, type, and range
is also supplied to the service, enabling the base LLM to cor-
rectly interpret the inputs and outputs of the client’s expert
model during service operation.

This model-based customization approach for LLM ser-
vices yields several advantages regarding effectiveness, pri-
vacy, and efficiency. First, it enhances effectiveness by
decoupling context understanding from task-solving pro-
cesses. The LLM can then focus on context understand-
ing, its area of strength, while task-solving is delegated
to the expert model, which can be any model (e.g., XG-
Boost (Chen & Guestrin, 2016)) optimized for the specific
task. This separation improves overall effectiveness, as
LLMs often exhibit lower accuracy on tasks like arithmetic
calculations (Yuan et al., 2023) or precise search (Saparov
et al., 2025) where specialized models excel. Second, con-
cerning privacy, the client’s expert model can be trained
using established DP techniques (Abadi et al., 2016). This
approach yields considerably lower noise than DP data
synthesis methods (Tian et al., 2022) under an equivalent
privacy budget (Li et al., 2021). Finally, the Llamdex service
architecture maintains inference efficiency comparable
to the base LLM. Integrating the expert model avoids the
need for users to embed extensive contextual information
within each service prompt.

Concurrently, this design presents two significant challenges.
The first is the misalignment between the domain expert’s
operational space (e.g., 1D feature vectors from tabular data)
and the LLM’s token embedding representations, necessitat-
ing complex design for trainable connecting modules. The
second challenge is the absence of training data for these
modules, since the client’s original data is inaccessible due
to privacy. Overcoming these obstacles is vital for success-
ful model-based knowledge transfer.

To overcome these challenges, we design the architecture
and training algorithm of Llamdex to facilitate effective

model-based knowledge transfer. Specifically, to resolve the
first challenge, we design Llamdex encoder that maps the
original tokens to feature vectors and a Llamdex decoder
that converts the expert’s output into multiple token embed-
dings. These embeddings are then appended to the original
sequence of token embeddings. To address the second chal-
lenge, we train the mapping modules using synthetic texts
generated from randomly distributed data under the public
schema. This allows the mapping modules to learn to extract
the required feature values from texts without relying on the
real data distribution. The contributions of this paper are as
follows:

• We propose a novel framework, Llamdex, that enhances
LLM customization by effectively integrating domain-
specific models into LLMs through trainable connecting
modules.

• We design a training algorithm for connecting modules
using only the public schema, without requiring access
to domain data distributions in either original or per-
turbed form, ensuring the service’s trustworthiness.

• Experiments on real-world datasets demonstrate
Llamdex’s superior customization effectiveness, achiev-
ing accuracy improvements of up to 14% over LoRA
fine-tuning and up to 26% over PromptPATE (at an
equivalent differential privacy level), while maintain-
ing inference efficiency comparable to the base LLM,
showcasing the customization’s reliability.

2. Background
Problem Definition We state the problem definition con-
cisely here and provide a detailed version in Appendix C.
We also briefly introduce the concept of differential privacy
(DP) in Appendix A to provide background for comparing
the privacy levels of different approaches.

We consider a collaboration between a server (possessing a
pre-trained LLM M) and a client (holding a private, domain-
specific tabular dataset Xc and a public schema Sc). The
client’s data is not contained within the server’s training data
(Xc ̸⊆ Xs) and exhibits a distinct distribution. The goal is
to adapt the server’s LLM M into a domain-aware model
Mc for the client’s tabular domain Xc without accessing
Xc, while preserving data privacy.

Our approach involves a two-stage, model-based customiza-
tion framework. The client trains a domain-specific expert
model Ec on their private data Xc, optionally using Dif-
ferential Privacy (DP). The client shares only the parame-
ters θEc of this expert model with the server. The server
then integrates these parameters into its frozen LLM M by
training lightweight connector parameters θconn. The result-
ing customized LLM service Mc should accurately answer
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domain-specific natural language questions Zc related to
Xc.

We focus primarily on tabular data Xc. We assess the pri-
vacy of client data against a semi-honest server attempting
to infer Xc from the expert model parameters θEc and the
public schema Sc.

Related Work Related work explores privacy-preserving
LLM customization through data-based (synthetic data fine-
tuning) and API-based (LLM querying external APIs) meth-
ods, each with trade-offs in privacy, effectiveness, and
resource requirements. We discuss the related work on
privacy-preserving LLM customization in Appendix B in
details.

3. Approach
This section details the Llamdex design for LLM service cus-
tomization. Our approach uses two types of client-provided
information: client’s data distributions (via a client-trained
expert model θEc , optionally trained with DP) and client’s
data schema Sc. The server uses Sc to train the connecting
modules that bridge the frozen base LLM and the expert
model, enabling the customized service. Section 3.1 de-
scribes this model architecture, focusing on the Llamdex
encoder/decoder design. Section 3.2 details the schema-
guided training and the service’s inference procedure. Fi-
nally, Section 3.3 introduces service extensions for generat-
ing explanations and enabling iterative reasoning.
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Figure 2: Llamdex structure and customization pipeline

3.1. Model Architecture

Llamdex facilitates LLM service customization by inserting
a module between two attention blocks (assumed to be the k-
th block) of the frozen base LLM M, as depicted in Figure 2.
This module processes LLM embeddings hk

i derived from
the input question zi and generates domain-informed output
embeddings Oemb

i , which are then passed to subsequent
LLM layers. This module comprises three core components:
an expert model Ec, a Llamdex encoder, and a Llamdex
decoder. To maintain sequence length consistency required
by some LLM architectures (e.g., those using RoPE (Su
et al., 2024)), Gaussian noise paddings is appended to hk

i

before reaching the expert model, which are subsequently
replaced by Oemb

i .

Expert Model. The expert model Ec, parameterized by
the client-provided θEc , encapsulates information about the
client’s domain-specific data distribution. It accepts a fea-
ture vector xc

i and outputs a prediction ŷi = Ec(θEc ;xc
i ).

As θEc is frozen on the server-side, Ec can be any suitable
model (e.g., multi-layer perceptron (MLP) or XGBoost),
optionally trained with DP guarantees by the client.
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Figure 3: Llamdex encoder and decoder architecture

Llamdex Encoder. The Llamdex encoder translates inter-
mediate question embeddings from the LLM M into the
structured feature vector xc

i required by the expert model
Ec (see Figure 3). The primary challenge stems from the
auto-regressive nature of decoder-only LLMs; these models
are optimized to predict the next token one at a time based
on prior context, which complicates the direct, single-step
extraction of a complete, structured feature set from their
hidden states. To address this inherent limitation, we employ
a pre-trained encoder-only small language model (SLM),
e.g. RoBERTa (Liu, 2019), for feature extraction.
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A significant hurdle when using an auxiliary SLM is the
potential misalignment between the tokenizers of the main
LLM (M) and the SLM. To overcome this, we introduce
a token mapping module, inspired by the logit lens (nostal-
gebraist, 2020) which was originally proposed for token in-
terpretation. Specifically, given intermediate LLM question
embeddings hk

i at k-th attention block, the token mapping
module computes logits Λi using the RMSNorm layer and
LLM head HLLM of M:

Λi = HLLM(RMSNormLLM(hk
i )). (1)

For each token, the most probable token ID τ LLM
i according

to the LLM are extracted:

τ LLM
i = argmax(Λi). (2)

These LLM token IDs are then decoded into text to-
kens using the LLM’s tokenizer TLLM, formally, tLLM

i =
TLLM.Decode(τ LLM

i ). Finally, these text tokens are
re-encoded using the SLM’s tokenizer TSLM to obtain
token IDs compatible with the SLM, i.e., τ SLM

i =
TSLM.Encode(tLLM

i ). These aligned SLM token IDs τ SLM
i

are embedded into HSLM
i with the SLM. Then, a truncated

sequence H̃SLM
i is obtained by keeping the last Din tokens

embeddings; these token embeddings are projected into Din

feature values of xc
i ∈ RDin via linear layers, followed by

min-max scaling activations based on the ranges specified
in Sc, ensuring features adhere to valid ranges consistent
with Ec’s training.

Llamdex Decoder. The Llamdex decoder maps the ex-
pert model’s prediction ŷi back into the LLM’s embedding
space, generating the output embeddings Oemb

i . The map-
ping is achieved using a simple feed-forward network (FFN)
with SwiGLU activation (Shazeer, 2020). A key design
challenge is the scale mismatch between these generated
Oemb

i and the LLM’s internal hidden states (e.g., hk
i from

preceding layers). A large discrepancy can destabilize sub-
sequent computations, particularly skip-connections and
attention mechanisms. To mitigate this, we apply an inde-
pendent Layer Normalization (LayerNorm) specifically to
the decoder’s output before it is appended to the LLM’s
representations. This LayerNorm allows the model to adap-
tively learn the appropriate scale for Oemb

i that aligns with
hk
i . The output embeddings Oemb

i are then appended to the
question embeddings hk

i and passed to the subsequent LLM
layers.

3.2. Training and Inference

Llamdex service customization follows a two-stage protocol
separating client and server responsibilities. Client-side:
The client trains an expert model Ec on their private data
Xc, optionally protected by DP, and shares Ec and the pub-
lic schema Sc with the server. Server-side: The server

trains the connector parameters θconn (which comprise the
Llamdex encoder and Llamdex decoder) using only the
client’s schema Sc and the received expert model param-
eters θEc . Both the base LLM M and the client’s expert
model Ec remain frozen during this server-side training
phase.

Training Llamdex Encoder. Since the server does not
access the client’s actual private data Xc, the Llamdex en-
coder is trained using synthetically generated data. Based
solely on the public schema Sc provided by the client, the
server creates synthetic tabular feature vectors x̄c

i (e.g., via
sklearn). Crucially, x̄c

i adheres to the schema’s structure
(types, ranges) but is generated from a completely random
distribution, independent of the client’s true data distribu-
tion underlying Xc. For each x̄c

i , a corresponding natural
language questions z̄i is generated using an auxiliary LLM
(e.g., Mistral-7B (Jiang et al., 2023)). The Llamdex en-
coder is then trained to map z̄i to x̄c

i with these synthetic
data. This optimization uses a Mean Squared Error (MSE)
loss, teaching the encoder the mapping from textual descrip-
tions (e.g., ‘‘He is ten years old’’) to structured
features (e.g., ‘‘10’’). Our experiments show that the
Llamdex encoder’s learned mapping z̄i → x̄c

i generalizes
to zi → xc

i without knowing the distribution of zi or xc
i .

Training Llamdex Decoder. Similarly, the Llamdex de-
coder is trained by the server using synthetically generated
data. It learns to map the prediction ŷi of Ec to LLM’s
embedding embeddings that finally produces the correct tex-
tual answer ai (e.g., ‘‘Yes’’, ‘‘No’’). To achieve this
without accessing real label distribution, the server generate
synthetic target labels ȳi and corresponding textual answers
āi, consistent with the target definition in the client’s schema
Sc (e.g., type and range). The Llamdex decoder is trained
using a cross-entropy loss between its predicted logits and
the ground truth logits of these synthetic textual answers āi.
Our experiments find the ȳi → āi mapping learned by the
decoder generalizes well to ŷi → ai without being aware of
the distribution of yi or ai.

Inference for Customized Service. The Llamdex system
provides an end-to-end customized LLM inference service.
Upon receiving a user’s natural language question zi, the
base LLM M processes it up to the k-th attention block,
which is the insertion point for the integrated module. Here,
the trained Llamdex encoder extracts the relevant feature
vector xc

i from the LLM’s intermediate hidden states hk
i .

This vector xc
i is then fed to the client’s expert model Ec,

which produces a domain-specific prediction ŷi. Subse-
quently, the trained Llamdex decoder transforms this predic-
tion ŷi into output embeddings Oemb

i . These embeddings are
appended to hk

i and propagated to the LLM’s subsequent
layers to generate the final textual response. An illustra-
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tive use case is provided in Table 4 (Appendix D). Notably,
Llamdex does not require either contextual information or
the schema Sc at inference time, resulting in better efficiency
than API-based services (Yao et al., 2022).

3.3. Iterative Reasoning Mechanism

While the primary objective of Llamdex is to enable effec-
tive LLM customization, allowing the customized LLM to
generate accurate answers based on the client’s model, en-
hancing these answers with explanations or reasoning offers
an additional service utility. To facilitate this, Llamdex in-
corporates a straightforward iterative feedback mechanism,
providing users with a method to obtain basic explanations
for the service’s outputs.

This mechanism allows users to request clarification by
augmenting their initial query. Specifically, the original
answer generated by the Llamdex service is concatenated
with a predefined prefix prompt (e.g., "The expert’s
answer is") and then appended to the original question
zi. Users have the option to further refine this augmented
query with custom prompts. The resulting revised input is
subsequently resubmitted to the base LLM M component
of the service. This base LLM processes the augmented
context to produce a new response, aiming to deliver the
requested reasoning or elaboration beyond the answer. An
illustrative example of this iterative feedback mechanism is
presented in Table 6 in Appendix F.

4. Experiment
This section presents our experimental evaluation. We begin
by detailing the experimental settings (Section 4.1), fol-
lowed by an assessment of the proposed method’s accuracy
(Section 4.2) and privacy guarantees (Section 4.4). Supple-
mentary analyses, including a comparison of training effi-
ciency (Appendix E), additional experimental results such as
those for iterative reasoning (Appendix F), comprehensive
ablation studies (Appendix G), and detailed hyperparameter
configurations of baselines (Appendix H), are provided in
the appendices.

4.1. Experiment Setting

This subsection outlines experimental setups on datasets,
model configuration and baselines. For information on
evaluation methods, environment and additional details on
datasets, model configuration and baselines, please refer to
Appendix D.

Dataset. We incorporate four public real-world datasets:
titanic (H., 2021), wine (Cortez et al., 2009),
bank (Moro et al., 2014), and nursery (Rajkovic, 1989).

LLM and SLM. In our experiments, we employ the
pretrained Mistral-7B (Jiang et al., 2023) as the base
LLM, and the pretrained Roberta-large (Liu et al.,
2019), with 0.355 billion parameters, as the SLM within the
Llamdex encoder.

Baselines. To evaluate the accuracy and efficiency of
Llamdex, we compare it against baselines without DP guar-
antees, including

• Original LLM: Unmodified base LLM.

• Real Data LoRA (Hu et al., 2022a): LLM parameter-
efficiently fine-tuned (LoRA) on questions/labels de-
rived from real domain data.

• Expert API: A simplified API-based approach (Schick
et al., 2024; Qin et al., 2024) where the LLM is prompted
to extract feature values from questions; values are
regex-extracted and fed to a domain expert model that
predicts the final answer.

To evaluate Llamdex’s accuracy under privacy guarantees,
we compare it with baselines employing DP data synthe-
sis. The synthetic data generated by these methods is sub-
sequently used for LoRA fine-tuning of the LLM. These
baselines include PATE-GAN (Jordon et al., 2018), Se-
qPATE (Tian et al., 2022), PromptPATE (Duan et al.,
2024), Table Diffusion (Truda, 2023) and DP-OPT (Hong
et al., 2024). These baselines represent a diverse range
of privacy-preserving learning techniques, including GAN-
based, knowledge distillation, prompt-based, and diffusion-
based approaches, and achieve the leading performance
among existing approaches. This comprehensive set of base-
lines allows us to rigorously assess Llamdex’s performance
against state-of-the-art privacy-preserving methods.

4.2. Effectiveness

Evaluation results without differential privacy noise (Ta-
ble 2) reveal two key findings. First, Llamdex with an
MLP expert model significantly outperforms all base-
lines across all datasets. Notably, on nursery, it sur-
passed the next best baseline (LoRA fine-tuning on real
data) by 14%, despite no direct access to real domain data.
This superiority arises from Llamdex’s Llamdex encoder,
specifically trained for accurate and comprehensive feature
extraction from noisy natural language - a capability often
underdeveloped in fine-tuned LLMs. This demonstrates
the strong generalization of Llamdex’s synthetic data-based
training to real-world domain queries. Second, Llamdex
with an XGBoost expert also shows competitive effective-
ness, generally exceeding other baselines, though typically
with slightly lower accuracy than its MLP counterpart. We
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Table 1: Inference Time (minutes) and Peak Inference Memory Cost (GB)

Method Inference Time (min) Inference Memory (GB)

titanic wine bank nursery Relative1 titanic wine bank nursery Relative1

Original LLM 0.03 0.40 2.58 0.72 ×0.49 18.26 19.76 20.29 20.45 ×0.96

Syn. Data LoRA2 0.03 0.42 2.75 0.72 ×0.52 18.06 19.73 20.26 21.67 ×0.97

Expert API 0.87 21.73 165.0 33.13 ×29.08 25.42 29.02 37.89 30.27 ×1.49

Llamdex 0.07 0.80 5.27 1.45 ×1.00 17.96 19.29 21.82 23.29 ×1.00
1Mean relative value compared with Llamdex across all datasets.
2This category encompasses LoRA with PATE-GAN, SeqPATE, PromptPATE, Table Diffusion, and DP-OPT.

Figure 4: Accuracy of Llamdex and the baselines under different privacy budget ε

attribute this to the hard thresholding in tree-based mod-
els like XGBoost, which can be more sensitive to minor
inaccuracies in extracted input features, potentially lead-
ing to incorrect predictions more readily than an MLP’s
smoother decision boundaries. Overall, these results vali-
date the Llamdex framework’s effectiveness in achieving
high accuracy for domain-specific question answering with-
out direct access to sensitive domain data.

Table 2: Customization Effectiveness without additional
privacy noise (bold: best, underlined: second best).

Method Accuracy (%)

titanic wine bank nursery

Real Data LoRA 62.14 31.38 81.24 37.40
Original LLM 62.36 20.59 63.35 31.71

Expert API 51.46 40.63 85.32 32.10

Llamdex-XGBoost 72.81 33.75 87.94 40.92
Llamdex-MLP 75.51 41.42 87.94 51.69

4.3. Efficiency

This subsection evaluates the inference efficiency (time and
memory consumption) of Llamdex against baselines, with
results in Table 1 (training efficiency is in Appendix E). Two
key observations emerge. First, Llamdex achieves signifi-
cantly faster inference than the Expert API, offering an
average 29× speedup while maintaining inference times
similar to lower-performing baselines like LoRA fine-tuned
LLMs and the original LLM. Second, Llamdex’s memory
consumption is similar to these less accurate baselines and
1.49× lower than the Expert API. This implies Llamdex’s

superior accuracy-efficiency trade-off over Expert API.

4.4. Privacy

In this subsection, we evaluate the privacy-accuracy trade-
off by comparing accuracy under differential privacy with
varying ε. The results, shown in Figure 4, reveal two key
observations. First, Llamdex consistently outperforms
baselines even with increased noise (smaller ε). For in-
stance, on the wine dataset with ε = 2, Llamdex outper-
forms PATE-GAN and PromptPATE by 26%. Second, we
observe that DP data synthesis provides accuracy close to
that of the original LLM on most datasets. This is because
the synthetic data usually contains too much noise, limiting
the useful information available to the LLM and leading to
poorer accuracy. In summary, Llamdex strikes a balance be-
tween privacy and utility, maintaining high accuracy while
ensuring a strong privacy guarantee.

5. Conclusion
We introduced Llamdex, a novel framework for privacy-
preserving LLM service customization. Llamdex allows
clients to customize LLM service with domain-specific
models, thereby preserving the privacy of their private data.
Experiments show that Llamdex significantly improves cus-
tomization effectiveness over baselines without accessing
sensitive domain data. By effectively balancing effective-
ness, privacy, and inference efficiency, Llamdex provides
a robust solution for deploying customized LLM services
in sensitive domains. Our work demonstrates a practical
pathway toward trustworthy, privacy-preserving generative
AI with responsible data usage in generative models.
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Appendix
In the appendix, we provide the following:

• A brief introduction to differential privacy (DP).

• Discussion on related work for privacy-preserving
LLM customization.

• A detailed version of the problem definition.

• Other experimental details, including evaluation meth-
ods, environment, and additional details on the datasets,
model configuration and baselines, alongside an exam-
ple of evaluation question.

• Training efficiency analysis.

• Additional experimental results including the results
of iterative reasoning, an evaluation of F1 scores, and
performance on the adult dataset.

• Ablation studies, including effect of expert weight,
effect of the insert layer, effect of base LLM (Llama-
based Llamdex), effect of number of tokens, effect of
token mapping, and effect of gaussian padding.

• Hyperparameter settings used for each baseline.

• Potential future extensions of the Llamdex service and
the major challenges involved.

A. Brief Introduction to Differential Privacy
To provide essential background for comparing the privacy
levels of different approaches, we briefly introduce the con-
cept of differential privacy (DP).

Definition A.1 (Differential Privacy (Dwork, 2006)). A
randomized algorithm M : D → O is said to be (ε, δ)-
differentially private if, for any two datasets D,D′ ∈ D that
differ by a single record, and for all output sets S ⊆ O,

Pr[M(D) ∈ S] ≤ eε Pr[M(D′) ∈ S] + δ, (3)

where ε is the privacy budget; smaller ε implies stronger
privacy guarantees. δ is the probability that the privacy
guarantee is breached.

DP guarantees are typically achieved by introducing Gaus-
sian noise during computation. Applying this concept to
train deep learning models, notably through the Differen-
tially Private Stochastic Gradient Descent (DP-SGD) algo-
rithm (Abadi et al., 2016), enables training private model.

B. Related Work
Privacy-preserving LLM customization primarily falls into
two categories: data-based and API-based methods. Data-
based approaches involve clients providing synthetic data
(generated from private domain data under DP guarantees)
to the LLM service for fine-tuning. Conversely, API-based
methods enable LLM customization by having LLM query
an external, domain-specific API at inference time.

Data-based Customization. Data-based approach is
broadly applicable to a diverse range of clients, from in-
dividuals to large corporations, primarily because it typi-
cally does not necessitate significant client-side computa-
tional resources or require the client to maintain constant
online connectivity with the LLM service. Typically, data-
based approaches employ differentially private data syn-
thesis. For instance, some methods, such as PATE (Paper-
not et al., 2017) and SeqPATE (Tian et al., 2022), involve
adding noise to aggregated predictions from an ensemble of
teacher models (trained on private domain data) to create
synthetic data. Other variants, including dχ-DP (Feyisetan
et al., 2020), selective-DP (Shi et al., 2021), Table Diffu-
sion (Truda, 2023), PromptPATE (Duan et al., 2024), and
DP-OPT (Hong et al., 2024), aim to further enhance the
quality of the generated synthetic data. This synthesized
data is subsequently used to fine-tune the base LLM. A no-
table drawback of such approaches that train models from
synthetic data (a form of input perturbation) is the substan-
tial degradation of model utility (Jayaraman et al., 2018)
when compared to gradient perturbation methods that add
noise during the training. Llamdex, which customizes LLM
with DP-trained model, aligns with gradient perturbation
methods, offering higher effectiveness of customization.

API-based Customization. This method is generally
more suitable for large organizations that possess suffi-
cient resources to develop, host, and maintain these APIs—
ensuring they are consistently online and responsive—and
is typically not well-suited for individual users due to these
requirements. The mechanisms behind such APIs vary; for
example, Yao et al. (2022) require users to provide API
documentation to the LLM at inference time, while Schick
et al. (2024) and Qin et al. (2024) propose fine-tuning an
auxiliary LLM on the client-side to process API calls. These
approaches can demand significant computational resources
on the client side, may incur notable communication latency,
and require the client’s API infrastructure to be perpetually
online. In contrast, Llamdex is designed for more general
applicability, catering to both individual clients and large
companies. It obviates the need for constant client online
presence; clients only need to train a relatively small domain-
specific model (e.g., XGBoost (Chen & Guestrin, 2016)) on
their data and then upload this model to the server once for
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customization.

C. Detailed Problem Definition
Consider a collaboration between a server and a client. The
server possesses an LLM M, parameterized by θM, pre-
trained on a large public text dataset Xs ∈ ANs×l, where
A denotes the vocabulary (token set) and l is the sequence
length. The client holds a private, domain-specific dataset
Xc ∈ RNc×m, where m is the number of features. We
assume the client’s data is not contained within the server’s
training data (Xc ̸⊆ Xs) and exhibits a distinct distribution.
Associated with Xc is a public schema Sc, detailing feature
names, types, and ranges. An illustrative example of Sc

from the titanic dataset is provided below:

Example Features (from Sc for Xc):
Age: int [0,100];
Pclass: category {‘‘1’’,‘‘2’’,‘‘3’’}
Example Target (from Sc for y):
Survived: bool {False, True}

The server aims to adapt its LLM M (assumed to be a
standard decoder-only transformer (Jiang et al., 2023; Tou-
vron et al., 2023)) into a domain-customized model Mc

for the client’s domain Xc without directly accessing Xc.
Specifically, we focus on a two-stage, model-based cus-
tomization framework. (Client-side) The client trains a
domain-specific expert model Ec, parameterized by θEc , on
their private structured data Xc (feature vectors) to predict
a target variable y. Optionally, for enhanced privacy, Ec

can be trained via DP-SGD (Abadi et al., 2016) to ensure
θEc satisfies (ε, δ)-differential privacy. The client shares
only these parameters θEc with the server as a component
for service enhancement. (Server-side) The server inserts
the client-provided expert model Ec into its frozen LLM M
by training lightweight connector parameters θconn. This
integration aims to enable the resulting customized LLM ser-
vice, Mc, to accurately answer domain-specific natural lan-
guage questions. Formally, given a dataset Zc = {(zi, yi)},
where each zi is a natural language question related to Xc

and yi is the target answer, we aim to optimize θconn by
minimizing a generative loss Lgen over Zc:

min
θconn

E(zi,yi)∼Zc [Lgen(Mc(θconn; zi, θM, θEc), yi)] . (4)

Crucially, both the base LLM parameters θM and the expert
model parameters θEc remain frozen during this stage; only
θconn is trained by the server.

Given that tabular data is prevalent in relational databases
and readily translatable to/from text via schemas (Jatana
et al., 2012), we focus primarily on tabular Xc. Extensions
of this customization service to other modalities (e.g., im-
ages, video) are discussed in Section I as future work.

Threat Model. We focus on the privacy of client data
Xc against a semi-honest server that, while adhering to the
protocol, may attempt to infer Xc. The server accesses the
LLM parameters θM, the client’s schema Sc, and the expert
model parameters θEc . The primary privacy risk involves
the server inferring Xc. If schema Sc is private, masking
techniques (Ranganathan et al., 2023) can offer protection,
an aspect orthogonal to this study.

D. Experimental Details
In this section, we provide the additional experimental se-
tups, including evaluation methods and the environment.
We also provide additional details on the datasets, model
configuration and baselines used in our experiments and an
example of evaluation question.

Expert Model. The expert models Ec are trained directly
on the respective tabular datasets, utilizing MLPs (default)
and XGBoost (Chen & Guestrin, 2016). MLPs, imple-
mented in PyTorch (Paszke et al., 2019), feature two hid-
den layers (400/200 neurons, ReLU activation (Nair & Hin-
ton, 2010)), trained with AdamW (Loshchilov, 2017) (learn-
ing rate 10−4, batch 64, max 30 epochs or convergence).
For DP expert model training, we adopt the DP-SGD im-
plementation in Opacus (Yousefpour et al., 2021) library,
which clips gradients by norm 1 and injects noise, with vary-
ing ε and δ = 1/Nc, where Nc is the number of samples.
XGBoost models are configured with the following core
hyperparameters: a learning rate of 0.1, max depth set
to 50, subsample of 0.8, colsample bytree of 0.8,
and n estimators set to 50.

Evaluation. The effectiveness of customization is evalu-
ated by the accuracy of answering domain-specific questions
derived from client’s tabular datasets. For question gener-
ation, each dataset row with m columns, with 10% of its
values randomly masked to simulate missing data, is con-
verted to text (format: #c1 : v1, . . . ,#cm : vm, where ci
is column name, vi is value). This textual representation is
then fed to Mistral-7B with a system prompt to gener-
ate a corresponding question. During accuracy evaluation,
the LLM provides a single-word answer: “Yes”/“No” for
binary classification or an uppercase letter (e.g., “A”-“Z”)
for multiclass tasks. The predicted class with the highest
probability is compared against the ground truth to compute
accuracy. we report the mean accuracy of five independent
runs.

Environment. Evaluations utilize a system with 4x
NVIDIA H100 GPUs (80GB each) and an AMD EPYC
9654 96-Core processor with 1.11TB of CPU memory (large
CPU memory is unnecessary).

10



Model-based Large Language Model Customization as Service

Dataset Details. For evaluation, all datasets are in tabu-
lar format with well-defined schema and meaningful col-
umn names. We split each dataset into training and test
sets by 8:2. Table 3 presents detailed information (includ-
ing licenses) about the tabular datasets employed in the
experiments, including the additional dataset adult in Ap-
pendix F.

LLM and SLM Details. In Llamdex training, the LLM
remains frozen while the SLM undergoes full-parameter
fine-tuning. The Llamdex encoder and decoder are trained
with a batch size of 128 and a learning rate of 5×10−5, using
the AdamW optimizer (Loshchilov, 2017). The learning rate
is adjusted by a cosine scheduler with 500 steps of warmup.
The Llamdex encoder and decoder are trained for 30 and 10
epochs, respectively.

Baselines Details. We provide a brief description of each
baseline here.

• PATE-GAN (Jordon et al., 2018): Traditional DP tabu-
lar data synthesis.

• SeqPATE (Tian et al., 2022): DP data synthesis method
using knowledge distillation.

• PromptPATE (Duan et al., 2024): State-of-the-art DP
data synthesis using private prompts.

• Table Diffusion (Truda, 2023): Diffusion-based DP
tabular data generation.

• DP-OPT (Hong et al., 2024): DP prompt generation
using an ensemble of 205 LLMs.

Dataset and Library Licensing, and Data Considera-
tions. The datasets utilized in our experiments are pub-
licly available and are generally provided under permissive
licenses. Specifically, the ‘titanic‘ dataset is available under
a CC0 license. The ‘wine‘, ‘adult‘, ‘bank‘, and ‘nursery‘
datasets, commonly sourced from the UCI Machine Learn-
ing Repository, are typically distributed under the Creative
Commons Attribution 4.0 International (CC BY 4.0) license,
which allows for sharing and adaptation with appropriate
attribution. For the implementation of differentially private
expert model training, we utilize the Opacus library (Yousef-
pour et al., 2021), which is open-source and licensed un-
der the Apache License 2.0. This permissive licensing for
both datasets and key software components facilitates repro-
ducibility and further research. Our work relies on these pre-
existing public versions and does not involve re-collection
or further direct processing of raw sensitive data containing
personally identifying information.

Example of Evaluation. An example of the tabular data
and questions generated from the titanic dataset is
shown in Table 4.

E. Training Efficiency
The training time and memory consumption for Llamdex
and the baselines are presented in Table 5. From the re-
sults, we can make one key observation: training Llamdex
requires a similar order of magnitude of resources as LoRA
fine-tuning, with memory consumption also comparable to
LoRA. The slightly higher memory usage and increased
training time in Llamdex are due to the additional parame-
ters introduced by the Llamdex encoder and decoder. This
indicates a trade-off between efficiency and accuracy, with
Llamdex providing a significant improvement in accuracy
over LoRA. Expert API and original LLM is not included in
the training time comparison as they do not require training.

F. Additional Results
In this section, we present additional experimental results.
We first present the results of iterative reasoning, followed
by an evaluation of F1 scores. Finally, we compare perfor-
mance on the adult dataset.

Results of Iterative Reasoning. We demonstrate the
results of iterative reasoning using a specific example.
In this example, a connection prompt is used: "The
expert’s answer is { }. Regard the
expert’s answer as a fact. Based on
the expert’s answer, directly answer
the following question:". During iterative
reasoning, the expert’s answer is inserted into the blank and
fed back into the original LLM, along with a follow-up
prompt provided by the user. The results are shown in
Table 6. The observations reveal that Llamdex not only
accurately predicts the result, consistent with the real
data, but also identifies related features such as age and
sex. In contrast, the original Mistral model fails to make an
accurate prediction and provides vague answers.

Performance under F1 score. We evaluate Llamdex’s
performance on additional metrics - F1 score (Rijsbergen,
1979) - for binary classification tasks. The results, presented
in Table 7, demonstrate that Llamdex achieves significant
improvements in F1 scores on titanic and shows com-
petitive performance on bank. The relatively low F1 scores
across all methods on bank are attributed to the dataset’s
significant class imbalance.
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Table 3: Detailed information of tabular datasets, including their licenses.

Dataset #Instances #Features #Classes License

titanic (H., 2021) 887 7 2 CC0
wine (Cortez et al., 2009) 4,898 11 11 CC BY 4.0
adult (Becker & Kohavi, 1996) 48,842 14 2 CC BY 4.0
bank (Moro et al., 2014) 45,211 16 2 CC BY 4.0
nursery (Rajkovic, 1989) 12,960 8 4 CC BY 4.0

Table 4: The used prompt and example of tabular data and questions from the titanic dataset in the evaluation

Example

Column Names Age, Fare1, Parents/Children Aboard, Pclass, Sex, Siblings/Spouses Aboard, Survived

Tabular Row 18.0, 9.35, 1, 3, female, 0, 1

Question Generation Prompt

Convert the following information about a Titanic passenger into natural language. Ensure
and double-check that you do not miss any information, add some irrelevant context, and
ask if the passenger survived or not at the end without answering, # please: #Sex: female
#num parents and children aboard: 1 #Fare: 9.35 #Age: 18.0 #num siblings and spouses aboard:
0 #ticket class: Third class

Generated Question

This information pertains to a female passenger aboard the Titanic. She was 18 years old and
traveled in the Third class. She was accompanied by one parent or child. It is also noteworthy
that she did not have any siblings or spouses aboard the ship. Her fare for the journey was 9.35
dollars. Could you please confirm if this passenger survived the tragic sinking of the Titanic or not?

System Prompt Respond the user’s question in only one word: Yes or No.

Answer of Llamdex Yes
1As the unit of “fare” is not defined in the dataset, we interpret it as being in dollars without specifying the currency. Given that
titanic serves as an external knowledge base, the actual unit does not affect the evaluation outcome.

Performance on adult Dataset. We evaluate the perfor-
mance of Llamdex (without DP noise) against the original
LLM, Real Data LoRA, and Expert API on the adult
dataset, as shown in Table 8. The results indicate that
Llamdex outperforms the original LLM and is competitive
with the Expert API. The smaller performance improvement
of Llamdex on this dataset can be attributed to the simplic-
ity of the schema of adult, which makes it easier for the
Expert API to extract accurate values from natural language
descriptions.

G. Ablation Study
G.1. Effect of Expert Weight

To demonstrate that the LLM utilizes the expert’s output,
we scale the expert’s output by a weight α and evaluate
Llamdex’s performance as α varies. The results, shown in
Figure 5, reveal a positive correlation between Llamdex’s
performance and the weight α, confirming that the LLM
leverages the expert’s output to enhance prediction accuracy.
Notably, when α = 0, Llamdex’s performance drops signif-
icantly, underscoring the importance of the expert’s output
for its effectiveness.

Figure 5: The effect of expert weight on the accuracy of
Llamdex

G.2. Effect of the Insert Layer

We explore the accuracy of Llamdex when the expert model
is inserted at different layers of the LLM. The effect of the
depth of the insertion layer is shown in Figure 6. From the
figure, we observe that the best accuracy occurs when the
expert model is inserted in either the first few layers or the
last few layers. The probable reason is that the initial and
final layers are more closely aligned with natural language
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Table 5: Average Training Time (minutes per epoch) and Peak Training Memory Cost (GB)

Method Training Time1 (min) Training Memory (GB)

titanic wine bank nursery titanic wine bank nursery

Real Data LoRA /
PATE-GAN LoRA 3.94 4.76 4.28 3.98 16.05 17.89 16.90 16.07

Llamdex2 7.42 / 4.73 12.15 / 7.47 12.17 / 7.42 7.77 / 4.85 29.96 29.47 29.28 34.46
1For a fair comparison of efficiency, we fix the number of instances per epoch at 10,000 for all methods.
2The per-epoch training time of Llamdex is reported in the format of (training time of Llamdex encoder)/(training time
of Llamdex decoder).

tokens, making the information easier to interpret, whereas
the intermediate layers are more abstract and harder to map
directly to natural language.

Figure 6: The effect of the depth of the inserted layer on the
accuracy of Llamdex

G.3. Effect of Base LLM - Llama-based Llamdex

We conduct experiments similar to those in Table 2 to
evaluate performance without additional privacy noise.
Llamdex’s performance on another base LLM (Llama-2-
7B (Touvron et al., 2023)) is presented in Table 9. Notably,
Llamdex with Llama-2-7B demonstrates a significant im-
provement in accuracy compared to the baselines, indicating
that Llamdex is robust to the choice of the base LLM.

G.4. Effect of Number of Tokens

We fix the inserted layer to 0 and vary the number of tokens
used to store the expert’s output embeddings to evaluate
Llamdex’s performance. The results, shown in Figure 7,
indicate that increasing the number of tokens generally im-
proves accuracy across datasets.

G.5. Effect of Token Mapping

We evaluate the performance of Llamdex with and with-
out token mapping, as shown in Table 10. The results in-
dicate that removing token mapping significantly reduces
Llamdex’s accuracy, highlighting the importance of the to-

Figure 7: The effect of the number of tokens on the accuracy
of Llamdex

ken mapping layer. This is because the token embeddings
of one LLM cannot be directly used by another LLM with
a different token vocabulary. Token mapping enables the
SLM to interpret the LLM’s token embeddings, resulting in
more accurate predictions.

G.6. Effect of Gaussian Padding.

We evaluate the performance of Llamdex with zero padding
and Gaussian padding, as shown in Table 11. The re-
sults show that Gaussian padding significantly improves
Llamdex’s accuracy compared to zero padding. This im-
provement occurs because Gaussian padding breaks the
symmetry of parameters, facilitating more effective learn-
ing, similar to the model’s parameter initialization.

H. Baseline Hyperparams
In this section, we detail the hyperparameter settings used
for each baseline in our experiments.

H.1. PATE-GAN

For PATE-GAN (Jordon et al., 2018), we follow the stan-
dard hyperparameter configurations as provided in the origi-
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Table 6: Example of Llamdex with iterative reasoning on Titanic survival prediction

Question This information pertains to a female passenger aboard the Titanic. She was 18 years old and traveled in
the third class. She was accompanied by one parent or child. It is also noteworthy that she did not have any
siblings or spouses aboard the ship. Her fare for the journey was 9.35 dollars. Could you please confirm if this
passenger survived the tragic sinking of the Titanic or not?

Follow-up Prompt Do you know what is the probable result and the reason what factors affect the result?

Mistral’s Answer Based on the information provided, it is not possible to definitively confirm whether this passenger survived
the sinking of the Titanic. Third-class passengers were generally less likely to be rescued due to the limited
lifeboats available and the priority given to first- and second-class passengers. However, there were some
exceptions, and it is always possible that this individual managed to find a place on a lifeboat.
Factors that affected the survival rate on the Titanic included class, gender, age, and physical ability. Women
and children were given priority boarding on lifeboats, and first-class passengers were more likely to be
rescued due to their ability to pay for additional seats on lifeboats. Physical ability also played a role, as those
who were stronger and more agile were more likely to survive the frigid waters.
It is important to note that the survival rate for third-class passengers was still relatively low, with only about
20% surviving the sinking. However, without more specific information about this passenger, it is impossible
to say for certain whether she survived or not.

Llamdex’s Answer Based on the expert’s answer that the 18-year-old third-class female passenger survived the Titanic sinking,
the probable result is that she was among the survivors. The factors that likely affected the result include:
1. Class: Third-class passengers were less likely to have access to lifeboats, though some secured spots due to
being women/children or through other means
2. Age: Younger passengers, especially women and children, had boarding priority
3. Physical condition: Better condition improved survival chances in freezing water
4. Swimming ability: Swimming skills increased survival chances
5. Life jacket: Improved flotation and survival odds
6. Being in a lifeboat: Direct path to survival
7. Being rescued by another ship: Some survivors were picked up by other vessels
8. Proximity to lifeboats at launch: Better chances of boarding
9. Visibility to passing lifeboats: Increased rescue chances
10. Access to floating debris: Improved survival time in water

Survived in Dataset? Yes

Table 7: F1 scores of different methods

Method F1-Score

bank titanic

Real Data LoRA 0.7988 0.5721
Original LLM 0.6936 0.5738

Expert API 0.8355 0.4933

Llamdex-MLP 0.8228 0.7578

Table 8: Accuracy of Llamdex-MLP on adult dataset

Dataset Real Data
LoRA

Original
LLM

Expert
API Llamdex

adult 69.84 60.86 76.55 76.08

nal GitHub implementation1. For models employing noisy
Stochastic Gradient Descent (SGD), this involves setting
the Gaussian noise variance multiplier to 2 and the gradient

1https://github.com/BorealisAI/
private-data-generation

Table 9: Accuracy of Llamdex (Llama-2) without additional
privacy noise

Method Accuracy (%)

titanic wine bank nursery

Real Data LoRA 59.55 1.03 85.80 35.09
Original LLM 39.33 0.00 12.14 30.98

Llamdex-MLP 75.17 25.91 87.91 31.89

Table 10: Performance Comparison between Llamdex w/
and w/o Token Mapping

Dataset Accuracy (%)

w/o token mapping w/ token mapping

titanic 44.38 75.51
wine 12.52 41.42
bank 45.57 87.94

nursery 32.20 51.69

clipping coefficient to 0.1. Additionally, a micro-batch size
of 8 is used, with training carried out over 500 epochs and
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Table 11: Performance of Llamdex w/ Zero Padding and
Gaussian Padding

Dataset Accuracy (%)

Zero Padding Gaussian Padding

titanic 64.83 75.51
wine 13.62 41.42
bank 85.94 87.94

nursery 32.23 51.69

a general batch size of 64. In the case of the PATE-GAN
model, the default configuration specifies an inverse Laplace
noise scale multiplier of 0.0001 and a batch size of 64. The
model architecture includes 10 teacher discriminators. Dur-
ing each generator iteration in the training process, there are
5 iterations for the teachers and 5 iterations for the student.

H.2. Prompt-PATE

For the Prompt-PATE (Duan et al., 2024) baseline, we em-
ploy a configuration of 50 teacher models, each consisting
of Mistral-7B, which is consistent with the base LLM uti-
lized in our primary experiments. The Confident-GNMax
algorithm (Papernot et al., 2018) utilizes a confidence thresh-
old of 10.0. Differentially private synthetic data generated
by these teacher models is subsequently employed to fine-
tune the target Mistral-7B LLM. This fine-tuning process is
conducted using Low-Rank Adaptation (LoRA) (Hu et al.,
2022b) with a rank r = 16 and α = 32. Training proceeds
for 10 epochs, with a learning rate of 5× 10−5 and a batch
size of 32.

H.3. SeqPATE

For SeqPATE (Tian et al., 2022), we replicate the settings
from the original paper (Tian et al., 2022). This configura-
tion uses 10 teacher models (Mistral-7B, consistent with the
base LLM in our experimental setup) with a top-k value of
200. The teacher supervision loss weight (λ) is set to 20, fol-
lowing the original paper. Both teacher and student models
utilize Mistral-7B. Their training employs LoRA fine-tuning
with a rank r = 16 and α = 32. Training for these models
spans 10 epochs, using a learning rate of 5 × 10−5 and a
batch size of 4.

H.4. TableDiffusion

TableDiffusion (Truda, 2023) is trained for 5 epochs with
a batch size of 1024 and a learning rate of 0.005. The
number of diffusion steps is set to 3. The data generated
by this method is then used to fine-tune the base LLM.
The fine-tuning parameters are identical to those employed
for Prompt-PATE (LoRA r = 16, α = 32, learning rate

5× 10−5, batch size 32, training for 10 epochs).

H.5. DP-OPT

For DP-OPT (Hong et al., 2024), we adhere to the default
parameter settings from its original code repository. This
involves generating 5 prompts per data point. The LLM is
configured to read a maximum of 5 demonstrations at a time,
and generated prompts possess a maximum token length of
128. An ensemble of 205 LLMs (ensemble num) is uti-
lized. The generation temperature is set to 0.7, with only one
generation round performed. Poisson sampling is employed
with q = 0.1. To mitigate the generation of repetitive, low-
quality text, a repetition penalty of 1.2 is applied. 10% of
the training data is reserved for validation. Considering the
potential for the LimitedDomain mechanism in DP-OPT to
fail, a maximum of 20 failures per prompt (with retries) are
permitted before prompt generation is terminated. The local
model is Llama-3.1-8B-Instruct (Grattafiori et al., 2024),
and the server model is Mistral-7B-Instruct-v0.3, aligning
with the base LLM configuration in our experiments. The
initial prompts for each dataset are as follows:

• titanic & bank marketing: Answer the
following question. Your answer MUST
be either 0 (No) or 1 (Yes). Enclose
ONLY the integer in \boxed{...}.

• wine quality: Answer the following
question. Your answer MUST be an
integer between 0 and 10 (inclusive),
where a larger integer indicates
better wine quality. Enclose ONLY
the integer in \boxed{...}.

• nursery: Answer the following question.
Your answer MUST be an integer (0,
1, 2, or 3) corresponding to one
of these categories: 0 { special
priority (e.g. veterans, siblings),
1 { priority (e.g. staff children,
local), 2 { very recommended (strong
applicants), 3 { not recommended
(weak applicants). Enclose ONLY the
integer in \boxed{...}.

During evaluation, the generated output is considered cor-
rect if the text within the \boxed{} environment matches
the expected answer (after removing any leading or trailing
whitespace). If the \boxed{} environment is not found,
the prediction is treated as a chance probability.

H.6. Expert API

The Expert API baseline evaluates the LLM’s capacity to in-
teract with an external expert model by generating structured
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API calls. The LLM is provided with a detailed prompt that
first describes the interface of the expert model. This de-
scription includes the precise JSON format specifying the
structure of the expert model’s inputs (features it accepts)
and outputs (the predictions it returns). Subsequently, the
prompt instructs the LLM on the specific string format re-
quired to construct a query for this expert model, based
on the user’s question. This query string is expected to be
a sequence of feature-value pairs, clearly delineated. The
template of the prompt provided to the LLM is as follows:

You are a data analysis assistant who
strictly adheres to instructions. You have
access to a model. It receives input in
the following json format:
<JSON input/output format for the expert
model is detailed here.>
Now you should generate a query to answer
the user’s question. Use the following
format to generate queries:
<Specific query string format (e.g.,
"feature1: [value1] feature2:
[value2]...") is detailed here.>

The generated text from the LLM, which should contain
the formatted API call, is then parsed. This extracted call
is used to query the external expert model. A prediction is
considered correct if the response from the expert model
aligns with the expected answer.

I. Future Directions
In this section, we discuss the potential future extensions of
the Llamdex service and the major challenges involved.

Multi-Task Llamdex. In real-world applications, more
complex scenarios may arise where a single user question
requires input from multiple client-provided expert models.
For instance, in the medical domain, a question about a pa-
tient’s symptoms might necessitate inferences from various
diagnostic models, such as a radiology model, a pathol-
ogy model, and a clinical model. The primary challenge in
extending the Llamdex service to support multiple client-
defined tasks lies in token routing. Similar to Mixture of
Experts (MoE) in LLMs, a gating module would be required
to determine which tokens (representing parts of the user
query or intermediate states) should be routed to which
client expert model. To support such multi-task customiza-
tion, beyond the existing Llamdex encoder and decoder
design, the Llamdex framework must also incorporate a
carefully designed gating module for efficient token routing.
This is left for future work.

Complex Questions. In practice, user questions are often
more complex and may require multiple processing steps to
arrive at a comprehensive answer. For example, a question

might first require inferring a diagnosis from a radiology
image (using one client expert model) before using that
diagnosis to formulate a response (potentially involving
another expert model or the base LLM’s reasoning capa-
bilities). While API-based approaches often utilize chain-
of-thought reasoning or Depth First Search-based Decision
Trees (DFSDT) to handle such complex queries, these meth-
ods, as demonstrated in our experiments, face significant
efficiency challenges. A potentially more efficient approach
for the Llamdex service could involve integrating client ex-
pert models at different layers of the base LLM, enabling
the customized service to handle complex questions more
effectively. We leave this extension for future work.

Multi-Modal Llamdex. In this paper, our focus is on tab-
ular data, which is commonly found in relational databases.
Potentially, the Llamdex service can be extended to sup-
port client customization with multi-modal data, such as
images and text. Integrating these multi-modal data sources
would necessitate different interfaces for the client’s expert
models, which in turn may require distinct designs for the
Llamdex encoder and decoder components. For example,
for image data, the Llamdex encoder might incorporate a
convolutional neural network to process visual features for
the client’s image-based expert model, while for text data,
it could utilize attention layers tailored to textual expert
models. We leave this extension for future work.
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