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ABSTRACT

Understanding how long-term stimulation reshapes neural circuits requires uncov-
ering the rules of brain plasticity. While short-term synaptic modifications have
been extensively characterized, the principles that drive circuit-level reorganiza-
tion across hours to weeks remain unknown. Here, we formalize these principles
as a latent dynamical law that governs how recurrent connectivity evolves under
repeated interventions. To capture this law, we introduce the Stimulus-Evoked
Evolution Recurrent dynamics (STEER) framework, a dual-timescale model that
disentangles fast neural activity from slow plastic changes. STEER represents
plasticity as low-dimensional latent coefficients evolving under a learnable
recurrence, enabling testable inference of plasticity rules rather than absorbing
them into black-box parameters. We validate STEER with four benchmarks:
synthetic Lorenz systems with controlled parameter shifts, BCM-based networks
with biologically grounded plasticity, a task learning setting with adaptively
optimized external stimulation and longitudinal recordings from Parkinsonian
rats receiving closed-loop DBS. Our results demonstrate that STEER recovers
interpretable update equations, predicts network adaptation under unseen stim-
ulation schedules, and supports the design of improved intervention protocols.
By elevating long-term plasticity from a hidden confound to an identifiable
dynamical object, STEER provides a data-driven foundation for both mechanistic
insight and principled optimization of brain stimulation. The source code
of this study is available at https://anonymous.4open.science/r/
STEER-Stimulus-Evoked-Evolution-Recurrent-dynamics-07B9.

1 INTRODUCTION

Understanding long-horizon plasticity, the principles by which neural circuits reorganize over days
to weeks, is a central problem in neuroscience and a broader challenge for learning systems (Turri-
giano, 2012; Abraham et al., 2019; Appelbaum et al., 2023). These rules determine how the brain
adapts during learning and memory (Speranza et al., 2021) and how interventions reshape network
function over repeated sessions (Huang et al., 2005; Suppa et al., 2016; Sandoval-Pistorius et al.,
2023). Yet despite decades of study, we still lack a predictive rule that connects repeated stimula-
tion to slow circuit reconfiguration. Without such a rule, we cannot anticipate how interventions
accumulate their effects, nor can we design principled strategies for therapies such as deep brain
stimulation (DBS) or transcranial magnetic stimulation (TMS). A data-driven, predictive, and
testable description of plasticity rules at these timescales is therefore urgently needed, for both
mechanistic understanding and clinical optimization.

Existing models fall into two extremes. Classical biophysical rules, such as Hebbian learning (Hebb,
1949) and spike-timing–dependent plasticity (STDP) (Caporale & Dan, 2008; Dan & Poo, 2004),
describe local synaptic changes on millisecond–minute scales. While interpretable, they are too nar-
row to capture circuit-level reorganization across long horizons (Zenke & Gerstner, 2017; Benna &
Fusi, 2016; Frankland & Bontempi, 2005). Conversely, machine learning approaches allow connec-
tivity to vary across sessions (Pandarinath et al., 2018; Pellegrino et al., 2023; Vermani et al., 2025;
Lu et al., 2025), but typically absorb slow change into high-dimensional parameters, entangling fast
activity with slow adaptation. This entanglement impedes the identification of the underlying rule

1

https://anonymous.4open.science/r/STEER-Stimulus-Evoked-Evolution-Recurrent-dynamics-07B9
https://anonymous.4open.science/r/STEER-Stimulus-Evoked-Evolution-Recurrent-dynamics-07B9


054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Day 1 Day 2 Day N

Long-term stimulation induced network plasticitya Unknown plasticity rule

?

?

?

?

𝑑𝑊

𝑑𝑡
= 𝑓𝜃(𝑊)

b

Long-term stimulation induced network plasticitya Modeling unknown plasticity ruleb

Day 1 Day N

Brain network Stimulation

𝑊𝑖𝑗 + ∆𝑊𝑖𝑗

𝑊𝑖𝑗
unit 𝑖

unit 𝑗

Plasticity rule:
𝑑𝑊

𝑑𝑡
= 𝑓𝜃(𝑊)

Figure 1: Motivation. Repeated stimulation induces slow evolution of network plasticity, with the
underlying plasticity rules remaining unknown. The challenge of distinguishing slow plasticity from
fast neural dynamics remains underdeveloped, with dynamical systems theory offering a potential
framework to model these processes: dW

dt = fθ(W ).

and limits generalization beyond the observed protocols. What is missing is a general framework
that uncovers slow plasticity rules and separates them from fast neural dynamics, as well as
that reliably extrapolate to unseen stimulation protocols.

We propose to treat long-term plasticity not as unstructured session-to-session variability but as
a latent dynamical law driven by external protocols. Concretely, we introduce stimulus-evoked
evolution (SE-Evolution): repeated stimulation drives a low-dimensional latent state zk that encodes
plasticity embeddings (e.g., coefficients of recurrent motifs at session k). We formalize the rule as

zk+1 = gθ(zk, uk),

where uk denotes the stimulation protocol and gθ is the plasticity map to be inferred. Once gθ is
identified, we can predict how connectivity and activity will evolve under novel protocols, enabling
counterfactual design.

STEER: a dual-timescale, identifiable formulation. We develop Stimulus-Evoked Evolution
Recurrent dynamics (STEER), a structured model that separates fast within-session activity from
slow across-session adaptation. At the fast timescale, neural responses are generated by session-
specific dynamics with structured recurrent connectivity capturing millisecond activity. At the
slow timescale, latent coefficients zk evolve via a learnable recurrence gθ that is the plasticity rule.
STEER is trained to jointly optimize (i) within-session reconstruction, (ii) cross-session consistency,
and (iii) causal/structural regularizers that enforce dynamical sufficiency and motif interpretability.
This yields identifiable separation between fast and slow processes and turns long-term plasticity
from a confound into an explicit, testable object of inference. The main contribution of STEER is
summarized as follows.

• Conceptual: We introduce the concept of SE-Evolution, framing long-term plasticity as a
low-dimensional latent dynamical law that can be inferred directly from longitudinal data.

• Methodological: We develop STEER, a structured dual-timescale framework with priors
that enable identifiable disentanglement of fast responses and slow network reconfigura-
tion, yielding interpretable plasticity embeddings and motif-level readouts.

• Predictive and out-of-distribution: We show that the learned rule extrapolates to un-
seen stimulation protocols, predicting connectivity across (i) synthetic Lorenz systems, (ii)
BCM-based neural models, (iii) task-learning through stimulation-induced plasticity and
(iv) longitudinal Parkinson’s DBS data, with accurate neural activity forecasts.

2 RELATED WORK

2.1 NEURAL SYSTEM IDENTIFICATION: FLEXIBLE SURROGATES, MISSING SLOW LAWS

Neural system identification grounded in dynamical systems theory (DST) provides powerful surro-
gates for uncovering latent flows in neural data (Durstewitz et al., 2023). RNN-based surrogates can
reconstruct nonlinear interactions and temporal dependencies from time series (Durstewitz et al.,
2023; Luo et al., 2025), and low-rank designs improve sample efficiency and interpretability by con-
straining activity to low-dimensional manifolds (Mastrogiuseppe & Ostojic, 2018; Langdon et al.,
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2023; Valente et al., 2022; Pals et al., 2024). Methods such as SINDy further promote interpretable
discovery of governing equations and primitives (attractors, limit cycles) (Brunton et al., 2016;
Driscoll et al., 2024), while architectural/biophysical priors (e.g., neuromodulatory hypernetworks,
E/I constraints) increase biological plausibility and identifiability (Song et al., 2016; Zhang et al.,
2022; Achterberg et al., 2023; Costacurta et al., 2024).

Limitation relative to our goal. These works predominantly target fast neural dynamics within
sessions. Even when session-to-session variability is allowed, the slow process is typically treated as
unstructured parameter drift inside a high-dimensional model. As a result, (i) fast and slow processes
are entangled, obscuring the plasticity law; (ii) generalization to unseen stimulation protocols is not
a design objective; and (iii) there is no mechanism to make the slow rule identifiable rather than
absorbed into flexible surrogates.

Our motivation. We elevate the slow process to a first-class target: a stimulus-conditioned, low-
dimensional dynamical law that governs across-session reconfiguration. This requires (a) an explicit
dual-timescale factorization to avoid entanglement, (b) structure/priors that restrict the hypothesis
class of slow evolution, and (c) evaluation focused on unseen protocols.

2.2 OBTAINING PLASTICITY RULES: LOCAL/SHORT-TERM UPDATES VS. LONG-TERM
RECONFIGURATION

A parallel line of work focuses on plasticity rules inference and derivation. Bredenberg et al. (2020)
derived a task-dependent Hebbian plasticity rule to enable the learning of efficient, task-specific
representations under resource and noise constraints. Kepple et al. (2022) explore how curriculum
learning can be used to uncover the learning principles underlying both artificial neural networks
and biological brains. Gradient-based parameterizations fit local synaptic update functions (Mehta
et al., 2024). Meta-learning discovers self-organizing rules that stabilize sequence generation under
synaptic turnover (Bell et al., 2024). These approaches illuminate short-term or local adjustments,
often emphasizing immediate pre/post activity or reward signals.

Limitation relative to long-term plasticity. Long-term reconfiguration unfolds over days–weeks
and recruits homeostatic control, synaptic scaling, and neuromodulatory pathways (Turrigiano &
Nelson, 2004; Moulin et al., 2022; Marder, 2012; Liu et al., 2021). Prior methods typically: (i)
focus on microscopic updates rather than the mesoscopic evolution of circuit motifs; (ii) do not ex-
plicitly condition the rule on external stimulation protocols, limiting counterfactual design; (iii) treat
cumulative effects as aggregated parameter drift, which makes the governing slow rule unidentifiable
and hampers extrapolation.

Our motivation. We recast the objective from “recover local updates” to “learn a slow dynamical
law that maps protocol histories to circuit-level coefficients.” Doing so (i) aligns the modeling target
with the experimental reality of longitudinal interventions, (ii) provides a natural handle for protocol
design, and (iii) opens the window to falsifiable rule-level predictions.

2.3 CLASSICAL BIOPHYSICAL RULES: INTERPRETABILITY WITHOUT HORIZON

Biophysical rules such as Hebbian learning and STDP (Hebb, 1949; Caporale & Dan, 2008; Dan &
Poo, 2004) are mechanistically interpretable and operate on millisecond–minute scales. However,
they struggle to capture circuit-level remodeling and memory consolidation across long horizons
(Zenke & Gerstner, 2017; Benna & Fusi, 2016; Frankland & Bontempi, 2005), precisely where
homeostasis and global neuromodulatory control become essential.

Limitation relative to our goal. Their temporal scope and locality make it difficult to predict
multi-session consequences of repeated interventions, or to extrapolate across protocols that differ
in schedule, intensity, or targeting.

How STEER addresses these gaps: (i) From parameter learning to plasticity law. We
model across-session change as a low-dimensional, stimulus-evoked dynamical system, zk+1 =
gθ(zk, uk), rather than unstructured parameter drift. This centers the plasticity rule as the primary
object of inference. (ii) Identifiable dual timescales. A structured decomposition separates fast
within-session responses from slow across-session evolution, augmented with causal/structural reg-
ularizers to promote identifiability of fθ. (iii) Motif-level interpretability. Reading out plasticity

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

��

��
≈ 
�=1

�

 

Shared Low-rank state space

Plasticity predictor

State 
Encoder

Long-term neural recordings

Reconstruction 

Plasticity 
embedding �

Weights
inference

Plasticity 
Encoder

...

��

��

��
...... ...

St
at

e 
D

ec
od

er

Latent Dynamics

recurrent connections
...

��

��

��

scaling factor ��

Sessi
ons

Figure 2: STEER Framework. A dual-timescale, identifiable formulation: within-session dynam-
ics (fast) are generated by structured recurrent connectivity; across-session evolution (slow) follows
a stimulus-conditioned latent law that we infer as the plasticity rule.

embeddings as recurrent motif scales provides mesoscopic, circuit-level summaries consistent with
biological priors (homeostasis, E/I structure, neuromodulation).

3 METHOD

Inspired by neuroscience domain knowledge that high-dimensional neural recordings often admit
low-dimensional latent structure (Valente et al., 2022), yet these structures themselves drift slowly
across sessions during learning (Pellegrino et al., 2023) or long-term stimulation (Borra et al., 2024),
we introduce STEER, a hierarchical model that parameterizes the fast recurrent dynamics within
each session, the slowly varying, session-indexed connectivity governed by a learnable slow law. To
this end, given D ordered sessions with length-T recordings {yk

1:T }Dk=1, the goal of STEER is to use
fast within-session dynamics to identify the slow, stimulus-evoked evolution that governs plasticity.

3.1 TIME-VARYING CONNECTIVITY VIA STRUCTURED LOW-RANK MOTIFS

We model N neural recording units across D sessions. Here, a session denotes a single contiguous
block of population recording from the same preparation, over which we assume the recurrent con-
nectivity is stationary, while it is allowed to change across sessions. For session k ∈ {1, . . . , D},
Wk ∈ RN×N is the recurrent connectivity used by the fast dynamics. Stacking {Wk} along the
session axis yields a tensor W∈RN×N×D, which we represent with a rank-R CP decomposition,

W =

R∑
r=1

ar◦br◦cr, ar,br∈RN , cr∈RD. (1)

Let A = [a1, . . . ,aR], B = [b1, . . . ,bR], and C = [c1, . . . , cR] ∈ RD×R with session coefficients
ck = C⊤

k,: = (ck1 , . . . , c
k
R)

⊤. Then

Wk =

R∑
r=1

ckr arb
⊤
r , k = 1, . . . , D. (2)

Identifiability structure. To reduce CP scaling/sign indeterminacy, we (i) constrain ∥ar∥2 =
∥br∥2 = 1 and absorb scales into ckr ; (ii) penalize orthogonality with ∥A⊤A − I∥2F + ∥B⊤B −
I∥2F ; and (iii) optionally impose Dale’s principle (E/I structure) using a fixed sign mask S ∈
{−1, 0,+1}N×N :

Wk = S⊙ |
R∑

r=1

ckr arb
⊤
r |, (3)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

which preserves prescribed signs (avoiding elementwise absolute values on Wk that would erase
E/I semantics).

3.2 FAST TIMESCALE: LOW-RANK RNN FOR WITHIN-SESSION DYNAMICS

To uncover the low-dimensional dynamics underlying the complex long-term neural recordings, we
introduce a low-rank RNN as the core model to capture the shared latent state space. We encode the
session-wise neural recordings yk into the shared low-rank latent state space hk, where the latent
state evolves as follows:

τ
d

dt
hk(t) = − hk(t) +

( R∑
r=1

ckr arb
⊤
r

)
ϕ
(
hk(t)

)
+ Win u

k(t). (4)

Here, τ > 0 is a time constant, ϕ(·) is an element-wise nonlinearity, uk(t) is the time-varying input
for session k, and Win is the input matrix. A linear projector is used to decode the latent state h
back to the observed space.

3.3 SLOW TIMESCALE: STIMULUS-EVOKED EVOLUTION AS A LATENT LAW

Session-level plasticity embedding. We summarize each session by a plasticity embedding zk ∈
RP , obtained from data (and optionally inputs) via

zk = PlasticityEncoder
(
yk
1:T ,u

k
1:T

)
, (5)

where the encoder can be permutation-aware across trials and invariant to alignment nuisances.

Stimulus-conditioned slow law. Across sessions, zk follows a discrete-time residual evolution
conditioned on a protocol summary ūk = agg(uk

1:T ) (e.g., dose, intensity, schedule):

zk+1 = gθ
(
zk, ūk

)
(6)

= zk + τz
(
Wz ϕ(z

k)− zk +Bu ū
k + bz

)
. (7)

From embedding to motif scales. Plasticity modulates motif strengths via a linear (or sparse)
readout

ck = Mzk + bc, Wk =

R∑
r=1

ckr arb
⊤
r , (8)

which is analogous to neuromodulatory gain control. Sparsity on M promotes interpretability (few
embeddings per motif).

3.4 TRAINING OBJECTIVE AND OPTIMIZATION

We jointly learn fast and slow processes with a composite objective:

L =

D∑
k=1

T∑
t=1

∥yk
t − ŷk

t ∥22︸ ︷︷ ︸
Lfast (within-session multi-step prediction)

+ λslow

D−1∑
k=1

∥∥zk+1 − gθ(z
k, ūk)

∥∥2

2︸ ︷︷ ︸
Lslow (across-session law consistency)

+ λsmooth

D−1∑
k=1

∥ck+1 − ck∥22︸ ︷︷ ︸
Lsmooth (motif-scale smoothness)

, (9)

where gθ is the right-hand side of Eq. 6. For Lfast, we use H-step rollouts (teacher forcing at
the first step, scheduled sampling thereafter) to evaluate multi-step predictivity rather than one-step
error, which better reflects dynamical fidelity over long horizons (Kramer et al., 2022; Brenner
et al., 2022; 2024). The consistency term Lslow ensures the model captures the evolving plasticity
embedding between sessions. The smoothness term Lsmooth enforces gradual, continuous changes
of scaling factors between sessions. Since our framework has two timescales, we must choose how
many steps into the future the model self-predicts the plasticity embedding before re-anchoring to
data. This choice explicitly sets the amount of long-timescale teacher forcing and is needed as our
model forecasts across sessions.

5
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Counterfactual protocols and OOD evaluation. Given a novel stimulation protocol sequence
{ũk}, we compute ˜̄uk, iterate the slow law zk+1 = gθ(z

k, ˜̄uk), obtain c̃k via Eq. 8, assemble
W̃k, and simulate Eq. 4 to predict neural and behavioral outcomes. This separation explicitly tests
whether the learned rule (not merely within-session responses) governs across-session reconfigura-
tion and supports design of unseen protocols.

Implementation notes. We discretize Eq. 4 with stable integrators (e.g., semi-implicit Euler).
During training, only the hyperparameter rank R in the low-rank architecture is selected on a vali-
dation split that holds out full protocols to assess out-of-distribution generalization.

4 EXPERIMENTS

To validate STEER framework, we conducted a series of experiments on synthetic datasets and a real
neural dataset. We generated synthetic data with ground truth using three standard benchmarks: the
Lorenz dynamical system (Lorenz, 1963), the BCM plasticity model (Bienenstock et al., 1982), and
a task-learning setting with adaptively optimized external stimulation (Borra et al., 2024). For the
synthetic datasets, we sampled multivariate time series by varying the underlying ODE parameters.
For the real data, we used longitudinal neural recordings from Parkinsonian rats receiving closed-
loop DBS (Wang et al., 2024). We compared our method with other meta-learning based black-box
dynamical models, a hierarchical PLRNN (Brenner et al., 2025) and a meta-dynamical state space
model (MD-SSM) (Vermani et al., 2025) on synthetic datasets. We compared against a hierarchical
PLRNN to test whether our low-rank inference can match a model that directly infers a full-rank
weight matrix, because the original framework does not generalize to our setting, we use an adapted
version (implementation details in Appendix A.3). We also compared against MD-SSM, which
makes a similar low-rank assumption, to assess whether enforcing a session-invariant latent motif
is important for recovering the plasticity rule, and whether our model can achieve both competitive
fast-timescale accuracy and accurate slow-timescale forecasts (Appendix A.3).

4.1 LORENZ SYSTEMS WITH PARAMETER EVOLUTION

As a classical chaotic system, the Lorenz system (Eq. 10) exhibits complex nonlinear dynamics
and is highly sensitive to initial conditions (butterfly effect), making it an ideal model for studying
complex system dynamics. In this experiment, we aimed to model a plausible dynamic process
that mirrors what is observed in biological neural networks, where synaptic connections can be
strengthened or weakened. Therefore, we predefined plasticity rules that simulate the stimulus-
evoked evolution of system parameters (Fig. 3a), which are expressed as Eq. 11.

ẋ = σ(y − x),

(10)
σm = σmax −

(
σmax − σinit

)
e−m/40,

(11)ẏ = x(ρ− z)− y, ρm = ρinit −
ln(m+ 10)

10
,

ż = xy − βz. βm = βinit +
m

40
ln
(m+ 20

20

)
.

where σinit = 10, σmax = 15, ρinit = 48, βinit = 3.5. The neural trajectories of the Lorenz systems
were generated with a fixed initial state [x(0), y(0), z(0)] = [1, 0, 20], ensuring that observed dis-
tributional shifts are solely attributable to the induced parameter changes, rather than initialization
effects or added noise. The parameter ranges were selected to cover various dynamic regimes, each
characterized by distinct attractor structures such as limit cycles and chaotic behaviors. For each
set of parameters, time series were generated with a maximum length of Tmax = 10000. In total,
100 pairs of parameter-evolving Lorenz dynamics were generated. The first 60 pairs were used for
training, while the remaining 40 pairs were reserved for inference on unseen data.

To optimize model performance, we first searched for the optimal parameters to determine the rank
of the low-rank architecture. Since there was no obvious correlation between the three parameters,
a rank-3 low-rank model was necessary to achieve an accurate approximation (Fig. 3b) and cap-
ture the variation patterns of different systems effectively, thereby enhancing the model’s predictive
ability. We then inferred the implicit scaling factor from the trained model (Fig. 3c). The proposed

6
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Figure 3: STEER uncovers the parameter evolution in Lorenz system. (a) Plasticity rules for
system parameter evolution. (b) Rank selection for a low-rank model, with rank-3 providing optimal
approximation. (c) Predicted implicit scaling factor and its similarity to the true plasticity rule
(DSA = 0.169). (d) Similarity analysis among STEER and other baseline models (MD-SSM and
hierarchical-PLRNN), with STEER having the lowest DSA and best EV (“w.” and “w.o.” denote
with and without forecasting, respectively). (e) Prediction results for unseen data (systems 61 and
100) with high explained variance (EV = 0.961 and EV = 0.974).

model uses implicit scaling factors to adjust the intrinsic recurrent connections, influencing the neu-
ral dynamics similarly to how the brain modulates its neural networks in response to environmental
and internal changes. As the scaling factor is implicit, we employed Dynamical Similarity Analysis
(DSA) (Ostrow et al., 2023) to assess the similarity between the inferred implicit factor and the true
plasticity rule, achieving a DSA score of 0.169. Meanwhile, we compare our framework with two
baselines (MD-SSM and Hierarchical PLRNN) on both predictive performance (larger EV means
better predictive capability) and dynamical similarity (lower DSA means better alignment). Fig. 3d
indicates that STEER has better EV and lower DSA on session-wise prediction. To further validate
the model’s performance, we visualized the prediction results on unseen data (Fig. 3e). Both systems
61 and 100 exhibited high explained variance scores (EV = 0.961 and EV = 0.974, respectively),
demonstrating the model’s robust ability to predict unseen dynamics.

4.2 STIMULUS-EVOKED PLASTICITY IN BCM

To evaluate the performance of plasticity rule inference, we simulated the dual-timescale dynamics
via BCM rule as a controlled benchmark (Fig. 4a–b, Appendix Fig. 1). In this setting, the plasticity
mechanism and stimulus-evoked modular organization are known, enabling direct assessment of the
inferred network reconfiguration across sessions. We modeled the stimulus-evoked modifications of
the recurrent weights across sessions through BCM plasticity rule (Fig. 4a). For session k + 1,

W k+1
hh = ProjE/I

(
W k

hh + ηW
(
h̄ k ⊙ (h̄ k − θ k)

)
(h̄ k)⊤

)
, (12)

where ⊙ denotes element-wise multiplication. h k is neuronal activities and θ k is a neuron-specific
sliding threshold that sets the potentiation–depression boundary, and itself adapts slowly across
sessions (Fig. 4b). We preserved the E/I partition in Whh by fixing outgoing-weight signs (E ≥
0, I ≤ 0). For session k, the neuronal dynamics were governed by a leaky-integrator recurrent
network with fixed Wk

hh and θk (details in Appendix A.1).

We first compared STEER with MD-SSM variants. All models achieved similarly high within-
session predictive accuracy across sessions (EV > 0.9; Fig. 4d), with no significant short-term
differences once capacity is matched (t=0.4221, p>0.05). In contrast, STEER more accurately re-
covered stimulus-evoked cross-session changes in recurrent connectivity: the inferred ∥W∥2 closely

7
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Figure 4: STEER captures stimulus-evoked plasticity in BCM. (a & b) We generate data via a
BCM-driven across-session simulation, subsequently fitting models with a 600/400 train–test split.
(c) Inferred ∥W ∥2 evolution over sessions alignment with the ground truth. Left: Normalized L2-
norm of inferred vs. true W over sessions (mean ± std. across random seeds). Right: ∥W ∥2
alignment (correlation between the session-by-session trajectories of the inferred and ground-truth
∥W ∥2), comparing STEER with and without forecasting to adapted hierarchical-PLRNN, full- and
low-rank MD-SSM baselines. (d) Within-session predictive performance (EV) on all sessions (mean
± std. across random seeds), showing that STEER achieve competitive fast-timescale prediction
accuracy. (e) STEER inferred motif scales c significantly correlates with the ground-truth sliding
thresholds θ principal components.

followed the ground truth, whereas MD-SSM systematically deviated (Fig. 4c). This suggests that
treating each session as effectively independent, or only meta-learning trial-level variability, discards
inter-session structure that is essential for identifying slow network reconfiguration. By explicitly
modeling coupled fast and slow timescales through a shared latent motif, STEER preserves this
information and yields a more faithful reconstruction of plasticity. Consistently, correlations be-
tween c and the leading PCs of the ground-truth thresholds θ (Fig. 4e) show that c captures the
same low-dimensional homeostatic manifold. Thus, c serves as an order parameter for stimulus-
history–dependent plasticity, supporting timescale disentanglement.

To further test slow-timescale identifiability, we evaluated a STEER variant that forecasts slow
parameters 5 sessions ahead, alongside its non-forecast counterpart and the full-rank hierarchical
PLRNN baselines. Even in this harder setting, STEER preserved strong fast-timescale accuracy and
closely tracked session-to-session changes in W. Moreover, the non-forecast STEER variant did
not differ significantly in either slow- or fast-timescale performance from the full-rank hierarchi-
cal model. However, the inferred recurrent weights (Appendix Fig. 2) showed that the hierarchical
PLRNN baseline yielded much weaker modular structure, whereas the low-rank models (STEER
and MD-SSM) recovered modules that closely match the ground-truth organization. This agreement
highlights the advantage of a low-rank structure for recovering stimulus-dependent circuit motifs
shaping population dynamics.

4.3 TASK LEARNING THROUGH STIMULATION-INDUCED PLASTICITY

We construct a synthetic benchmark (Borra et al., 2024) to test whether STEER can recover
stimulation-evoked reconfiguration of recurrent connectivity from population dynamics when the
external drive is itself optimized in closed loop (see Appendix A.1). This setting contrasts with
our BCM dataset, where synaptic updates follow a fixed plasticity rule under prespecified inputs:
here, changes in W(t) arise from adaptive control, and the resulting neural trajectories are shaped
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Figure 5: STEER captures stimulus-evoked plasticity in cycle-wise task learning. (a) Cycle-
wise weight dynamics during task learning and inference. (b) Predictive performance across various
methods. (c) Similarity between cycle-wise weights in model inference and ground truth. STEER
with forecasting demonstrates exceptional performance in prediction accuracy and weight similarity.

by a learned stimulus policy rather than by a hand-designed input ensemble. A recurrent rate net-
work with time-varying connectivity W(t) is driven by control inputs u(t), which are adaptively
optimized across learning cycles k = 0, . . . ,K to steer W toward a ring-attractor target Wtarget.

We first searched for the optimal rank of the low-rank structure of STEER. A rank-7 STEER model
was necessary to achieve an accurate approximation and high similarity (Appendix Fig. 11). The
STEER model effectively captures stimulus-evoked plasticity throughout cycle-wise task learning.
As shown in Fig. 5a, the cycle-wise weight dynamics during task learning and inference highlight
that STEER is capable of inferring module-like weights. In Fig. 5b and c, the predictive performance
in fast-timescale neural dynamics and slow-timescale similarity between cycle-wise weights in the
model inference and the ground truth emphasize STEER’s exceptional performance in prediction
accuracy and replicating the expected weight dynamics.

4.4 PD-DBS LONGITUDINAL NEURAL DATASET

We further validated the proposed framework in the publicly available longitudinal electrophys-
iology and behavior dataset of Parkinson’s disease (PD) rats undergoing closed-loop deep brain
stimulation (Wang et al., 2024). They have validated the efficacy of DBS treatment in alleviating
the symptoms of PD. This dataset is well-suited to our study of inferring brain plasticity rules based
on long-term neural activity by quantifying dynamical and plastic changes across different cohorts.
The dataset comprises three cohorts (i.e., Sham, PD without treatment, and PD with DBS) and was
recorded repeatedly over four weeks (From week 2 to week 5, Fig. 6a). Signals were collected from
layer V of primary motor cortex (M1), providing raw wideband along with derived spikes and local
field potentials (LFPs), accompanied by open-field behavior videos and quantitative measures (see
Appendix A.1 for details). The PD-DBS cohort received closed-loop STN-DBS on days 29 to 33
with simultaneous neural recording, enabling comparisons within subjects before, during and after
stimulation (Fig. 6a).

After modeling, we revealed that a strong alignment between the inferred motif scales c and func-
tional connectivity (FC), indicating a high level of consistency between plasticity factors and FC
(Fig. 6c, see Appendix A.4 for details). Further, we assessed the cosine similarity between ∆c
and ∆FC, showing that all groups had a similar cosine similarity between ∆c and ∆FC across
weeks, supporting that ∆c is closely aligned with the intrinsic functional connectivity (Fig. 6d, see
Appendix A.4 for details). We also present the changes in the magnitude of ∆c (∆cmag) across dif-
ferent groups (PD, PD-DBS, Sham) over the DBS intervention interval (w4→w5), revealing that the
PD-DBS group exhibited significantly higher ∆cmag values compared to the PD and Sham groups

9
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Figure 6: STEER interprets long-term DBS effect in PD rats. (a) Longitudinal experimental
pipeline: repeated recordings across weeks 2–5; PD–DBS receives closed-loop STN–DBS on days
29–33. (b) Long-term stimulation induces functional connectivity plasticity to alleviate the symp-
toms of PD. (c) Alignment between FC trajectories (blue, PCA space) and STEER motif scales ck
(red) across weeks. (d) Week-to-week cosine similarity between ∆c and ∆FC. (e) Magnitude of
plasticity increment (∆cmag = ∥∆c∥2). DBS shows larger changes, consistent with a stimulation-
evoked slow update.

(Fig. 6e). This suggests that DBS stimulation effectively promotes the improvement of neural ac-
tivity in PD rats. Overall, these findings reflect that deep brain stimulation plays a crucial role in
alleviating PD symptoms by modulating neural network plasticity.

5 DISCUSSION AND CONCLUSION

In this study, we presented the STEER framework to learn plasticity rules from neural recordings
under long-term stimulation. STEER formalizes long-term plasticity as a stimulus-conditioned la-
tent dynamical system, zk+1 = gθ(zk, ūk), and enforces an identifiable separation between fast
within-session responses and slow network reconfiguration.

Methodological impact. By leveraging the dual-timescale nature of neural dynamics, STEER
effectively separates fast, within-session neural responses from slower, session-wise plasticity
changes. Across synthetic Lorenz dynamics, BCM-driven networks, task-learning benchmark and
longitudinal PD–DBS recordings, this formulation consistently turns “unstructured variability” into
protocol-indexed trajectories in a low-dimensional plasticity space, yielding interpretable motif-
level readouts and out-of-distribution predictions under unseen stimulation schedules.

Limitations and opportunities. First, our presented behavioral analyses are limited. Linking
c-space trajectories to subject-level outcomes (e.g., motor scores) via mixed-effects models and
prospective perturbations will be crucial. Second, richer biological structure (e.g., cell-type–specific
gains, homeostatic set points, neuromodulator-dependent gating) could be embedded directly into gθ
and the c→W readout. Third, safety-aware design requires constraints on reachable sets of z and
c (e.g., contractive regions and Lyapunov margins). Finally, broader validation across modalities
(optogenetics, TES, TMS), species, and disease states will test the portability of the learned rules.

Outlook. By making the slow rule explicit, STEER turns long-term plasticity from a hidden con-
found into a falsifiable object. We anticipate two immediate payoffs: (i) mechanistic inference,
where motif-level embeddings act as mesoscopic biomarkers of neuromodulatory control; and (ii)
closed-loop design, where protocol parameters are optimized in the space of laws rather than tra-
jectories. We believe this shift, from parameter drift to learned dynamical law, offers a principled
foundation for next-generation neurostimulation that is both interpretable and adaptive.
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A APPENDIX

A.1 DATASET DETAILS

Lorenz system. The famous 3D Lorenz attractor (Lorenz, 1963) is widely used as a benchmark in
data-driven system research. Its governing equations are

ẋ = σ (y − x),

ẏ = x(ρ− z)− y,

ż = xy − βz.

(1)

BCM plasticity rule. The BCM rule employs a sliding threshold mechanism to dynamically adjust
the plasticity gate. It achieves homeostatic regulation based on past activity levels. The update of
the threshold θ is specified by:

θ k+1 = (1− ηθ)θ
k + ηθ

(
h̄ k

)⊙2
, (2)

where x⊙2 denotes element-wise squaring, ηθ ∈ (0, 1) is the smoothing rate and h̄ k is the mean
activity vector in session k:

h̄ k :=
1

K

T−1∑
t=0

hk
t . (3)

The neuron activity in each session k is defined by

hk
t+1 = hk

t +
δ

τh

[
− hk

t +W k
hh tanh(hk

t ) + b+Win u
k
t

]
(4)

where u(t) is a two-channel, piecewise-constant one-hot stimulus alternating across channels (Ap-
pendix Fig. 1). We discretized the dynamics with a forward-Euler step of size δ (set to δ = 1
in practice) and update the state at each step. This threshold implements a homeostatic control
mechanism (Abbott & Dayan, 2001). The dynamics can be interpreted as follows: when the mean
activity h̄,k is persistently elevated, θ increases, thereby raising the plasticity threshold and counter-
acting runaway potentiation. Conversely, reduced activity drives θ downward, permitting synaptic
strengthening. This negative feedback loop ensures stability while maintaining sensitivity to changes
in input statistics.

Together with the weight update rule in Eq. 12, the sliding threshold allows the model to capture
both activity-dependent potentiation/depression and homeostatic regulation across sessions. In our
simulations, this mechanism prevents weights from saturating and enables the emergence of stable
modular connectivity patterns under repeated stimulation. Because the BCM rule is Hebbian in
nature, coactivation of units (Appendix Fig. 1) systematically strengthens their mutual connections
(Appendix Fig. 2), leading to a gradual increase in the norm of the recurrent weight matrix over
sessions.

Task Learning through Stimulation-Induced Plasticity. To construct a dataset in which recur-
rent connectivity evolves under biologically motivated plasticity, we adopt the rate-based network
and plasticity model of (Borra et al., 2024). The network contains N neurons with firing rates r(t) =
(r1(t), . . . , rN (t)) and a time-dependent recurrent connectivity matrix W(t) = (Wij(t))

N
i,j=1. Neu-

ral activity obeys the standard rate dynamics

τn
dri
dt

(t) = −ri(t) + ϕ

∑
j

Wij(t) rj(t) + ui(t)

 , (5)

where τn is the membrane time constant, ui(t) is an externally applied control input on neuron i, and
ϕ(·) is a sigmoidal input–output transfer function saturating at a maximal firing rate rmax. Similarly,
the control signals ui(t) are chosen in the same form as in the original work, and are re-optimized
across learning cycles to steer connectivity towards a predefined target structure.

Synaptic plasticity is modeled as a Hebbian covariance rule with homeostatic feedback and soft
bounds on synaptic amplitudes. The dynamics of each synaptic weight Wij(t) is given by

τs
dWij

dt
(t) = η(αj)

[
ri(t)− θ(αj)

]
rj(t) − β1 |Wij(t)|

(
r2i (t)− θ0(αj)

2
)

− β2 sgn
(
Wij(t)

)
h
(
|Wij(t)| − W̄

)
,

(6)
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Appendix Fig. 1: Stimulus selectivity in simulated neuronal populations. Simulated neuronal
populations show clear stimulus selectivity, with neurons responding preferentially to specific stim-
uli and exhibiting structured co-activation patterns.
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Appendix Fig. 2: Recurrent connection inference. (a) Recurrent weight matrices W at three time
points (sessions 1, 500, and 1000) for the ground truth, STEER, full-rank MD-SSM, and low-rank
MD-SSM. (b) Corresponding changes in connectivity between sessions (∆W).
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where αj ∈ {E, I} denotes the type (excitatory/inhibitory) of presynaptic neuron j, η(αj) is the
learning rate for synapses from that neuron type, and θ(αj) and θ0(αj) are activity thresholds that
stabilize the postsynaptic firing rate. The function

h(x) =

{
x2, x ≥ 0,

0, x < 0,
(7)

implements a soft clipping of synaptic strengths at magnitude W̄ , while β1 and β2 control the
strengths of the two homeostatic terms. We work in the slow-plasticity regime τs ≫ τn, so that
firing rates are (quasi-)stationary on the timescale over which W(t) changes.

Following (Borra et al., 2024), we consider a structural target in which the excitatory and inhibitory
neurons are arranged on concentric rings and the target connectivity Wtarget supports a continuous
ring attractor. Training aims to reshape the initial random connectivity W(0) towards Wtarget by
optimizing the control inputs {ui(t)} over a sequence of learning cycles k = 0, 1, . . . ,K. In each
cycle, the cost

Ltask(W) =
∑
i,j

wαi,αj

(
Wij −W target

ij

)2

(8)

penalizes deviations from the ring-attractor connectivity, with type-dependent weights wαi,αj that
balance contributions from all four connection classes (E→E, E→I, I→E, I→I). Given an estimate of
the current connectivity W(k), we numerically optimize the control stimulation u∗,k

i (t) over a fixed
control period t ∈ [0, Tctrl] to approximately minimize Ltask(W

(k+1)) under the plasticity dynamics
in Eq. 6. Applying u∗,k generates a trajectory of firing rates r(k)(t) and an updated connectivity
matrix W(k+1).

Following (Borra et al., 2024), we model the effect of a fixed control stimulation u(t) applied for
a duration Tctrl starting from connectivity W(k) as a plasticity-induced update ∆W(u, Tctrl,W

(k)),
obtained by integrating the rate and plasticity dynamics in Eqs. 5 and 6. The optimal control for
learning cycle k is then defined as

u∗,k = argmin
u

Ltask
(
W(k) +∆W(u, Tctrl,W

(k))
)
, (9)

which we solve numerically by gradient descent in the space of control signals, while keeping the
Hebbian plasticity rule fixed.

To generate our dataset, we simulate the coupled fast–slow dynamics starting from an initially ran-
dom connectivity W(0) while iteratively optimizing the stimulation controls across learning cycles.
For each cycle k, we record the evoked activity trajectory {r(k)(t)}Tctrl

t=0 under the optimized proto-
col u∗,k, together with the pre- and post-cycle connectivity matrices W(k) and W(k+1) as ground
truths across sessions, which progressively approach the ring-attractor structure (Fig. 5). In our
experiments, we use {r(k)(t)} and the optimized u∗,k as input to STEER, directly testing whether
stimulation-driven connectivity reorganization can be inferred from neural activity alone.

PD-DBS Rat Dataset. We use the public dataset “A longitudinal electrophysiological and behav-
ior dataset for PD rat in response to deep brain stimulation” (Wang et al., 2024), released on the
GIN (G-Node) repository at https://doi.org/10.12751/g-node.lzvqb5. The experi-
mental protocol spanned five weeks and included three groups of animals: sham, PD, and PD-DBS.

• Sham group. Rats underwent the same surgical implantation of stimulation and recording
electrodes as other groups, but instead of the neurotoxin, they received a vehicle injec-
tion (ascorbic acid in saline) into the medial forebrain bundle (MFB; AP ∼ –4.4 mm, ML
∼ –1.2 mm, DV ∼ –7.8 mm). Recording electrodes were implanted only in the left M1
(AP +2.5 mm, ML +3.0 mm, DV –1.6 mm), and stimulation electrodes in left STN (AP
–3.6 mm, ML –2.6 mm, DV –7.6 mm). Sham rats never developed hemi-parkinsonism and
did not receive DBS, serving as surgical and handling controls.

• PD group. Rats received unilateral 6-hydroxydopamine (6-OHDA; 4µl, 5µg/µl) injection
into the left MFB to induce hemi-Parkinsonism, confirmed on Day 6 with apomorphine-
rotation screening (net >210 contralateral turns/30 min). Both stimulation and bilateral
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M1 recording electrodes were implanted as in the DBS group, but no DBS was applied.
These rats allowed assessment of electrophysiological and behavioral alterations due to PD
pathology without stimulation.

• PD-DBS group. Rats received the same unilateral 6-OHDA lesion and electrode implan-
tation as the PD group. In addition, during Days 29–33 (Weeks 4–5), they underwent
closed-loop STN-DBS (130 Hz, 90µs, current individualized by motor threshold) with si-
multaneous recording. The closed-loop controller used spectral features of M1 LFPs (2–
50 Hz) to trigger stimulation. This group provided the longitudinal neural and behavioral
data under chronic adaptive DBS.

Across all groups, electrodes were secured with dental acrylic, and placement was histologically
verified post-mortem. Longitudinal data were organized into three daily recording episodes (morn-
ing/afternoon/night) with synchronized open-field behavior. In our study, for consistent temporal
comparison of neural dynamics and plasticity across cohorts, we selected only the morning episodes
(episode 1) from Weeks 2–5. For the PD-DBS group, all electrophysiology during the DBS inter-
vention window (Days 29–33) was excluded. Otherwise, we adhered to the dataset’s native channel
mapping and indexing conventions.

A.2 SCALING EFFECT FOR NETWORK CONNECTIONS IN STEER

To simulate the phenomenon of neural plasticity induced by long-term stimulation, we infer the
scaling factor ck from neural signals, akin to neuromodulatory signals, which then influences the
network’s connectivity Wk =

∑R
r=1 c

k
rarb

T
r . The scaling factors inferred from plasticity embed-

ding act as adaptive regulators of synaptic strength, where they either enhance or dampen specific
recurrent connections within the network. This dynamic modulation allows for the systematic rein-
forcement or weakening of neural pathways, which in turn drives the plasticity effects in the neural
system. Through this mechanism, the connectivity weights evolve in response to the slow, long-term
changes in the neural embedding, reflecting the neural system’s capacity for learning, adaptation, and
memory formation. The evolving plasticity factors thus enable a flexible and context-sensitive adap-
tation of the network’s structure over time, facilitating the emergence of complex neural behaviors
in response to environmental or internal stimuli.

A.3 BASELINE IMPLEMENTATION DETAILS

Hierarchical PLRNN. The original hierarchical PLRNN learns session-specific parameters di-
rectly rather than inferring session embeddings from the observed signals, and therefore does not
generalize to unseen sessions in our setting. To make it comparable to STEER, we adapted its frame-
work so that session embeddings are inferred from the observations in the same way as in our model,
and these embeddings are then used to generate session-specific full-rank weights by projection.

MD-SSM. Structurally, MD-SSM augments a session-specific low-rank transition with a shared
full-rank recurrent matrix Whh ∈ RN×N ,

W
(s)
Full−rank MD−SSM = U (s)V (s)⊤ +Whh, (10)

resulting in at least N2 additional parameters compared to STEER, which uses session embeddings
only to modulate coefficients of a shared low-rank tensor. To control for learnable parameter count,
we also evaluated a purely low-rank variant obtained by removing Whh, while keeping all other
modeling choices identical.

W
(s)
Low−rank MD−SSM = U (s)V (s)⊤, (11)

This variant isolates the effect of the shared full-rank recurrent dynamics from the meta-dynamical,
session-specific components.

A.4 PD-RAT ANALYSIS

Alignment between model plasticity and FC. After modeling, we observed a strong directional
alignment between the inferred plasticity embedding c and empirical functional connectivity (FC)
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across weeks (Fig. 6c). Concretely, we embedded week-wise FC (Fisher-z upper triangles) and c
(subject-wise z-scored across weeks) into 3D using PCA to obtain trajectories {ft}Tt=1 and {ct}Tt=1
for each subject. Because the PCA for FC and c was performed separately, the two 3D coordinate
systems are only defined up to an arbitrary rotation/reflection and global scale, making their trajecto-
ries not directly comparable. To remove these nuisance degrees of freedom and focus on trajectory
shape, we aligned the plasticity trajectory to the FC trajectory using a full Procrustes similarity
transform.

Let F ∈ RT×3 and C ∈ RT×3 denote the stacked PCA coordinates with rows F⊤
t = f⊤t and

C⊤
t = c⊤t . For each subject we solved the standard Procrustes problem

(µf , µc, R, s) = arg min
µf ,µc∈R3, R⊤R=I, s>0

∥∥F −
(
1µ⊤

f + s (C − 1µ⊤
c )R

)∥∥2
F
,

µf and µc are the row means of F and C, respectively; R is obtained from the SVD of (C −
1µ⊤

c )
⊤(F − 1µ⊤

f ); and s = ∥F − 1µ⊤
f ∥F /∥C − 1µ⊤

c ∥F . The aligned plasticity coordinates are
then defined as:

c̃t = sR
(
ct − µc

)
+ µf .

Directional consistency was quantified by the absolute cosine similarity between consecutive dis-
placement vectors of the FC and aligned plasticity trajectories,

ρt =

∣∣∣∣
(
∆ft

)⊤(
∆c̃t

)
∥∆ft∥2 ∥∆c̃t∥2

∣∣∣∣ ∈ [0, 1], ∆ft = ft+1 − ft, ∆c̃t = c̃t+1 − c̃t.

Change magnitudes and their relation. To relate plasticity changes to FC changes, we computed
week-to-week change vectors ∆ft = ft+1 − ft and ∆ct = c̃t+1 − c̃t, and summarized their mag-
nitudes by ℓ2 norms, ∆FCmag(t) = ∥∆ft∥2 and ∆cmag(t) = ∥∆ct∥2. Across weeks, all groups
showed similar trends in the relation between ∆cmag and ∆FCmag (Fig. 6d), indicating that the
learned plasticity closely tracks intrinsic FC dynamics.

Group comparison (DBS intervention interval). We further examined the DBS intervention inter-
val (w4→w5)—the period when DBS was applied—to assess its effect. We found that the PD-DBS
group exhibited significantly larger ∆cmag than both PD and Sham (two-sample t-tests, p < 0.05;
Fig. 6e), suggesting that DBS induces stronger reorganization of the network plasticity state. Over-
all, these results indicate that deep brain stimulation modulates neural-network plasticity in a manner
that is tightly aligned with FC changes, which may underlie its therapeutic efficacy in PD rats.

A.5 SHUFFLE CONTROLS: TESTING RELIABILITY AND IDENTIFIABILITY OF PLASTICITY
INFERENCE.

We introduce two complementary shuffle experiments because there are two distinct failure modes
when claiming plasticity inference. One is a reliability/interpretability issue: a high plasticity
score could arise from static session-to-session heterogeneity even if there is no coherent slow drift.
The other is an identifiability issue: the model class might impose smooth trends through its in-
ductive bias, making it unclear whether the recovered slow trajectory is truly learned from the data.

A.5.1 EVALUATION STAGE SHUFFLE (NULL DISTRIBUTION FOR THE PLASTICITY METRICS).

We keep the model trained on the true session order fixed, then generate many session-order–shuffled
data and recompute exactly the same plasticity metrics. Because shuffling breaks coherent slow
evolution while preserving within-session statistics, this provides a direct chance baseline for our
plasticity readouts.

Lorenz systems with parameter evolution. Keeping the same trained model but evaluating it on
data with a randomly shuffled session order (Appendix Fig. 3c) destroys the smooth and monotonic
drift structure, yielding highly variable motif scales with no apparent trend, with DSA = 0.302,
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which is larger than the smooth structure. Since baseline models lack predictive capability, we
evaluate their performance using inferred embeddings rather than predicted ones. The resulting
dynamical similarity analysis shows that baseline models exhibit a higher DSA value compared to
STEER (Appendix Fig. 4b and c).

Appendix Fig. 3: Dynamical Similarity Analysis (shuffled data). (a) The predefined plasticity rule.
(b) Predicted embeddings with STEER (no shuffle). (c) Inferred embeddings with STEER (random
shuffled data).

Appendix Fig. 4: Dynamical Similarity Analysis (baseline models). (a) The predefined plasticity
rule. (b) Inferred embeddings with Hierarchical PLRNN. (c) Inferred embeddings with MD-SSM.

Stimulus-evoked plasticity via BCM. In this evaluation stage shuffle experiment, the trajectory
of the motif scales c collapses under this evaluation-time shuffle (as in Appendix Fig. 5b). Also, the
plasticity-related metrics of original order evaluation significantly exceed metrics in shuffled null
distribution (Appendix Fig. 5c). The results indicate that the model’s predictions rely on the real
temporal organization rather than session-wise independent statistics.

PD-DBS Longitudinal Neural Dataset. To test whether the observed alignment between week-
to-week changes in plasticity and FC could be explained by trivial factors, we performed a within-
subject shuffle control. For each rat, we kept the trained model parameters fixed and generated sur-
rogate datasets by randomly permuting the four weeks of data. For every shuffle, we re-computed
the plasticity trajectory c, projected it to 3D via PCA, and mapped it into the FC space using the
Procrustes transform fitted on the original (unshuffled) data. Directional similarity was then quanti-
fied using the same cosine-based metric as in the main text. Fig. 6 summarizes this analysis across
groups (PD, PD-DBS, sham). For all three groups, the real data (no shuffle) show substantially
higher ∆c–∆FC similarity than the week-shuffled baseline, indicating that the alignment cannot be
explained by arbitrary rearrangements of weeks alone.

A.5.2 TRAINING STAGE SHUFFLE (RULING OUT “THE MODEL HALLUCINATES DRIFT”).

We also train the same architecture on session-order–shuffled data and ask whether it can still repro-
duce the ordered slow-trend patterns. If a similar trend emerged despite the absence of chronologi-
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Predicted motif scale

Directly inferred motif scale

Motif scale 𝒄 dynamics trained and evaluated by data in original session order

Motif scale 𝒄 dynamics trained by data in original data and evaluated by shuffled session order
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Appendix Fig. 5: Motif scale dynamics depend on the temporal ordering of sessions. (a) Predicted
motif scales c (magenta) closely track the directly inferred motif scales c (blue) for two example
motifs when the model is trained and evaluated on data in the original chronological session order,
yielding smooth gradual changes across sessions. (b) Using the same model but evaluating on data
with shuffled session order disrupts this structure, producing highly variable motif scales across ses-
sions. (c) Original-order plasticity metrics significantly exceed the session-shuffled null distribution
(t=-134, p < 1e− 5 for ∥W∥2 alignment and t=-388, p < 1e− 5 for max correlation).

Appendix Fig. 6: Shuffle control for ∆c–∆FC alignment. Bars show the mean similarity between
∆c and ∆FC across subjects (± SEM) for each rat group (PD, PD-DBS, sham). Blue bars corre-
spond to the real data (no shuffle); grey bars correspond to within-subject week-shuffled surrogate
data. In all groups, the real similarity markedly exceeds the shuffled baseline, supporting that the
model’s plasticity embedding captures meaningful FC dynamics rather than artifacts of the embed-
ding procedure.
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cal structure, it would indicate that the trend is largely an artifact of model bias rather than inferred
from temporal continuity. Instead, training on shuffled order removes the ordered slow-timescale
trend, supporting that our slow plasticity dynamics are learned from coherent across-session struc-
ture present only in the correctly ordered data. Results in Appendix Tab. 1 and Appendix Fig. 7
support the claim that temporal ordering provides essential information (and an inductive bias) for
capturing genuine cross-session slow dynamics rather than session-wise independent fitting or short-
cut explanations.

Session Session

𝐶1 𝐶2
Predicted motif scale

Directly inferred motif scale

Appendix Fig. 7: Motif scale dynamics of model trained and evaluated by shuffled session order
data in BCM synthetic dataset: Under this shuffled setting, the motif-scales exhibit only stationary
fluctuations across sessions and no longer show a systematic trend.

Models ∥W∥2 alignment (↑)
(across-session)

EV (↑)
(within-session)

STEER (original session order) 0.9606±0.0036 0.9397±0.0008
STEER (shuffled session order) -0.0025±0.0132 0.9450±0.0007

Appendix Tab. 1: Performance of model training and evaluating by original and shuffled session
order data in BCM synthetic dataset.

A.6 JOINT TRAINING VS SEQUANTIAL TRAINING OF FAST AND SLOW DYNAMICS

In our model, the “fast” module learns a set of cross-session motifs, and the “slow” module captures
how these motifs are expressed over longer timescales. Training fast dynamics first and then fitting
the slow dynamics on top of fixed motifs is therefore equivalent to optimizing the same objective
in two sequential parameter blocks (fast, then slow), rather than jointly. If the motifs are not held
fixed in the second stage, this procedure effectively reduces to standard joint optimization and the
distinction between “fast” and “already-learned” components becomes moot. A direct comparison
of the two training procedures in the BCM experiment is shown in Appendix Tab. 2 and Appendix
Fig. 8. Across sessions, both approaches produce very similar trajectories of the inferred motif
scales, indicating that the learned slow dynamics are largely unaffected by whether fast and slow
components are optimized jointly or in sequence. Joint training yields slightly smaller discrepancies
at early and late sessions, but the overall across-session trends and 5-session-ahead forecasts are
essentially indistinguishable between the two schemes.

Models ∥W∥2 alignment
(across-session)

EV
(within-session)

Correlation between
c and cpred

STEER with jointly learning 0.9606±0.0036 0.9397±0.0008 0.9934 ± 0.0016
STEER with staged learning 0.9602±0.0076 0.9310±0.0022 0.9866 ± 0.0094

Appendix Tab. 2: Model performance by different training procedures in BCM synthetic dataset.
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a

Session Session

𝐶1 𝐶2

Predicted motif scale

Directly inferred motif scale

Motif scale 𝒄 dynamics by jointly training fast and slow dynamics

b

Session Session

𝐶1 𝐶2

Predicted motif scale

Directly inferred motif scale

Motif scale 𝒄 dynamics by sequential training fast and slow dynamics

Appendix Fig. 8: Motif scale dynamics by two training schemes in BCM synthetic dataset. (a)
Session-by-session evolution of motif scales when fast and slow dynamics are trained jointly. Curves
show 5-session-ahead forecasts of the slow dynamics (predicted motif scales) compared to directly
inferred motif scales. (b) Same as in (a), but with sequential training where fast dynamics are learned
first with fixed motifs across sessions.

A.7 HYPERPARAMETER EVALUATION

Lorenz systems with parameter evolution. We examined the sensitivity of the model to learning
rate, tensor rank, hidden dimension, and the regularization parameter λslow (λsmooth is the same
value as λslow). Here, we evaluate the predictive performance of our model. For the fast time
scale, we used EV to evaluate the predictive performance. The results in Appendix Fig. 9 indicate
that, within a wide range, the choice of these hyperparameters has little impact on short-timescale
prediction.

Stimulus-evoked plasticity via BCM. We examined the sensitivity of the model to learning rate,
tensor rank and the regularization parameter λslow (we do not consider λsmooth in this experiment).
Here, we evaluate our model on two timescales. For the fidelity of the inferred slow law, we used
max correlation between PCs of θ and inferred motif scales c, and the alignment of the inferred
∥W ∥2 dynamics with the ground truth. For the fast time scale, we used EV to evaluate the pre-
dictive performance. The results in Appendix Fig. 10 indicate that, within a wide range, the choice
of these hyperparameters has little impact on either short-timescale prediction or on the accuracy
of inferred plasticity. In contrast, varying the number of forecasting sessions revealed a dissoci-
ation between short-term prediction and long-term plasticity inference. With longer forecasting
horizons, within-session stayed high while both the max correlation and ∥W ∥2 dynamics alignment
declined systematically. Thus, extending the forecasting window preserves short-term behavioral
performance of the model but compromises its ability to faithfully reconstruct the latent plasticity
dynamics.

Task Learning through Stimulation-Induced Plasticity. To assess robustness on the task learn-
ing dataset, we varied the rank of the shared low-rank latent state space, the learning rate and the
lambda. In Appendix Fig. 11, the rank-7 model is the best one to approximate the task-learning
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b Predictive performance across � 

c

a Predictive performance across rank 

Predictive performance across learning rate 

Appendix Fig. 9: Predictive performance across different hyperparameters. (a) Predictive perfor-
mance across ranks under different hidden dimensions (rank=3 is stable to explain most of the vari-
ance in most of the hidden dimension settings). (b) Predictive performance across λ under different
hidden dimensions at rank=3. (c) Predictive performance across learning rates at rank=3 (A higher
hidden dimension has stable predictive performance across learning rates).
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Appendix Fig. 10: Robust model performance across hyperparameters for inferring stimulus-evoked
plasticity via BCM. (a) Max correlation across hyperparameters between ground-truth sliding
thresholds θ PCs and inferred motif scales c. (b) Normalized L2-norm of W dynamics alignment
across hyperparameters between the ground truth and the inferred dynamics. (c) Within-session pre-
dictive performance (EV) across hyperparameters.
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dynamics. The results in Appendix Fig. 11b and c indicate that, within a wide range of learning
rates and lambda has little impact on weight similarity.

a b c Similarity performance across � Similarity across ranks Similarity across learning rate 

Appendix Fig. 11: Similarity of cycle-wise W between model inference and ground truth across
ranks (a), learning rate (b) and lambda (c).

PD-DBS Longitudinal Neural Dataset. To assess robustness on the PD-DBS dataset, we varied
the rank, the hidden dimension of the shared low-rank latent state space, and the regularization
parameter λslow (λsmooth is the same value as λslow), over the ranges shown in Fig. 12. For each
configuration, we evaluated within-session predictive performance (EV) and the similarity between
inferred coupling changes ∆c and observed functional connectivity changes ∆FC. Across this
sweep, both metrics remain consistently high and change only modestly, indicating a broad plateau
of good performance. The hyperparameters used in our main PD-DBS experiments lie well within
this stable region. Thus, our conclusions on the PD-DBS data do not rely on fine-tuning: STEER
reliably reconstructs neural activity and recovers the relationship between slow coupling changes
and functional connectivity across a wide range of settings.

Appendix Fig. 12: Robust model performance across hyperparameters on the PD-DBS dataset. Each
column varies one hyperparameter while keeping the others fixed: (a) Tensor rank of the connec-
tivity factorisation, (b) The hidden dimension in the shared low-rank latent state space, and (c)
Smoothness/consistency regularisation coefficient λ. Top row: Within-session predictive perfor-
mance (EV) across hyperparameters. Bottom row: similarity between inferred changes in recurrent
coupling ∆c and observed changes in functional connectivity ∆FC.

A.8 IMPLEMENTATION DETAILS

Lorenz dynamics.

• Low-rank RNN: RNN (28), rank 3.

• Plasticity Predictor: RNN (28)

• State Encoder: MLP (28, 28)

• State Decoder: Linear Projection (28 → 3)
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• Plasticity Encoder: MLP (28, 28)
• Weight Inference: Linear Projection (28 → 3)

Stimulus-evoked plasticity via BCM.

• Low-rank RNN: RNN (50), rank 2.
• Plasticity Predictor: RNN (10)
• State Encoder: MLP (50, 50)
• State Decoder: Linear Projection (50 → 50)
• Plasticity Encoder: GRU (50)
• Weight Inference: Linear Projection (10 → 2)

Task learning through stimulation-induced plasticity.

• Low-rank RNN: RNN (50), rank 7.
• Plasticity Predictor: RNN (50)
• State Encoder: MLP (50, 50)
• State Decoder: Identity Matrix
• Plasticity Encoder: MLP (50,50)
• Weight Inference: Linear Projection (50 → 7)

PD-DBS.

• Low-rank RNN: RNN (200), rank 24.
• Plasticity Predictor: RNN (200)
• State Encoder: MLP (200, 200)
• State Decoder: Linear Projection (200 → channel)
• Plasticity Encoder: MLP (200, 200)
• Weight Inference: Linear Projection (200 → 24)

All networks are trained with the Adam optimizer, and the learning rate is tuned by selecting the
best predictive performance. In our implementation, the weights and biases are initialized according
to PyTorch’s default initialization methods. Specifically, Weights are initialized using a uniform
distribution in the range [−

√
k,
√
k], where k = 1

in features . Biases are initialized to zero. This default
approach helps ensure that the parameters are initialized in a way that is conducive to effective
training, avoiding issues like vanishing or exploding gradients in the early stages of training.

A.9 USE OF LARGE LANGUAGE MODELS (LLMS)

To enhance the overall quality and presentation of the manuscript, we made limited use of a large
language model (LLM) during the writing process. LLM assisted us in refining wording, improving
sentence clarity, and checking grammar and narrative fluency. In addition, it provided support in
organizing certain sections’ logical structure and narrative flow, helping us present our research in a
clearer, more coherent, and more persuasive manner.

It is important to note that the LLM’s involvement was strictly confined to textual polishing and
structural expression. The study’s core ideas, research design, experimental procedures, data anal-
ysis, and scientific conclusions were conceived and carried out entirely by the authors. All content
of the manuscript—including any suggestions generated by the model—was thoroughly reviewed,
edited, and verified by the authors, who take full responsibility for the scientific rigor, accuracy, and
originality of the final work.
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