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ABSTRACT

Large Language Models (LLMs) have achieved substantial progress in artificial
intelligence, particularly in reasoning tasks. However, their reliance on static
prompt structures, coupled with limited dynamic reasoning capabilities, often con-
strains their adaptability to complex and evolving problem spaces. In this paper,
we propose the Deductive and InDuctive(DID) method, which enhances LLM rea-
soning by dynamically integrating both deductive and inductive reasoning within
the prompt construction process. Drawing inspiration from cognitive science, the
DID approach mirrors human adaptive reasoning mechanisms, offering a flexible
framework that allows the model to adjust its reasoning pathways based on task
context and performance. We empirically validate the efficacy of DID on estab-
lished datasets such as AIW and MR-GSM8K, as well as on our custom dataset,
Holiday Puzzle, which presents tasks about different holiday date calculating chal-
lenges. By leveraging DID’s hybrid prompt strategy, we demonstrate significant
improvements in both solution accuracy and reasoning quality, achieved without
imposing substantial computational overhead. Our findings suggest that DID pro-
vides a more robust and cognitively aligned framework for reasoning in LLMs,
contributing to the development of advanced LLM-driven problem-solving strate-
gies informed by cognitive science models.

1 INTRODUCTION

”The measure of intelligence is the ability to change.” – Albert Einstein

Large Language Models (LLMs), such as GPT-4, have transformed natural language processing
by excelling in tasks such as language translation, summarization, and question-answering (Ope-
nAI, 2023), particularly in reasoning tasks and few-shot learning. However, there is ongoing debate
regarding their problem-solving reliability. According to Zhou et al. (2024), scaling up and fine-
tuning LLMs enhances their capabilities but also diminishes reliability, introducing unpredictable
errors even in simple tasks and reducing the effectiveness of human supervision. Conversely, Li
et al. (2024) highlights that the application of the Chain of Thought (CoT) (Wei et al., 2022b)
methodology significantly improves the accuracy of LLMs in arithmetic and symbolic reasoning
tasks by enabling inherently serial computations, which pose challenges for low-depth transformers.
Furthermore, Bubeck et al. (2023) observes that LLMs demonstrate a high degree of accuracy and
consistency in multi-step reasoning tasks, particularly when employing techniques such as CoT and
self-consistency (Wang et al., 2022). Additionally, reinforcement learning from human feedback
(RLHF) has been shown to enhance model performance, notably reducing the incidence of harmful
or inaccurate outputs (Ouyang et al., 2022; Christiano et al., 2017). These insights suggest that, de-
spite concerns related to model scalability and the potential for errors introduced during fine-tuning
(Zhou et al., 2024), LLMs can exhibit considerable reliability in complex reasoning tasks when
guided by structured methodologies and reinforced with human feedback. Ensuring the robustness
of LLM outputs remains a critical priority, necessitating further investigation into strategies aimed
at enhancing model resilience and dependability.

Despite the notable success of LLMs, they face several limitations when dealing with more complex
and evolving tasks. In particular, their rigidity in reasoning and difficulty in generalizing across
diverse problem types present significant challenges. A key limitation of current LLMs is their
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Figure 1: Comparison of reasoning approaches
in LLMs including the IO, CoT, and DID frame-
work, highlighting the progression from direct
output generation to dynamic inductive and de-
ductive reasoning for more adaptive problem-
solving.

reliance on static prompt structures and pat-
terns learned during training, which restricts
their adaptability in novel or evolving contexts.
These models often apply fixed strategies to
problem-solving, leading to challenges in tasks
that require logical reasoning, such as calcu-
lating family relationships, performing numer-
ical comparisons, or counting specific charac-
ters in a word (Nezhurina et al., 2024). Al-
though these tasks may seem straightforward,
LLMs tend to depend on pre-learned patterns
instead of dynamically adjusting their reason-
ing processes, resulting in errors in more com-
plex problem spaces (Marcus, 2020; Hendrycks
et al., 2020). This inflexibility contrasts with
human problem-solving, which is typically it-
erative and adaptive (Sloman, 2009). Humans
use inductive reasoning to derive general rules
from specific instances and then apply deduc-
tive reasoning to novel situations, allowing for
dynamic strategy adjustments based on task
complexity. In contrast, current LLMs lack this
level of flexibility in reasoning, which limits
their ability to generalize and adapt to more sophisticated scenarios. This underscores the need
for increased attention and research in this area.

Moreover, LLMs have difficulty generalizing reasoning across tasks that require dynamic adjust-
ment or incremental problem-solving. While LLMs can achieve high accuracy on specific tasks,
their performance often degrades when confronted with problems that evolve or require multi-step
reasoning. This issue is especially evident in tasks where the model must balance different rea-
soning strategies or integrate information from multiple sources. Tasks such as stepwise numerical
reasoning, temporal reasoning, or complex multi-step inference highlight gaps in LLMs’ ability to
maintain consistent reasoning across different stages of a task. These models tend to produce incon-
sistent or contextually inappropriate answers when required to adjust their reasoning dynamically
as the problem unfolds. The static and inflexible nature of their reasoning pipeline limits general-
ization and accuracy, particularly when compared to human problem-solving, which adapts to new
information in real-time. Despite improvements with techniques like CoT (Wei et al., 2022b), Tree-
of-Thought (ToT) (Yao et al., 2024), Temperature-Tree-of-Thought (T2oT) (Cai et al., 2024), and
Graph-of-Thought (GoT) prompting (Besta et al., 2024), current LLMs still struggle to adjust their
reasoning dynamically, resulting in difficulties in addressing more fluid and complex tasks.

To address these challenges, we propose the De-In-Ductive (DID) method, a novel approach de-
signed to enhance LLM reasoning by integrating both inductive and deductive reasoning processes
within the prompt construction framework as the Figure 1 shows. Grounded in cognitive science
models of human reasoning, the DID method enables LLMs to adjust their reasoning pathways dy-
namically in response to the task context and its evolving complexity. In the DID method, inductive
reasoning is first used to derive general rules from specific instances, followed by deductive reason-
ing to apply these rules in solving particular problems. This hybrid reasoning process mirrors human
cognitive strategies, allowing the model to adjust its reasoning dynamically based on real-time feed-
back. By employing this dynamic prompt strategy, the DID method improves the adaptability and
flexibility of LLMs, enabling them to better handle complex, evolving problem spaces.

We validate the effectiveness of the DID method on established benchmarks such as AIW and MR-
GSM8K (Wei et al., 2022a; Cobbe et al., 2021), as well as our custom dataset, Holiday Puzzle,
which includes tasks about holiday date calculations. By leveraging DID’s hybrid prompt strat-
egy, we observe significant improvements in both solution accuracy and reasoning quality, achieved
without imposing substantial computational overhead. These results demonstrate the efficacy of
DID in addressing the limitations of current LLM approaches. This work provides the following
key contributions:
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• We introduce a De-In-Ductive (DID) methodology that integrates both inductive and de-
ductive reasoning within LLM prompt construction. This dynamic approach addresses
key limitations of static prompt structures, enhancing the model’s reasoning flexibility and
adaptability.

• Through empirical evaluations, we demonstrate that the DID method significantly enhances
the adaptability and efficiency of LLMs across a diverse set of complex tasks. Moreover,
DID improves solution accuracy and reasoning quality without incurring substantial com-
putational overhead.

2 RELATED WORKS

Cognitive Science and Deductive-Inductive Reasoning Deductive and inductive reasoning are
foundational concepts in cognitive science for understanding human thought processes. Deductive
reasoning, formalized by philosophers like Kant, involves applying general principles to specific
cases, ensuring conclusions logically follow from premises. Inductive reasoning, conversely, gen-
eralizes from specific observations to form broader conclusions, as highlighted in The Riddle of
Induction (Goodman, 1983). Cognitive models view these modes of reasoning as complementary,
where inductive reasoning generates hypotheses, and deductive reasoning tests them (Wason, 1960).
The interplay between these two reasoning methods has been shown to enhance problem-solving
accuracy, particularly in uncertain domains where balancing exploration and validation is critical
(Johnson-Laird, 1983; Kahneman & Tversky, 1974). Research on mental models and heuristics
highlights how this dynamic combination allows for more flexible reasoning, especially in tasks
characterized by complexity or ambiguity. Problems in cognitive science are often classified based
on their structure and uncertainty: well-structured problems (e.g., mathematical proofs) lend them-
selves to deductive reasoning, whereas ill-structured or open-ended problems (e.g., scientific discov-
ery) require inductive reasoning to form plausible hypotheses from incomplete data (Funke, 2013).
Cognitive insights have been increasingly integrated into neural networks (L Griffiths et al., 2008),
with recent studies emphasizing the importance of embedding inductive structures within models to
improve generalization across tasks (Tenenbaum et al., 2011). The DID framework builds on this
cognitive science foundation by dynamically combining inductive and deductive reasoning within
LLMs, creating a hybrid model that mirrors human cognitive processes and enhances adaptability
in problem-solving.

LLMs for Reasoning and Prompting Techniques While LLMs like GPT-4 have shown remark-
able capabilities in tasks such as text generation and summarization (Brown et al., 2020), they often
struggle with structured reasoning, particularly in tasks involving logical inference, numerical com-
parison, and complex deduction (OpenAI, 2023; Nezhurina et al., 2024). These shortcomings have
been well-documented in challenges like the ARC Prize (Rae et al., 2021) and in tasks that require
step-by-step reasoning or multi-hop inferences. To address these limitations, prompting techniques
such as CoT prompting (Wei et al., 2022b),ToT (Yao et al., 2024), and GoT (Besta et al., 2024)
have been developed to improve LLMs’ capacity for structured reasoning. CoT enhances stepwise
reasoning by breaking down complex problems, while ToT and GoT explore multiple solution paths
through structured thought representations. However, these approaches remain static, requiring ex-
tensive prompt engineering and lacking the dynamic adaptability needed for diverse tasks. Recent
work, such as Hypergraph of Thoughts (HoT) (Yao et al., 2023), extends these methods to mul-
timodal and more complex reasoning but still fails to offer the real-time adaptability needed for
nuanced problem-solving. Another critical analysis by Marcus (2020) highlights the limitations of
current LLMs, emphasizing their struggles with maintaining logical consistency and coherence in
complex reasoning tasks. The DID framework addresses these gaps by dynamically integrating in-
ductive and deductive reasoning, making the reasoning process more adaptive and context-sensitive,
informed by the probabilistic reasoning advancements seen in the combination of Bayesian models
with neural networks (Gershman et al., 2015).

3 METHODOLOGY

The De-In-Ductive (DID) framework dynamically integrates inductive and deductive reasoning, in-
spired by cognitive science models of human reasoning. It balances inductive hypothesis generation
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and deductive rule application to improve the flexibility and adaptability of large language models
(LLMs) in complex problem-solving tasks.

3.1 PRELIMINARY

In this section, we formalize the core assumptions underlying the DID framework, which define
the problem space and establish the performance limitations of LLMs in solving these problems.
These assumptions lay the theoretical groundwork for modeling the interaction between problem
complexity and the reasoning capabilities of LLMs.

Assumption 1 (Problem Distribution and Complexity) Let P denote a problem space, where
each problem instance p ∈ P is associated with an observed dataset Dp = {d1, d2, . . . , dn} and
additional new data Dnew,p = {d′1, d′2, . . . , d′m}. Each problem p is governed by a true underlying
hypothesis Hp, which explains the relationship between the data and the problem context.

The observed data Dp follows a joint distribution conditioned on the hypothesis Hp:

P (Dp | Hp) =
n∏

i=1

P (di | Hp), (1)

where di is independently generated according to the true hypothesis Hp. During the deductive
phase, the model tests a candidate hypothesis H against the new data Dnew,p, and the likelihood is
given by:

P (Dnew,p | H) =

m∏
j=1

P (d′j | H). (2)

The complexity of each problem p is characterized by a parameter c(p) ∈ R+, where higher values
of c(p) indicate more complex problems, influencing the difficulty of hypothesis testing and data
modeling.

Assumption 2 (Baseline Performance and Deductive Probability) Let MLLM represent a base-
line LLM with parameters θ. For problems with complexity c(p) ≥ c0, the likelihood that MLLM
produces a correct solution is bounded by:

Pcorrect(p, θ) ≤ ϵ, for c(p) ≥ c0, (3)

where ϵ ≪ 1 reflects the baseline model’s limitations on novel or complex tasks.

During the deductive reasoning phase, the likelihood that the hypothesis H holds, given the new
data Dnew, is computed by:

Pdeductive(H | Dnew) =

m∏
i=1

P (d′i | H, θ), (4)

where the model tests the validity of H using the new observations Dnew and adjusts its confidence
in the hypothesis.

3.2 DE-IN-DUCTIVE (DID) FRAMEWORK

Figure 2 illustrates the comparison between the IO, CoT, and DID frameworks. The IO (Input-
Output) Method processes natural language queries by retrieving patterns and facts without engaging
in iterative reasoning. The Chain of Thought (CoT) Method improves logical reasoning by breaking
down complex problems into sequential steps. Our proposed De-In-Ductive (DID) Method goes
further by dynamically integrating inductive and deductive reasoning. By iteratively generating and
testing hypotheses, DID adapts to problem complexities more effectively than static methods like
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Figure 2: Comparison of reasoning approaches in Large Language Models (LLMs) including the IO
method, Chain of Thought (CoT) prompting, and the De-In-Ductive (DID) framework, highlighting
the progression from direct output generation to dynamic inductive and deductive reasoning for more
adaptive problem-solving.

CoT, optimizing problem-solving by balancing reasoning modes in response to task difficulty. Based
on Assumptions 3.1 and 3.1, DID optimizes an objective function that balances both reasoning
modes, dynamically adjusting as the complexity of the problem increases.

Inductive Reasoning The inductive phase generates hypotheses from observed data Dp. Using
Bayesian inference, the posterior probability for a hypothesis H is calculated as:

P (H | Dp) =
P (Dp | H)P (H)

P (Dp)
, (5)

where P (H) is the prior probability and P (Dp | H) is the likelihood of the observed data under
hypothesis H .

Deductive Reasoning In the deductive phase, the generated hypothesis H is tested against the
new data Dnew,p. The likelihood of the new data given the hypothesis is:

P (Dnew | H) =

m∏
j=1

P (d′j | H). (6)

This phase refines the hypothesis by comparing how well it explains the new observations.

Hybrid Objective Function The DID framework minimizes a hybrid objective function that in-
tegrates both inductive and deductive reasoning losses. The total objective function is defined as:

LDID(θ) = α · Linductive(θ) + (1− α) · Ldeductive(θ), (7)

where Linductive(θ) represents the error in generalizing from the data, and Ldeductive(θ) penalizes
errors in applying the rules to new instances. The weighting factor α adjusts dynamically based on
the task complexity and the relative uncertainties in the inductive and deductive phases.
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Dynamic Adjustment The balance between inductive and deductive reasoning is dynamically
weighted based on the uncertainties in each reasoning process:

αt =
EH [Pinductive(H | Dp)]

EH [Pinductive(H | Dp)] + EDnew [Pdeductive(Dnew | H)]
. (8)

This adaptive mechanism ensures that DID can adjust its strategy according to the evolving com-
plexity of the problem.

Limitations of Chain-of-Thought (CoT) under Assumptions Under Assumptions 1 and 2, we
infer that static reasoning methods such as Chain-of-Thought (CoT) prompting are insufficient for
solving problems from the novel distribution P . Since CoT relies on pre-learned patterns and fixed
reasoning pathways, it lacks the dynamic adaptability required to handle new and complex problem
structures. Specifically, without the ability to adjust α dynamically and integrate inductive hypothe-
sis generation, CoT cannot effectively improve the low baseline performance (P(Correct | p, θ) ≤ ϵ)
for complex problems.

Computational Complexity The computational complexity of the DID algorithm can be ex-
pressed as O(T · (nind + nded)), where T is the number of iterations, nind is the complexity of
inductive reasoning per iteration, and nded is the complexity of deductive reasoning per iteration.
The dynamic adjustment enabled by the DID framework, as necessitated by Assumptions 1 and
2, reduces error propagation compared to static methods like CoT, thus improving efficiency and
accuracy.

Efficiency Gains By dynamically adjusting reasoning pathways according to task complexity and
problem novelty, DID reduces the number of iterations required to converge on a solution. This
adaptive process ensures that DID outperforms static methods like CoT in both performance and
computational overhead, achieving higher accuracy with fewer computational resources.

Theoretical adaption analysis The DID framework effectively manages cognitive load by ini-
tially focusing on simplified problem versions, allowing the model to concentrate on essential el-
ements before engaging with more complex interactions. Through the inductive phase, the model
observes specific instances, forming a foundation for generalization. As task complexity increases,
the model transitions to deductive reasoning, applying generalized rules to arrive at a solution. This
dynamic adjustment of reasoning strategies based on evolving task contexts enhances the model’s
adaptability and problem-solving efficiency.

Integration with Existing Models The De-In-Ductive (DID) method is compatible with various
LLM architectures and can be seamlessly integrated with existing techniques such as CoT prompting
(Wei et al., 2022b). By providing a structured reasoning framework that dynamically incorporates
both inductive and deductive reasoning, DID complements these methods and enhances the model’s
problem-solving capabilities. Specifically, it structures the problem-solving process to allow for
the dynamic integration of reasoning strategies, utilizes a structured template prompt that guides
the model through incremental reasoning stages and improves adaptability and problem-solving
efficiency without introducing significant computational overhead. By mirroring human adaptive
reasoning processes, the DID method provides a more flexible and robust framework for LLMs to
tackle complex and evolving problems.

4 EXPERIMENTS

4.1 ALICE PROBLEMS

Task. The AIW dataset is focused on evaluating the logical reasoning and deduction abilities of
large language models (LLMs). The problems are structured around scenarios where models must
infer relationships between family members based on a set of constraints, typically involving sib-
lings, with questions like determining how many sisters or brothers a particular sibling has. Due to
the AIW GitHub open-source dataset being provided in the form of questions and various prompts,
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Alice Problem MR-GSM8K Holiday Puzzle
Model\Prompt Method IO (%) CoT (%) DID (%) CoT (%) DID (%) IO (%) CoT (%) DID (%)
GPT-3.5 Turbo 6.7 8.6 13.3 68.1 73.3 0.2 1.4 5.6
GPT-4o 43.4 55.9 70.3 82.0 83.7 7.8 5.2 15.4
Claude 3.5 Sonnet 74.8 83.7 89.5 91.3 92.0 17.4 17.8 24.5

Table 1: Merged Results for GPT-3.5 Turbo, GPT-4o, and Claude 3.5 Sonnet across Different Tasks
(Alice Problem, MR-GSM8K, Holiday Puzzle)

we manually removed all prompts and eliminated duplicate questions that remained after prompt re-
moval. This resulted in 113 unique original Alice problems. All subsequent experiments are based
on these 113 problems, with results averaged over 20 runs.

Baseline and Framework Setup. We compare the performance of the DID framework with
three other prompting methods: the IO prompt (which directly utilizes the LLM without structured
prompting) and the CoT prompt. All methods are evaluated in a zero-shot setting. The comparisons
are performed using three representative models: GPT-4o, GPT-3.5-turbo, and Claude 3.5 Sonnet.
GPT-4o was selected due to its highest reported accuracy in the AIW paper, while Claude 3.5 Sonnet
achieved the second-highest accuracy. GPT-3.5-turbo, by contrast, demonstrated mid-to-low accu-
racy. For a fair comparison, all model parameters, including temperature, top-k sampling, and other
hyperparameters, are maintained at their default values.

Alice has 3 brothers and she also
has 6 sisters. How many sisters

does Alice's brother have?

 Each of Alice's brothers has the
same siblings as Alice, excluding
himself. Therefore, each brother

has: 6 sisters (including Alice
herself) 2 brothers (excluding

himself). 

Alice has 3 brothers and she also
has 6 sisters. How many sisters

does Alice's brother have?

Alice has 3 brothers and she also
has 6 sisters. How many sisters

does Alice's brother have?

In total, there are 9 siblings (3
brothers + 6 sisters)

Alice's brothers have the same
siblings as Alice (except

themselves)

Alice's brothers also have 6 sisters
(these sisters include Alice and her

other 6 sisters).

Alice's brother has 6 sister.

Determine some specific situation.
Start from a simpest version: 0

brother and 1 sister.

Increase the complexity of the
probelm: Alice now has one

brother and one sister.

Continue to increase the
complexity of the problem: Alice
has two brothers and two sisters.

Alice's brother has 7 sister.

Inductive Inference

Dedutive Inference

(c) DID(a) IO (b) CoT

The number of sisters each of
Alice's brothers has is 6.

Get a conclusion: When Alice has
1 brother and no sisters, the

brother has 1 sister.

Get a conclusion: When Alice has
1 brother and n sisters, the brother

has n + 1 sisters

Verify and get conclusion: The
number of brothers does not affect
the number of sisters each brother

has.

Figure 3: Comparison of reasoning approaches in Large Language Models (LLMs) including the IO
method, Chain of Thought (CoT) prompting, and the De-In-Ductive (DID) framework, highlighting
the progression from direct output generation to dynamic inductive and deductive reasoning for more
adaptive problem-solving.

Results The results in 4 present a comparative analysis of the IO, CoT, and DID prompting meth-
ods across three representative models: GPT-3.5 Turbo, GPT-4o, and Claude 3.5 Sonnet. Across all
models, the DID framework consistently outperforms both IO and CoT methods, demonstrating its
superior capability in handling multi-step reasoning tasks.

For GPT-3.5 Turbo, the DID method achieves an accuracy of 13.27%, significantly outperform-
ing the IO prompt (6.73%) and CoT prompt (8.62%). This result highlights the DID framework’s
ability to guide the model through structured, step-by-step reasoning, even in less powerful mod-
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els like GPT-3.5 Turbo. Traditional prompt methods, such as IO and CoT, tend to struggle with
multi-step reasoning because they either rely on direct output generation or follow static, predefined
thought chains that lack the flexibility to adapt to more complex scenarios. On GPT-4o, the DID
method reaches 70.27%, which far exceeds both IO (43.36%) and CoT (55.85%). The substantial
margin between DID and other methods demonstrates its efficacy in managing logical deductions,
particularly in more complex reasoning tasks. In contrast, the static nature of IO and the limited
flexibility of CoT prevent these methods from fully addressing the intricacies of multi-step deduc-
tions. Claude 3.5 Sonnet exhibits the highest overall performance across all methods, with the DID
method achieving an impressive accuracy of 89.49%, further extending its lead over IO (74.77%)
and CoT (83.68%).

As illustrated in Figure 3, the DID framework excels in progressively guiding LLMs through in-
creasingly complex reasoning steps, especially in tasks where relationships must be deduced from
ambiguous information, such as determining family connections. Traditional prompt methods often
fail to handle such tasks effectively because they attempt to solve the original complex problem
directly, which can result in the model missing critical logical connections. This frequently leads
to incorrect conclusions. By breaking down multi-step reasoning problems into simpler subprob-
lems, the DID method ensures that the model remains on track and avoids common pitfalls. This
structured approach enables LLMs to generalize effectively and handle more sophisticated logical
problems, like those presented in the Alice problem.

4.2 MR-GSM8K MATH PROBLEMS

Task. MR-GSM8K builds upon the GSM8K benchmark but introduces significantly higher com-
plexity by focusing on meta-reasoning. Since MR-GSM8K not only challenges models to identify
and explain errors in provided solutions, but also making it more suitable for assessing the advanced
cognitive abilities of LLMs. Only the dataset portion of MR-GSM8K is used, in order to test differ-
ent methods. And the assessing portion is not used. The dataset includes harder problem types, such
as reversed reasoning and programmatic thinking, requiring deeper understanding and reasoning
capabilities, thus offering a more rigorous evaluation framework for state-of-the-art models.

Baseline and Framework Setup. We compare the performance of the DID framework with the
CoT prompt. The CoT is widely used as a method for improving the performance of LLM. All
model parameters, including temperature, top-k sampling, and other hyperparameters, are set to
their default values for a fair comparison.

Results Based on the results shown in 4, the performance comparison across different models
(GPT-3.5 Turbo, GPT-4o, and Claude 3.5 Sonnet) for the CoT and DID frameworks reveals the con-
sistent superiority of the DID framework. On GPT-3.5 Turbo, the DID method achieves an accuracy
of 73.3%, outperforming CoT (68.1%). Similarly, on GPT-4o, the DID method demonstrates a clear
advantage with an accuracy of 83.7%, compared to 82.0% for CoT. For Claude 3.5 Sonnet, the DID
method further solidifies its dominance, achieving an accuracy of 92.0%, surpassing CoT (91.3%).
This consistent performance across models highlights the effectiveness of the DID approach.

In summary, across GPT-3.5 Turbo, GPT-4o, and Claude 3.5 Sonnet, the DID framework consis-
tently outperforms the CoT framework in terms of accuracy, demonstrating a significant perfor-
mance advantage. This consistent superiority suggests that the DID method possesses stronger
reasoning capabilities and higher reliability for handling complex tasks.

4.3 HOLIDAY PUZZLE

Task. The Holiday Puzzle is a task designed to evaluate the reasoning ability of LLMs in handling
holiday arrangements. This task includes 20 examples, each based on a holiday and compensatory
workday records from the past decade. The task requires the LLMs to calculate the actual number
of extra holiday days people receive, excluding weekends that were already scheduled as rest days.

Baseline and Framework Setup. To assess the effectiveness of the DID framework on the holiday
calculation problem, we compare it with two alternative prompting methods: the IO prompt (which
directly utilizes the LLM without structured prompting) and the CoT prompt. For fairness, all model

8
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 This is a holiday arrangement from
September 25, 2023 (Monday) to October

29: Work 4, rest 8, work 7, rest 2, work
5,rest 3, work 4, rest 2. Please tell me how

many days I have rested because of the
holiday, except for the weekend I was

supposed to rest.

Determine some specific situation. Start
from a simpest version: Consider a single

week, from Monday to Sunday. You work 4
days and rest 3 days, with 2 of those resting

days being weekend days (Saturday and
Sunday). Determine how many days you
have rested due to holidays, excluding the

weekends you were supposed to rest.

Get a conclusion: In this
simple case,

Holiday rest days=3−2=1.

Increase the complexity of the probelm:
Extend the period to two weeks. You work

8 days and rest 6 days, with 4 of those
resting days being weekend days.

Verify the conclusion on this
case: Holiday rest days = 6 −

4 = 2.
Confirm the conclusion: The

general formular is:
Holiday rest days =

Total rest days −
Weekend rest days.

Holiday rest days = Total rest days −
Weekend rest days = 15 − 10 = 5 days

Inductive Inference

 This is a holiday arrangement from
September 25, 2023 (Monday) to October

29: Work 4, rest 8, work 7, rest 2, work
5,rest 3, work 4, rest 2. Please tell me how

many days I have rested because of the
holiday, except for the weekend I was

supposed to rest.

First, let's break down the holiday
arrangement to identify the periods of work

and rest: 1. September 25 to October 2:
Work 4, rest 8. This includes weekends, so

need to calculate.
2. October 3 to October 11: Work 7, rest 2.

3. October 12 to October 18: Work 5, rest 2.
4. October 19 to October 25: Work 5, rest 2.
5. October 26 to October 29: Work 4, rest 2.

Finally, sum up the extra holiday rest days
calculated:

6 (from September 25 to October 2) + 2
(from October 3 to October 11) + 2 (from

October 12 to October 18) + 2 (from October
19 to October 25) + 0 (from October 26 to

October 29) = 12

 This is a holiday arrangement from
September 25, 2023 (Monday) to

October 29: Work 4, rest 8, work 7,
rest 2, work 5,rest 3, work 4, rest 2.

Please tell me how many days I have
rested because of the holiday, except
for the weekend I was supposed to

rest.

To determine the number of holiday
rest days excluding regular weekends,
we break it down as follows: During

the "Work 4, Rest 8" period from
September 25 to October 6, there are 5

holiday rest days (October 2 to
October 6). In the "Work 7, Rest 2"

period from October 9 to October 17,
there are 2 holiday rest days (October
16 and 17). For the "Work 5, Rest 2"

period from October 18 to October 24,
there are 2 holiday rest days (October
23 and 24). Lastly, during the "Work
5, Rest 3" period from October 25 to
November 1, there are 3 holiday rest
days (October 30 to November 1). In
total, there are 12 holiday rest days (5

from the first period, 2 from the
second, 2 from the third, and 3 from

the fourth).

Next, we need to identify how many of these
rest days overlap with weekends (since those

wouldn't count as extra holiday rest days)

(a) IO (b) CoT (c) DID

Deductive Inference

Figure 4: Comparison of reasoning approaches in Large Language Models (LLMs) including the IO
method, Chain of Thought (CoT) prompting, and the De-In-Ductive (DID) framework, highlighting
the progression from direct output generation to dynamic inductive and deductive reasoning for more
adaptive problem-solving.

parameters, including temperature, top-k sampling, and other hyperparameters, are kept at their
default values.

Results As shown in 4, the performance comparison across different prompting methods (IO, CoT,
and DID) on the ”Holiday Puzzle” task highlights the consistent superiority of the DID framework.
On GPT-3.5 Turbo, the DID method achieves an accuracy of 5.6%, significantly outperforming IO
(0.2%) and CoT (1.4%). This demonstrates that even on less powerful models, the DID framework
effectively helps capture the underlying structure of complex temporal and scheduling relationships.
Similarly, on GPT-4o, the DID method shows a clear advantage, with an accuracy of 15.4%, com-
pared to 7.8% for IO and 5.2% for CoT. For Claude 3.5 Sonnet, the DID method solidifies its
dominance with an accuracy of 24.5%, far surpassing IO (17.4%) and CoT (17.8%).

In this task, the DID framework’s stepwise combination of inductive and deductive reasoning proves
especially effective for capturing complex patterns such as the relationship Holiday rest days = Total
rest days - Weekend rest days. Figure 4 demonstrates how DID enables the model to approach
this problem systematically, avoiding the risk of falling into incorrect reasoning paths common
in traditional prompt methods. By starting with simpler, deductively generated subproblems, the
DID framework ensures that the model can handle both the intricacies of date calculations and
generalize across varying input conditions. This step-by-step approach allows LLMs to refine their
reasoning process as complexity increases, ultimately improving their overall accuracy on tasks like
the Holiday Puzzle.

5 DISCUSSION

5.1 CHALLENGES OF ACHIEVING 100% ACCURACY IN SIMPLE TASKS

Despite the implementation of advanced prompting techniques such as CoT, ToT, and our proposed
DID method, LLMs continue to face challenges in consistently achieving 100% accuracy, even on
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seemingly simple logical tasks. A key factor underlying this limitation may be the fundamental
architecture of LLMs. These models rely on predicting the next token in a sequence, which restricts
their ability to maintain a coherent internal representation across multiple reasoning steps. While
attention mechanisms allow models to reference previous tokens, they lack the robust cognitive
structures that humans use to ensure logical integrity across reasoning processes. Consequently,
LLMs can lose track of intermediate steps or overlook crucial logical connections, leading to errors
in tasks that might otherwise appear straightforward. This token-based, output-driven mechanism,
although effective in many natural language processing tasks, is inherently unsuited for tasks that
require rigorous logical consistency and structured reasoning, explaining the persistence of basic
mistakes in LLM outputs.

5.2 FINE-TUNING LLMS WITH DEDUCTIVE AND INDUCTIVE REASONING

The DID method proposed in this paper primarily focuses on prompting strategies without altering
the underlying architecture or fine-tuning the LLM itself. However, future work could investigate
the benefits of fine-tuning LLMs on datasets explicitly incorporating deductive and inductive rea-
soning processes. Fine-tuning strategies such as Reinforcement Learning from Human Feedback
(RLHF), Retrieval-Augmented Generation (RAG), or other methods (Lewis et al., 2020; Ouyang
et al., 2022; Christiano et al., 2017) could enhance the model’s ability to handle complex reason-
ing tasks. By integrating examples that demonstrate dynamic reasoning adjustments—similar to the
DID approach—during the fine-tuning phase, models would gain a deeper understanding of induc-
tive and deductive reasoning patterns. Additionally, emerging techniques like Test-Time Training
(TTT) (Sun et al., 2024) could be explored to further improve models’ adaptability and reasoning
performance during evaluation. These advancements are likely to enhance the consistency and relia-
bility of LLM outputs in structured reasoning tasks by fostering more robust internal representations
of logical thought processes.

5.3 THE ARC PRIZE CHALLENGE

The ARC (Abstraction and Reasoning Corpus) Prize represents a particularly challenging bench-
mark designed to evaluate an AI’s capacity for abstract reasoning and generalization. Unlike con-
ventional AI tasks that target pattern recognition based on fixed datasets, ARC tests a model’s ability
to generalize across diverse problem types, making it an ideal platform to assess the adaptability of
frameworks such as our De-In-Ductive (DID) method. ARC problems require abstract reasoning
across domains like visual pattern recognition and symbolic problem-solving—areas where DID’s
integration of inductive and deductive reasoning could provide a competitive edge. The DID frame-
work’s ability to adapt dynamically based on task complexity, first using inductive reasoning to
hypothesize patterns and then applying deductive logic to test them, positions it well for tasks in the
ARC benchmark. Given that ARC problems often involve iterative problem-solving and the ability
to generalize from minimal examples, we believe the DID method is particularly suited for this task.
Future work will focus on evaluating DID’s performance on ARC Prize tasks to test its robustness
and effectiveness in abstract reasoning scenarios.

6 CONCLUSION

In this work, we introduced the De-In-Ductive (DID) method, a novel framework that dynamically
integrates inductive and deductive reasoning to enhance the adaptability and reasoning capabilities
of Large Language Models (LLMs). By leveraging cognitive science principles, the DID framework
allows LLMs to evolve their problem-solving strategies in response to task complexity, overcoming
the rigidity of static prompt structures. Through extensive empirical validation on both standard
benchmarks and our custom Holiday Puzzle dataset, we demonstrated significant improvements
in accuracy and reasoning quality, achieved without excessive computational costs. However, while
DID advances the field, challenges remain in making LLMs more intelligent, particularly in ensuring
better generalization to unseen tasks, maintaining adaptability in complex multi-step reasoning, and
further refining model biases. Future research must continue to address these issues, paving the way
for more robust and cognitively aligned artificial intelligence systems.
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