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Abstract
Federated Learning (FL) is a machine learning
paradigm that safeguards privacy by retaining
client data on edge devices. However, optimiz-
ing FL in practice can be challenging due to the
diverse and heterogeneous nature of the learning
system. Though recent research has focused on
improving the optimization of FL when distribu-
tion shifts occur among clients, ensuring global
performance when multiple types of distribution
shifts occur simultaneously among clients—such
as feature distribution shift, label distribution shift,
and concept shift—remain under-explored. In this
paper, we identify the learning challenges posed
by the simultaneous occurrence of diverse distri-
bution shifts and propose a clustering principle to
overcome these challenges. Through our research,
we find that existing methods fail to address the
clustering principle. Therefore, we propose a
novel clustering algorithm framework, dubbed
as FedRC, which adheres to our proposed cluster-
ing principle by incorporating a bi-level optimiza-
tion problem and a novel objective function. Ex-
tensive experiments demonstrate that FedRC sig-
nificantly outperforms other SOTA cluster-based
FL methods. Our code is available at https:
//github.com/LINs-lab/FedRC.

1. Introduction
Federated Learning (FL) is an emerging privacy-preserving
distributed machine learning paradigm. The model is trans-
mitted to the clients by the server, and when the clients
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have completed local training, the parameter updates are
sent back to the server for integration. Clients are not
required to provide local raw data during this procedure,
maintaining their privacy. However, the non-IID nature of
clients’ local distribution hinders the performance of FL
algorithms (McMahan et al., 2016; Li et al., 2020; Karim-
ireddy et al., 2020b; Li et al., 2021), and the distribution
shifts among clients become a main challenge in FL.

Distribution shifts in FL. As identified in the seminal
surveys (Kairouz et al., 2021; Moreno-Torres et al., 2012;
Lu et al., 2018), there are three types of distribution shifts
across clients that bottleneck the deployment of FL (see
Figure 5):

• Concept shift: For tasks of using feature x to predict label
y, the conditional distributions of labels P(y|x) may
differ across clients, even if the marginal distributions of
labels P(y) and features P(x) are shared 1.

• Label distribution shift: The marginal distributions of la-
bels P(y) may vary across clients, even if the conditional
distribution of features P(x|y) is the same.

• Feature distribution shift: The marginal distribution of
features P(x) may differ across clients, even if the con-
ditional distribution of labels P(y|x) is shared.

New challenges posed by the simultaneous occurrence
of multiple types of distribution shifts. Despite the suc-
cess of existing methods in addressing data heterogeneity
in FL, most existing methods concentrate on single shift
types. For example, Karimireddy et al. (2020b); Li et al.
(2020) for label shifts, Peng et al. (2019); Gan et al. (2021)
for feature shifts, and Jothimurugesan et al. (2022); Ke et al.
(2022) for concept shifts. However, various types of dis-
tribution shifts can occur concurrently. For instance, as
explained in Kairouz et al. (2021), label shifts may arise
from different geographical regions, while feature shifts
could be affected by user preferences. Moreover, concept
shifts might be prompted by cultural differences or fluctu-
ations in weather conditions. In a scenario where clients
come from diverse geographical regions, each with unique

1More discussions about the definition of concept shifts can be
found in Appendix J.
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Figure 1: Illustration of our principles of robust clustering. Each circle represents a client, with points (features) of varying colors
indicating distinct labels. Label shifts are represented by clients exhibiting data points of varying colors, as seen in clients 1 and 2. Feature
shifts are exemplified by clients maintaining data points with the same color but having substantial distances between them, as observed in
clients 2 and 3. Concept shifts occur when data points at the same position have different labels, as evident in clients 2 and 5. Dashed
lines in different colors depict decision boundaries for classifiers of different clusters, i.e., θ1 and θ2. Figure 1(a) demonstrates that
single-model methods are inadequate for handling concept shifts. Figure 1(b) shows that current multi-model methods tend to overfit local
distributions and can not handle unseen data, like the data points in the top-left corner of Figure 1(b). Our method (Figure 1(c)) improves
model generalization by grouping clients with concept shifts into distinct clusters, while ensuring that clients with only feature or label
shifts are placed in the same clusters.
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Figure 2: Performance degradation of existing clustered FL methods. Figure 2(a) presents the global performance improvements of
these methods and our FedRC compared to FedAvg. Figure 2(b) presents the local-global performance gap of these algorithms. Figure 2(c)
illustrates the performance of clustered FL when naively combined with single-model methods, such as FedProx (Li et al., 2020) and
FedDecorr (Shi et al., 2022). The global distributions are label- and feature-balanced for each concept.

cultural backgrounds and varying weather conditions, it is
entirely possible for all three types of shifts to transpire at
the same time.

Consequently, the concurrent occurrence of multiple distri-
bution shifts gives rise to new challenges that need to be
addressed.

• As depicted in Figure 1(a), existing works that address
label and feature distribution shifts by training single
global models, suffer from a significant performance
drop when dealing with concept shifts (Ke et al., 2022).
This suggest the necessity of using multiple models to
handle the concept shifts.

• As shown in Figure 1(b), existing multi-model ap-
proaches, such as clustered FL methods (Sattler et al.,
2020b; Long et al., 2023; Ghosh et al., 2020), cannot dis-

tinguish between different shift types and tend to group
data with the same labels into the same clusters, thereby
tending to overfit local distributions. As a result, current
clustering methods train models with limited generaliza-
tion abilities, leading to a significant gap between local
and global performance (Figure 2(b)).

Divide-and-Conquer as a solution. To address the men-
tioned challenges, we first analyze various distribution shifts
and determine which ones can use the same classifier (i.e.,
decision boundary) and which cannot. In detail, a shared
decision boundary can be found for clients without concept
shifts, even if they have feature or label shifts:

• When concept shifts occur, the same x can yield distinct
y, leading to altered decision boundaries.
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• While the conditional distributions P(y|x) remain con-
stant when feature and label shifts happen, a common
decision boundary can be determined for these clients.

Therefore, to attain strong generalization capabilities in the
face of concept shifts, we employ clustering methods to
distinguish concept shifts from other types of shifts. We
then train shared decision boundaries for clients that do not
have concept shifts. In detail, we leverage the principles
of robust clustering, as illustrated in Figure 1(c) and text
below.

separating clients with concept shifts into different clusters,
while keeping clients without concept shifts in the same cluster 2.

The primary objective of this paper is to identify a clustering
method that adheres to the principles of robust clustering
that existing methods fail: most existing methods cannot
distinguish different types of shifts, especially for label
and concept shifts, resulting in limited performance gain
(Figure 2(a)). Once this objective is achieved, the existing
treatments for feature and label shifts can be effortlessly
integrated as a plugin to further improve the performance
(see Figure 2(c)). To this end, we propose RobustCluster: it
allows a principled objective function that could effectively
distinguish concept shifts from other shifts. Upon achieving
this, we can address the principles of robust clustering by
developing global models that train clients with the same
concepts together. We further extend RobustCluster to the
FL scenario and introduce FedRC.

Our key contributions are summarized as follows:

• We identify the new challenges posed by the simultane-
ous occurrence of multiple types of distribution shifts in
FL and suggest addressing them using the principles of
robust clustering. To the best of our knowledge, we are
the first to evaluate the clustering results of existing clus-
tered FL methods, such as FeSEM (Long et al., 2023),
IFCA (Ghosh et al., 2020), FedEM (Marfoq et al., 2021),
and FedSoft (Ruan & Joe-Wong, 2022), under various
types of distribution shifts.

• We develop FedRC, a novel soft-clustering-based al-
gorithm framework, to tackle the principles of robust
clustering. Extensive empirical results on multiple
datasets (FashionMNIST, CIFAR10, CIFAR100, and
Tiny-ImageNet) and neural architectures (CNN, Mo-
bileNetV2, and ResNet18) demonstrate FedRC’s superi-
ority over SOTA clustered FL algorithms.

• We have investigated a series of extensions to the FedRC

2A trade-off exists between personalization and generalization,
as noted by previous studies (Wu et al., 2022). Our approach pri-
oritizes learning shared decision boundaries, thereby enhancing
generalization but potentially reducing personalization. To over-
come this trade-off, we recommend integrating FedRC with other
PFL methods, as detailed in Tables 1 and 4 of our paper.

framework, encompassing personalization, integration of
privacy-preserving techniques, and adaptability concern-
ing the number of clusters.

2. Related Works
Federated Learning with distribution shifts. As the de
facto FL algorithm, (McMahan et al., 2016; Lin et al., 2020)
propose using local SGD to reduce communication bottle-
necks, but non-IID data distribution among clients hinders
performance (Li et al., 2018; Wang et al., 2020b; Karim-
ireddy et al., 2020b;a; Guo et al., 2021; Jiang & Lin, 2023).
Addressing distribution shifts is crucial in FL, with most
existing works focusing on label distribution shifts through
techniques like training robust global models (Li et al., 2018;
2021) or variance reduction methods (Karimireddy et al.,
2020b;a). Another research direction involves feature dis-
tribution shifts in FL, primarily concentrating on domain
generalization to train models that can generalize to un-
seen feature distributions (Peng et al., 2019; Wang et al.,
2022a; Shen et al., 2021; Sun et al., 2022; Gan et al., 2021).
These methods aim to train a single robust model, which
is insufficient for addressing diverse distribution shift chal-
lenges, as decision boundaries change with concept shifts.
Concept shift has not been extensively explored in FL, but
some special cases have recently emerged as topics of in-
terest (Ke et al., 2022; Fang & Ye, 2022; Xu et al., 2022).
(Jothimurugesan et al., 2022) investigated the concept shift
by assuming clients do not have concept shifts at the begin-
ning of training. However, in practice, ensuring the absence
of concept shifts when local distribution information is un-
available is challenging. In this work, we consider a more
realistic but challenging scenario where clients could have
all three kinds of shifts with each other, even during the
initial training phase.3

Clustered Federated Learning. Clustered Federated
Learning (clustered FL) is a technique that groups clients
into clusters based on their local data distribution to address
the distribution shift problem. Various methods have been
proposed for clustering clients, including using local loss
values (Ghosh et al., 2020), communication time/local calcu-
lation time (Wang et al., 2022b), fuzzy c-Means (Stallmann
& Wilbik, 2022), and hierarchical clustering (Zhao et al.,
2020; Briggs et al., 2020; Sattler et al., 2020a). Some ap-
proaches, such as FedSoft (Ruan & Joe-Wong, 2022), com-
bine clustered FL with personalized FL by allowing clients
to contribute to multiple clusters. Other methods (Long
et al., 2023; Marfoq et al., 2021; Zhu et al., 2023; Wu et al.,
2023) employ the Expectation-Maximization approach to
maximize log-likelihood functions or joint distributions.
However, these methods targeting on improving the local

3For more detailed discussions, see Appendix D.
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performance, therefore overlooked the global performance.
In contrast, FedRC shows benefit on obtaining robust global
models that perform well on global distributions for each
concept, especially when multiple types of shifts occur si-
multaneously.

3. Revisiting Clustered FL: A Diverse
Distribution Shifts Perspective

This section examines the results of existing clustered FL
methods from the view of distribution shifts.

Algorithms and experiment settings. We employed clus-
tered FL methods, including IFCA (Ghosh et al., 2020),
FeSEM (Long et al., 2023), FedEM (Marfoq et al., 2021),
and FedSoft (Ruan & Joe-Wong, 2022). We create a sce-
nario incorporating all three types of shifts:

• Label distribution shift: We employ LDA (Yoshida
et al., 2019; Hsu et al., 2019) with α = 1.0, and split
CIFAR10 to 100 clients.

• Feature distribution shift: Each client will randomly
select one feature style from 20 available styles following
the approach used in CIFAR10-C (Hendrycks & Diet-
terich, 2019).

• Concept shift: We create concept shifts by setting dif-
ferent x→ y mappings following the approach utilized
in prior studies (Jothimurugesan et al., 2022; Ke et al.,
2022; Canonaco et al., 2021). Each client randomly se-
lects one x→y mapping from the three available x→y
mappings.

Upon construction, each client’s samples x will possess a
class label y, a feature style f , and a concept c. We then
run the aforementioned four clustered FL algorithms until
convergence. For every class y ∈ [1, 10], feature style
f ∈ [1, 20], or concept c ∈ [1, 3], we display the percentage
of data associated with that class, feature style, or concept
in each cluster.

Existing clustered FL methods fail to achieve the princi-
ples of robust clustering. We present the clustering results
of clustered FL methods regarding classes, feature styles,
and concepts in Figure 3. Results show that: (1) All existing
clustered FL methods are unable to effectively separate data
with concept shifts into distinct clusters, as indicated in the
row of Concept; (2) FeSEM, FedEM, and IFCA are not
robust to label distribution shifts, meaning that data with
the same class labels are likely to be grouped into the same
clusters, as shown in the row of Class Labels; (3) FeSEM
and IFCA are not resilient to feature distribution shifts, as
shown in the row of Feature Styles; (4) FedSoft is unable
to cluster clients via the local distribution shifts, due to the
ambiguous common pattern of clients in the same cluster
evidenced in the FedSoft column.

4. Our approach: FedRC
Section 3 identified sub-optimal clustering in existing clus-
tered FL methods for the principles of robust clustering. To
address this, we introduce a new soft clustering algorithm
called FedRC in this section. We first present the centralized
version (RobustCluster) and then adapt it for FL scenarios
as FedRC.

4.1. RobustCluster: Training Robust Global Models for
Each Concept

In this section, we formulate the clustering problem as a
bi-level optimization problem and introduce a new objective
function to achieve the principles of robust clustering.

Clustering via bi-level optimization. Given M data
sources {D1, · · · ,DM} and the number of clusters K, clus-
tering algorithms can be formulated as optimization prob-
lems that maximize objective function L(Θ,Ω) involving
two parameters:

• Θ := [θ1, · · · ,θK ], where the distribution for cluster
k is parameterized by θk. In most cases, θk is learned
by a deep neural network by maximizing the likelihood
function P(x, y;θk) for any data (x, y) belonging to
cluster k (Long et al., 2023; Marfoq et al., 2021) 4.

• Ω := [ω1;1, · · · , ω1;K , · · · , ωM ;K ] ∈ RMK , with ωi;k

denoting the clustering weight assigned by Di to cluster
k. The choice of Ω varies among different clustering
methods (Ruan & Joe-Wong, 2022; Ghosh et al., 2020).
Additionally, we usually have

∑K
k=1 ωi;k = 1,∀i.

Objective function of RobustCluster. Taking the princi-
ples of robust clustering into account, the expected objective
function L(Θ,Ω) must fulfill the following properties:

• Maximizing likelihood function. L(Θ,Ω) should
be positively correlated with the likelihood function
P(x, y;θk), since the primary goal of RobustCluster is
to learn θk that accurately represents the distribution of
cluster k ;

• Adhering to principles of clustering. L(Θ,Ω) should
be small only when principles of robust clustering is not
satisfied, that is, clients with concept shifts are assigned
into the same clusters.

To this end, we design the following objective function:

L(Θ,Ω) =
1

N

M∑
i=1

Ni∑
j=1

ln

(
K∑

k=1

ωi;kI(xij , yij ,θk)

)
,

s.t.
K∑

k=1

ωi;k = 1, ∀i ,

(1)

4Here, P(x, y;θk) represents the probability density of (x, y)
for the distribution parameterized by θk.
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Figure 3: Clustering results w.r.t. classes/feature styles/concepts. After data construction, each data point x will have a class y, feature
style f , and concept c. We report the percentage of data points associated with a class, feature style, or concept assigned to cluster k. For
example, for a circle centered at position (y, k), a larger circle size signifies that more data points with class y are assigned to cluster
k. For feature styles, we only represent f ∈ [1, 10] here for clearer representation, and the full version can be found in Figure 12 of
Appendix I. By the principles of robust clustering, we require a clustering method in which clients with the same concept are assigned to
the same cluster (for example, Figure 4(b)).
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Figure 4: Clustering results of FedRC w.r.t. classes/concepts. The number of clusters is selected within the range of [3, 4], while
keeping the remaining settings consistent with those used in Figure 3. Due to page limitations, we present the clustering results w.r.t.
feature styles in Figure 11 of Appendix I.3.

where I(x, y;θk)= P(x,y;θk)
P(x;θk)P(y;θk)

= P(y|x;θk)
P(y;θk)

= P(x|y;θk)
P(x;θk)

.

Note that Ni := |Di|, and N =
∑M

i=1 Ni, and (xi,j , yi,j)
is the j-th data sampled from dataset Di.

Interpretation of the objective function. Maximizing
the L(Θ,Ω) can achieve the principles of robust clustering.
It can be verified by assuming that data (x, y) is assigned to
cluster k. In detail:

• Maximizing L(Θ,Ω) can avoid concept shifts within
the same cluster. If (x, y) exhibits a concept shift with

respect to the distribution of cluster k, P(y|x;θk) will
be small (toy examples can be found in Figure 8). This
will lead to a decrease on L(Θ,Ω), which contradicts
our goal of maximizing L(Θ,Ω).

• L(Θ,Ω) can decouple concept shifts with label or
feature distribution shifts. If (x, y) exhibits a label or
feature distribution shift with respect to the distribution of
cluster k, P(y;θk) or P(x;θk) will be small. Therefore,
L(Θ,Ω) will not decrease significantly as (1) data points
without concept shifts generally have larger P(y|x;θk)
compared to those with concept shifts, and (2) L(Θ,Ω)
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is negatively related to both P(y;θk) and P(x;θk).

We also give a more detailed explanation of how Robust-
Cluster achieves the principles of robust clustering using
toy examples in Figure 8 and Figure 9 of Appendix G.

4.2. Optimization Procedure of RobustCluster

This section elaborates on how to optimize the objective
function defined in (1) in practice.

Approximated objective function for practical implemen-
tation. Note that I(x, y;θk) cannot be directly evaluated
in practice. To simplify the implementation, we choose
to calculate I(x, y;θk) by P(y|x;θk)

P(y;θk)
, and both P(y|x;θk)

and P(y;θk) need to be approximated. Therefore, we in-
troduce Ĩ(x, y;θk) as an approximation of I(x, y;θk), and
we elaborate the refined definition of (1) below:

L(Θ,Ω) =
1

N

M∑
i=1

Ni∑
j=1

ln

(
K∑

k=1

ωi;kĨ(xi,j , yi,j ,θk)

)

s.t.
K∑

k=1

ωi;k = 1, ∀i ,

(2)

where Ĩ(x, y;θk)= exp(−f(x,y,θk))
Cy,k

. Note that f(x, y,θk)
is the loss function defined by− lnP(y|x;θk)+C for some
constant C (Marfoq et al., 2021) 5. Cy,k is the constant that
used to approximate P(y;θk) in practice.

The intuition behind using Ĩ(x, y;θk) as an approximation
comes from:

• The fact of f(x, y,θk) ∝ − lnP(y|x;θk). We can ap-
proximateP(y|x;θk) using exp(−f(x, y,θk)). This ap-
proximation will only change L(Θ,Ω) to L(Θ,Ω) +C.

• Cy,k is calculated by
1
N

∑M
i=1

∑Ni
j=1 1{yi,j=y}γi,j;k

1
N

∑M
i=1

∑Ni
j=1 γi,j;k

, where

γi,j;k represents the weight of data (xi,j , yi,j) assigned
to θk (c.f. Remark 4.1). Thus, Cy,k corresponds to the
proportion of data pairs labeled as y that choose model
θk, and can be used to approximate P(y;θk).

The optimization steps for RobustCluster are obtained by
maximizing (2) that alternatively updates γt

i,j;k and ωt
i;k

using (3), and θt
k using (4). The proof details refer to

Appendix A.

γt
i,j;k=

ωt−1
i;k

Ĩ(xi,j,yi,j ,θ
t−1
k

)∑K
n=1 ωt−1

in Ĩ(xi,j,yi,j,θ
t−1
k

)
, ωt

i;k=
1
Ni

∑Ni
j=1 γ

t
i,j;k , (3)

θt
k=θt−1

k −η 1
N

∑M
i=1

∑Ni
j=1 γ

t
i,j,k∇θfi,k(xi,j, yi,j,θ

t−1
k ) . (4)

Remark 4.1 (Property of γi,j;k). We can observe from (4)
that γi,j;k can serve as the weight of data point (xi,j , yi,j)

5The − lnP(y|x;θk) + C formulation can accommodate
widely used loss functions such as cross-entropy loss, logistic
loss, and mean squared error loss.

that contributes to the update of θk, and ωi;k is the average
of γi,j;k over all data points (xi,j , yi,j) in Di.

Remark 4.2 (Compare with existing bi-level optimization
methods). EM algorithms are also categorized as bi-level
optimization algorithms (Nguyen et al., 2020; Marfoq et al.,
2021) and share a similar optimization framework with our
method. However, the key difference lies in the design of the
objective function. Our proposed objective function is dis-
tinct, and we leverage the bi-level optimization framework
as one of the possible solutions to optimize it. In Figure 9
of Appendix G, we demonstrate that without our designed
objective function, the decision boundary will be unclear,
resulting in poor classification performance.

4.3. Convergence of RobustCluster

In this section, we give the convergence rate of the central-
ized clustering algorithm RobustCluster.

Assumption 1 (Smoothness Assumption). Assume func-
tions f(θ) are L-smooth, i.e. ∥∇f(θ1)−∇f(θ2)∥ ≤
L ∥θ1 − θ2∥.

Assumption 2 (Bounded Gradient Assumption).
Assume that the gradient of local objective func-
tions ∇f(θ) are bounded, i.e. E

[
∥∇f(θ)∥2

]
=

1
N

∑M
i=1

∑Ni

j=1 ∥∇f(xi,j , yi,j ,θ)∥2 ≤ σ2.

The assumptions of smoothness (Assumption 1) and
bounded gradient (Assumption 2) are frequently employed
in non-convex optimization problems (Chen et al., 2018;
Mertikopoulos et al., 2020). We introduce the bounded
gradient assumption since we only assume f(θ) to be L-
smooth, and L(Θ,Ω) may not be a smooth function. We
demonstrate that RobustCluster converges under these stan-
dard assumptions and attains the typical O(1/ϵ) convergence
rate.

Theorem 4.3 (Convergence rate of RobustCluster). Assume
fik satisfy Assumption 1-2, setting T as the number of itera-
tions, and η= 8

40L+9σ2 , we have,

1
T

∑T−1
t=0

∑K
k=1

∥∥∇θkL
(
Θt,Ωt

)∥∥2≤O(
(40L+9σ2)(L⋆−L0)

4T
) ,

where L⋆ is the upper bound of L(Θ,Ω), and L0 =
L(Θ0,Ω0). Proof details refer to Appendix B.

4.4. FedRC: Adapting RobustCluster into FL

In Algorithm 1 and Figure 10, we summarize the whole
process of FedRC. In detail, at the beginning of round t, the
server transmits parameters Θt = [θt

1, · · · ,θt
K ] to clients.

Clients then locally update γt+1
i,j;k and ωt+1

i;k using (3) and (4),
respectively. Then clients initialize θt,0

i,k = θt
k, and update
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Algorithm 1 FedRC Algorithm Framework

1: Input: The number of models K, initial parameters
Θ0 = [θ0

1, · · · ,θ0
K ], global learning rate ηg, initial

weights ω0
i;k = 1

K for any i, k, and γi,j;k = 1
K for any

i, j, k, local learning rate ηl.
2: Output: Trained parameters ΘT = [θT

1 , · · · ,θT
K ] and

weights ωT
i;k for any i, k.

3: for round t = 1, . . . , T do
4: Communicate Θt to the chosen clients.
5: for client i ∈ St in parallel do
6: Initialize local model θt,0

i,k = θt
k, ∀k.

7: Update γt
i,j;k, ω

t
i;k by (3), ∀j, k.

8: Obtain θt,T
i,k by locally updating θt,0

i,k for T local
steps using the equation (5), ∀k.

9: Communicate ∆θt
i,k ← θt,T

i,k − θt,0
i,k, ∀k.

10: end for
11: θt+1

k ← θt
k +

ηg∑
i∈St Ni

∑
i∈St Ni∆θt

i,k, ∀k.
12: end for

parameters θt,τ
i,k for T local steps:

θt,τ
i,k =θt,τ−1

i,k − ηl
Ni

Ni∑
j=1

γt
i,j;k∇θfi;k(xi,j, yi,j,θ

t,τ−1
i,k ) , (5)

where τ is the current local iteration, and ηl is the local
learning rate.In our algorithm, the global aggregation step
uses the FedAvg method as the default option. However,
other global aggregation methods e.g. (Wang et al., 2020a;b)
can be implemented if desired. We include more details
about the model prediction in Appendix H.2. We also in-
clude the discussion about the convergence rate of FedRC
in Appendix C.

5. Numerical Results
In this section, we show the superior performance of FedRC
compared with other FL baselines on FashionMNIST, CI-
FAR10, CIFAR100, and Tiny-ImageNet datasets on scenar-
ios that all kinds of distribution shifts occur simultaneously6.
We also show FedRC outperforms other clustered FL meth-
ods on datasets with real concept shifts in Appendix I. For
more experiments on incorporating privacy-preserving and
communication efficiency techniques, automatically decide
the number of clusters, and ablation studies on the number
of clusters, please refer to Appendix F and I.

5.1. Experiment Settings

We introduce the considered evaluation settings below (and
see Figure 5); more details about implementation details,

6Ablation studies on single-type distribution shift scenarios are
included in Appendix I.5, we show FedRC achieves comparable
performance with other methods on these simplified scenarios.

simulation environments, and datasets can be found in Ap-
pendix H.5- H.8.

Evaluation and datasets. We construct two client types:
participating clients and nonparticipating clients (detailed
in Figure 5), and report the 1) local accuracy: the mean
test accuracy of participating clients; 2) global accuracy
(primary metric): the mean test accuracy of nonparticipating
clients. It assesses whether shared decision boundaries are
identified for each concept.

• Participating clients: We construct a scenario that en-
compasses label shift, feature shift, and concept shift
issues. For label shift, we adopt the Latent Dirichlet
Allocation (LDA) introduced in (Yurochkin et al., 2019;
Hsu et al., 2019) with parameter α = 1.0. For feature
shift, we employ the idea of constructing FashionMNIST-
C (Weiss & Tonella, 2022), CIFAR10-C, CIFAR100-C,
and ImageNet-C (Hendrycks & Dietterich, 2019). For
concept shift, similar to previous works (Jothimuruge-
san et al., 2022; Ke et al., 2022; Canonaco et al., 2021),
we change the labels of partial clients (i.e., from y to
(C − y), where C is the number of classes). Unless
stated otherwise, we assume only three concepts exist in
the learning.

• Nonparticipating clients: To assess if the algorithms
identify shared decision boundaries for each concept and
improve generalization, we create three non-participating
clients with balanced label distribution for each dataset
(using the test sets provided by each dataset). The labels
for these non-participating clients will be swapped in
the same manner as the participating clients for each
concept.

Baseline algorithms. We choose FedAvg (McMahan
et al., 2016) as an example in single-model FL. For clus-
tered FL methods, we choose IFCA (Ghosh et al., 2020),
CFL (Sattler et al., 2020b), FeSEM (Long et al., 2023), Fe-
dEM (Marfoq et al., 2021), and FedSoft (Ruan & Joe-Wong,
2022).

5.2. Results of FedRC

In this section, we initialize 3 clusters for all clustered FL
algorithms, which is the same as the number of concepts.

Superior performance of FedRC over other strong FL
baselines. The results in Table 1 and Table 2 show that: i)
FedRC consistently attains significantly higher global and
local accuracy compared to other clustered FL baselines.
ii) FedRC achieves a lower global-local performance gap
among all the algorithms, indicating the robustness of Fe-
dRC on global distribution. iii) The FedRC-FT method,
obtained by fine-tuning FedRC for a single local epoch, can
achieve local accuracy comparable to that of clustered FL

7
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Figure 5: Illustration of our numerical evaluation protocols. Clients are divided into two categories: participating clients engage in
training, while nonparticipating clients are used for testing. The training and test distributions of each client are identical. Participating
clients simulate real-world scenarios and may experience label, feature, and concept shifts. For example, clients 1 and 2 have different
label distribution and feature styles (photo or cartoon), while clients 2 and 3 have concept shifts (labels swapped). Nonparticipating clients
are utilized to test the robustness of models. Labels on nonparticipating clients are swapped in the same manner as participating clients for
each concept.

Table 1: Performance of algorithms over various datasets and neural architectures. We evaluated the performance of our algorithms
using the FashionMNIST, CIFAR10 and Tiny-ImageNet datasets split into 300 clients. We initialized 3 clusters for clustered FL methods
and reported mean local and global test accuracy on the round that achieved the best train accuracy for each algorithm. We report
FedRC-FT by fine-tuning FedRC for one local epoch; “CFL (3)” refers to restricting the number of clusters in CFL (Sattler et al., 2020b)
to 3. We highlight the best and the second best results for each of the two main blocks, using bold font and blue text.

Algorithm FashionMNIST (CNN) CIFAR10 (MobileNetV2) Tiny-ImageNet (MobileNetV2)

Local Global Local Global Local Global

FedAvg 42.12 ±0.33 34.35 ±0.92 30.28 ±0.38 30.47 ±0.76 18.61 ±0.15 14.27 ±0.28

IFCA 47.90 ±0.60 31.30 ±2.69 43.76 ±0.40 26.62 ±3.34 22.81 ±0.75 12.54 ±1.46

CFL (3) 41.77 ±0.40 33.53 ±0.35 41.49 ±0.64 29.12 ±0.02 23.87 ±1.54 11.42 ±2.15

FeSEM 60.99 ±1.01 47.63 ±0.99 45.32 ±0.16 30.79 ±0.02 23.09 ±0.71 11.97 ±0.05

FedEM 56.64 ±2.14 28.08 ±0.92 51.31 ±0.97 43.35 ±2.29 28.57 ±1.49 17.33 ±2.12

FedRC 66.51 ±2.39 59.00 ±4.91 62.74 ±2.37 63.83 ±2.26 34.47 ±0.01 27.79 ±0.97

CFL 42.47 ±0.02 32.37 ±0.09 67.14 ±0.87 26.19 ±0.26 23.61 ±0.89 12.47 ±0.46

FedSoft 91.35 ±0.04 19.88 ±0.50 83.08 ±0.02 22.00 ±0.50 70.79 ±0.09 2.67 ±0.04

FedRC-FT 91.02 ±0.26 62.37 ±1.09 82.81 ±0.90 65.33 ±1.80 75.10 ±0.24 27.67 ±3.13

methods with personalized local models (such as CFL and
FedSoft) while maintaining high global performance. Eval-
uations on more PFL baselines can be found in Table 4 of
Appendix I.3.

FedRC consistently outperforms other methods with
varying cluster numbers. We conducted ablation studies
on the number of clusters, as shown in Figure 6(a). The
results indicate that FedRC consistently achieves the highest
global accuracy across all algorithms.

The performance improvements of FedRC persist even
when there is an imbalance in the number of samples
across clusters. We conducted experiments in which the
number of samples in each cluster followed a ratio of 8:1:1,
as shown in Figure 6(b). Results show that FedRC main-
tained a significantly higher global accuracy when compared
to other methods.

Table 2: Performance of algorithms on ResNet18. We evaluated
the performance of our algorithms on the CIFAR10 and CIFAR100,
which were split into 100 clients.

Algorithm CIFAR10 CIFAR100

Local Global Local Global

FedAvg 25.58 26.10 13.48 12.87

IFCA 31.90 10.47 18.34 12.00
CFL 26.06 24.53 13.94 12.60

CFL (3) 25.18 24.80 13.34 12.13
FeSEM 34.56 21.93 17.28 12.90
FedEM 41.28 34.17 25.82 24.77
FedRC 49.16 47.80 31.76 28.10
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Figure 6: Ablation study on the number of clusters, the number
of concepts, the type of clustering, and the scenarios when the
number of samples among clusters is imbalance. We report the
global test accuracy of CIFAR10 with on the round that achieves
the best training accuracy. The Figures 6(a), 6(b), and 6(c) use the
settings with 100 clients, and obtain the same results as Figure 2.
The Figure 6(d) uses the same setting as Table 1. Figure 6(a)
shows the performance of clustered FL algorithms with different
K values. Figure 6(b) shows the performance of clustered FL
methods when the number of samples in each cluster was in the
ratio of 8:1:1. Figure 6(c) shows FedRC’s performance using
soft clustering (ensemble of K clusters) and hard clustering, i.e.,
utilizing the cluster with the highest clustering weights ωi;k for
prediction. Figure 6(d) shows clustered FL’s performance with
varying numbers of concepts. We use {3, 3, 5} clusters for the
scenarios with {1, 3, 5} concepts.

The performance improvement of FedRC remains con-
sistent across various concept numbers and in scenarios
without concept shifts. In Figure 6(d), we observe that: 1)
FedRC achieves higher global accuracy compared to other
methods, and this advantage becomes more significant as
the number of concepts increases; 2) When clients have
only no concept shifts, employing multiple clusters (such
as FedEM and FeSEM) does not perform as well as using a
single model (FedAvg). Nonetheless, FedRC outperforms
FedAvg and retains robustness.

Effectiveness of FedRC remains when using hard clus-
tering. The prediction of FedRC requires the ensemble
of K clusters (soft clustering). As most existing clustered
FL methods are hard clustering methods (Long et al., 2023;
Ghosh et al., 2020; Sattler et al., 2020b), we also evalu-
ate the performance of FedRC when using hard clustering
here, i.e., only using the cluster with the largest clustering
weights ωi;k for prediction. Figure 6(c) shows that using
hard clustering with not affect the effectiveness of FedRC.

6. Conclusion, Limitations, and Future Works
This paper addresses the diverse distribution shift challenge
in FL and proposes using clustered FL methods to tackle
it. However, we found that none of the existing clustered
FL methods effectively address the diverse distribution shift
challenge, leading us to introduce FedRC as a solution. Fur-
thermore, we have explored extensions in Appendix I and
Appendix F, including improvements in communication
and computation efficiency, automatic determination of the
number of clusters, and mitigation of the personalization-
generalization trade-offs. For future research, it would be
intriguing to delve deeper into providing a more comprehen-
sive theoretical understanding of the differences in cluster-
ing results between FedRC and other methods. Furthermore,
in practical scenarios, non-participating clients may expe-
rience concept shifts alongside participating clients. To
address this issue, it would be advantageous to explore new
techniques such as out-of-distribution (OOD) detection, do-
main adaptation, or test-time adaptation.
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A. Proof of Optimization Steps
Theorem A.1. When maximizing Equation 2, the optimization steps are given by,
Optimizing Ω:

γt
i,j;k =

ωt−1
i;k Ĩ(xij , yij ,θk)∑K

i=1 ω
t−1
i Ĩ(xij , yij ,θk)

, (6)

ωt
i;k =

1

Ni

Ni∑
j=1

γt
i,j;k . (7)

Optimizing Θ:

(8)

θt
k = θt−1

k − η

N

M∑
i=1

Ni∑
j=1

γt
i,j;k∇θt−1

k
f(xij , yij ,θ

t−1
k ) , (9)
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Proof. Consider the objective function,

L(Θ,Ω) =
1

N

M∑
i=1

N∑
j=1

ln

(
K∑

k=1

ωi;kĨ(xij , yij ;θk)

)
+

M∑
i=1

λi

(
K∑

k=1

ωi;k − 1

)
, (10)

Taking the derivative of L(Θ), we have,

∂L(Θ,Ω)

∂ωi;k
=

1

N

Ni∑
j=1

Ĩ(xij , yij ;θk)∑K
n=1 ωi;nĨn(xij , yij ;θn)

+ λi , (11)

define

γi,j;k =
ωi;kĨ(xij , yij ;θk)∑K

n=1 ωi;nĨn(xij , yij ;θn)
, (12)

and set ∂L(Θ)
∂ωi;k

= 0 to obtain the optimal ωi;k, we have,

1

N

Ni∑
j=1

γi,j;k
ωi;k

= −λi , (13)

ωi;k =
1

−Nλi

Ni∑
j=1

γi,j;k . (14)

By setting
∑K

k=1 ωi;k = 1 and considering that
∑K

k=1 γi,j;k = 1, we directly derive the result λi =
−Ni

N . Then we have

ωi;k =
1

Ni

Ni∑
j=1

γi,j;k . (15)

Then consider to optimize θk, we have,

∂L(Θ,Ω)

∂θk
=

1

N

M∑
i=1

Ni∑
j=1

ωi;k∑K
n=1 ωi;nĨn(xij , yij ;θn)

· ∂Ĩ(xij , yij ;θk)

∂θk
, (16)

=
1

N

M∑
i=1

Ni∑
j=1

ωi;k∑K
n=1 ωi;nĨn(xij , yij ;θn)

·
exp(−f(xij , yij ,θk))

∑M
i=1

∑N
j=1 γi,j;k∑M

i=1

∑N
j=1 1yij=yγi,j;k

· (−∇θk
f(xij , yij ,θk)) , (17)

= − 1

N

M∑
i=1

Ni∑
j=1

γi,j;k∇θk
f(xij , yij ,θk) . (18)

Because if hard to find a close-form solution to ∂L(Θ,Ω)
∂θk

= 0 when θk is the parameter of deep neural networks, we use
gradient ascent to optimize θk. Then we finish the proof of optimization steps.

B. Proof of Theorem 4.3
Lemma B.1. Define

h(θx) =
ωi;kĨ(xij , yij ,θx)∑K

n=1 ωi;nĨ(xij , yij ,θn)
, (19)

which corresponding to Θ = [θ1, · · · ,θx,θk+1, · · · ,θK ], we have,

|h(θx)− h(θy)| ≤
L

8
∥θ1 − θ2∥2 +

3

8
∥∇f(xij , yij ,θy)∥ ∥θ1 − θ2∥ . (20)

14
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Proof. Define,

h(θx) =
ωi;kĨ(xij , yij ,θx)∑K

n=1 ωi;nĨ(xij , yij ,θn)
, (21)

=
ω̃i;k exp(−f(xij , yij ,θx))∑K

n=1 ω̃i;n exp(−f(xij , yij ,θn))
, (22)

where ω̃i;k =
ωi;k

P(y=yij ;θk)
. Then we have,

∂h(θx)

∂θx
=
−ω̃i;k exp(−f(xij , yij ,θx))∇f(xij , yij ,θx)∑K

n=1 ω̃i;n exp(−f(xij , yij ,θn))

−
−ω̃2

i;k exp
2(−f(xij , yij ,θx))∇f(xij , yij ,θx)(∑K

n=1 ω̃i;n exp(−f(xij , yij ,θn))
)2 , (23)

= ∇f(xij , yij ,θx)h(θx) (−1 + h(θx)) . (24)

Then we have,

∥∇h(θx)−∇h(θy)∥ = ∥h(θx) (1− h(θx))∇f(xij , yij ,θx)− h(θy) (1− h(θy))∇f(xij , yij ,θy)∥ , (25)

≤ L

4
∥θx − θy∥+

1

4
∥∇f(xij , yij ,θy)∥ . (26)

On the other hand, for h(θx), we can always find that,

h(θx) = h(θy) +

∫ 1

0

⟨∇h(θy + τ(θx − θy)),θx − θy⟩ dτ , (27)

= h(θy) + ⟨∇h(θy),θx − θy⟩+
∫ 1

0

⟨∇h(θy + τ(θx − θy))−∇h(θy),θx − θy⟩ dτ. (28)

Then we have,

|h(θx)− h(θy)− ⟨∇h(θy),θx − θy⟩|

=

∣∣∣∣∫ 1

0

⟨∇h(θy + τ(θx − θy))−∇h(θy),θx − θy⟩ dτ
∣∣∣∣ , (29)

≤
∫ 1

0

|⟨∇h(θy + τ(θx − θy))−∇h(θy),θx − θy⟩| dτ , (30)

≤
∫ 1

0

∥∇h(θy + τ(θx − θy))−∇h(θy)∥ ∥θx − θy∥ dτ , (31)

≤
∫ 1

0

τ

(
L

4
∥θx − θy∥2 +

1

4
∥∇f(xij , yij ,θy)∥ ∥θ1 − θ2∥

)
dτ , (32)

=
L

8
∥θx − θy∥2 +

1

8
∥∇f(xij , yij ,θy)∥ ∥θx − θy∥ . (33)

Therefore, we have,

|h(θx)− h(θy)| ≤
L

8
∥θ1 − θ2∥2 +

3

8
∥∇f(xij , yij ,θy)∥ ∥θx − θy∥ . (34)

Lemma B.2. Assume f(x, y,θ) is L-smooth (Assumption 1), define,

g(θk) =
1

N

M∑
i=1

Ni∑
j=1

ln

(
K∑

n=1

ωi;nĨn(xij , yij ;θn)

)
, (35)
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where 1 ≤ k ≤ K. Then we have,

∥∇g(θ1)−∇g(θ2)∥

≤ L ∥θ1 − θ2∥+
1

N

M∑
i=1

Ni∑
j=1

(
L

8
∥θ1 − θ2∥2 ∥∇f(xij , yij ,θ2)∥+

3

8
∥θ1 − θ2∥ ∥∇f(xij , yij ,θ2)∥2

)
, (36)

where γ1
i,j;k and γ2

i,j;k are defined in Theorem A.1 corresponding to Θ1 and Θ2 respectively. We can further prove that,

g(θ1) ≤ g(θ2) + ⟨∇g(θ2),θ1 − θ2⟩

+

L

2
+

3

16N

M∑
i=1

Ni∑
j=1

∥∇f(xij , yij ,θ2)∥2
 ∥θ1 − θ2∥2

+

 L

16N

M∑
i=1

Ni∑
j=1

∥∇f(xij , yij ,θ2)∥

 ∥θ1 − θ2∥3 , (37)

g(θ1) ≥ g(θ2) + ⟨∇g(θ2),θ1 − θ2⟩

−

L

2
+

3

16N

M∑
i=1

Ni∑
j=1

∥∇f(xij , yij ,θ2)∥2
 ∥θ1 − θ2∥2

−

 L

16N

M∑
i=1

Ni∑
j=1

∥∇f(xij , yij ,θ2)∥

 ∥θ1 − θ2∥3 . (38)

Proof. Based on the results in Theorem A.1, Section A, we have,

∂g(θk)

∂θk
= − 1

N

M∑
i=1

Ni∑
j=1

γi,j;k∇θk
f(xij , yij ,θk) , (39)

then we have,

∥∇g(θ1)−∇g(θ2)∥

=

∥∥∥∥∥∥ 1

N

M∑
i=1

Ni∑
j=1

γ1
i,j;k∇f(xij , yij ,θ2)−

1

N

M∑
i=1

Ni∑
j=1

γ2
i,j;k∇f(xij , yij ,θ1)

∥∥∥∥∥∥ , (40)

≤ 1

N

M∑
i=1

Ni∑
j=1

∥∥γ1
i,j;k∇f(xij , yij ,θ2)− γ2

i,j;k∇f(xij , yij ,θ1)
∥∥ , (41)

≤ 1

N

M∑
i=1

Ni∑
j=1

γ1
i,j;k ∥∇f(xij , yij ,θ2)−∇f(xij , yij ,θ1)∥

+
1

N

M∑
i=1

Ni∑
j=1

|γ1
i,j;k − γ2

i,j;k| ∥∇f(xij , yij ,θ2)∥ , (42)

≤ L ∥θ1 − θ2∥

+
1

N

M∑
i=1

Ni∑
j=1

(
L

8
∥θ1 − θ2∥2 ∥∇f(xij , yij ,θ2)∥+

3

8
∥θ1 − θ2∥ ∥∇f(xij , yij ,θ2)∥2

)
. (43)

On the other hand, for f(θk), we can always find that,

16
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g(θ1) = g(θ2) +

∫ 1

0

⟨∇g(θ2 + τ(θ1 − θ2)),θ1 − θ2⟩ dτ , (44)

= g(θ2) + ⟨∇g(θ2),θ1 − θ2⟩+
∫ 1

0

⟨∇g(θ2 + τ(θ1 − θ2))−∇g(θ2),θ1 − θ2⟩ dτ. (45)

Then we have,

|g(θ1)− g(θ2)− ⟨∇g(θ2),θ1 − θ2⟩|

=

∣∣∣∣∫ 1

0

⟨∇g(θ2 + τ(θ1 − θ2))−∇g(θ2),θ1 − θ2⟩ dτ
∣∣∣∣ , (46)

≤
∫ 1

0

|⟨∇g(θ2 + τ(θ1 − θ2))−∇g(θ2),θ1 − θ2⟩| dτ , (47)

≤
∫ 1

0

∥∇g(θ2 + τ(θ1 − θ2))−∇g(θ2)∥ ∥θ1 − θ2∥ dτ , (48)

≤
∫ 1

0

τ

((
L+

3

8N

M∑
i=1

Ni∑
j=1

∥∇f(xij , yij ,θ2)∥2
)
∥θ1 − θ2∥2

)
dτ

+

∫ 1

0

τ

((
L

8N

M∑
i=1

Ni∑
j=1

∥∇f(xij , yij ,θ2)∥

)
∥θ1 − θ2∥3

)
dτ , (49)

=

(
L

2
+

3

16N

M∑
i=1

Ni∑
j=1

∥∇f(xij , yij ,θ2)∥2
)
∥θ1 − θ2∥2

+

(
L

16N

M∑
i=1

Ni∑
j=1

∥∇f(xij , yij ,θ2)∥

)
∥θ1 − θ2∥3 . (50)

Then we have,

g(θ1) ≤ g(θ2) + ⟨∇g(θ2),θ1 − θ2⟩

+

L

2
+

3

16N

M∑
i=1

Ni∑
j=1

∥∇f(xij , yij ,θ2)∥2
 ∥θ1 − θ2∥2

+

 L

16N

M∑
i=1

Ni∑
j=1

∥∇f(xij , yij ,θ2)∥

 ∥θ1 − θ2∥3 , (51)

g(θ1) ≥ g(θ2) + ⟨∇g(θ2),θ1 − θ2⟩

−

L

2
+

3

16N

M∑
i=1

Ni∑
j=1

∥∇f(xij , yij ,θ2)∥2
 ∥θ1 − θ2∥2

−

 L

16N

M∑
i=1

Ni∑
j=1

∥∇f(xij , yij ,θ2)∥

 ∥θ1 − θ2∥3 . (52)

Theorem B.3 (Convergence rate of RobustCluster). Assume f is L-smooth (Assumption 1), setting T as the number of
iterations, and η = 8

40L+9σ2 , we have,

1

T

T−1∑
t=0

K∑
k=1

∥∥∇θk
L
(
Θt
)∥∥2 ≤ O

(
(40L+ 9σ2)

(
L(Θ∗)− L(Θ0)

)
4T

)
, (53)

which denotes the algorithm achieve sub-linear convergence rate.
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Proof. Each M step of RobustCluster can be seen as optimizing θ1, · · · ,θK respectively. Then we have,

L(Θt+1)− L(Θt) =

K∑
k=1

L(Θt
k)− L(Θt

k−1) , (54)

where we define,

Θt
k =

[
θt+1
1 , · · · ,θt+1

k ,θt
k+1 · · · ,θt

K

]
, (55)

and Θt
0 = Θt, Θt

K = Θt+1. Then we define,

Fk(θν) =
1

N

M∑
i=1

Ni∑
j=1

ln

(
K∑

n=1

ωi;nĨin(xij , yij ;θn)

)
, (56)

where θn ∈ Θt
k for n ̸= ν, and θν is the variable in Fk(θν). Define γk

i,j;k that corresponding to Θk, we have,

L(Θt+1)− L(Θt)

=

K∑
k=1

L(Θt
k)− L(Θt

k−1) , (57)

=

K∑
k=1

Fk(θ
t+1
k )− Fk(θ

t
k) , (58)

≥
K∑

k=1

〈
∇Fk(θ

t
k),θ

t+1
k − θt

k

〉
,

−

L

2
+

3

16N

M∑
i=1

Ni∑
j=1

∥∥∇f(xij , yij ,θ
t
k)
∥∥2∥∥θt+1

k − θt
k

∥∥2
−

 L

16N

M∑
i=1

Ni∑
j=1

∥∥∇f(xij , yij ,θ
t
k)
∥∥∥∥θt+1

k − θt
k

∥∥3 . (59)

The last inequality cones from Lemma B.2. From the results in Theorem A.1, Section A, we have,

∇Fk(θ
t
k) = −

1

N

M∑
i=1

Ni∑
j=1

γk
i,j;k∇θk

f(xij , yij ,θk) , (60)

at the same time, we have,

θt+1
k − θt

k = η∇F0(θ
t
k) = −

η

N

M∑
i=1

Ni∑
j=1

γ0
i,j;k∇θk

f(xij , yij ,θk) . (61)

Then we can obtain, 〈
∇Fk(θ

t
k),θ

t+1
k − θt

k

〉
=
〈
∇Fk(θ

t
k)−∇F0(θ

t
k) +∇F0(θ

t
k),θ

t+1
k − θt

k

〉
, (62)

=
〈
∇Fk(θ

t
k)−∇F0(θ

t
k),θ

t+1
k − θt

k

〉
+
〈
∇F0(θ

t
k),θ

t+1
k − θt

k

〉
, (63)

≥ −
∥∥∇Fk(θ

t
k)−∇F0(θ

t
k)
∥∥ ∥∥θt+1

k − θt
k

∥∥+ 1

η

∥∥θt+1
k − θt

k

∥∥2 , (64)

≥

1

η
− 2L− 3

8N

M∑
i=1

Ni∑
j=1

∥∥∇f(xij , yij ,θ
t
k)
∥∥2∥∥θt+1

k − θt
k

∥∥2
−

 L

8N

M∑
i=1

Ni∑
j=1

∥∥∇f(xij , yij ,θ
t
k)
∥∥∥∥θt+1

k − θt
k

∥∥3 . (65)
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Combine Equation (59) and Equation (65), we have,

L(Θt+1)− L(Θt)

≥
K∑

k=1

1

η
− 5L

2
− 9

16N

M∑
i=1

Ni∑
j=1

∥∥∇f(xij , yij ,θ
t
k)
∥∥2∥∥θt+1

k − θt
k

∥∥2
−

 3L

16N

M∑
i=1

Ni∑
j=1

∥∥∇f(xij , yij ,θ
t
k)
∥∥∥∥θt+1

k − θt
k

∥∥3 , (66)

≥
K∑

k=1

(
1

η
− 5L

2
− 9σ2

16

)∥∥θt+1
k − θt

k

∥∥2
− 3L

16N

 M∑
i=1

Ni∑
j=1

∥∥∇f(xij , yij ,θ
t
k)
∥∥∥∥∥∥∥∥ η

N

M∑
i=1

Ni∑
j=1

γ0
i,j;k∇f(xij , yij ,θ

t
k)

∥∥∥∥∥∥ ∥∥θt+1
k − θt

k

∥∥2 , (67)

≥
K∑

k=1

(
1

η
− 5L

2
− 3σ2

16

)∥∥θt+1
k − θt

k

∥∥2 − 3ηL

16

 1

N

M∑
i=1

Ni∑
j=1

∥∥∇f(xij , yij ,θ
t
k)
∥∥2 ∥∥θt+1

k − θt
k

∥∥2 , (68)

≥
K∑

k=1

(
1

η
− 5L

2
− 9σ2

16
− 3ηLσ2

16

)∥∥θt+1
k − θt

k

∥∥2 , (69)

=

K∑
k=1

(
η − 5Lη2

2
− 9σ2η2

16
− 3η3Lσ2

16

)∥∥∇θk
L(Θt)

∥∥2 . (70)

Then we can observe that the objective L(Θ) converge when,

η ≤ ((1600L2 + 912Lσ2 + 81σ4)1/2 − 40L− 9σ2

6Lσ2
, (71)

and when we set,

η ≤ ((1600L2 + 816Lσ2 + 81σ4)1/2 − 40L− 9σ2

6Lσ2
, (72)

=

√
(40L+ 9σ2)2 + 96Lσ2 − (40L+ 9σ2)

6Lσ2
, (73)

we have,

L(Θt+1)− L(Θt) ≥ η

2

K∑
k=1

∥∥∇F0(θ
t
k)
∥∥2 , (74)

=
η

2

K∑
k=1

∥∥∇θk
L
(
Θt
)∥∥2 . (75)

Then we have,

L(ΘT )− L(Θ0) =

T−1∑
t=0

L(Θt+1)− L(Θt) , (76)

≥ η

2

T−1∑
t=0

K∑
k=1

∥∥∇θk
L
(
Θt
)∥∥2 . (77)
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Because

1

η
=

6Lσ2√
(40L+ 9σ2)2 + 96Lσ2 − (40L+ 9σ2)

, (78)

=
6Lσ2

(√
(40L+ 9σ2)2 + 96Lσ2 + (40L+ 9σ2)

)
96Lσ2

, (79)

=

√
(40L+ 9σ2)2 + 96Lσ2 + (40L+ 9σ2)

16
, (80)

≤ 80L+ 18σ2

16
, (81)

=
40L+ 9σ2

8
. (82)

That is,

1

T

T−1∑
t=0

K∑
k=1

∥∥∇θk
L
(
Θt
)∥∥2 ≤ (40L+ 9σ2)

(
L(Θ∗)− L(Θ0)

)
4T

. (83)

C. Proof of the Convergence Rate of FedRC
Assumption 3 (Unbiased gradients and bounded variance). Each client i ∈ [M ] can sample a random batch ξ from
Di and compute an unbiased estimator gi(ξ,θ) of the local gradient with bounded variance, i.e., Eξ [gi(ξ,θ)] =

1
Ni

∑Ni

j=1∇θf (xi,j , yi,j ,θ) and Eξ

∥∥∥gi(ξ,θ)− 1
Ni

∑Ni

i=1∇θf (xi,j , yi,j ,θ)
∥∥∥2 ≤ δ2.

Assumption 4 (Bounded dissimilarity). There exist β and G such that :

M∑
i=1

Ni

N

∥∥∥∥∥∥ 1

Ni

Ni∑
j=1

K∑
k=1

f (xi,j , yi,j ,θk)

∥∥∥∥∥∥
2

≤ G2 + β2

∥∥∥∥∥∥ 1

N

M∑
i=1

Ni∑
j=1

K∑
k=1

f (xi,j , yi,j ,θk)

∥∥∥∥∥∥
2

.

Theorem C.1 (Convergence rate of FedRC). Under Assumptions 1- 4, when clients use SGD as local solver with learning
rate η ≤ 1√

T
, and run FedRC for T communication rounds, we have

1

T

T∑
t=1

E
[∥∥∇ΘL(Ωt,Θt)

∥∥2
F

]
≤ O

(
1√
T

)
, (84)

1

T

T∑
t=1

E
[
∆ΩL(Ωt,Θt)

]
≤ O

(
1

T
3
4

)
, (85)

where ∆ΩL(Ωt,Θt) = L(Ωt,Θt+1)− L(Ωt,Θt).

Proof. Constructing

gti(Ω,Θ) =
1

Ni

Ni∑
j=1

K∑
k=1

γt
i,j;k

(
f(xi,j , yi,j ,θk) + log(Pk(y))− log(ωi;k) + log(γt

i,j;k)
)
. (86)

Then we would like to show (1) gti(Ω,Θ) is L-smooth to Θ, (2) gti(Ω,Θ) ≥ −Li(Ω,Θ), (3) gti(Ω,Θ) and −Li(Ω,Θ)
have the same gradient on θ, and (4) gti(Ω

t−1,Θt−1) = Li(Ω
t−1,Θt−1). When these conditions are satisfied, we can

directly use Theorem 3.2
′

of (Marfoq et al., 2021) to derive the final convergence rate. Firstly, it is obviously that gti(Ω,Θ)
is L-smooth to Θ as it is a linear combination of K smooth functions. Besides, we can easily obtain that

∂gti(Ω,Θ)

∂θk
=

1

Ni

Ni∑
j=1

γt
i,j;k∇θk

f(xi,j , yi,j ,θk) . (87)
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This is align with the gradient of −Li(Ω,Θ) as shown in Theorem A.1. Then define r(Ω,Θ) = gti(Ω,Θ) +Li(Ω,Θ), we
will have

r(Ω,Θ) = gti(Ω,Θ) + Li(Ω,Θ) (88)

=
1

Ni

Ni∑
j=1

K∑
k=1

γt
i,j;k

(
log(γt

i,j;k)− log(ωi;kĨ(x, y,θk))
)
+ Li(Ω,Θ) (89)

=
1

Ni

Ni∑
j=1

K∑
k=1

γt
i,j;k

(
log(γt

i,j;k)− log(ωi;kĨ(x, y,θk)) + log(

K∑
n=1

ωi;nĨ(x, y,θn))

)
(90)

=
1

Ni

Ni∑
j=1

K∑
k=1

γt
i,j;k

(
log(γt

i,j;k)− log

(
ωi;kĨ(x, y,θk)∑K

n=1 ωi;nĨ(x, y,θn)

))
(91)

=
1

Ni

Ni∑
j=1

KL

(
γt
i,j;k∥

ωi;kĨ(x, y,θk)∑K
n=1 ωi;nĨ(x, y,θn)

)
≥ 0 . (92)

Besides, from Equation 3, we can found that

γt
i,j;k =

ωt−1
i;k Ĩ(x, y,θ

t−1
k )∑K

n=1 ω
t−1
i;n Ĩ(x, y,θ

t−1
n )

, (93)

then the last condition is also satisfied. Therefore, we have shown that FedRC is a special case of the Federated Surrogate
Optimization defined in (Marfoq et al., 2021), and the convergence rate is obtained by

1

T

T∑
t=1

E
[∥∥∇ΘL(Ωt,Θt)

∥∥2
F

]
≤ O

(
1√
T

)
, (94)

1

T

T∑
t=1

E
[
∆ΩL(Ωt,Θt)

]
≤ O

(
1

T
3
4

)
. (95)

D. Related Works
Federated Learning with label distribution shifts. As the de facto FL algorithm, (McMahan et al., 2016; Lin et al.,
2020) proposes to use local SGD steps to alleviate the communication bottleneck. However, the non-iid nature of local
distribution hinders the performance of FL algorithms (Li et al., 2018; Wang et al., 2020b; Karimireddy et al., 2020b;a;
Guo et al., 2021; Jiang & Lin, 2023). Therefore, designing algorithms to deal with the distribution shifts over clients is
a key problem in FL (Kairouz et al., 2021). Most existing works only consider the label distribution skew among clients.
Some techniques address local distribution shifts by training robust global models (Li et al., 2018; 2021), while others
use variance reduction methods (Karimireddy et al., 2020b;a). However, the proposed methods cannot be used directly for
concept shift because the decision boundary changes. Combining FedRC with other methods that address label distribution
shifts may be an interesting future direction, but it is orthogonal to our approach in this work.

Federated Learning with feature distribution shifts. Studies about feature distribution skew in FL mostly focus on
domain generalization (DG) problem that aims to train robust models that can generalize to unseen feature distributions.
(Reisizadeh et al., 2020) investigates a special case that the local distribution is perturbed by an affine function, i.e. from x
to Ax+ b. Many studies focus on adapting DG algorithms for FL scenarios. For example, combining FL with Distribution
Robust Optimization (DRO), resulting in robust models that perform well on all clients (Mohri et al., 2019; Deng et al.,
2021); combining FL with techniques that learn domain invariant features (Peng et al., 2019; Wang et al., 2022a; Shen et al.,
2021; Sun et al., 2022; Gan et al., 2021) to improve the generalization ability of trained models. All of the above methods
aim to train a single robust feature extractor that can generalize well on unseen distributions. However, using a single model
cannot solve the diverse distribution shift challenge, as the decision boundary changes when concept shifts occur.
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Federated Learning with concept shifts. Concept shift is not a well-studied problem in FL. However, some special
cases become an emerging topic recently. For example, research has shown that label noise can negatively impact model
performance (Ke et al., 2022). Additionally, methods have been proposed to correct labels that have been corrupted
by noise (Fang & Ye, 2022; Xu et al., 2022). Recently, (Jothimurugesan et al., 2022) also investigate the concept shift
problem under the assumption that clients do not have concept shifts at the beginning of the training. However, it is
difficult to ensure the non-existence of concept shifts when information about local distributions is not available in practice.
Additionally, (Jothimurugesan et al., 2022) did not address the issue of label and feature distribution skew. In this work,
we consider a more realistic but more challenging scenario where clients could have all three kinds of shifts with each other,
unlike (Jothimurugesan et al., 2022) that needs to restrict the non-occurrence of concept shift at the initial training phase.

Clustered Federated Learning. Clustered Federated Learning (clustered FL) is a technique that groups clients into
clusters based on their local data distribution to address the distribution shift problem. Various methods have been proposed
for clustering clients, including using local loss values (Ghosh et al., 2020), communication time/local calculation time (Wang
et al., 2022b), fuzzy c-Means (Stallmann & Wilbik, 2022), and hierarchical clustering (Zhao et al., 2020; Briggs et al.,
2020; Sattler et al., 2020a). Some approaches, such as FedSoft (Ruan & Joe-Wong, 2022), combine clustered FL with
personalized FL by using a soft cluster mechanism that allows clients to contribute to multiple clusters. Other methods,
such as FeSEM (Long et al., 2023) and FedEM (Marfoq et al., 2021), employ an Expectation-Maximization (EM) approach
and utilize the log-likelihood objective function, as in traditional EM. Our proposed FedRC overcomes the pitfalls of other
clustered FL methods, and shows strong empirical effectiveness over other clustered FL methods. It is noteworthy that
FedRC could further complement other clustered FL methods for larger performance gain.

E. Discussion: Adding Stochastic Noise on γi,j;k Preserves Client Privacy.

The approximation of P(y;θk) in (2) needs to gather
∑M

i=1

∑Ni

j=1 1{yi,j=y}γi,j;k, which may expose the local label

distributions. To address this issue, additional zero-mean Gaussian noise can be added: Cy,i = cξi +
∑Ni

j=1 1{yi,j=y}γi,j;k,
where cξi ∼ N

(
0, ξ2i

)
, and ξi is the standard deviation of the Gaussian noise for client i (which can be chosen by clients).

By definition of Cy = 1/N
∑M

i=1 Cy,i, we have

Cy :=cξg+
1
N

∑M
i=1

∑Ni
j=1

(
1{yi,j=y}γi,j;k

)
, (96)

where cξg ∼ N
(
0,

∑M
i=1 ξ2i/N2

)
, which standard deviation decreases as N increases. Therefore, when N is large, we can

obtain a relatively precise Cy ≈ 1
N

∑M
i=1

∑Ni

j=1 1{yi,j=y}γi,j;k without accessing the true
∑Ni

j=1 1{yi,j=y}γi,j;k. Note that
the performance of FedRC will not be significantly affected by the magnitude of noise, as justified in Figure 14(a) and
Table 10.

F. Discussion: Adaptive FedRC for Deciding the Number of Concepts
In previous sections, the algorithm design assumes a fixed number of clusters equivalent to the number of concepts.
However, in real-world scenarios, the number of concepts may be unknown. This section explores how to determine the
number of clusters adaptively in such cases.

Proposal: extending FedRC to determine the number of concepts. FedRC effectively avoids “bad clustering”
dominated by label skew and feature skew, i.e., variations in P(y;θk) or P(x;θk) among clusters. For example, in the
case of data (x1, y1) that P(y1;θk) or P(x1;θk) is small, the data will assign larger weights to model θk in the next
E-step (i.e. (3)) of FedRC. It would increase the values of P(y1;θk) and P(x1;θk) to avoid the unbalanced label or feature
distribution within each cluster.

As a result, data only have feature or label distribution shifts will not be assigned to different clusters, and empty clusters
can be removed: we conjecture that when (1) the weights γijk converge and (2) K is larger than the number of concepts,
we can determine the number of concepts by removing model θk when

∑
i,j γi,j;k → 0. More discussions in Appendix F.

Verifying the proposal via empirical experiments. We conduct experiments on CIFAR10 using the same settings as
in Section 3 and run FedRC with K = 4 (greater than the concept number 3). The clustering results of FedRC are shown
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(b) FedEM clustering results
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(c) FedRC clustering results
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(d) FedRC-Adam results

Figure 7: Adaptive process of FedRC. We split CIFAR10 dataset into 300 clients, initialize 6 clusters, and report the global accuracy per
round for the convergence result. We also show the clustering results by calculating weights by

∑
i,j γi,j;k/

∑
i,j,k γi,j;k, representing

the proportion of clients that select model k. We use δ = 0.05 here. Ablation study on δ refers to Appendix I.4.

in Figures 4(c)- 4(d). The results indicate that data with concept shifts are assigned to clusters 2, 3, 4, while data without
concept shifts are not divided into different clusters, leading to minimal data in cluster 1. Hence, cluster 1 can be removed.

Design of adaptive FedRC. The process of adaptive FedRC involves initially setting a large number of clusters K and
checking if any model θk meets the following condition when the weights converge: 1

N

∑M
i=1

∑Ni

j=1 γi,j;k < δ. The value
of δ sets the threshold for model removal. For more details regarding the model removal, refer to Appendix H.4.

F.1. Results of Adaptive FedRC

In this section, we set the number of clusters K = 6, which is greater than the number of concepts, to demonstrate the
effectiveness of the FedRC on automatically deciding the number of concepts.

Accelerating the convergence of γi,j;k by Adam. The adaptive FedRC needs a full convergence of γi,j;k before removing
models, emphasizing the need to accelerate the convergence of γi,j;k. One solution is incorporating Adam (Kingma & Ba,
2014) into the optimization of γi,j,k, by treating γt+1

i,j;k−γt
i,j;k as the gradient of γi,j;k at round t. Please refer to Appendix H.3

for an enhanced optimization on γi,j;k. Figure 7 shows that FedRC exhibits faster convergence after introducing Adam.

Effectiveness of FedRC in determining the number of concepts. In Figure 7, we show 1) FedRC can correctly find the
number of concepts; 2) weights γijk in FedRC-Adam converge significantly faster than FedRC (from 75 to 40 communication
rounds); 3) FedEM failed to decide the number of concepts, and the performance is significantly worse than FedRC.

G. Discussion: Interpretation of the objective function
In this section, we would like to give a more clear motivation about why maximizing our objective function defined by
Equation (1) can achieve principles of robust clustering. In Figure 8, we construct a toy case to show: (1) The value of
L(Ω,Θ) decreases when the data has concept shifts with the distribution of cluster k is assigned to the cluster k. (2) The
value of L(Ω,Θ) is not sensitive to the feature or label distribution shifts.

Furthermore, in Figure 9, we demonstrate that RobustCluster can solve principles of robust clustering by assigning data
with concept shifts to different clusters while maintaining data without concept shifts in the same clusters.

H. Experiment Details
H.1. Algorithm Framework of FedRC

In Algorithm 2, we summarize the whole process of FedRC. In detail, at the beginning of round t, the server transmits
parameters Θt = [θt

1, · · · ,θt
K ] to clients. Clients then locally update γt+1

i,j;k and ωt+1
i;k using (3) and (4), respectively. Then

clients initialize θt,0
i,k = θt

k, and update parameters θt,τ
i,k for T local steps:

θt,τ
i,k =θt,τ−1

i,k − ηl
Ni

Ni∑
j=1

γt
i,j;k∇θfi;k(xi,j, yi,j,θ

t,τ−1
i,k ) , (97)

where τ is the current local iteration, and ηl is the local learning rate.In our algorithm, the global aggregation step uses
the FedAvg method as the default option. However, other global aggregation methods e.g. (Wang et al., 2020a;b) can be
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Figure 8: A toy case to illustrate the change of objective functions with different distribution shifts. We created a simple example to
demonstrate how the value of L(x, y,θk) changes as the type of distribution shifts changes. Note that larger I(x, y) indicates larger
L(Ω,Θ).

Dataset 1

data: (1, 1)

Dataset 2

data: (2, 2)
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data: (1, 3)

Initialization

 
 

  
 

  Step 1 Step 2  
 Step N

 EM
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Figure 9: Toy case compare RobustCluster and EM algorithms. We create a simple example with three datasets that have an equal
number of data points and compare results of EM algorithm and RobustCluster. We show ωi;k and P(x, y;θk) at each step, as well as the
conditional distribution P(y|x) for classification tasks. EM algorithm has low classification results on dataset 1 and 3, but RobustCluster
always finds a model θk where P(y|x;θk) = 1 for all data in all datasets.

implemented if desired. We summarize the optimization of FedRC in Figure 10, and include more details about the model
prediction in Appendix H.2.

We also include the discussion about the convergence rate of FedRC in Appendix C.

H.2. Model Prediction of FedRC for Supervised Tasks.

The model prediction of FedRC for supervised tasks is performed using the same method as in FedEM (Marfoq et al., 2021).
I.e., given data x for client i, the predicted label is calculated as ypred =

∑K
k=1 ωi;kσ(mi,k(x,θk)), where mi,k(x,θk) is

the output of model θk given data x, and σ is the softmax function. Note that the aforementioned fi;k(x, y;θk) is the cross
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Algorithm 2 FedRC Algorithm Framework

1: Input: The number of models K, initial parameters Θ0 = [θ0
1, · · · ,θ0

K ], global learning rate ηg, initial weights
ω0
i;k = 1

K for any i, k, and γi,j;k = 1
K for any i, j, k, local learning rate ηl.

2: Output: Trained parameters ΘT = [θT
1 , · · · ,θT

K ] and weights ωT
i;k for any i, k.

3: for round t = 1, . . . , T do
4: (Optional) Adapt: Check & remove model via Algorithm 3.
5: Communicate Θt to the chosen clients.
6: for client i ∈ St in parallel do
7: Initialize local model θt,0

i,k = θt
k, ∀k.

8: Update γt
i,j;k, ω

t
i;k by (3), ∀j, k.

9: Local update θt,T
i,k by (5) , ∀k

10: Communicate ∆θt
i,k ← θt,T

i,k − θt,0
i,k, ∀k.

11: end for
12: θt+1

k ← θt
k +

ηg∑
i∈St Ni

∑
i∈St Ni∆θt

i,k, ∀k.
13: end for

entropy loss of σ(mi,k(x,θk)) and y. When new clients join the system, they must first perform the E-step to obtain the
optimal weights γi,j;k and ωi;k by (3) on their local train (or validation) datasets before proceeding to test.

H.3. Optimizing γi,j;k for FedRC-Adam

We summarize the optimization steps of FedRC-Adam on γi,j;k as follows:

γ̃t
i,j;k =

ωt−1
i;k Ĩ(xi,j , yi,j ,θk)∑K

n=1 ω
t−1
i;n Ĩ(xi,j , yi,j ,θk)

, (98)

gi,j;k = γt−1
i,j;k − γ̃t

i,j;k , (99)

νti,j;k = (1− β1)gi,j;k + β1ν
t−1
i,j;k , (100)

ati,j;k = (1− β2)g
2
i,j;k + β2a

t−1
i,j;k , (101)

γt
i,j;k = γt−1

i,j;k − α
νti,j;k/(1− β1)√
ati,j;k/(1− β2) + ϵ

, (102)

γt
i,j;k =

max(γt
i,j;k, 0)∑K

n=1 max(γt
i,j;n, 0)

, (103)

where we set α = 1.0, β1 = 0.9, β2 = 0.99, and ϵ = 1e− 8 in practice by default. The Equation (103) is to avoid γt
i,j;k < 0

after adding the momentum.

H.4. Removing the Models in Adaptive Process

In Algorithm 3, we show how to remove the models once we decide the model could be removed. Once the model θk is
decided to be removed, the server will broadcast to all the clients, and clients will remove the local models, and normalize
γi,j;k and ωi;k by Line 7 and Line 9 in Algorithm 3.

H.5. Framework and Baseline Algorithms

We extend the public code provided by (Marfoq et al., 2021) in this work. For personalized algorithms that don’t have a
global model, we average the local models to create a global model and evaluate it on global test datasets. When testing
non-participating clients on clustered FL algorithms (IFCA, CFL, and FeSEM), we assign them to the cluster they performed
best on during training.
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Figure 10: Illustration of the optimization process of FedRC.

Algorithm 3 Check and remove model in FedRC

1: Input: Threshold value δ, number of clients M , number of data in each client Ni, number of model K, γk =
1
N

∑M
i=1

∑Ni

j=1 γi,j;k for each k.
2: for model k = 1, . . . ,K do
3: if 1

N

∑M
i=1

∑Ni

j=1 γi,j;k < δ then
4: Remove model k.
5: for client i = 1, . . . ,M do
6: Remove γi,j;k for all j.
7: for client τ = 1, . . . ,K, τ ̸= k do
8: γi,j;τ =

γi,j;τ∑
τ
′ γ

i,j;τ
′

for all j.

9: end for
10: Remove ωi;k.
11: Update ωi;τ by Equation (3) for all τ ̸= k.
12: end for
13: end if
14: end for

H.6. Experimental Environment

For all experiments, we use NVIDIA GeForce RTX 3090 GPUs. Each simulation trail with 200 communication rounds and
3 clusters takes about 9 hours.

H.7. Models and Hyper-parameter Settings

We use a three-layer CNN for the FashionMNIST dataset, and use pre-trained MobileNetV2 (Sandler et al., 2018) for
CIFAR10 and CIFAR100 datasets. We set the batch size to 128, and run 1 local epoch in each communication round by
default. We use SGD optimizer and set the momentum to 0.9. The learning rates are chosen in [0.01, 0.03, 0.06, 0.1], and
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we run each algorithm for 200 communication rounds, and report the best result of each algorithm. We also include the
results of CIFAR10 and CIFAR100 datasets using ResNet18 (He et al., 2016) in Table 2. For each clustered FL algorithm
(including FedRC), we initialize 3 models by default following the ideal case. We also investigate the adaptive process by
initialize 6 models at the beginning in Figure 7.

H.8. Datasets Construction

FashionMNIST dataset. We split the FashionMNIST dataset into 300 groups of clients using LDA with a value of 1.0
for alpha. 30% of the clients will not have any changes to their images or labels. For 20% of the clients, labels will not be
changed, and we will add synthetic corruptions following the idea of FashionMNIST-C with a random level of severity from
1 to 5. 25% of the clients will have their labels changed to C − 1− y, where C is the number of classes, and y is the true
label. We will also add synthetic corruption to 20% of these clients (5% of 300 clients). Finally, 25% of the clients will have
their labels changed to (y + 1) mod C, and we will also add synthetic corruptions to 20% of these clients.

CIFAR10 and CIFAR100 datasets. For the MobileNetV2 model, we divided the dataset into 300 smaller groups of data
(called "clients"). To ensure that each group had enough data to be well-trained, we first made three copies of the original
dataset. Then, we used a technique called Latent Dirichlet Allocation (LDA) with a parameter of α = 1.0 to divide the
dataset into the 300 clients. For the ResNet18 model, we also used LDA with α = 1.0, but we divided the dataset into 100
clients without making any copies. Then 30% of the clients will not have any changes to their images or labels. For 20% of
the clients, labels will not be changed, and we will add synthetic corruptions following the idea of FashionMNIST-C with a
random level of severity from 1 to 5. 25% of the clients will have their labels changed to C − 1− y, where C is the number
of classes, and y is the true label. We will also add synthetic corruption to 20% of these clients (5% of 300 clients). Finally,
25% of the clients will have their labels changed to (y + 1) mod C, and we will also add synthetic corruptions to 20% of
these clients.

Test clients construction. We directly use the test datasets provided by FashionMNIST, CIFAR10, and CIFAR100 datasets,
and construct 3 test clients. The labels for the first client remain unchanged. For the second client, the labels are changed to
C − 1− y, and for the third client, the labels are changed to (y + 1) mod C.

I. Additional Experiment Results
I.1. Results on Real-World Concept Shift Datasets

In this section, we include two real-world datasets that naturally have concept shifts, including Airline and Electricity
datasets, and the prepossess we used is the same as (Tahmasbi et al., 2021):

• Airline (Ikonomovska, 2020): The real-world dataset used in this study comprises flight schedule records and binary
class labels indicating whether a flight was delayed or not. Concept drift may arise due to changes in flight schedules,
such as alterations in the day, time, or duration of flights. For our experiments, we utilized the initial 58100 data points of
the dataset. The dataset includes 13 features.

• Electricity (Harries et al., 1999): The real-world dataset utilized in this study includes records from the New South
Wales Electricity Market in Australia, with binary class labels indicating whether the price changed (i.e., up or down).
Concept drift in this dataset may arise from shifts in consumption patterns or unforeseen events.

For each dataset, we first construct two test datasets that have concept shifts with each other, and have balanced label
distribution. For the remaining data, we split the dataset to 300 clients using LDA with α = 0.1. We use a three layer
MLP for training, and initialize 3 models for all the algorithms. We set the batch-size to 128, learning rate to 0.01, and
run algorithms for 500 communication rounds. Results in Table 3 show FedRC outperform other clustered FL algorithms
significantly on these two datasets.

I.2. Visualization of Cluster Division Results

In this section, we provide the comprehensive visualization of the cluster division results of FedRC. The experiment settings
are the same to Section 5.1.
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Table 3: Results of algorithms on Airline and Electricity datasets. We report the best mean accuracy on test datasets.

Algorithms Airline Electricity

FedAvg 51.69 48.83
FeSEM 51.25 50.21
IFCA 50.14 49.67

FedEM 50.36 54.79
FedRC 59.14 60.92
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Figure 11: Clustering results of FedRC w.r.t. classes/feature styles/concepts. A larger circle size indicates that more data points
associated with a class, feature style, or concept are assigned to cluster k. The number of clusters is selected from the range [3, 4], and the
number of concepts is consistently set to 3 for all experiments.

Cluster division results of baseline algorithms on CIFAR10. In Figure 12 and Figure 11, we present the cluster division
results of both existing methods and FedRC on CIFAR-10 datasets. The results reveal that: (1) existing methods tend to
assign data samples with the same labels to the same clusters (refer to Figures 12(a), 12(d), 12(g)); (2) existing methods are
ineffective in assigning data samples with concept shifts to different clusters; instead, samples with the same concepts are
uniformly distributed across various clusters (refer to Figures 12(c), 12(f), 12(i), 12(l)); and (3) the FedRC correctly assign
samples with concept shifts into different clusters (refer to Figures 11(c), 11(f)).

The effectiveness of FedRC remains on various datasets. In Figure 13, we present the cluster division results of FedRC
for the CIFAR10, CIFAR100, and Tiny-ImageNet datasets. The findings demonstrate that FedRC consistently assigns data
samples with concept shifts to distinct clusters.

I.3. Ablation Study on FedRC

In this section, we present additional findings from our ablation study on local steps, concept count, and client involvement.

Results with additional PFL baselines. In Table 4, we include more personalized FL methods, including local,
pFedMe (T Dinh et al., 2020), and APFL (Deng et al., 2020). Results show personalized FL methods struggle to generalize
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Figure 12: Clustering results w.r.t. classes/feature styles/concepts. After data construction, each data x will have a class y, feature style
f , and concept c. We report the percentage of data points associated with a class, feature style, or concept are assigned to cluster k. For
example, for a circle centered at position (y, k), a larger circle size signifies that more data points with class y are assigned to cluster k.

to global distributions, in contrast to the FedRC-FT constructed by fine-tuning FedRC for one local epoch can achieve
comparable performance with personalized FL methods on local accuracy while maintaining the high global performance.
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Figure 13: Clustering results of FedRC w.r.t. concepts on various datasets. After data construction, each data x will have a class y,
feature style f , and concept c. We report the percentage of data points associated with the concepts that are assigned to cluster k. For
example, for a circle centered at position (c, k), a larger circle size signifies that more data points with concept c are assigned to cluster k.

Table 4: Performance of algorithms over various datasets and neural architectures. We evaluated the performance of our algorithms
using the FashionMNIST, CIFAR10 and CIFAR100 datasets split into 300 clients. We initialized 3 models for clustered FL methods and
reported mean local and global test accuracy on the round that achieved the best train accuracy for each algorithm. We report FedRC-FT
by fine-tuning FedRC for one local epoch; “CFL (3)” refers to restricting the number of models in CFL (Sattler et al., 2020b) to 3. We
highlight the best and the second best results for each of the two main blocks, using bold font and blue text.

Algorithm FashionMNIST (CNN) CIFAR10 (MobileNetV2) CIFAR100 (MobileNetV2)

Local Global Local Global Local Global

FedAvg 42.12 ±0.33 34.35 ±0.92 30.28 ±0.38 30.47 ±0.76 12.72 ±0.82 10.53 ±0.57

IFCA 47.90 ±0.60 31.30 ±2.69 43.76 ±0.40 26.62 ±3.34 17.46 ±0.10 9.12 ±0.78

CFL (3) 41.77 ±0.40 33.53 ±0.35 41.49 ±0.64 29.12 ±0.02 26.36 ±0.33 7.15 ±1.10

FeSEM 60.99 ±1.01 47.63 ±0.99 45.32 ±0.16 30.79 ±0.02 18.46 ±3.96 9.76 ±0.64

FedEM 56.64 ±2.14 28.08 ±0.92 51.31 ±0.97 43.35 ±2.29 17.95 ±0.08 9.72 ±0.22

FedRC 66.51 ±2.39 59.00 ±4.91 62.74 ±2.37 63.83 ±2.26 21.64 ±0.33 18.72 ±1.90

local 92.79 ±0.58 12.92 ±4.93 82.71 ±0.25 10.59 ±0.69 86.58 ±0.08 1.00 ±0.18

pFedMe 93.13 ±0.32 14.77 ±3.39 82.63 ±0.05 9.87 ±0.85 86.83 ±0.23 1.20 ±0.04

APFL 93.29 ±0.16 33.40 ±0.89 85.03 ±0.54 27.57 ±2.50 88.09 ±0.13 8.52 ±0.73

CFL 42.47 ±0.02 32.37 ±0.09 67.14 ±0.87 26.19 ±0.26 52.90 ±1.48 1.65 ±0.96

FedSoft 91.35 ±0.04 19.88 ±0.50 83.08 ±0.02 22.00 ±0.50 85.80 ±0.29 1.85 ±0.21

FedRC-FT 91.02 ±0.26 62.37 ±1.09 82.81 ±0.90 65.33 ±1.80 87.14 ±0.39 16.27 ±0.09

Ablation studies on local steps. In Table 5, we demonstrate the impact of the number of local epochs on the performance
of different algorithms. Our results indicate that FedRC consistently outperforms the other baseline algorithms, even as
the number of local epochs increases. However, we also observe that FedRC is relatively sensitive to the number of local
epochs. This may be due to the fact that a large number of local steps can cause the parameters to drift away from the true
global optima, as previously reported in several FL studies (e.g. (Karimireddy et al., 2020b; Li et al., 2020; 2021)). In the E
step, this can make it more difficult for the algorithm to accurately find γi,j;k based on sub-optimal parameters.

Ablation studies on partial client participation. We have included the ablation study about the number of clients
participating in each round in the main paper. In Table 6, we report the final accuracies on both local and global test datasets
to include more details. Results show FedRC is robust to the partial client participation.

Ablation study on the number of concepts. We change the number of concepts in [1, 3, 5], and report the local and
global accuracy in Table 7. Results show that: 1) FedRC always achieves the best global accuracy compare with other
algorithms, indicating the robustness of trained models by FedRC. 2) Although FedEM may achieve better local accuracy,
the generalization ability of trained models is poor and we believe that it is an over-fitting to local data.
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Figure 14: Ablation studies on the magnitude of noise. We shows FedRC’s local and global accuracies with different noise std values ξi.

Ablation studies when the number of clusters is less than the number of concepts. We conduct experiments with
K = 2 and the number of concepts to 3 in Table 9, results show that FedRC still outperforms other methods.

Ablation studies on different magnitudes of noise. We experimented with varying noise magnitudes, particularly
focusing on larger magnitudes as shown in Table 10. The results demonstrate that: (1) FedRC can effectively handle a
relatively high magnitude of noise. In our experiments, the expected value of ξi is 45 before noise addition. We found that
setting ξi = 25 ensures privacy without sacrificing performance. (2) Systems with more clients can accommodate larger
levels of noise. As illustrated in Figure 14(a), adding noise up to 50 has a slight impact on performance with 300 clients,
while it significantly affects the performance of FedRC with 100 clients.

Ablation studies using shared feature extractors. To reduce the communication and computation costs of FedRC, we
are considering using shared feature extractors among clusters. As reported in Table 11, utilizing shared feature extractors
not only significantly reduces communication and computation costs but also improves the performance of FedRC.

Ablation studies on scenarios with an imbalance in the number of samples across clusters. We conducted experiments
in which the number of samples in each cluster followed a ratio of 8:1:1, as shown in Table 12. Results show that FedRC
maintained a significantly higher global accuracy when compared to other methods.

Ablation studies on the number of clusters. We conducted ablation studies on the number of clusters, as shown in
Table 14. The results indicate that (1) FedRC consistently achieves the highest global accuracy across all algorithms, and (2)
while increasing the number of clusters improves local accuracy in clustered FL approaches, it often has a detrimental effect
on global accuracy, which is the key metric in this study.

FedRC has the potential to handle label noise scenarios. Following the settings in Fang & Ye (2022); Xu et al. (2022),
we examined the performance of FedRC in label noise scenarios. The results show that FedRC outperforms other clustered
FL methods and FedAvg in label noise scenarios.

I.4. Ablation Study on Adaptive FedRC

In this section, we present the ablation studies on value of δ and the convergence curve of FedRC compare with FedRC-Adam.

Ablation studies on value of δ. We vary the value of δ as the threshold for removing models, and results in Figures 15
and 16 show that: 1) both FedRC and FedRC-Adam can find the true number of concepts. 2) FedRC-Adam is more robust
to δ, while γijk in FedRC converge slower as δ decreases. 3) FedRC-Adam converges faster initially, but the final results are
similar.
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(a) Clustering results with δ = 0.05

0 20 40 60 80 100 120 140
Communication Rounds

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

W
ei

gh
ts

Model 1
Model 2
Model 3
Model 4
Model 5
Model 6

0 20 40 60 80 100 120 140
Communication Rounds

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

W
ei

gh
ts

Model 1
Model 2
Model 3
Model 4
Model 5
Model 6

(b) Clustering results with δ = 0.025

Figure 15: Clustering results of FedRC and FedRC-Adam on different δ We split CIFAR10 dataset to 300 clients, initialize 6 models,
and report clustering results by calculating weights by

∑
i,j γi,j;k/

∑
i,j,k γi,j;k, which represents the portion of clients that choose the

model k.
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(a) Curvergence curve with δ = 0.05
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Figure 16: Convergence curve of FedRC and FedRC-Adam with different δ. We split CIFAR10 dataset to 300 clients, initialize 6
models, and report the convergence curve of FedRC and FedRC-Adam with δ = [0.05, 0.025]. We use adaptive process, and models is
removed to 3 as in Figure 15.
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Table 5: Ablation study on the number of local epochs. We split CIFAR10 dataset into 300 clients, and set the number of local epochs
to {1, 5}. We run algorithms for 200 communication rounds, and report the global accuracy on the round that achieves the best train
accuracy.

Algorithm 1 5

Local Global Local Global

FedAvg 30.28 30.47 29.75 29.60
IFCA 43.76 26.62 43.49 35.50

FeSEM 45.32 30.79 38.32 24.33
FedSoft 83.08 22.00 82.20 19.67
FedEM 51.31 43.35 55.69 50.17
FedRC 62.74 63.83 57.31 57.43

Table 6: Ablation study on the number of clients participating in each round. We Split CIFAR10 dataset into 300 clients, and choose
{20%, 40%, 60%, 80%, 100%} clients in each round. We run algorithms for 200 communication rounds, and report the global accuracy
on the round that achieves the best train accuracy.

Algorithm 0.2 0.4 0.6 0.8 1.0

Local Global Local Global Local Global Local Global Local Global

FedAvg 29.22 31.10 29.61 29.43 30.63 31.17 30.46 29.03 30.28 30.47
IFCA 31.95 16.67 38.07 23.33 41.26 29.57 58.86 49.50 43.76 26.62

FeSEM 29.86 25.37 38.31 28.00 36.05 32.93 40.53 27.53 45.32 30.79
FedSoft 66.59 10.03 67.37 9.20 70.76 10.00 85.37 10.20 83.08 22.00
FedEM 52.65 36.17 51.75 32.23 52.81 44.87 52.44 47.17 51.31 43.35
FedRC 61.33 62.10 62.02 64.2 65.24 65.07 63.97 63.90 62.74 63.83

I.5. Ablation Studies on Single-type Distribution Shift Scenarios.

In this section, we evaluate the performance of clustered FL algorithms on scenarios that only have one type of distribution
shifts as in traditional FL scenarios. As shown in Table 8, we can find that FedRC achieve comparable performance with
other clustered FL methods on these less complex scenarios.

J. Discussion: Definition of Concept Shifts
Following the definitions outlined in the dataset shift literature, specifically Definition 4 in Moreno-Torres et al. (2012) and
Source 2 in Lu et al. (2018), we categorize concept shifts into the following classifications:

• Instances where pi(y|x) ̸= pj(y|x) and pi(x) = pj(x) in X → Y problems, indicating "same feature different labels".
• Instances where pi(x|y) ̸= pj(x|y) and pi(y) = pj(y) in Y → X problems, signifying “same label different features”.

Table 7: Ablation study on the number of concepts. We split CIFAR10 dataset to 300 clients, and change the number of concepts to
[1, 3, 5], and initialize [3, 3, 5] models respectively. We report the local and global accuracy on the round that achieves the best train
accuracy for each algorithm.

Algorithm 1 3 5

Local Global Local Global Local Global

FedAvg 53.63 61.90 30.28 30.47 18.55 16.54
FeSEM 53.25 48.00 45.32 30.79 26.84 17.96
FedEM 64.37 58.00 51.31 43.35 51.82 17.76
FedRC 58.78 64.20 62.74 63.83 39.27 39.34
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Table 8: Ablation study on single-type distribution shift scenarios We split CIFAR10 dataset into 100 clients, and set the number of
local epochs to 1. We run algorithms for 200 communication rounds, and report the global accuracy and local accuracy on the round that
achieves the best train performance.

Algorithm Feature Shift Only Concept Shift Only Label Shift Only

Local Global Local Global Local Global

FedAvg 70.92 79.30 33.76 33.00 65.88 65.80
IFCA 71.68 80.90 77.68 77.87 36.68 14.80

FeSEM 66.78 77.10 40.18 38.97 50.52 26.80
FedEM 69.28 80.00 77.60 78.57 78.04 70.00
FedRC 68.94 81.40 77.22 78.00 70.70 70.60

Table 9: Performance of algorithms with K = 2. We evaluated the performance of algorithms with insufficient number of clusters.
We initialized 2 clusters for clustered FL methods and reported mean local and global test accuracy on the round that achieved the best
train accuracy for each algorithm. The CIFAR10 dataset is split to 100 clients and has 3 concepts.

Algorithms FedAvg FeSEM FedEM FedRC

Local Acc 28.74 30.50 42.48 43.82
Global Acc 28.43 21.03 30.57 42.50

Table 10: Performance of FedRC with various magnitude of the noise. We evaluated the performance of FedRC using CIFAR10
dataset with 100 clients, and vary the magnitude of the noise from 0 to 100. We initialized 3 clusters for FedRC and reported mean
local and global test accuracy on the round that achieved the best train accuracy for each algorithm.

Magnitude of the noise ξi = 0 ξi = 10 ξi = 25 ξi = 50 ξi = 100

Local Acc 48.70 44.72 45.20 42.60 41.52
Global Acc 44.37 46.23 47.10 36.97 28.23

Table 11: Performance of FedRC using shared feature extractors. We evaluated the performance of FedRC using CIFAR10 dataset
with 100 clients using shared feature extractors for all the clusters to mitigate the communication and computation overhead. We
initialized 3 clusters for FedRC and reported global test accuracy on the round that achieved the best train accuracy for each algorithm.
We also report the size of parameters we transmitted and trained in each communication round as the Size of Parameters.

Algorithm CIFAR10 Tiny-ImageNet

Size of Parameters Global Acc Size of Parameters Global Acc

FedRC 6.71M 44.37 7.44M 28.47
FedRC (shared feature extractor) 2.26M 54.53 2.99M 33.80

Table 12: Performance of algorithms with imbalance in the number of samples across clusters. We evaluated the performance
of algorithms with imbalance in the number of samples across clusters. In detail, we split CIFAR10 into 100 clients, and each concept
has [80, 10, 10] clients. We initialized 3 clusters for clustered FL methods and reported mean local and global test accuracy on the
round that achieved the best train accuracy for each algorithm.

Algorithms FeSEM IFCA FedEM FedRC

Local Acc 38.20 39.72 55.96 55.64
Global Acc 16.70 16.37 26.30 45.77

Here, X → Y denotes the utilization of X as inputs to predict Y . Following most studies in FL, this paper focuses on the
X → Y problems, thereby investigating "same feature different labels" problems. Moreover, within the context of X → Y
problems, we contend that "same label different features" aligns more closely with the definition of "feature shift" rather
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Table 13: Performance of algorithms in label noise scenarios. We evaluated the performance of algorithms in the label noise scenarios.
In detail, we split CIFAR10 into 100 clients, and Pairflip is to randomly convert the labels. Symflip is to change y to (y + 1)%10. σ
is the noisy rate. We initialized 3 clusters for clustered FL methods and reported the global test accuracy on the round that achieved
the best train accuracy for each algorithm. The CIFAR10 dataset is split to 100 clients.

Algorithms FedAvg FeSEM IFCA FedEM FedRC

Pairflip, σ = 0.2 52.35 35.25 20.55 57.55 59.95
Symflip, σ = 0.2 52.60 32.40 30.35 53.00 55.25

Table 14: Performance of algorithms using different number of clusters. We evaluated the performance of algorithms using CIFAR10
and Tiny-ImageNet datasets with 100 clients. We initialized 3 and 5 clusters for clustered FL algorithms and reported local and global
test accuracy on the round that achieved the best train accuracy for each algorithm.

Algorithm IFCA FeSEM FedEM FedRC

Local Acc Global Acc Local Acc Global Acc Local Acc Global Acc Local Acc Global Acc

CIFAR10 (3 cluster) 41.12 16.53 31.74 14.80 49.18 26.00 48.70 44.37
CIFAR10 (5 cluster) 45.42 11.07 41.26 12.63 61.14 27.27 51.48 46.67

Tiny-ImageNet (3 cluster) 23.34 13.57 23.59 11.93 27.51 15.83 34.48 28.47
Tiny-ImageNet (5 cluster) 28.12 11.03 28.68 11.03 31.92 17.77 38.18 28.07

Table 15: Performance of FedRC using hard clustering for optimization and prediction. We split CIFAR10 and Tiny-ImageNet
datasets to 100 clients, and report the global test accuracy on the round that achieved the best train accuracy for each algorithm. The
(original) FedRC is trained using soft clustering, and the predictions of all models are also ensembled to derive the final prediction results.
FedRC + TeHC is trained using soft clustering but only employs the models with the highest clustering weights for prediction. FedRC
+ TrHC is both trained and tested using a hard clustering method. This approach optimizes only the models with the highest clustering
weights in local optimization steps and also uses a single model for prediction.

Algorithms FedRC FedRC + TeHC FedRC + TrHC

CIFAR10 44.37 48.03 20.5
Tiny-ImageNet 27.79 29.23 11.47

than concept shift, as depicted in Clients 2 and 3 of Figure 1. Notably:

• Feature shift scenarios, such as those involving augmentation methods (CIFAR10-C, CIFAR100-C) employed in our
paper, or natural shifts in domain generalization, often give rise to "same label different features" issues.

• In "same label different features" scenarios, where the same x is not mapped to different y values, shared decision
boundaries persist, obviating the need for assignment into distinct clusters.

Consequently, we treat the challenge of "same feature different labels" as a manifestation of "feature shift" in this paper.
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