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ABSTRACT

Machine learning (ML) classifiers are increasingly used in critical decision-
making domains such as finance, healthcare, and the judiciary. However, their in-
terpretability and fairness remain significant challenges, often leaving users with-
out clear guidance on how to improve unfavorable outcomes. This paper intro-
duces an actionable ML framework that provides minimal, explainable modifica-
tions to input data to change classification results. We also propose a novel concept
of ”action fairness,” which ensures that users from different subgroups incur sim-
ilar costs when altering their classification outcomes. Our approach identifies the
nearest decision boundary point to a given query, allowing for the determination
of minimal cost actions. We demonstrate the effectiveness of this method using
real-world credit assessment data, showing that our solution not only improves the
fairness of classifier outcomes but also enhances their usability and interpretabil-
ity.

1 INTRODUCTION

Classification methods are crucial in medical, judicial, and financial decision-making but often op-
erate as black boxes, lacking transparency and actionability. This opacity hinders users from un-
derstanding or influencing their classification outcomes and requires human oversight to prevent
discriminatory results.

Current classifiers also risk unfairness, particularly regarding the costs incurred by different groups
to alter their outcomes. While much research focuses on associational and causal fairness, there’s
a gap in developing classifiers that address fairness in terms of actionable changes. Classifiers may
treat subgroups fairly in outcome terms but unfairly in the cost required to influence these outcomes.

We propose a novel concept of ”action fairness,” which ensures similar costs for outcome changes
across subgroups. Our approach addresses two main questions:

How can we modify a data point to change a classification decision? We introduce a mechanism
to identify feasible, low-cost changes to input data that could alter classification outcomes. This
includes estimating action costs, such as canceling a credit card or opening a new account. For
example, a loan applicant might reduce their debt and credit cards to meet target thresholds. We use
integer linear programming to find minimal cost actions for classifiers like logistic regression and
support vector machines, validated with real credit assessment data.

Are some groups more disadvantaged or advantaged in making actionable changes? We develop an
”action-fair” ML model that ensures equal opportunities for subgroups to recover from unfavorable
outcomes. This model involves post-processing output based on prediction probability and change
cost, preserving classification accuracy while promoting fairness in actionable changes.

2 LITERATURE REVIEW

Our paper integrates inverse classification with fairness challenges, using inverse classification to
find cost-effective actions for altering classification outcomes. We introduce a novel fairness concept
focused on the feasibility of short-term actionable changes.
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2.1 INVERSE CLASSIFICATION

Inverse Classification aims to identify optimal actions to achieve a desired classification outcome by
solving an optimization problem on a dataset with input features X = x1, x2, . . . , xn and a classifier
f(X) with weights W = w0, w1, . . . , wn (Aggarwal et al., 2010). The goal is to find actions A that
change f(X) = −1 to f(X +A) = 1 at minimal cost, subject to constraints:

minimize cost(A) subject to f(X +A) > 0 (1)

Mannino & Koushik (2000) minimize costs for data instance transitions using genetic algorithms.
Ustun et al. (2019) introduced ’recourse’ in inverse classification, focusing on feasible changes and
their impact on immutable attributes. We extend this by improving execution time and using real-life
cost values, employing integer linear programming to determine minimal cost actions and develop-
ing an ”action fair” classifier.

2.2 ACTION FAIRNESS

Fairness in classifiers often focuses on associations and causal (Calders & Verwer, 2010; Feldman,
2015; Harper, 2005; Hardt et al., 2016; Kilbertus et al., 2017; Mannino & Koushik, 2000; Nabi &
Shpitser, 2018; Russell et al., 2017).Standard approaches, such as removing sensitive attributes, may
not always achieve fair outcomes due to hidden correlations.

Post-processing techniques, which adjust classifier outputs to meet fairness constraints, offer a so-
lution (Sarkar et al., 2018; Salimi et al., 2019). Our method introduces ”Action Fairness,” ensuring
equal opportunities for different subgroups to recover from unfavorable outcomes. This approach
uses inverse classification to identify feasible actions and their costs, aiming to ensure that all sub-
groups face similar costs for outcome changes. For instance, if females need to reduce their credit
cards and increase their account balance to meet fairness constraints, males should face comparable
requirements. The fairness condition is defined as:

∣∣∣∣∣
N1∑
n=1

cost(An)× Pn(y
′ = 0|S = 1)−

N0∑
n=1

cost(An)× Pn(y
′ = 0|S = 0)

∣∣∣∣∣ ≤ δ (2)

where N1 and N0 are the numbers of individuals in privileged and unprivileged groups, respectively,
and δ is the fairness threshold.

Hardt et al. (2016) emphasize equalized odds and equality of opportunity using post-processing to
achieve fairness, focusing on the joint distribution of sensitive attributes and classification labels.
Their approach, similar to ours, uses post-processing to minimize loss functions while meeting
fairness constraints.

3 METHODOLOGY

Our paper relies on Inverse Classification with a geometric approach and Action Fairness with a
ranking approach.

3.1 INVERSE CLASSIFICATION

Our primary objective with the Inverse Classification method is to alter the classification outcome
at the minimum total cost. Thus, the goal of this optimization problem is to minimize the total
cost under the constraint that the classification outcome is changed. We presume the use of a linear
classification algorithm, such as Logistic Regression or Support Vector Machine, where the data
points are divided by a linear decision boundary.

The solution presupposes that the costs for the actions are provided as input, which can be es-
tablished by an expert or learned from historical data. For instance, to ascertain the difficulty of
canceling a credit card relative to opening a new bank account, we would need either a banking
expert’s advice or a dataset detailing the time required to open an account and cancel a credit card.
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Initially, we train a linear classifier to assign a label to a data point based on its position relative to
the decision boundary, typically represented as a hyperplane in a multidimensional space.

The cost of actions is defined in terms of the distance to the decision boundary, employing the
minimum total cost to pinpoint the decision boundary’s (or hyperplane’s) closest point to a given
data point. When action costs are uniform, we calculate this distance using the Manhattan Distance
(Equation 3) or Euclidean Distance (Equation 4); for non-uniform costs, the Weighted Euclidean
Distance is used (Equation 5).

cost(A) =

N∑
n=1

|xn − x′
n| (3) (3)

cost(A) =

N∑
n=1

(xn − x′
n)

2 (4) (4)

cost(A) =

N∑
n=1

cost(an) · (xn − x′
n)

2 (5) (5)

An integer programming approach, utilizing the Gurobi Optimizer, implements our proposed so-
lution. Based on the established constraint and objective, our program optimizes the model and
outputs the new data points, resulting in a changed prediction outcome for previously negatively
classified data points, as delineated in Algorithm 0.

After identifying the new point on the decision boundary (thus classified positively), we ascertain
the required actions to modify the original point’s classification outcome. This is achieved by sub-
tracting the old data point values from the new data point values. For instance, if our new data point
presents a debt of 1000 and 3 credit cards, in contrast to the original data point’s 1010 debt and 4
credit cards, the necessary actions would involve decreasing the debt by 10 and reducing the number
of credit cards by 1.

We calculate the total cost of change for each data point by evaluating the differences between the
old and new data points, weighted according to the previously defined costs of actions. Equation 6
outlines the overarching objective for inverse classification using this geometric approach.

minimize A cost(A) =

N∑
n=1

cost(an) · (xn − x′
n)

2 (6)

subject to f(X +A) = w0 +
N∑

n=1

(x′
n · wn) > 0 (6) (7)

There are scenarios where inverse classification cannot provide precise changes even for simple
classification models. To ensure our proposed algorithm offers a solution with the minimum to-
tal cost and feasible actions, we must ensure: i) the presence of actionable features in the input,
ii) a sufficient number of data points across both positive and negative classes, and iii) bounded
feature values. When features permit only infeasible or semi-feasible actions, performing inverse
classification becomes impossible due to infinite costs in the optimization problem. For example,
immutable or conditionally immutable characteristics impose limitations, as an individual cannot
alter immutable features like race if they impact the outcome. Similarly, immediate changes like
marriage or acquiring a PhD, deemed conditionally immutable, are not viable. Furthermore, a linear
decision boundary is essential for our optimization algorithm, and the dataset’s feature values must
have defined upper and lower bounds to successfully address the optimization problem.

3.2 ACTION FAIRNESS

After employing the Inverse Classification algorithm to ascertain the cost of change for each in-
dividual initially classified negatively, we utilize the costDiff method (described in Algorithm
0) to calculate the aggregated cost of change for groups of individuals. The program categorizes
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individuals into privileged and unprivileged groups according to sensitive attributes, computing the
aggregated costs for these groups and recording the distribution of cost of change values across data
points.

Given that a specific value for a sensitive attribute does not consistently indicate whether a group is
privileged or unprivileged, a regulation mechanism post-costDiff method application is essential
to ensure accurate group categorization.

Subsequently, we evaluate if the fairness constraint is met by comparing the average cost of change
across groups. Should the inter-group cost difference exceed the set threshold, the outcome is
deemed unfair under Action Fairness criteria. To address this through post-processing, we rank
data points and adjust the output accordingly to maintain classification accuracy. The ranking al-
gorithm factors in the prediction probability for the negative class against the cost of change. The
inverseFairness method (outlined in Algorithm 0) operates until the cost difference between
the privileged and unprivileged groups meets the predetermined threshold, thereby fulfilling the Ac-
tion Fairness constraint. It identifies the highest-ranked data point from the unprivileged group,
changing its label from negative to positive, which reduces the total and average cost of change for
the group, leading to a fairer classification outcome.

This proposed solution ensures fairer outcomes under conditions akin to those required for inverse
classification. The classifier must handle balanced classes and generate a linear decision bound-
ary conducive to optimization. Moreover, Action Fairness testing is contingent on the completion
of Inverse Classification and necessitates the existence of balanced subgroups defined by sensitive
attributes, enabling a comparison of their aggregate costs of change.

4 EXPERIMENTAL SETUP

4.1 INVERSE CLASSIFICATION

We consider the challenges of credit scoring and customer liability, using the German Credit and
Default of Credit Card Clients datasets (Hofmann, 2024). The solution is tested on two linear clas-
sifiers: logistic regression and support vector machine, utilizing both mentioned datasets.

4.1.1 PRE-PROCESSING FOR THE GERMAN CREDIT DATASET

This dataset contains 1,000 instances and 20 features, including information related to an individ-
ual’s financial and personal background, such as credit history and marital status. Among these fea-
tures, 13 are categorical and 7 are numeric. Additionally, there is a class variable indicating 1 as a
good customer and 2 as a bad customer. To achieve better results for inverse classification, some cat-
egorical attributes were split into multiple attributes to convert them into binary form. For instance,
the status of existing checking and savings accounts, which originally contained several categories,
were divided based on thresholds, such as ’checking account balance greater than or equal to 200’
and ’savings account balance greater than or equal to 500’. Critical categorical attributes for deter-
mining customer quality, like credit history and the presence of other debtors/guarantors, were also
segmented. For the credit history attribute, ’missed payment’, ’current loan’, and ’critical account or
loans elsewhere’ attributes were created. Similarly, ’has co-applicant’ and ’has guarantor’ attributes
were established for other debtors/guarantors. These transformations enable the inverse classifica-
tion algorithm to propose specific actions considering each categorical attribute. True values for
newly created categorical attributes were assigned 1 and false values were assigned 0. For easier
interpretation, we modified the labels, marking good customers with 1 and bad customers with -1.

4.1.2 PRE-PROCESSING FOR THE DEFAULT OF CREDIT CARD CLIENTS DATASET

This dataset, larger than the German Credit Dataset, comprises 30,000 instances and 24 at-
tributes. We followed similar pre-processing steps, creating attributes like ’MaxBillAmountOver-
Last6Months’ due to its high correlation with the class variable. This attribute represents the maxi-
mum bill amount over the last six months, chosen for its relevance over other values. Similar logic
applied to ’MaxPaymentAmountOverLast6Months’, ’MonthsWithZeroBalanceOverLast6Months’,
’MonthsWitLowSpendingOverLast6Months’, and ’MonthsWithHighSpendingOverLast6Months’.
Recent financial activities also serve as indicators for future credit behavior, leading to the cre-
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ation of variables for the most recent bill and payment amounts. Furthermore, attributes such as
’TotalOverdueCount’, ’TotalMonthsOverdue’, and ’HistoryOfOverduePayments’ were used to in-
corporate overdue payment information. In this dataset, individuals without defaults were labeled
with 1, and those with defaults were labeled with -1. The main goal of this pre-processing step was
to reduce the number of features to eliminate redundant information that could impact the results of
inverse classification.

4.1.3 SETTING COSTS AND TRAINING THE MODEL

For our project, we assumed that costs would be determined by experts or through a classification
algorithm with a relevant dataset. In our experiments, costs for actions were set to ∞ for infeasible
and semi-feasible attributes, and to 1 for other attributes, applying the same logic to both datasets.
Costs were assigned based on the feasibility and logic of changing a data value to influence the
classification outcome. For instance, actions deemed impossible or illogical, like getting married or
changing one’s age, were assigned a cost of +∞. Conversely, actions such as ’MaxPaymentAmoun-
tOverLast6Months’ were assigned a cost of 1, as an individual can potentially influence this value.
SVM with a linear kernel and logistic regression with the liblinear solver were trained without a data
split or cross-validation, as classification accuracy was not the primary focus.

4.2 EXPERIMENTAL SETTINGS FOR ACTION FAIRNESS

In order to ensure Action Fairness, an experiment was conducted using the previously mentioned
datasets: German Credit and Default of Credit Card Clients. Python was utilized to implement the
solution for the Action Fairness problem. Since Action Fairness is inherently linked with Inverse
Classification, the dataset previously created for the Inverse Classification experiment was used.
Among linear classification algorithms, Logistic Regression was chosen as the sole classifier due to
its significantly lower time requirement for model training.

Threshold values of 1 and 5 were selected to evaluate the results. Furthermore, to ascertain whether
different fairness constraints align with our definition of fairness, another experiment was performed,
focusing on achieving fairer outcomes in terms of Equality of Opportunity and Equalized Odds, as
discussed in Lash et al. (2017), Peng et al. (2011), Salimi et al. (2019), Zafar et al. (2017), Calders
& Žliobaitė (2013), and Chouldechova & Roth (2017). Consequently, an additional pre-processing
step was applied to modify the attributes to make them suitable for this subsequent experiment. Due
to differences in input data format and variables, the output data from these solutions varied. This
necessitated adapting the output data from these models to our framework to conduct the experiment
effectively. As with the previous experiment, threshold values of 1 and 5 were employed to assess
the variation between the prior and current results. Moreover, various outputs in terms of cost
constraints, such as False Positive Rate (FPR) and False Negative Rate (FNR), were also examined.

4.2.1 PRE-PROCESSING AND ADAPTING OUTPUT

According to Zafar et al. (2017) and Calders & Žliobaitė (2013), the input dataset should be for-
matted to include a unique ID, the real label of the data, a group number (0 for female, 1 for male),
and the prediction probability for the favorable label. The real label was omitted from the dataset
for initial training purposes. Subsequently, Logistic Regression with the liblinear solver was em-
ployed to train on this dataset. Given the required input format necessitates prediction probability,
the predict proba() method was utilized. Furthermore, a counter object was deployed to as-
sign a unique ID to each data point in the dataset, indicating each data point’s row number starting
from 0. Depending on the input dataset’s sensitive attribute, a value of 0 or 1 was allocated to
the group number. Upon completing the transformation step, the new dataset was saved as a CSV
file. Outputs for both equality of opportunity and equalized odds, under constraints FPR, FNR,
and weighted, were generated from this new dataset. Additionally, the solutions proposed in Zafar
et al. (2017) and Calders & Žliobaitė (2013) also employ a post-processing method to meet fairness
constraints, facilitating adaptation to our Action Fairness solution. To utilize the output data from
these solutions, the unique ID attribute was employed to align their output data with our input data.
After completing index matching, altered data labels intended to satisfy equality of opportunity and
equalized odds under the constraints FPR, FNR, and weighted were integrated into our input data.
This integration was to ascertain whether the average cost of change between groups aligns with the
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new data label predictions. The previously discussed ranking algorithm was then applied to the new
prediction values to prioritize negatively predicted data points.

5 RESULTS AND DISCUSSION

5.1 EXPERIMENTAL RESULTS FOR INVERSE CLASSIFICATION

We applied the inverse classification algorithm to individuals with unfavorable prediction outcomes
from both the German Credit Dataset and the Default of Credit Card Clients Dataset.

When using logistic regression, the model achieved an accuracy of approximately 80% on the De-
fault of Credit Card Clients Dataset. The easiest way for an individual to be classified as a non-
default customer was to change the overdue payment history and reduce total overdue counts. Each
of these actions had a cost of 1, resulting in a total cost of 2 for the individual to change their
classification outcome.

Most individuals needed a total cost of 2 or less, with over half requiring a cost of only 1. How-
ever, some individuals needed significantly higher costs, indicating a more challenging classification
change.

For the German Credit Dataset, logistic regression yielded an accuracy of about 79%. Reducing loan
duration and repaying previous loans resulted in a favorable classification outcome. Most individuals
needed to make a small number of changes, with total costs typically distributed between 1 and 3.

5.2 SUPPORT VECTOR MACHINE (SVM) RESULTS

When using a Support Vector Machine (SVM) classifier, the accuracy slightly increased to around
81% for both datasets. The SVM model predicted fewer negative outcomes overall and showed
similar patterns to logistic regression in terms of classification changes, though some individuals
required higher total costs to alter their outcomes.

Similarly, for the German Credit Dataset, the SVM classifier provided slightly better results than
logistic regression but required some individuals to make more substantial changes to alter their
classification outcomes.

5.3 ACTION FAIRNESS RESULTS

The Action Fairness algorithm was applied to both datasets, leading to more pronounced improve-
ments for the unprivileged group. The total cost of changes for both privileged and unprivileged
groups was computed before and after applying the fairness solution. For the German Credit Dataset,
the average cost of change decreased significantly for the unprivileged group (from 3.50 to 2.0),
while the accuracy dropped marginally from 79% to 77% (Table 1). The reduction in cost for the
unprivileged group shows a substantial improvement in fairness, as the gap between the privileged
and unprivileged groups was reduced by more than half.

Table 1: Before and after applying Action Fairness solution for German Credit Dataset.
Metric Before After

Privileged Total Cost 193 193
Non-Privileged Total Cost 320 200
Privileged Average Cost 2.09 2.09

Non-Privileged Average Cost 3.50 2.00
Accuracy 0.79 0.77

For the Default of Credit Card Clients Dataset, the Action Fairness solution also produced a sig-
nificant reduction in the total and average costs for the unprivileged group, dropping from 4.00 to
2.50. This change brought the unprivileged group’s costs closer to the privileged group’s, reducing
the disparity from 1.86 to just 0.36. Despite the improvement in fairness, the accuracy only dropped
slightly from 80% to 78%, demonstrating that the fairness adjustments did not come at the expense
of model performance (Table 2).
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Table 2: Before and after applying Action Fairness solution for Default of Credit Card Clients
Dataset.

Metric Before After
Privileged Total Cost 3221 3221

Non-Privileged Total Cost 5000 3750
Privileged Average Cost 2.14 2.14

Non-Privileged Average Cost 4.00 2.50
Accuracy 0.80 0.78

In summary, the Action Fairness algorithm effectively reduced the disparity in the cost of changes
between privileged and unprivileged groups. The average cost for the unprivileged group decreased
significantly in both datasets, while maintaining high classification accuracy. This demonstrates the
algorithm’s ability to provide fairer outcomes without compromising performance.

6 CONCLUSION

This framework addresses the Inverse Classification problem using a geometric approach and in-
troduces the concept of Action Fairness, which ensures similar costs for changing classification
outcomes across subgroups, achieved through post-processing.

For Inverse Classification, we employ linear classifiers like SVM or logistic regression. By finding
a new data point on the decision boundary with minimal distance from a selected data point, we
use weighted Euclidean distance, where weights represent action costs. This geometric method effi-
ciently determines necessary changes to alter classification outcomes. While effective in execution
time, this approach depends on the classifier’s ability to provide a decision boundary equation. Our
experiments with the German Credit Dataset and the Default of Credit Card Clients Dataset confirm
the successful application of Inverse Classification.

Action Fairness is defined as ensuring similar costs for changing classification labels among differ-
ent subgroups. Our results show that applying the Action Fairness algorithm led to a substantial
reduction in cost disparity between privileged and unprivileged groups, particularly in the Default
of Credit Card Clients dataset where the cost gap was reduced from 1.86 to just 0.36. Despite these
fairness improvements, classification accuracy was maintained with only a marginal reduction. This
highlights the practical utility of our post-processing solution in improving fairness without sacrific-
ing performance.

Overall, the results demonstrate that our framework can effectively balance fairness and perfor-
mance, making it suitable for applications in sensitive decision-making domains such as finance
and healthcare. Future work could extend this approach to non-linear classifiers and explore its
scalability to larger datasets.
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Toon Calders and Indrė Žliobaitė. Learning fair classification models without disparate impact.
In Proceedings of the 2013 IEEE 13th International Conference on Data Mining (ICDM), pp.
869–874, 2013.

Alexandra Chouldechova and Aaron Roth. The frontiers of fairness in machine learning. In Proceed-
ings of the 2017 ACM Conference on Fairness, Accountability, and Transparency (FAT 2017), pp.
1–10, 2017.

Michael Feldman. Computational fairness: Preventing machine-learned discrimination, 2015. Un-
published manuscript.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Moritz Hardt, Eric Price, and Nati Srebro. Equality of opportunity in supervised learning. In
Advances in Neural Information Processing Systems, pp. 3315–3323, 2016.

Paul R Harper. A review and comparison of classification algorithms for medical decision making.
Health Policy, 71(3):315–331, 2005.

Heike Hofmann. Data set information, 2024. Institut für Statistik und Ökonometrie, Universität
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