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Abstract

In a practical dialogue system, users may in-
put out-of-domain (OOD) queries. The Gen-
eralized Intent Discovery (GID) task aims to
discover OOD intents from OOD queries and
extend them to the in-domain (IND) classi-
fier. However, GID only considers one stage of
OOD learning, and needs to utilize the data in
all previous stages for joint training, which lim-
its its wide application in reality. In this paper,
we introduce a new task, Continual Generalized
Intent Discovery (CGID), which aims to con-
tinuously and automatically discover OOD in-
tents from dynamic OOD data streams and then
incrementally add them to the classifier with
almost no previous data, thus moving towards
dynamic intent recognition in an open world.
Next, we propose a method called Prototype-
guided Learning with Replay and Distillation
(PLRD) for CGID, which bootstraps new in-
tent discovery through class prototypes and bal-
ances new and old intents through data replay
and feature distillation. Finally, we conduct
detailed experiments and analysis to verify the
effectiveness of PLRD and understand the key
challenges of CGID for future research.1

1 Introduction

The traditional intent classification (IC) in a task-
oriented dialogue system (TOD) is based on a
closed set assumption (Chen et al., 2019; Yang
et al., 2021; Zeng et al., 2022) and can only handle
queries within a limited scope of in-domain (IND)
intents. However, users may input out-of-domain
(OOD) queries in the real open world. Recently,
the research community has paid more attention
to OOD problems. OOD detection (Lin and Xu,
2019; Zeng et al., 2021; Wu et al., 2022; Mou et al.,
2022d) aims to identify whether a user’s query is
outside the range of the predefined intent set to

∗The first three authors contribute equally. Weiran Xu is
the corresponding author.

1We release our code at https://github.com/
songxiaoshuai/CGID
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Figure 1: Illustration of the defects of GID and the ad-
vantages of CGID. GID only perform single stage of
OOD learning and requires all IND data for joint train-
ing. In contrast, CGID timely updates the system from
dynamic OOD data streams through continual OOD
learning stage and almost does not rely on previous
data.

avoid wrong operations. It can safely reject OOD
intents, but it also ignores OOD concepts that are
valuable for future development. OOD intent dis-
covery (Lin et al., 2020; Zhang et al., 2021; Mou
et al., 2022c,a) helps determine potential develop-
ment directions by grouping unlabelled OOD data
into different clusters, but still cannot incremen-
tally expand the recognition scope of existing IND
classifiers. Generalized Intent Discovery (GID)
(Mou et al., 2022b) further trains a network that
can classify a set of labelled IND intent classes
and simultaneously discover new classes from an
unlabelled OOD set and incrementally add them to
the classifier.

Although GID realizes the incremental expan-
sion of the recognition scope of the intent classifier
without any new intents labels, two major problems
limit the widespread application of GID in reality
as shown in Fig 1: (1) GID only considers single-
stage of OOD discovery and classifier expansion.
In real scenarios, OOD data is gradually collected
over time. Even if the current intent classifier is
incrementally expanded, new OOD queries and
intents will continue to emerge. Besides, the time-
liness of OOD discovery needs to be considered:

https://github.com/songxiaoshuai/CGID
https://github.com/songxiaoshuai/CGID
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Figure 2: The comparison of CGID with GID and CIL.

timely discovery of new intents and expansion to
the system can help improve the subsequent user
experience. (2) GID require data in all previous
stages for joint training to maintain the classi-
fication ability for known intents. Since OOD
samples are collected from users’ real queries, stor-
ing past data may bring serious privacy issues. In
addition, unlike Class Incremental Learning (CIL)
that require new classes with real labels, it is hard
to obtain a large amount of dynamic labeled data
in reality, and the label set for OOD queries is not
predefined and needs to be mined from query logs.

Inspired by the above problems, in this paper, we
introduce a new task, Continual Generalized Intent
Discovery (CGID), which aims to continually and
automatically discover OOD intents from OOD
data streams and expand them to the existing IND
classifier. In addition, CGID requires the system
to maintain the ability to classify known intents
with almost no need to store previous data, which
makes existing GID methods fails to be applied to
CGID. Through CGID, the IC system can continu-
ally enhance the ability of intent recognition from
unlabeled OOD data streams, thus moving towards
dynamic intent recognition in an open world. We
show the difference between CGID and GID, as
well as the CIL task in Fig 2 and then leave the
definition and evaluation protocol in Section 2.

As CGID needs to continuously learn from unla-
beled OOD data, it is foreseeable that the system
will inevitably suffer from the catastrophic forget-
ting (Biesialska et al., 2020; Masana et al., 2022) of

known knowledge as well as the interference and
propagation of OOD noise (Wu et al., 2021). To ad-
dress the issues, we propose the Prototype-guided
Learning with Replay and Distillation (PLRD) for
CGID. Specifically, PLRD consists of a main mod-
ule composed of an encoder and a joint classifier,
as well as three sub-modules: (1) class prototype
guides pseudo-labels for new OOD samples and
alleviate the OOD noise; (2) feature distillation
reduces catastrophic forgetting; (3) a memory bal-
ances new class learning and old class classifica-
tion by replaying old class samples (Section 3) 2.
Furthermore, to verify the effectiveness of PLRD,
we construct two public datasets and three base-
line methods for CGID. Extensive experiments
prove that PLRD has significant performance im-
provement and the least forgetting compared to the
baselines, and achieves a good balance among old
classes classification, new class discovery and in-
cremental learning (Section 4). To further shed
light on the unique challenges faced by the CGID
task, we conduct detailed qualitative analysis (Sec-
tion 5). We find that the main challenges of CGID
are conflicts between different sub-tasks, OOD
noise propagation, fine-grained OOD classes and
strategies for replayed samples (Section 6), which
provide profound guidance for future work.

Our contributions are three-fold: (1) We intro-
duce a new task, Continual Generalized Intent Dis-
covery (CGID), to achieve the dynamic and open-
world intent recognition and then construct datasets
and baselines for evaluating CGID. (2) We propose
a practical method PLRD for CGID, which guides
new samples through class prototypes and balances
new and old tasks through data replay and feature
distillation. (3) We conduct comprehensive experi-
ments and in-depth analysis to verify the effective-
ness of PLRD and understand the key challenges
of CGID for future work.

2 Problem Definition

In this section, we first briefly introduce the Gen-
eralized Intent Discovery(GID) task, then delve
into the details of the Continual Generalized Intent
Discovery (CGID) task we proposed.

2PLRD’s memory mechanism stores only a tiny fraction
of samples, offering a significant privacy advantage compared
to GID, which stores all past data. PLRD serves not only to
provide a privacy-conscious mode of learning but also takes
into account the long-term stability of task performance. As
for the methods that completely eliminate the need for prior
data storage, we leave them for further exploration.
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Figure 3: The Overall architecture of our PLRD method. During the IND training stage, we only use the cross-
entropy loss. In the OOD training stages, multiple modules and learning objectives jointly optimize the model.

2.1 GID

Given a set of labeled in-domain data DIND =
{(xIND

i , yIND
i )}ni=1 and unlabeled OOD data

DOOD = {(xOOD
i )}mi=1, where yIND

i ∈
Y IND, Y IND = {1, 2, . . . , N}, GID aims to train
a joint classifier to classify an input query into the
total label set Y = {1, . . . , N,N + 1, . . . . . . , N +
M}, where the first N elements represent the la-
beled IND classes and the last M elements repre-
sent newly discovered unlabeled OOD classes.

2.2 CGID

In contrast, CGID provides data and expands the
classifier in a sequential manner, which is more in
line with real scenarios.

First, we define t ∈ [0, T ], which denotes the
current learning stage of CGID and T denotes the
maximum number of learning stages of CGID. In
the IND learning stage (t = 0), given a labeled
in-domain dataset DIND = {(xIND

i , yIND
i )}, the

model needs to classify IND classes to a predefined
set Y0 = {1, 2, . . . , N} and learn representations
that are also helpful for subsequent stages.

Then, a series of unlabeled out-of-domain
datasets {DOOD

t }Tt=1 are given in sequence, where
DOOD

t = {xOODt
i }. In the OOD learning stage

t ∈ [1, T ], the model is expected to discover new
OOD classes Yt

3 from DOOD
t and incrementally

extend Yt to the classifier while maintaining the
ability to classify known classes {Yi≤t}. The ul-
timate goal of CGID is to obtain a joint classi-
fier that can classify queries into the total label set
Y all
T = Y0 ∪ Y1 ∪ . . . ∪ YT .

3Estimating |Yt| is out of the scope of this paper. In the
following experiment, we assume that |Yt| is ground-truth and
provide an analysis in Section 5.5.

2.3 Evaluation Protocol
For CGID, we mainly focus on the classification
performance along the training phase. Following
(Mehta et al., 2021), we let at,i4 denote the accu-
racy on class set Yi after training on stage t. When
t > 0, we calculate the accuracy At as follows:

AIND
t = at,0 AOOD

t =
1

|{Y1≤i≤t}|

t∑
i=1

|Yi|at,i

AALL
t =

1

|Y all
t |

t∑
i=0

|Yi|at,i

(1)
Moreover, to measure catastrophic forgetting in
CGID, we introduce the forgetting Ft as follows:

F IND
t = a0,0 − at,0

FOOD
t =

1

|{Y1≤i≤t}|

t∑
i=1

|Yi|(ai,i − at,i)

FALL
t =

1

|Y all
t |

t∑
i=0

|Yi|(ai,i − at,i)

(2)

On the whole, AIND
t and F IND

t measure the extent
of maintaining the IND knowledge, while AOOD

t

and FOOD
t denote the ability to learn the OOD

classes. AALL
t and FALL

t are comprehensive met-
rics for CGID.

3 Method

3.1 Overall Architecture
As shown in Fig 3, our proposed PLRD frame-
work consists of a main module which composed

4Following (Zhang et al., 2021), we use the Hungarian
algorithm (Kuhn, 1955) to obtain the mapping between the
predicted OOD classes and ground-truth classes in the test set.



of an encoder and a joint classifier and three sub-
modules: (1) Memory module is responsible for
replaying known class samples to balance the learn-
ing of new classes and maintain known classes; (2)
Class prototype module is responsible for gener-
ating pseudo-labels for new OOD samples; (3) Fea-
ture distillation is responsible for alleviating catas-
trophic forgetting of old classes. The joint classifier
h consists of an old class classification head hold

and a new class classification head hnew, outputting
logit l = [lold; lnew]. After stage t ends, lnew will
be merged into lold, i.e., lold ← [lold; lnew]. Then,
when stage t+ 1 starts, a new head lnew with the
dimension |Yt+1| will be created.

3.2 Memory for Data Replay

We equip a memory module M for PLRD. After
each learning stage, M stores a very small number
of training samples and replays old class samples
in the next learning stage to prevent catastrophic
forgetting and encourage positive transfer. Specifi-
cally, in the IND learning stage, we randomly se-
lect n samples for each IND class according to the
ground-truth labels; in each OOD learning stage,
since the ground-truth labels are unknown, we ran-
domly select n samples5 for each new class ac-
cording to the pseudo-labels and store them in
M together with the pseudo-labels. In the new
learning stage, for each batch, we randomly select
old class samples {xold} with the same number
as new class samples {xnew} from M and input
them into the BERT encoder f(·) together with
new class samples xnew, i.e., |{xnew}| = |{xold}|,
{x} = {xnew} ∪ {xold}.

3.3 Prototype-guide Learning

Previous semantic learning studies (Yu et al., 2020;
Wang et al., 2022; Ma et al., 2022; Dong et al.,
2023a,b) have shown that learned representations
can help to disambiguate the noisy sample labels
and mitigate forgetting. Therefore, we build pro-
totypes through a linear projection layer g(·) after
the encoder. In stage t > 0, we first randomly ini-
tialize new class prototype µj , j ∈ Yt.6 For sample
xi ∈ {x}, we use an |Y all

t |-dimensional vector qi
representing the probabilities of xi being assigned

5In the following experiment, we set n=5 and analyze the
effects of different n in the Section 5.3.

6When t = 1, we additionally initialize the prototypes of
IND classes.

Stage
Banking OOD Ratio CLINC OOD Ratio
40% 60% 80% 40% 60% 80%

0
1
2
3

47
10
10
10

32
15
15
15

17
20
20
20

90
20
20
20

60
30
30
30

30
40
40
40

Table 1: The number of new classes at each stage.

to all prototypes:

qi =

{
onehot(yoldi ) xi ∈ {xold}[
0|Y all

t−1|
; lnewi

]
xi ∈ {xnew}

(3)

where yoldi is the ground-truth or pseudo label of
xi in M and 0|Y all

t−1|
is a |Y all

t−1|-dimensional zero
vector. Then we introduce prototypical contrastive
learning (PCL) (Li et al., 2020) as follows:

Lpcl = −
∑
i,j

qji log
exp(sim(zi, µj)/τ∑
r exp(sim(zi, µr))/τ

(4)

where τ denotes temperature, qji is the j-th ele-
ment of qi and zi = g(f(xi)). By pulling similar
samples into the same prototype, PCL can learn
clear intent representations for new classes and
maintain representations for old classes. To further
improve the generalization of representation, we
also introduce the instance-level contrastive loss
(Chen et al., 2020) to xi as follows:

Lins = −
∑
i

log
exp(sim(zi, ẑi)/τ)∑

j 1[i ̸=j] exp(sim(zi, zj)/τ)

(5)
where ẑi denotes the dropout-augmented view of

zi. Next, we update all new and old prototypes in a
sample-wise moving average manner to reduce the
computational complexity following (Wang et al.,
2022). For sample xi, prototype µj is updated as
follows:

µj = γµj + (1− γ)zi (6)

where the moving average coefficient γ is an
adjustable hyperparameter and j is the index of the
maximum element in qi.

Finally, for the new sample xi ∈ {xnew}, its
pseudo label is assigned as the index of the nearest
new class prototype to its representation zi. We
optimize the joint classifier using cross-entropy
Lce over both the new and replayed samples.



Method
OODRatio = 40% OODRatio = 60% OODRatio = 80%

IND OOD ALL IND OOD ALL IND OOD ALL
AT ↑ FT ↓ AT ↑ FT ↓ AT ↑ FT ↓ AT ↑ FT ↓ AT ↑ FT ↓ AT ↑ FT ↓ AT ↑ FT ↓ AT ↑ FT ↓ AT ↑ FT ↓

Kmeans 77.94 15.64 72.00 14.08 75.63 15.03 72.55 22.13 62.55 12.67 66.71 16.60 64.61 31.42 49.64 15.10 52.94 18.71
DeepAligned 77.91 15.67 73.39 12.13 76.15 14.29 72.16 22.52 65.02 12.50 67.98 16.67 68.04 27.99 58.78 12.19 60.81 15.67
E2E 74.20 19.38 74.91 14.92 74.48 17.64 71.28 23.41 69.44 13.06 70.20 17.36 65.59 30.44 62.81 15.48 63.41 18.78
PLRD (Ours) 83.94 9.64 76.70 11.58 81.11 10.40 81.07 13.62 70.30 10.69 74.77 11.91 76.23 19.80 63.19 11.19 66.06 13.09

Table 2: Performance comparison on Banking after the final stage T=3. ↑ indicates higher is better, ↓ indicates
lower is better. We bold the best results and underline the second-best results. Results are averaged over three
random run (p < 0.01 under t-test).

Method
OOD Ratio=40% OOD Ratio=60% OOD Ratio=80%

IND OOD ALL IND OOD ALL IND OOD ALL
AT ↑ FT ↓ AT ↑ FT ↓ AT ↑ FT ↓ AT ↑ FT ↓ AT ↑ FT ↓ AT ↑ FT ↓ AT ↑ FT ↓ AT ↑ FT ↓ AT ↑ FT ↓

Kmeans 91.38 6.82 85.37 5.55 88.98 6.31 89.29 9.56 81.58 5.67 84.66 7.23 81.93 17.11 72.94 6.36 74.74 8.51
DeepAligned 91.98 6.22 89.45 4.61 90.96 5.58 88.04 10.82 86.15 5.04 86.91 7.35 84.30 14.74 80.59 6.25 81.33 7.95
E2E 89.16 9.04 90.74 7.33 89.79 8.36 84.96 13.89 88.44 6.82 87.05 9.65 79.33 19.70 85.74 7.95 84.46 10.30
PLRD (Ours) 93.90 4.29 91.22 5.00 92.83 4.58 92.15 6.70 89.09 3.78 90.31 4.95 89.56 9.48 84.76 5.33 85.72 6.16

Table 3: Performance comparison on CLINC.

3.4 Feature Distillation
It can be expected that the encoder features may
change significantly when updating the network pa-
rameters in the new learning stage. This means that
the network tends to forget the knowledge learned
from the old classes before and suffers from catas-
trophic forgetting. To further remember the knowl-
edge in the non-forgotten features, we integrate
the feature distillation into PLRD. Specifically, at
the beginning of stage t, we copy and freeze the
encoder, denoted as f init(·). Then given replayed
samples xi ∈ {xold} in a batch, we constrain the
feature output f(xi) of the current encoder with the
feature f init(xi). Formally, the feature distillation
loss is as follows:

Lfd =

|{xold}|∑
i=1

(f(xi)− f init(xi))
2 (7)

3.5 Overall Training
The total loss is defined as follows:

L = Lce + Lpcl + Lins + Lfd (8)

4 Experiment

4.1 Datasets
We construct the CGID datasets based on two
widely used intent classification datasets, Banking
(Casanueva et al., 2020) and CLINC (Larson et al.,
2019). Banking covers only a single domain, con-
taining 13,083 user queries and 77 intents, while
CLINC contains 22,500 queries covering 150 in-
tents across 10 domains. For the CLINC and Bank-
ing datasets, we randomly select a specified propor-
tion of all intent classes (about 40%, 60%, and 80%

respectively) as OOD types, with the rest being
IND types. Furthermore, we assign the maximum
stage T=3, so we divide the OOD data into three
equal parts for each OOD training stage. We show
the number of classes at each stage in Table 1 and
leave the detailed statistics in Appendix A.

4.2 Baselines

Since this is the first study on CGID, there are no
existing methods that solve exactly the same task.
We adopt three prevalent methods in OOD discov-
ery and GID, and extend them to the CGID setting
to develop the following competitive baselines7.
• K-means is a pipeline baseline which first use the

clustering algorithm K-means (MacQueen, 1965)
to cluster the new samples to obtain pseudo labels
and then combine these samples and replayed
samples in the memory to train the joint classifier
at each OOD training stage.

• DeepAligned is another pipeline baseline that
leverages the iterative clustering algorithm
DeepAligned (Zhang et al., 2021). At each OOD
training phase, DeepAligned iteratively clusters
the new data and then utilizes them along with
the replayed samples for classification training.

• E2E is an end-to-end baseline. At each OOD
training stage, E2E (Mou et al., 2022b) amalga-
mates the new instances and replayed samples
and then obtain the logits through the encoder
and joint classifier. The model is optimized with
a unified classification loss, where the new OOD
pseudo-labels are obtained by swapping predic-
tions (Caron et al., 2020).

7We leave the detailed implementation of these baselines
in Appendix B.
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Figure 4: Intents visualization of different learning stage under Banking OOD ratio = 40% (index 0-2 belongs to Y0,
index 3-5 belongs to Y1, index 6-8 belongs to Y2 and index 9-11 belongs to Y3).

4.3 Main Results

We conduct experiments on Banking and CLINC
with three different OOD ratios, as shown in Ta-
bles 2 and 3. In general, our proposed PLRD con-
sistently outperform all the baselines with a large
margin. Next, we analyze the results from three
aspects:

(1) Comparison of different methods We ob-
serve that DeepAligned roughly achieves the best
IND performance while E2E has the best OOD
performance among all baselines. However, our
proposed PLRD consistently outperforms all base-
lines significantly in both IND and OOD, achieving
best performance and new-old task balance. Specif-
ically, under the average of three ratios, PLRD is
better than the optimal baseline by 7.57% (AIND

T ),
1.09% (AOOD

T ), and 4.06% (AALL
T ) on Banking,

and by 3.35% (AIND
T ), 0.04% (AOOD

T ), and 2.13%
(AALL

T ) on CLINC. As for forgetting, E2E experi-
ences a substantial performance drop on old classes
when learning new classes, while PLRD is lower
than the optimal baseline by 3.72%, 1.69% (FALL

T )
on Banking and CLINC respectively. This indicates
PLRD does not sacrifice too much performance on
old classes when learning new classes and has the
least forgetting among all methods.

(2) Comparison of different datasets We val-
idate the effectiveness of our method on different
datasets, where CLINC is multi-domain and coarse-
grained while Banking contains more fine-grained
intent types within a single domain. We see that
the performance of all methods on CLINC is signif-
icantly better than that on Banking. For example,
PLRD is 11.72% (AALL

T ) higher on CLINC than on
Banking at an OOD ratio of 60%. In addition, at the
same OOD ratio, PLRD shows an average increase
of 7.53% (F IND

T ), 6.45% (FOOD
T ), and 6.57%

(FALL
T ) on Banking over CLINC. We believe this

could be because fine-grained new and old classes
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Figure 5: The compactness and accuracy of classes at
different stages under Banking OOD ratio = 40%.

are easily confused, which leads to serious new-old
task conflicts and high forgetting. However, PLRD
achieves larger improvements than baselines on
Banking, indicating that PLRD can better cope
with challenges in fine-grained intent scenarios.

(3) Effect of different OOD ratios We observe
that as the OOD ratio increases, the forgetting of
IND classes increases and accuracy of OOD classes
decreases significantly for all methods. For PLRD,
when the OOD ratio increases from 40% to 80% on
Banking, F IND

T rises from 9.64% to 19.80%, and
AOOD

T drops from 76.70% to 63.19%. Intuitively,
more OOD classes make it challenging to distin-
guish samples from different distributions, leading
to noisy pseudo-labels. Moreover, in the incre-
mental process, more OOD classes will update the
model to a greater extent, resulting in more IND
knowledge forgetting.

5 Qualitative Analysis

5.1 Representation Learning

In order to better understand the evolution of CGID
along different training stages, we visualize the
intent representations after each training stage for
PLRD in Fig 4. It can be seen that in the IND learn-
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Figure 6: The Loss and Gain of the classifier at different
stage under Banking, where the maximal stage T=6, the
number of IND classes is 17, and the number of new
classes in each OOD stage is 10.

ing stage, the IND classes form compact clusters,
while the OOD samples are scattered in space. As
the stage progresses, the gray points are gradually
colored and move from dispersion to aggregation,
indicating that new OOD classes continue to be
discovered and learned good representations. In
addition, the already aggregated clusters are grad-
ually dispersed (see "red" points), indicating that
the representations of old classes are deteriorating.

Next, to quantitatively measure the quality of
representations, we calculate the intra-class and
inter-class distances and use the ratio of inter-class
distance to intra-class distance as the compactness
following (Islam et al., 2021). We report the com-
pactness and accuracy in Fig 5. It can see that
the compactness of OOD classes is much lower
than that of IND classes, indicating that the repre-
sentation learning with labeled IND samples out-
performs that with unlabeled OOD samples. As
the stage t increases, the compactness of the IND
classes gradually decreases. And the compactness
of the Yi(i > 0) classes increases significantly
when t equals i, and then gradually decreases. This
demonstrates the learning and forgetting effects in
CGID from a representation perspective. Further-
more, we observe that the maximal compactness
of Yi decreases as i increases, showing that the
learning ability of new classes gradually declines.
We attribute this to the noise in the OOD pseudo-
labeled data and the greater need to suppress for-
getting of more old classes. Finally, the trend of
accuracy and compactness remains consistent, sug-
gesting that representation is closely related to the
classification performance of CGID.

5.2 Loss and Gain of CGID

During the CGID process, the performance of the
classifier on IND classes gradually declined, while

Strategy
Replay

AIND
T AOOD

T AALL
TAcc Var

random 77.78 0.31 80.39 70.00 74.32
icarl 84.45 0.10 80.55 69.78 74.25

icarl_contrary 48.44 0.62 78.44 61.00 68.25

Table 4: Comparison of different selection strategies
under Banking OOD ratio = 60%.

0 1 3 5 10 ALL
Number of replayed samples per class

10

20

30

40

50

60

70

80

AL
L 

AC
C

Kmeans
DeepAligned
E2E
PLRD

Figure 7: The effect of different number of replayed
samples under Banking OOD ratio = 60%, where ALL
means storing all training data in the memory.

the number of supported OOD classes continually
expanded. In order to quantify the change of the
classifier, we define the Loss and the Gain in stage
t for CGID as follows:

Losst =
−F IND

t

AIND
0

Gaint =
|Y all

t |AALL
t

|Y0|AIND
0

− 1

(9)
We illustrate the variations in Loss and Gain of all
methods over stages in Fig 6. The results show that
as the training progresses, the Loss of all methods
decreases overall and the Gain increases contin-
uously. After finishing the training, although the
Loss decrease by 20% roughly, the increase in Gain
of PLRD is greater, reaching over 200%. This in-
dicates that the Gain generated by CGID is much
higher than the Loss and brings positive effects
to the classifier as a whole. Compared with other
methods, PLRD has the lowest Loss and highest
Gain at each stage, and its advantage continuous
amplifies over stages. These further consolidate the
conclusion that PLRD outperforms the baselines.

5.3 Effect of Replaying Samples in Memory
In this section, we explore the effect of replayed
samples from both selection strategies and quantity.

Selection Strategy In the CIL task, since the



Model AIND
T AOOD

T AALL
T

E2E 71.28 69.44 70.20
PLRD 80.39 70.00 74.32

-w/o Lfd 75.94 66.78 70.58
-w/o Lins 79.77 68.17 72.99
-w/o Lpcl 80.16 69.50 73.93
Lce 73.36 63.67 67.69

Table 5: Ablation study of different learning objective
for PLRD under Banking OOD ratio = 60%.

samples are labeled, we only need to consider
the diversity of replayed samples. However, in
CGID, we need to take the quality of pseudo-labels
into account additionally. We explore three se-
lection strategies for replaying samples: random
(randomly sampling from training set), icarl (se-
lecting these closest to their prototypes, following
Rebuffi et al. (2017)), and icarl_contrary (select
the samples farthest from their prototypes). As
shown in Table 4, we report the pseudo-label ac-
curacy (Acc) and average feature variance (Var)
of replayed samples, as well as the final classifier
accuracy of PLRD. We can see that icarl has the
highest pseudo-label accuracy while icarl_contrary
has the largest sample variance and is inclined to
diversity. However, PLRD under the random strat-
egy has the highest OOD and ALL accuracy. This
demonstrates that neither accuracy nor diversity
alone leads to better performance. CGID needs to
strike a balance between diversity and accuracy of
the replayed samples.

Quantity of Replayed Samples Fig 7 illus-
trates the effect of replaying different numbers
of previous examples. It is evident that replay-
ing more previous examples leads to higher ac-
curacy. Compared with replaying no examples
(n=0), storing just one example for each old class
(n=1) significantly improves accuracy, demonstrat-
ing that replaying old samples is crucial. In addi-
tion, PLRD outperforms the baselines significantly
when n ≤ 10, proving PLRD’s effectiveness with
few-shot samples replay. However, when all pre-
vious examples are replayed (n=ALL), PLRD per-
forms slightly worse than E2E. We believe this is
because PLRD’s anti-forgetting mechanism limits
learning new classes lightly, and replaying all pre-
vious examples deviates from the setting of CGID.

5.4 Ablation Study

As reported in Table 5, we perform ablation study
to investigate the effect of each learning objective

Method
Num of Classes

AIND
T AOOD

T AALL
Tt=1 t=2 t=3

Ground
Truth

DeepAligned 15 15 15 72.16 65.02 67.98
E2E 15 15 15 71.28 69.44 70.20

PLRD 15 15 15 81.07 70.30 74.77

Estimate by
model itself

DeepAligned 13 14 7 71.25 49.56 58.57
E2E 13 12 11 67.03 55.33 60.19

PLRD 13 14 12 79.22 66.28 71.66

Estimate by
IND Model

DeepAligned 13 12 11 72.42 56.94 63.38
E2E 13 12 11 67.03 55.33 60.19

PLRD 13 12 11 79.22 60.72 68.41

Table 6: Estimate the number of new classes at each
OOD learning stage under Banking OOD ratio = 60%.

on the PLRD framework. When removing Lfd, the
performance declines significantly in both IND and
OOD classes. This suggests that forgetting is one
of the main challenges faced by CGID, and mitigat-
ing forgetting can bring positive effects to continual
OOD learning stage by retaining prior knowledge.
In addition, removing Lins and Lpcl respectively
leads to a certain degree of performance decline,
indicating that prototype and instance-level con-
trastive learning are helpful for OOD discovery
and relieving OOD noise. Finally, only retaining
the Lce of PLRD will result in the largest accu-
racy decline, proving the importance of multiple
optimization objectives in PLRD.

5.5 Estimate the Number of OOD intents

In the previous experiments, we assumed that the
number of new OOD classes at each stage is pre-
defined and is ground-truth. However, in practical
applications, the number of new classes usually
needs to be estimated automatically. We adopt the
same estimation algorithm as Zhang et al. (2021);
Mou et al. (2022b). 8. Since the estimation algo-
rithm is based on sample features, we use the model
itself as the feature extractor at the beginning of
each OOD learning stage. As shown in Table 6,
when the estimated number of classes is inaccurate,
the performance of all methods declines to some
extent. However, PLRD can estimate the number
most accurately and achieve the best performance.
Then, in order to align different methods, we con-
sistently use the frozen model after finishing the
IND training stage as the feature extractor for sub-
sequent stages. With the same estimation quality,
PLRD still significantly outperforms each baseline,
demonstrating that PLRD is robust.

8We leave the details of the algorithm in Appendix C.



6 Challenges

Based on the above experiments and analysis, we
comprehensively summarize the unique challenges
faced by CGID :

Conflicts between different sub-tasks In CGID,
the discovery and classification of new OOD
classes tend towards different features, and learn-
ing new OOD classes interfere with existing knowl-
edge about old classes inevitably. However, pre-
venting forgetting will lead to model rigidity and is
not conducive to the learning of new classes.

OOD noise accumulation and propagation In
the continual OOD learning stage, using pseudo-
labeled OOD samples with noise to fine-tune the
model as well as replaying samples with noise will
cause the noise to accumulate and spread to the
learning of new OOD samples in future stages.
This will potentially affect the model’s ability to
learn effectively from new OOD samples in subse-
quent stages of learning.

Fine-grained OOD classes Section 4.3 indicate
that fine-grained data leads to high forgetting and
poor performance. We believe this is because fine-
grained new classes and old classes are easily con-
fused, which brings serious conflicts between new
and old tasks.

Strategy for replayed samples The experiment
in Section 5.3 shows that CGID needs to consider
the trade-off between replay sample diversity and
accuracy as well as the trade-off between quantity
of replayed samples and user privacy.

Continual quantity estimation of new classes
Section 5.5 shows that even minor estimation errors
for each stage can accumulate over stages, leading
to severely biased estimation and deteriorated per-
formance.

7 Related Work

OOD Intent Discovery OOD Intent Discovery
aims to discover new intent concepts from un-
labeled OOD data. Unlike simple text cluster-
ing tasks, it considers how to leverage IND prior
to enhance the discovery of unknown OOD in-
tents. Lin et al. (2020) use OOD representations
to compute similarities as weak supervision sig-
nals. Zhang et al. (2021) propose an iterative
method, DeepAligned, that performs representa-
tion learning and clustering assignment iteratively
while Mou et al. (2022c) perform contrastive clus-
tering to jointly learn representations and cluster-
ing assignments. Nevertheless, it’s essential to note

that OOD intent discovery primarily focus on un-
veiling new intents, overlooking the integration of
these newfound, unknown intents with the existing,
well-defined intent categories.

Generalized Intent Discovery To overcome the
limitation of OOD intent discovery that cannot ex-
pand the existing classifier, Mou et al. (2022b) pro-
posed the Generalized Intent Discovery (GID) task.
GID takes both labeled IND data and unlabeled
OOD data as input and performs joint classification
over IND and OOD intents. As such, GID needs to
discover semantic concepts from unlabeled OOD
data and learn joint classification. However, GID
can only perform one-off OOD learning stage and
requires full data of known classes, severely lim-
iting its practical use. Therefore, we introduce
Continual Generalized Intent Discovery (CGID) to
address the challenges of dynamic and continual
open-world intent classification.

Class Incremental Learning The primary goal
of class-incremental learning (CIL) is to acquire
knowledge about new classes while preserving the
information related to the previously learned ones,
thereby constructing a unified classifier. Earlier
studies (Ke et al., 2021; Geng et al., 2021; Li
et al., 2022) mainly focused on preventing catas-
trophic forgetting and efficient replay in CIL. How-
ever, these studies assumed labeled data streams,
whereas in reality large amounts of continuously
annotated data are hard to obtain and the label space
is undefined. Unlike CIL, CGID charts a distinct
course by continuously identifying and assimilat-
ing new classes from unlabeled OOD data streams.
This task presents a set of formidable challenges
compared to conventional CIL.

8 Conclusion

In this paper, we introduce a more challenging yet
practical task as Continuous Generalized Intent Dis-
covery (CGID), which aims at continuously and
automatically discovering new intents from OOD
data streams and incrementally extending the classi-
fier, thereby enabling dynamic intent recognition in
an open-world setting. To address this task, we pro-
pose a new method called Prototype-guided Learn-
ing with Replay and Distillation (PLRD). Extensive
experiments and qualitative analyses validate the
effectiveness of PLRD and provide insights into
the key challenges of CGID.



Limitations

This paper proposes a new task as Continual Gen-
eral Intent Discovery (CGID) aimed at continually
and automatically discovering new intents from
unlabeled out-of-domain (OOD) data and incre-
mentally expand them to the existing classifier.
Furthermore, a practical method Prototype-guided
Learning with Replay and Distillation (PLRD) is
proposed for CGID. However, there are still sev-
eral directions to be improved: (1) Although PLRD
achieves better performance than each baseline,
the performance still has a large gap to improve
compared with the theoretical upper bound of a
model without forgetting previous knowledge. (2)
In addition, all baselines and PLRD use a small
number of previous samples for replay. The CGID
method without utilizing any previous samples is
not explored in this paper and can be a direction for
future work. (3) Although PLRD does not generate
additional overhead during inference, it requires
maintaining prototypes and a frozen copy of the
encoder during training, resulting in additional re-
source occupancy. This can be further optimized
in future work.
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Matthew Henderson, and Ivan Vulić. 2020. Efficient
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A Datasets

We present detailed statistics for the original dataset
Banking and CLINC in Table 7. Then, we show
statistics of the CGID datasets that are constructed
based on Banking and CLINC in Table 8. Since we
conduct three random partitions of classes under
each OOD ratio and Banking is class-imbalanced,
we report the the average number of samples.

B Implementation Details

To ensure a fair comparison for PLRD and all base-
lines, we consistently use the pre-trained BERT
model (BERT-base uncased 9, with 12 layer trans-
former) as the network backbone and add a pooling
layer to obtain the intent representation (dimen-
sion = 768). In addition, we freeze all but the
last transformer layer parameters to achieve bet-
ter performance with BERT backbone, and speed
up the training process as suggested in Lin et al.
(2020). We use the same IND training phase and
Memory mechanism for all methods. In the IND
training stage, following Zhang et al. (2021), we
adopt Adam with linear warm-up as the optimizer,
with a batch size of 128 and a learning rate of 5e-
5, and select the best checkpoint according to the
accuracy of validation set.

During the continual OOD training stages, for
the CGID baseline, we follow the hyperparameter
settings of the original method as much as possible.
Specifically, for DeepAligned and K-means, fol-
lowing Zhang et al. (2021), we adopt Adam with
linear warm-up as the optimizer and set the training
batch size to 128, the learning rate to 5e-4. In addi-
tion, we set the weight coefficient λ =3 of the cross-
entropy loss corresponding to the replay samples,
which is obtained by grid search λ ∈ {1, 2, 3, 4, 5}.
For E2E, following Mou et al. (2022b), we use
SGD with momentum as the optimizer with linear
warm-up and cosine annealing (warm-up ratio of
10%, momentum of 0.9, maximum learning rate
of 0.1, and weight decay of 1.5e-4). In addition,
the temperature coefficient of cross-entropy is 0.1

9https://github.com/google-research/bert

and multi-head clustering (number of heads is 4) is
used to improve performance for E2E.

For all experiments of PLRD, we also use SGD
with momentum as the optimizer (warm-up ratio is
10%, momentum is 0.9, maximum learning rate is
0.01, and weight decay of 1.5e-4). Class prototype
embedding (dimension=128) is obtained by a linear
projection layer through the output feature (dimen-
sion=768) of the encoder. We set the temperature τ
of prototype and instance-level contrastive learning
to 0.5. For the construction of the augmented ex-
amples, we set the dropout value is 0.5. Following
(Mou et al., 2022b), we also calibrate the logit lnewi

by the SK algorithm (Cuturi, 2013) when assigning
prototypes. We set the corresponding hyperparam-
eters such as number of iteration is 3 and ϵ=0.05 as
same as E2E. When OOD ratio=40% or 60%, the
moving average coefficient γ=0.7, and when OOD
ratio=80%, γ=0.9. We believe that high OOD ratio
will lead to high forgetting, while larger moving
average coefficient can mitigate this by helping the
model remember learned prototypes.

For all methods, we train 200 epochs for each
OOD learning stage to achieve sufficient conver-
gence. The trainable model parameters of PLRD
are almost consistent with the baseline (approxi-
mately 9.1M). However, PLRD adopts prototype
learning and a frozen BERT for knowledge distil-
lation, , which leads to additional memory occupa-
tion and training computation. It should be noted
that PLRD only needs the classifier branch in the
inference stage, so there is no additional computa-
tional and spatial overhead. All experiments use a
single Nvidia RTX 3090 GPU (24 GB memory).

C The algorithm of estimating the
number of new classes

We follow the estimation algorithm (Zhang et al.,
2021) to estimate the number of new intents for
each OOD stage. Specifically, We assign a big
K

′
as the number of clusters (In this paper, it is

twice the number of ground-truth classes) at the
beginning of each OOD stage. As a good feature
initialization is helpful for partition-based meth-
ods (e.g., K-means) (Platt et al., 1999), we use the
encoder f(·) to extract intent features of all new
training examples. Then, we perform K-means
with the extracted features. We suppose that real
clusters tend to be dense even with K

′
, and the

size of more confident clusters is larger than some
threshold t. Therefore, we drop the low confidence



Dataset Classes Training Validation Test Vocabulary Length (max / mean)
Banking 77 9003 1000 3080 5028 79/11.91
CLINC 150 18000 2250 2250 7283 28/8.31

Table 7: Detailed statistics of original Banking and CLINC datasets.

Dataset OOD Ratio New Classes All Classes Domains Train samples Val Samples Test samples

Banking
40% 47/10/10/10 47/57/67/77 1/1/1/1 5445/1136/1222/1200 604/127/136/133 1880/2280/2680/3080
60% 32/15/15/15 32/47/62/77 1/1/1/1 3612/1819/1848/1724 401/202/206/191 1280/1880/2480/3080
80% 17/20/20/20 17/37/57/77 1/1/1/1 1919/2432/2329/2323 214/271/258/257 680/1480/2280/3080

CLINC
40% 90/20/20/20 90/110/130/150 10/10/10/10 10800/2,400/2,400/2,400 1350/300/300/300 1350/1650/1950/2250
60% 60/30/30/30 60/90/120/150 10/10/10/10 7200/3600/3600/3600 900/450/450/450 900/1350/1800/2250
80% 30/40/40/40 30/70/110/150 10/10/10/10 3600/4800/4800/4800 450/600/600/600 450/1050/1650/2250

Table 8: Detailed statistics of the CGID datasets, where x/x/x/x respectively represent data under the stage 0/1/2/3.

cluster which size smaller than t, and calculate K
with:

K =
K

′∑
i=1

δ(|Si| ≥ t) (10)

where |Si| is the size of the ith produced cluster,
and δ(·) is an indicator function. It outputs 1 if the
condition is satisfied, and outputs 0 if not. Notably,
we assign the threshold t as the expected cluster
mean size N

K′ in this formula.


