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Abstract

In many real-world applications, predictive tasks
inevitably involve low-quality input features
(Weak Features; WFs) which arise due to fac-
tors such as misobservations, missingness, or par-
tial observations. While several methods have
been proposed to estimate the true values of spe-
cific types of WFs and to solve a downstream
task, a unified theoretical framework that com-
prehensively addresses these methods remains un-
derdeveloped. In this paper, we propose a uni-
fied framework called Weak Features Learning
(WFL), which accommodates arbitrary discrete
WFs and a broad range of learning algorithms,
and we demonstrate its validity. Furthermore, we
introduce a class of algorithms that learn both
the estimation model for WFs and the predictive
model for a downstream task and perform a gener-
alization error analysis under finite-sample condi-
tions. Our results elucidate the interdependencies
between the estimation errors of WFs and the pre-
diction error of a downstream task, as well as the
theoretical conditions necessary for the learning
approach to achieve consistency. This work es-
tablishes a unified theoretical foundation, provid-
ing generalization error analysis and performance
guarantees, even in scenarios where WFs manifest
in diverse forms.

1. Introduction

The performance and explainability of machine learning
models are highly dependent on the quality of the training
data. However, in practical applications, obtaining high-
quality data is often infeasible due to constraints such as
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privacy concerns, high observation costs, and uncertainties
in sensor measurements. Consequently, challenges often
stem from low-quality labels (referred to as Weak Labels;
WLs) that contain incorrect, incomplete, or ambiguous su-
pervisory information, and low-quality features (referred to
as Weak Features; WFs), which manifest as misobservations,
missing values, or ambiguous observations. Extensive re-
search has focused on WLs within the framework of weakly
supervised learning (WSL), covering methods such as semi-
supervised learning and learning with label noise, which
have provided substantial theoretical guarantees (Chapelle
et al., 2006; Elkan & Noto, 2008; Cour et al., 2011; Natara-
jan et al., 2013; Ishida et al., 2017). In contrast, research
on WFs has proposed methods such as impute-then-regress
(ItR), which imputes missing before regression (Josse et al.,
2024; Bertsimas et al., 2021; Le Morvan et al., 2020b; 2021),
and complementary features learning (CFL), which lever-
ages complementary features (CFs) that differ from the true
values (Sugiyama & Uchida, 2024). However, a unified
framework that provides consistent theoretical guarantees
across the various forms of WFs remains underexplored.

Motivated by these challenges, this study focuses on weak
features learning (WFL), a generalized learning problem
involving arbitrary WFs. A common approach involves se-
quentially or iteratively learning feature estimation models
g to estimate the true values of WFs (referred to as exact val-
ues) and a label prediction model f to predict downstream
task labels using the outputs of g. This strategy is consid-
ered rational for improving both the quality of WFs and the
predictive performance of a downstream task (Yoon et al.,
2018; Mattei & Frellsen, 2019; Le Morvan et al., 2020a;
Ipsen et al., 2021; Zaffran et al., 2023; Ipsen et al., 2022;
Sugiyama & Uchida, 2024). Indeed, prior approaches such
as ItR and CFL are grounded in this learning strategy, utiliz-
ing various machine learning methods to construct g. These
methods aim to improve the quality of WFs, thereby enhanc-
ing the generalization performance and explainability of f
in a downstream task.

However, in the context of WFL, where various methods
have been proposed, significant gaps remain in understand-
ing how the learning of g and f impacts each other’s learn-
ing efficiency and under what conditions WFL can achieve
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optimal g and f (i.e., consistency). For example, in ItR,
while the conditions under which g and f become Bayes
rules have been analyzed, the generalization error analy-
sis under finite samples and any data distribution has not
yet been sufficiently conducted (Josse et al., 2024; Bertsi-
mas et al., 2021; Le Morvan et al., 2020b; 2021). Also,
in CFL, which addresses CFs, theoretical analysis remains
underdeveloped, and clear guidelines for handling diverse
forms of WFs in a unified manner have yet to be established
(Sugiyama & Uchida, 2024).

This study aims to investigate the mutual influence between
estimating the exact values of WFs and learning a down-
stream task. Specifically, we focus on scenarios involving
discrete WFs (hereafter referred to as discrete WFL) and pro-
vide a unified formalization. By performing finite-sample
error analysis for a generalized class of learning algorithms,
we systematically address these questions. The proposed
theoretical framework extends beyond situations involving
missing values or CFs. It also accommodates cases where
WFs arise in the diverse forms discussed in the WLs liter-
ature, such as erroneous observations or scenarios where
only a candidate set containing the exact value is observed
(Natarajan et al., 2013; Cour et al., 2011; Feng et al., 2020;
Xu et al., 2021). Consequently, the framework not only
reinterprets existing approaches such as ItR and CFL but
also offers new theoretical insights into previously unex-
plored WF settings. Furthermore, as the class of learning
algorithms analyzed in this study encompasses various ex-
isting methods (Yoon et al., 2018; Mattei & Frellsen, 2019;
Ipsen et al., 2021; Josse et al., 2024; Le Morvan et al., 2021;
Ipsen et al., 2022; Sugiyama & Uchida, 2024), our results
provide a unified theoretical evaluation framework for these
methods. We have also developed a unified formulation and
analysis for scenarios involving continuous WFs, and the
results for continuous WFs are presented in a separate paper
(Sugiyama & Uchida, 2025).

The main contributions of this study are as follows:

1. We propose a risk-based formulation to address arbitrary
discrete WFs and demonstrate that the introduced objective
function facilitates the learning of f, which captures the
true input-output relationship. This validates the proposed
formulation (Section 3.2).

2. Within the proposed formulation, we define the Learning
Algorithm Class for discrete WFL (LAC-dWFL), which
flexibly combines three steps: (i) learning g using WFs as
weak supervision, (ii) learning f with a fixed g, and (iii)
learning g with a fixed f. This framework accommodates
both sequential and iterative learning approaches, offering a
unified perspective on diverse methods (Section 3.3).

3. For step (ii), we derive the error bound for f given any
fixed g (Section 4.2), providing theoretical insights into how

the estimation errors of g influence the error bound for f.
By integrating the theoretical framework of WSL in (i), we
further analyze how the properties of WFs influence f’s
error bound, how the order of the error bound evolves with
the learning of g, and the conditions under which sequential
learning in LAC-dWFL (performing steps (i) and (ii) in
sequence) achieves consistency.

4 For step (iii), we evaluate the generalization error of g
given any fixed f (Section 4.3) and analyze how the prop-
erties and generalization performance of f affect the error
bound for g. By integrating the results of Contributions
3 and 4, we establish the conditions under which itera-
tive learning in LAC-dWFL (alternating steps (ii) and (iii))
achieves the consistency for f o g.

5. We validate the proposed theoretical framework on real-
world datasets to evaluate how accurately the derived error
bounds reflect actual learning behaviors (Section 5).

2. Related work

2.1. Learning Problems involving WFs

ItR and CFL are representative learning problems that serve
as special cases of WFL, involving specific types of WFs.
This section provides an overview of these frameworks.

In ItR, the focus lies on scenarios where input features
contain missing values. The fundamental approach of ItR
involves imputing the missing values and utilizing the re-
sulting complete dataset to learn a label prediction model f
for a downstream task. Sequential learning methods have
been proposed, employing feature estimation models g that
utilize techniques such as constant imputation (Josse et al.,
2024) or machine learning-based approaches (Yoon et al.,
2018; Mattei & Frellsen, 2019; Ipsen et al., 2021). Further-
more, joint or iterative optimization of g and f has also been
explored in the literature (Le Morvan et al., 2020a; Ipsen
et al., 2022).

Theoretical analyses of ItR have investigated whether com-
binations of g and f exist that equal Bayes rule, focusing on
regression or classification as downstream tasks (Josse et al.,
2024; Bertsimas et al., 2021; Le Morvan et al., 2021). How-
ever, these studies do not address the existence of learning
algorithms capable of constructing optimal g and f. More-
over, analyses in finite-sample settings have been confined
to restrictive cases where the true f is assumed to be a linear
model, leaving more general problem settings unexplored
(Le Morvan et al., 2020b). Additionally, these analyses of-
ten restrict downstream tasks to regression or classification
and, in some cases, confine the loss function of f to mean
squared error (Le Morvan et al., 2020b; 2021). In this paper,
while we focus on discrete WFs, we achieve a generalization
error analysis of WFL in finite-sample settings by assum-



A Unified Framework for Generalization Error Analysis of Learning with Arbitrary Discrete Weak Features

ing only the boundedness and Lipschitz continuity of the
loss function of f, without imposing any constraints on a
downstream task and a data distribution.

In CFL, the primary focus lies on learning problems where
input features include CFs (Sugiyama & Uchida, 2024).
Within this framework, the feature estimation model g and
the label prediction model f are defined as probabilistic
models, and an objective function leveraging the Kullback-
Leibler divergence has been derived to learn g and f. For
learning g in CFL, complementary label learning (CLL)
(Ishida et al., 2017; 2019; Yu et al., 2018; Lin & Lin, 2023;
Ruan et al., 2024), a weakly supervised learning approach
that predicts true labels from datasets labeled exclusively
with incorrect labels, can be employed. Moreover, since
partial label learning (PLL) (Cour et al., 2011; Feng et al.,
2020; Xu et al., 2021; Tian et al., 2023), where supervision
is provided in the form of a set containing the true label,
can be interpreted as a generalized learning problem of CLL
(Katsura & Uchida, 2020). Therefore, PLL is also applicable
to the learning of g.

However, in CFL, the learning behavior under finite samples,
as well as the conditions required to obtain asymptotically
optimal g and f, have yet to be theoretically clarified. In
this paper, we restrict g and f to deterministic models and
perform a generalization error analysis of WFL for arbitrary
downstream task and bounded, Lipschitz-continuous loss
functions, thereby shedding light on the theoretical proper-
ties of CFL.

2.2. WFs Whose Exact Values Can Be Estimated

When constructing a feature estimation model g, it is natural
to treat the observed values of each WF as WLs and employ
the WSL methods. In fact, depending on the types and
settings of WFs, g can be learned using WSL methods. In
WSL, a variety of WL settings have been studied, including
the aforementioned CLL and PLL. For instance, noisy label
learning (Natarajan et al., 2013) deals with learning from
data containing incorrect labels, while positive-unlabeled
learning (Elkan & Noto, 2008) focuses on learning binary
classifiers using only positive and unlabeled samples.

Various WSL methods have been theoretically formulated,
and their generalization error has been analyzed under finite-
sample conditions (Cour et al., 2011; Feng et al., 2020;
Xu et al., 2021; Natarajan et al., 2013; Ishida et al., 2017;
Yu et al., 2018). Many of these objective functions were
defined using unbiased estimators of the expected risk in
supervised learning, the expected risk’s upper bounds that
are computable with WLs, or risks whose optimal solutions
align those of the expected risk. Their theoretical analyses
elucidated the conditions under which optimal hypotheses
can be obtained by minimizing each objective function, as
well as the relationship between WL settings and the error

bounds. Thus, if WSL is employed to learn g in WFL,
the learning of g alone can be analyzed based on the WSL
theories.

However, in WFL, it is necessary to consider the learning
of both g and f. For example, in sequential learning, the
learning of f depends on the output of g. In iterative learn-
ing, the learning of g depends on f, unlike the case where
g is learned solely using WSL. Therefore, a theoretical dis-
cussion that establishes the relationship between g and f
is essential. In this paper, we perform a generalization er-
ror analysis of WFL, explicitly considering the relationship
between g and f.

3. Formulation
3.1. Review of ERM

In this paper, we formulate WFL from the perspective of
risk minimization and adopt empirical risk minimization
(ERM) as the learning framework. Below, we briefly review
ERM in ordinary supervised learning (Shalev-Shwartz &
Ben-David, 2014; Mobhri et al., 2018). Let the input space be
X C R? and the label space be Y C R. Here, d € N rep-
resents an input dimension. We denote the random variables
representing an instance by X and the random variable rep-
resenting labels by Y, assuming that (X,Y") follows the
true distribution p.(x,y) over X x ) independently and
identically distributed (i.i.d.). The goal in the ERM frame-
work is to find a label prediction model f : X — R € F
that minimizes the expected risk:

Ri(f) = Ep. (2, [[(f(X),Y)],

where [ : R x R — R} is a loss function, and F is the
hypothesis set of label prediction models. Since only finite
samples are available in practice, ERM approximates the
expected risk with the empirical risk computed as a sample
average and learns f by minimizing this empirical risk.

3.1

3.2. Formulation of discrete WFL

In this section, we formulate WFL based on risk minimiza-
tion and employ ERM as the learning method. To account
for the presence of WFs in instances, we decompose X
representing an instance, into X% representing the exact
values of WFs and X° representing the remaining ordi-
nary features (OFs), such that X = (X", X°). Let AV
and X° denote the domains of X* and X°, respectively,
with XV x X° = X. Here, X'V is assumed to be a finite
set. We denote the observed values of WFs as the random
variables X%, which follows the probability distribution
b.(@"|2,y).

We define the feature estimation models for estimating
the exact values of WFs as g := (¢1,...,9pv) € G 1=
Gy X -+ X Gpw : X° — XV, where F'V is the number of
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WFs, and each g; € G; : X° — &Y, Vj € [F"]. Here,
[FV]:={1,..., FV}, and G, represents the hypothesis set
for estimating X*. The probability mass function (PMF)
representation of g is defined as gg (% [2°) := 1[zv_g(a0)]-
For simplicity, this paper primarily focuses on binary classi-
fication, but the proposed formulation and analyses can be
easily extended to other prediction tasks such as multi-class
classification or regression.

The primary objectives of WFL are to improve the gener-
alization performance of a downstream task and to restore
explainability lost due to WFs. The primary factor reducing
explainability is the inaccuracy of information provided by
WFs . The most natural approach to address this issue is to
estimate the exact values of WFs accurately. Accordingly,
WEFL aims to learn f and g that minimize the following two
risks. The first risk evaluates the generalization error of f:

Rl,g(f) = Ep*(wo,y)qg(wwlwo)[l(f(X)a Y)]
= ]Ep*(:co,y) [l(f(g(Xo), Xo)v Y)]

The second risk that assesses the estimation errors of g:
Ro1(95) = By, (@) llor (9;(X°), X3)|, Vi € [F™]. (3.3)

Here, loi (y,y') := 11y, represents the 0-1 loss. Finally,
the objective function for discrete WFL is defined as a linear
combination of these risks:

RiNTMg, f) = Rig(f) + A2 1w Rorj(g;), (3.4)

where \ € R, is a weighting parameter.

(3.2)

The objective function R?XVFL facilitates the unified treat-
ment of any discrete WFs. This unification arises from
representing the error of g; via the risk Roy j, which is
aimed to be minimized regardless of the type of WE. In
practice, for various types of WFs, WSL methods that learn
g; aim to minimize Ry j, by minimizing risks that serve as
upper-bound of Ry, ; or risks whose optimal solutions align
with those of Ry;,; (Cour et al., 2011; Feng et al., 2020;
Natarajan et al., 2013; Ishida et al., 2017; Yu et al., 2018).
Therefore, such WSL methods can be utilized to learn g; as
part of minimizing R?X\VFL.

The validity of our formulation is demonstrated by the fol-
lowing theorem !. Its proof is given in Appendix A.1.

Theorem 3.1. Forany f € F, g € G, and | bounded by
U, < oo, the following inequality holds:

Ri(f) < Rig(f) + Ui d_jepw) Rorj(95).- (3.5)

'Theorem 3.1 can also be derived from Lemma 4.1, which
is introduced later in Section 4.1. However, while Lemma 4.1
is derived for the theoretical analysis in Section 4, Theorem 3.1
is intended to establish the validity of our formalization. We
introduce this theorem to enhance the clarity of our discussion.

The RHS of Eq.(3.5) equals RﬁXXFL. By scaling [, U; can
be aligned with any A, and minimizing Rf,\;\VFL is expected
to yield an f that also minimizes R;. In other words, by
using R'\'F'", f is learned to capture the true relationship

between X and Y, despite relying on X V.

This result of Theorem 3.1 is directly applicable to the fol-
lowing two scenarios. The first scenario occurs when test
instances contain the exact values of WFs. For instance,
practical scenarios arises when WFs are observed during
training, but exact values are available during testing. In
this scenario, minimizing R; is essential, but it cannot be
computed directly from the training data containing WFs. In
contrast, since Theorem 3.1 ensures that minimizing R{}Y '™
indirectly minimizes R;, our framework is a valuable ap-
proach for overcoming incomplete inputs during training
while enhancing performance with complete inputs at test
time.

The second scenario involves training data containing a mix
of instances with exact values of WFs X* and instances
with WFs X_ In practical applications, some portions of
the data may be observed in detail, yielding exact values,
while other portions may be only partially observed. Theo-
rem 3.1 guarantees that minimizing R{'Y 'L contributes to
minimizing R;. Thus, it enables the simultaneous use of
both data types during training. This approach facilitates the
development of learning methods that seamlessly integrate
both data types into a unified framework.

3.3. Learning Algorithm Class for discrete WFL

In this section, we introduce a class of learning algorithms
that uniformly address not only any discrete WFs but also
diverse methods within the discrete WFL framework. Build-
ing on the formulation proposed in Section 3.2, we define a
class that encompasses numerous existing methods in ItR
and CFL as follows:

Definition 3.2 (LAC-dWFL). learning algorithm class for
discrete WFL (LAC-dWFL) refers to the set of algorithms in
discrete WFL that learn the feature estimation models g and
the label prediction model f using one or a combination of
the following three steps:

(i) Learning g by using X ¥ as weak supervision and min-
imizing > JelFv] Ry 5, either directly or indirectly.
(ii) Learning f with g fixed by minimizing ?; 4.
(iii) Learning g with f fixed by minimizing R;{XVFL.
The introduction of LAC-dWFL allows for a unified treat-
ment of a wide range of methods for WFL. Most methods ap-

plicable to ItR and CFL fall under the category of sequential
learning, where steps (i) and (ii) are executed in sequence
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(Yoon et al., 2018; Mattei & Frellsen, 2019; Ipsen et al.,
2021; Josse et al., 2024; Le Morvan et al., 2021; Sugiyama
& Uchida, 2024). Additionally, methods that represent g
and f as neural networks and combine them (Le Morvan
et al., 2020a; Ipsen et al., 2022) can be regarded as iterative
learning, where steps (ii) and (iii) are executed repeatedly,
when these components are alternately optimized. Such
methods are thus encompassed within LAC-dWFL.

4. Theoretical analysis

This section presents a theoretical analysis of the unified
learning algorithm class, LAC-dWFL. Through this analy-
sis, we elucidate the common properties of LAC-dWFL and
establish a foundation for the theoretical exploration of vari-
ous methods encompassed within this class. To achieve this,
itis necessary to elucidate the properties of steps (i), (i), and
(ii1) within LAC-dWFL. As established in Section 3.3, step
(i) involves WSL methods, and its properties can therefore
be analyzed using existing WSL theories. Consequently,
our theoretical focus is directed toward steps (ii) and (iii). In
Section 4.1, we derive a fundamental inequality to analyze
steps (ii) and (iii). In Section 4.2, we establish an error
bound for f learned via step (ii), given any g. In Section 4.3,
we establish an error bound for g learned via step (iii), given

any f.

4.1. Deriving an Analytical Tool

Our objective is to examine how the learning of f in step
(i1) and g in step (iii) depend on the performance of g and
f, respectively. To achieve this, the error bounds for f and
g must be expressed in terms of Ry, ; for any j € [F'V] and
Ry, respectively. To achieve this requirement, we present the
following lemma, with its proof provided in Appendix A.2.

Lemma 4.1. For any measurable | bounded by U; < oo,
f € Fandg € G, the following holds:

|Ri(f) = Rig(f)] <

(VRi(f) + /Ruig(f)) (2Ul > jerr) Bor g (%‘)) .
(4.6)

Equation (4.6) shows that |R;(f) — Riq(f)] = 0 is
achieved when either ¢ (pw) Ro1,i(g;) = 0 or /Ri(f) +

Ry g(f) = 0. Although intuitive, this inequality serves a
critical role in deriving subsequent error bounds. Lemma 4.1
enables the analysis of how f and g influence each other’s
learning processes.

4.2. Analysis of Learning Label Prediction Model f

In this section, we conduct a theoretical analysis of the
learning process of f under LAC-dWFL’s step (ii), where g

remains fixed. Since step (ii) involves learning f based on
the output of g rather than X%, the relationship between g
and f cannot be analyzed using ordinary supervised learning
frameworks (Mohri et al., 2018). We derive an error bound
for f that captures how the errors of g influence the learning
process of f, enabling an analysis of the step (ii).

To facilitate the analysis, we introduce the following def-
initions. Given n € N, training samples, we define the
ordinary dataset, S = {(x;,y;)}"_,, and the weak dataset,
S = {(@", @7, y:)}i_,. Here, z; = (7, @), y; and
@) represent the realizations of X = (X", X°), Y and
XV, respectively. Also, the i-th samples in S and S cor-
respond to the same instance, for any i € [n]. We as-
sume that {(x;, y;, ")}~ are independently drawn from
pi(, y)ps (V| , y). Let R, and Ehg denote the empirical
risks calculated by the sample average over S and S, respec-
tively. For any g € G, the empirical risk minimizer obtained

from LAC-dWFL’s step (ii) is defined as follows:
fo5=argminger R g(f).

Using Lemma 4.1, we establish the error bound for f 9.5
learned via LAC-dWFL’ step (ii) in the following theorem.
The proof is provided in Appendix A.3.

Theorem 4.2. Let S and S be the ordinary dataset and weak
dataset, respectively, each containing n samples. For any
measurable g € G, L;-Lipschitz continuous | bounded by
U, < coand § € (0, 1), the following holds with probability
at least 1 — 6:

Rig(fy5) — Ri(fr) <

A(L%(F) + LR (F) + Uy o102
+ {2 (Rl(f]-') + ALK, (F) + 20, \/W)

[N

4.7)
+ (QUI 2 jelpw) Rm,j(gj)) : }
X (2Ul 2 jepw Rorg (gj))é
Here, fr = argminger Ri(f) represents the true risk

minimizer in ordinary supervised learning.

The terms R (F) and R (F) represent the Rademacher
complexities of the hypothesis class F under the distribu-
tions p, () and p, (x°)gq (™ |x°), respectively, and mea-
sure the complexity of F. Equation (4.7) reveals that the
errors of g combine with the result of virtual ordinary super-
vised learning (R;(fz) + - - -)*/? to affect the error bound
for f in WFL.

The first contribution of Theorem 4.2 is its ability to reveal
the following property concerning the learning of f under
LAC-dWFL’s step (ii). Theorem 4.2 demonstrates how the
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convergence rate of the error bound for f with respect to
n depends on the estimation errors of g. Given the estab-
lished result that the order of the Rademacher complexity’s
upper bound is O, (1/n'/2) for kernel ridge regression and
multilayer perceptrons (Mohri et al., 2018; Neyshabur et al.,
2015), we assume the orders of Rademacher complexities
about F or G are O,(1/n'/?). Additionally, assume that F
is sufficiently expressive and that R;(fr) = 0. Under these
assumptions, and with g fixed, the first and second terms in
the error bound have orders of O,,(1/n'/?) and O, (1/n'/*),
respectively. Therefore, the second term, which decreases
more slowly, becomes dominant when » Je[F™] Ry, 5 is
large. This result suggests that when learning g to improve
the generalization performance of f, maximizing the estima-
tion accuracy of g is sufficient, rather than tailoring the out-
puts of g to be specifically suited for f. Furthermore, when
WFs contain ambiguous information such as CFs, their val-
ues XV can serve as inputs to f. The choice between X%
and the learned g is a critical decision, empirically validated
in the context of CFL (Sugiyama & Uchida, 2024). Theo-
rem 4.2 concludes that, if the learned g estimates X more
accurately than XV, using g contributes more significantly
to reducing the error bound for f compared to directly using
Xv.

The second contribution of Theorem 4.2 is its ability to
integrate our WFL theory with the theories of WSL meth-
ods used to learn g under LAC-dWFL’s step (i). This is
because, when g; is learned using certain WSL methods,
their theoretical frameworks enable the derivation of error
bounds for Ry, ;(g;) in Eq. (4.7) (Cour et al., 2011; Feng
et al., 2020; Xu et al., 2021; Natarajan et al., 2013; Ishida
et al., 2017; Yu et al., 2018). For example, when )7;” is a
CF, applying the CLL method by Ishida et al. (Ishida et al.,
2017) for learning g;, and assuming that G; is sufficiently
large to satisfy ming, g, Ro1,;(g;) = 0, the following holds
for any L;-Lipschitz continuous [ and any ¢ € (0, 1) with
probability at least 1 — §:

Ro1,5(g;) < 4[X7 (1] = 1) LiR;, (G5)
T (Y] = 1)/ Bleel2/o)
J n N

The combination of such error bound with Eq. (4.7) enables
a unified generalization error analysis for the sequential
learning of g and f under LAC-dWFL’s steps (i) and (ii),
elucidating the following three aspects: Firstly, the combi-
nation enables the analysis the influence of WFs’ properties
on the learning of f. For instance, since Eq. (4.8) depends
on | X[, combining it with our bound allows for analyzing
how the number of possible values |X}"| influence f’s learn-
ing. Secondly, this combination elucidates the impact of
whether g is learned or not on the learning of f. Applying
Eq. (4.8) to Eq. (4.7) demonstrates that the order of the
error bound for f is O,(1/n'/?). Thus, when a constant

(4.8)

value or X% is used as g(X°), the order of the error bound
remains O, (1/n'/*), whereas learning g improves this or-
der to O, (1/n'/?). In addition, Theorem 4.2 theoretically
connects the error bounds of f and g, thereby elucidating
the conditions under which sequential learning achieves
consistency, as following theorem. The proof is shown in
Appendix A.4.

Theorem 4.3. Assume the existence of true deterministic
functions g; : X° — X} for all j € [FY], such that
(97,1 94w) € G, and f* : X — Y such that f* € F.
Additionally, suppose | bounded by U; < oo is L;-Lipschitz
continuous, and R, (F) and RI(F) asymptotically ap-
proach 0 as n — oo. If, for all j € [FY), the number
of samples available for learning g; tends to infinity as
n — oo, and a consistent method is employed to learn
g, then sequential learning achieves consistency (i.e., as
n — o0, Ry g(fg,s) = Ri(fF)).

Thus, under the conditions stated in Theorem 4.3, an asymp-
totically optimal pair of g and f can be obtained through
sequential learning alone. In contrast, in practical finite-
sample scenarios, iterative learning involving LAC-dWFL’s
steps (ii) and (iii) may be necessary (Le Morvan et al.,
2020b; 2021). In Section 4.3, we examines the step (iii)
for a comprehensive understanding of LAC-dWFL.

4.3. Analysis of Learning Feature Estimation Models g

This section provides a theoretical analysis of the learning
of g with f fixed in LAC-dWFL’s step (iii). We aims to
reveal how the learning of g using R; 5, with f fixed, is
influenced by f.

The learning of g using RﬁXVFL in Eq. (3.4) involves the si-
multaneous minimization of two risks, which makes it chal-
lenging to conduct generalization error analysis for ERM
directly. In contrast, in ordinary supervised learning, the
simultaneous minimization of an expected risk and a regu-
larization term is formulated as structural risk minimization
(SRM), which has established methods for generalization er-
ror analysis (Mohri et al., 2018). SRM selects a hypothesis
from a restricted hypothesis class in which the regularization
term is below a certain threshold and derives error bounds
for the selected hypothesis. Focusing on the influence of f
on the learning of g, we treat I s as the expected risk for
which bounds are derived and Je[Fv] Ry, ; as the regular-
ization term, and apply SRM theory.

To apply SRM theory, for any j € [FV], we in-
troduce the following definitions. Let [; denote the
loss function for g; computed using X7.  Define

the datasets S; := {(@, )}, Let Ry, (g;) =
Eyp. @)p. @72y [li(9;(X°), X7))] represents the ex-

pected risk of g; computed using X¥'. Additionally, R;; de-
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notes the empirical risk, which approximates Elj by taking
the sample average over S;. We assume that R, satisfies
either R()]’j (gj) = Elj (gj) or R()l’j (gj) < Elj (gj) for any
g;, or that the optimal solutions of Rl]. coincide with those
of Ry ;. Forany r = (r1,...,rpw) € Riw, define the
following hypothesis class:

g(ﬂg) = g1(7”1,§1) X X gFW(rFW»gFW)v

where, G;(r;, 5;) := {g;l9; € G; A Ri;(g;) < 7;},Vj €
[F™]. To explicitly indicate that R; 4(f) is part of the ob-
jective function of g, we denote it as R; ¢(g)(= Ri,g(f))
and the empirical risk of R; s(g) is defined as f{lyf(g)(z
El,g(f)). By performing the learning of g in LAC-dWFL’s
step (iii) as outlined below, the analysis of minimizing R; ¢
while reducing > je[Fv] Ry1,; becomes feasible:

(r) D

9,5 = argminges, 5 R t(g). (4.9)

Based on the above definition, the assumptions and

Lemma 4.1, the error bound for g;’% is presented in the

following theorem. The proof is prO\;ided in Appendix A.5.

Theorem 4.4. Suppose S and S represent an ordinary
dataset and a weak dataset of n samples, respectively. Then,
for any measurable f € F, | bounded by U; < oo and
d € (0,1), the following holds with probability at least
1—4:

Rip(g}) = Rilf) <
(4% (G (r,5)) + QUZ\/@)
+ {2V R + (2005 e o Rons(657) "}

1
T4 2
x <2Ul 2 jerr) flon g (g%)ﬁ)))

(4.10)

Here, Gy ¢(r, S) == {(z°,y) — I(f(g(x°),2°),y) : g €
G(r,S)}

(rs)
8,3

bounded by defining G;(r;, S;) as the set of empirical risk
minimizers obtained via weakly supervised learning using
S ;. For instance, when X 5 is a CF, and every hypothesis

The term Ry ;(g5”’) in Eq. (4.10) can be further upper-

in Gj(r;,S;) is an empirical risk minimizer obtained us-
ing the method of Ishida et al. (Ishida et al., 2017) and
G, is sufficiently large to satisfy ming, cg, Ro1,j(g;) = 0,
then Ry, ; (gg ’])) can be upper-bounded by Eq. (4.8). There-

fore, when we define G;(r;,.5;) as the class of empirical
risk minimizers obtained by such a method with guaran-
teed consistency, and assume that the order of R} (G,) is

O,(1/n'/?), the order of the upper bound of Ry, ; (gg;)) is

also O, (1/n'/?). Furthermore, assuming that R (G;) — 0

(r3)
5.5
In the following discussion, we assume that Ry ; (g(g;))

as n — oo, it follows that Ry ;(g5’’) — 0asn — oo.

can be upper-bounded by a probability inequality of a form
similar to that of Eq. (4.8).

Theorem 4.4 elucidates the influence of f’s prediction error
and characteristics on the error bound for learning g via
LAC-dWFL’s step (iii), as well as the convergence of g’s
learning. First, Theorem 4.4 demonstrates that the conver-
gence rate of the upper bound of R; ¢ (Q;T;) with respect to
n significantly depends on the expected risk R;(f). Specifi-
cally, assuming the orders of the Rademacher complexities
in Eq. (4.10) are O,(1/n'/?), the orders of the first and
second terms on the RHS of Eq. (4.10) are O,(1/n'/?)
and O,(1/n'/*), respectively. Consequently, the slower-
decreasing second term becomes dominant when R;( f) is
large. Although R;(f) cannot be directly minimized in
WFL, it has been shown that minimizing R{'Y "(f, -) helps
reduce R;(f) (Theorem 3.1). Therefore R;(f) is expected
to decrease through LAC-dWFL’s step (ii). Additionally,
if [ is L;-Lipschitz continuous and f is L g-Lipschitz con-
tinuous, then 0% (G ¢ (r, S)) < LiLsR%(G(r, S)) holds
(Mohri et al., 2018). This implies that the learning efficiency
of g improves when f exhibits smoother variation with re-
spect to its input. Furthermore, combining Theorem 4.4
with Theorem 4.2 reveals the conditions under which itera-
tive learning in LAC-dWFL achieves consistency. The proof
is shown in Appendix A.6.

Theorem 4.5. In addition to the conditions stated in Theo-
rem 4.3, assume f obtained via LAC-dWFL’s step (ii) is Lip-
schitz continuous, and the Rademacher complexities about
g asymptotically converge to 0 as n increases. Furthermore,
forany j € [F¥], define G;(r;,S;) as the set of empirical
risk minimizers obtained by methods that use S j and are
guaranteed to achieve consistency. Then iterative learning

achieves consistency.

5. Experiments

In Section 4 we revealed two key properties of LAC-dWFL:
(1) the mutual influence between the feature estimation mod-
els g and the label prediction model f during their respective
learning processes, and (2) the relationship between the gen-
eralization error and the number of training samples n in
WFL. Furthermore, the theoretical analysis demonstrates
that sequential learning alone suffices for WFL. To validate
the critical aspect of WFL, namely the impact of the esti-
mation error of g on the learning of f (Theorem 4.2), we
evaluate how varying the estimation errors of g affects f’s
learning performance.
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Figure 5.1. The relationship between the number of training samples n, R;,4(f, 5), and various estimation errors of g.
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Figure 5.2. A comparison between Ry, (f, 5) and the error bound derived in Theorem 4.2, for various estimation errors of g.

5.1. Experimental Settings

We used four real-world datasets: Adult (Becker & Ko-
havi, 1996), Bank Marketing (Moro & Cortez, 2014), kick
(Vanschoren et al., 2013), and Census-Income (KDD) (cen,
2000; Dua & Graff, 2017). We refer to them as Adult, Bank,
Kick, and Census, respectively. Details of these datasets
are summarized in Appendix B.1. For each dataset, 50%
of the samples were reserved as test data to estimate the
generalization error. In this experiment, we focused on
a representative case of WFs, where all categorical fea-
tures are treated as CFs (Sugiyama & Uchida, 2024). Both
the feature estimation models g and the label prediction
model f were implemented using two-layer perceptrons
with hidden layers of width 500 and ReLU as an activation
function. Logistic loss was used as [. The Rademacher
complexity, required for calculating the error bounds, was
estimated using the method proposed by Neyshabur et

(Neyshabur et al., 2015). Details of the experimen-

tal settings are summarized in Appendix B.2. The follow-
ing results are the average of 5 trials. The experimental
scripts used in this paper are available at the following URL:
https://github.com/KOHSEMP/discrete_WFL

5.2. Impact of g on f’s learning

This section investigates how the estimation errors of fea-
ture estimation models g affects the learning of the label
prediction model f. To perform this investigation, precise
control over the estimation errors of g is required. However,
achieving such fine-grained control through WSL methods
is challenging. Importantly, for this experiment, the method
used to obtain g is less relevant than the influence of its
estimation errors on f. Thus, synthetic estimation functions
for g are employed, which randomly misestimate with con-
trolled error rates, enabling systematic examination of the
impact of g’s estimation errors on f’s learning.
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We vary the estimation error of g from 10% to 90% and train
f under these settings. Figure 5.1 shows the relationship
between n and Ry g(f, 5). The results confirm that, as
shown in Theorem 4.2, lower estimation errors of g lead to

a higher reduction rate of Ry 4(f, 5) as n increases.

Additionally, Figure 5.2 compares the generalization error
of f, shown in Figure 5.1, with the error bound in Theo-
rem 4.2. Figure 5.2 shows that the decrease in Rl,g(fgvg)
and its bound with increasing n exhibits a similar trend,
with the reduction becoming more significant as the es-
timation error of g. Therefore, Theorem 4.2 effectively
captures a fundamental characteristic of WFL, specifically
the influence of g on the actual learning of f, which is con-
sistent across various scenarios. The discrepancy between
Ry 4(f, 5) and our bound in Figure 5.2 can be attributed
to the fact that our bound does not account for the feature
importance of WFs in predicting Y. This suggests a new
research direction for deriving error bounds that incorporate
the feature importance of WFs. Our results are considered
to provide a critical foundation for such an approach.

6. Conclusion

This presented a unified formalization and theoretical anal-
ysis of discrete WFL. First, we proposed a formulation of
WFL capable of handling arbitrary discrete WFs. We vali-
dated this formulation by demonstrating that the introduced
objective function aids in learning a label prediction model f
that captures the true input-output relationship. Within this
framework, we performed a generalization error analysis
for LAC-dWFL, a generalized learning algorithm class de-
signed to learn both feature estimation models g and f. This
analysis revealed the detailed influence of the estimation
errors of g and f on the error bounds of f and g, respec-
tively. Additionally, we identified theoretical conditions
under which consistency can be achieved for the sequential
and iterative learning approaches in LAC-dWFL. Finally,
numerical experiments on real-world datasets verified that
our theoretical results align with observed learning behav-
ior. This study provides comprehensive theoretical insights
into various problem settings, such as ItR and CF, involving
discrete WFs.

Impact Statement

Our paper presents a formalization and theoretical analy-
sis of discrete WFL that accommodates arbitrary discrete
WFs. Understanding the impact of low-quality input fea-
tures on the training of predictive models is crucial for the
development and deployment of safe machine learning sys-
tems. This is because degraded input feature quality can
potentially lead to predictive models that are vulnerable to
adversarial attacks or that propagate socially undesirable

biases. The theoretical results presented in this work are ex-
pected to provide a foundational perspective for discussions
concerning the interplay between input feature quality and
the safety of machine learning.
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A. Proofs
A.1. Proof of Theorem 3.1

Proof of Theorem 3.1. For any f € F, g € G, and [ bounded by U; < oo, the following inequality holds:

Ri(f) — Rig(f)
= Ep* (z,y) [l(f(X)’ Y)] - Ep* (z°,y)qq (W |z°) [l(f(X), Y)]

=Epaey| D WX 2"),Y)(pe(2¥|X°,Y) — qg(w‘”lX"))]
LxveXxw

= EP*(EO»?J) Z l(f(X(),(L'W), Y)(p*<wW|Xoa Y) - ﬂ[mw—g(Xo)])]

LzwveXxw

<Ep, (zo,y) Z If(X,2™),Y) (s (2] XY) = Ligwog(xeyp«(x™]X°,Y))

LzwveXxw

=Ep.eoa)| D l(f(X(’wW)aY)p*(ﬂcleO,Y)(ll[wvv:g(xq])}

LzWeXxw

< ]Ep*(m,y) [l(f(XOaXW)7Y) Z (1 - I[X;V_QJ(XO)])]
je[F™]

=Ep. () [l(f(Xoan)vy) Z lol(gj(XO),X]‘.”)]

JE[FY]

S UlEp*(m,y) [ Z l01(gj(X0)7X;v)‘| .

JE[FY]

The second inequality arises from the decomposition of the 0-1 loss. This decomposition is intended to derive the risk
for each g;. The final inequality uses the assumption that the maximum value of the loss function [ is U;. Therefore,
Theorem 3.1 is proved. O

A.2. Proof of Lemma 4.1
Proof of Lemma 4.1. The LHS of Eq. (4.6) can be rewritten as follows:

\Ri(f) = Rig(f)]
= |Ep*(m,y) [l(f(X>7 Y)] - Ep*(m",y)%(m“’lm") U(f(X)7 Y)H

= Epeow)| D l(f(wW,Xo)aY){p*(-’vleoaY)—qg(wleO)}]’

Lxzvexw

= Ep.eoy| D l(f(wW»X‘)),Y){P*(wWIX",Y)—Il[mw—s@f””}]’
Lxzvexw

= By | D {l(f(wwvxo),Y)p*(wW|X°7Y)l(f(:vW,X°),Y)1[ww—g(xo>l}]‘

Lxvexw

= IE;D*(:EOJ/) Z {l(f(wW7XO)aY)p*(xw|XO7Y) - l(f(mwaXo)vY)]]-[mW:g(XO)]p*(mw|XoaY)

LxWvexw

+ l(f(a:wa XO)7 Y)]l[a:‘":g(Xo)]p*(ww|Xo7 Y) - Z(f(wwv XO)? Y)]l[m“’:g(Xo)] }] ’
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< Ep*(:c",y) [ Z

WV EeEXW

I(f(&™, X°),Y)p. (2" X°,Y) — l(f(fcw,X°)7Y)]l[mw—g(xo)lp*(wleoaY)‘

(al)

P

TV EXW

w XO Y—)]]-[:E""*Q(X‘J p*( |XO ) l(f(wvaO)aY)l[mW:g(XU)}

]. (A.11)

(a2)

The term (al) in Eq. (A.11) can be expressed as:

@)= Y Uf(@", X°),Y)p(@"|X°,Y)(1 ~ Lgwg(xe))

TV EeXW

= Ep*(mW\XO,Y) [l(f(va Xo)a Y)l01 (g(XO)a XW)‘| .
Here, lo1 (g(X°), XV) := 1 — I xw—_g(xe) The term (a2) in Eq. (A.11) can be expressed as:

@)= Y {l(f(@",X°),Y)Lgw—g(xey — (@Y, X°), V) Ljgn_g(xoppa(@”| X°, V) }
TV eEXW

= 1(f(g(X°), X°),Y) —1(f(g(X°), X°),Y)p.(g(X°)| X°,Y)
l(f(g<X°),X0>,Y>( > p*<wW|X°,Y>>

xVeAXW

—z(f(g(XO),XO),Y)< > p*(mW|X°,Y)1[mw_g(Xo)]>

TVEXW

_ 1<f<g<X°>,X°>,Y>( S g (X0, V)1 - ﬂ[Xw_gM))

TV EeXW

=1(f(g(X?), X°),Y)E,, (zv|x0v) [101 (g(X°), Xw)] :
By substituting these results into (al) and (a2) of Eq. (A.11), Eq. (A.11) can be rewritten as follows:

‘Rl(f) - Rl,g(f)| < Ep*(ac,y) [(l(f(Xwa XO)’ Y) + l(f(g(Xo)7XO)a Y))ZOI(Q(XO)HXW)‘| . (A.12)

Since [, ly; , f and g are all measurable functions, applying the Cauchy-Schwarz inequality to the RHS of Eq. (A.12),
|Ri(f) — Rig(f)| can be upper-bounded as follows:

|Ri(f) = Rig(f)]
< Ep*(ac,y) [(l(f(XW7XO)7Y) + l(f(g(XO), Xo)7y))lOl(g(X0)v XW)]

2

< (Emw,w [(l(f(XW>X°)aY))2 x Ep, (2) l(ZOI(Q(XO)’XW))QD (A.13)

(1) (b2)

+ <E<> [(l(f(g(XOL X°),Y))*| XE,.(a) [(501 (9(X°), XW))QD

(b3) (b2)

1
2
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The terms (b1)—(b3) of Eq. (A.13) can be expressed as:

(1) = By, (o) [ ((F(X). V)" = 02| <20, oy [(F(X), )] = 20 RA(S),
(b2) = E,_ () [lo1 (9(X < D Epollon(g5(X = > Roi;(g5),
JE[FY] JE[FW]

(b3) = Ep*(:co,y) {(l(f(g(XO)aXo)’ Y))2 - 02} < 2UlEp*(mo,y) [l(f(g(Xo)7X0)7Y)] = 2UlRl,g(f)'

Here, in (b1) and (b3), the fact that the function x — 22 is 2U;-Lipschitz continuous on the interval [0, U;] was utilized.

Applying the above inequalities related to (b1)—(b3) to the RHS of Eq. (A.13), |R;(f) — Ri,4(f)| can be upper-bounded as
follows:

|Ri(f) — Rig(f)l
{QUle Z Ror,5(g; } {2U1Rl,g(f) Z Rm,j(gj)}
JElFv] jElFv]
- (,/Rl +4/Rig ><2Ul > RO,,j(gj)> : (A.14)
JEF™]

Thus, Lemma 4.1 is proven.

A.3. Proof of Theorem 4.2

From Lemma 4.1, the following lemma holds:

Lemma A.1. Forany f € F, g € G and | bounded by U; < oo, the following inequality holds:

[Ri(f) = Rig(f)] < (2 Ri(f)+ <2Ul > Rm,j(gj)) )(2& > Rm,j(gj)> : (A.15)

JE[FY] JE[F™]

Proof of Lemma A.1. From Lemma 4.1, forany f € F, g € G and [ bounded by U; < oo, the following inequality holds:

‘\/Rl(f)\/Rlyg(f)‘ < <2Ul > Ry > (A.16)

JE[FY]

Hence, \/R; g(f) can be upper-bounded as follows:

VR = \Big(5) + VE(F) - VRi(F)
< VR + VAT - Ryl i

<VRI(f)+ <2Ul > Rm,j(gj)>2

JE[FY]
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By applying the above inequality to the RHS of Eq. (A.14), |R;(f) — Ri 4(f)| can be upper-bounded as follows:

|Ri(f) — Rig(f)] < (2 Ri(f) + <2Ul Z ROI,j(Qj)) ><2U1 Z ROl,j(gj)) . (A.13)

JEF™] JE[F™]

By leveraging Lemma A.1, Theorem 4.2 is proven as follows.

Proof of Theorem 4.2. From Section 3.1, we define the empirical risk minimizer in ordinary supervised learning as follows:
fs = argminger Ri(f).

The LHS of Eq. (4.7) can be rewritten as:
Rig(fy5) — Ri(fF)

=Rig(f,5) — Rig(f,5) + Rig(fy5) — Rig(fs)
@b @

+ Rig(fs) — Ri(fs) + Ri(fs) — Ru(fF)-
@) (@)

(A.19)

The terms (al) and (a2) in Eq. (A.19) can be upper-bounded as follows:
(al) < max |Rig(f) — Rig(f)l,

(a2) < ﬁl,g(fs’) - Rl,g(fS) < rflea])__( ‘Rl,g(f) - ﬁl,g(f”'

The term (a3) in Eq. (A.19) can be upper-bounded using Lemma A.1 as follows:

<a3)§{2 Rz(fs)+<2Ul > Rm,j(gj)> }<2Ul > Rm,j(gj)> : (A.20)

JelF] JelF]

Dl=

Additionally, R;(fs) can be upper-bounded as follows:
Ri(fs) = Ri(fs) — Ri(fs) + Ri(fs) — Ri(f7) + Ri(fr)

< Ri(fs) — Ri(fs) + Ri(fF) — Ri(f) + Ri(f)
< Rulfr) + 2max [Ri(f) ~ Ri(f)]. (A21)

Hence, (a3) in Eq. (A.19) can be upper-bounded as follows:

@3) < | 2( Ru(f5) + 2max|Ri(f) — Ri(f)] T (o > Rou;(gy) 20, Y Rojlgy) | - (A22)
feF

jelF™] JE[F™]
Similarly, the term (a4) in Eq. (A.19) can be upper-bounded as follows:
Ri(fs) = Rulf7) < 2max|Ri(f) = Ru(f)].
By applying the above inequalities regarding (al)—(a4) to the RHS of Eq. (A.19), it can be upper-bounded as follows:
Rig(fy5) — Ri(fF)
< 2max|Rig (f) = Big(f)| + 2max |Ri(f) = Ru(f)]

+{2(Rl(f]—‘)+21}1€a}(|Rl(f)_El(f”)z+ <2Ul >, Rom‘(%)) }<2Ul > Rom‘(é’j)) :

JE[F™] JE[F™]

(A.23)
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From the uniform law of large numbers (Mobhri et al., 2018), for any § € (0, 1), the following holds with a probability of at
least 1 — §/2:

~ v log(4/0)
max |Rig(f) — Rig(f) < 2R9(F) + 2n
s

rjnea}c\Rz( ) — Ri(f)| < 2R%(F) + U, o

Here, F; 1= {(z,y) = U(f(x),y): feF}

From the assumption that [ is L;-Lipschitz continuous, it follows that %;(ﬁl) < LR} (F) and 9{%(]?1) < LiRI(F)
(Lemma 26.9 in (Shalev-Shwartz & Ben-David, 2014)).

Thus, for any 6 € (0, 1), the following holds with a probability of at least 1 — §:
Rig(fy5) — Ri(fr)

<4 (inﬁii(f )+ LiRY(F) + Uy logéi/‘”)
(A.24)

Nl

+{2<Rl(f;)+4LliR;(]:)+2Ul bgéi/é)> +<2Uz Z ROI,j(Qj)) }<2Ul Z Rm,j(gj))

JEF™] JEF™]

A.4. Proof of Theorem 4.3

Proof of Theorem 4.3. By assumption, there exist true deterministic functions g; : X° — X" for any j € [F™], and
(91,---,9pw) € G. Therefore, when g5 = (95,17 93, ) i obtained by the methods that achieve consistency (Cour
etal., 2011; Feng et al., 2020; Xu et al., 2021; Natarajan et al., 2013; Ishida et al., 2017; Yu et al., 2018), the following holds:

n — 00, Roi;(g9s,) —0, Vje[F"] (A.25)

Additionally, by assumption, there exists a true deterministic function f* : X — ) for label prediction, and f* € F. Hence,
the following holds:

Ri(fr) =0. (A.26)

Thus, if R (F) and RI (F) are monotonically decreasing with respect to n and converge to 0, the error bound established
in Theorem 4.2 converges to 0 as n — 00.

O
A.5. Proof of Theorem 4.4
For a weak dataset .S and a positive real-valued vector r, define the feature estimation models g( ) = =( gé 11), e g(sr’;fv)) as
follows:
( 7) =arg min le (9), Vje[FY]. (A27)
9€G(r;,5)
Using Lemma A.1, Theorem 4.4 is proven as follows.
Proof of Theorem4.4. The LHS of Eq. (4.10) can be rewritten as follows:
Rif(gys) = Ri(f) = Ris(gyy) — Rus(gy) + Ruslgd) — Rup(g§)) + Rislag”) — Rilf)
f f f f .8 o f S f S . (A28)

(al) (a2) (a3)
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The terms (al) and (a2) of Eq. (A.28) can be upper-bounded as follows:

(@) < max_|Riz(g) — Ris(g)l, (A.29)
geg(r,S)
@2) < Rip(gy)) - Rup(gy)) < max_|Ris(g) - Ris(g)l- (A.30)
geg(r,S)

The term (a3) of Eq. (A.28) can be upper-bounded using Lemma A.1 as follows:

@3) < Ry (g”) = Ri(f)|

§{2 Rl(f)+<2Ul > R()l’j(gg?)) }<2Ul > ROlﬁj(ggzg;))) : (A31)

JEF™] JEF™]

=

Therefore, by applying Eqgs. (A.29), (A.30), and (A.31) to Eq. (A.28), we obtain:

Ris(gi"0) = Ri(f) <2 max_|Ris(g) — Ris(g)|
geg(r,S)

+{2 Rl(f)+<2Ul > RO]J(QQ))
JeF™]

From the uniform law of large numbers (Mohri et al., 2018), for any § € (0, 1), the following holds with a probability of at
least 1 — 4:

[SIE

) 3 (A.32)

}<2Ul >~ Roley’

JE[FY]

max_ |Ry,;(g) — Ri;(g)] < 2%%5(Gy s (r,S)) + U
geg(r,S)

log(2/0)
—o— (A.33)

Furthermore, by applying Eq. (A.33) to Eq. (A.32), we obtain that, for any § € (0, 1), with probability at least 1 — §,
Eq. (4.10) holds:

Ris(g\)) = Ri(f) < 4%;(Gus (. S)) +2U1W

+{2 Rl(f)+<2Ul 3" Roiylg <T ) }<2Uz > Roy gsj ) . (A.34)

JE[FY] JE[FY]

N

A.6. Proof of Theorem 4.5

Proof of Theorem 4.5. By assumption, there exist true deterministic functions g; : X° — X" for any j € [F™], and
(g%,---,9pw) € G. Inthis case, for any 7 and S, it holds that g* € G(r, S). Therefore, the followmg holds:

Ro1,;(9g(r.5);) =0, Vi€ [FY]. (A.35)

For any j € [F"], define G;(r;, S;) as the set of hypotheses that satisfy the following two conditions: (i) each element is a
solution obtained by methods that are guaranteed to achieve consistency (Cour et al., 2011; Feng et al., 2020; Xu et al.,
2021; Natarajan et al., 2013; Ishida et al., 2017; Yu et al., 2018), and (ii) its empirical risk is at most r; . As n increases and
r; — 0, the assumptions on Ej and the theoretical guarantees of these consistent methods for g; imply the following:

Roi;(g;) = 0, Vg; € Gi(r;, S;), Vje[FY]. (A.36)

Additionally, by assumption, there exists a true deterministic function f* : X — ) for label prediction, and f* € F. Hence,
the following holds:

Ri(fr) =0. (A37)
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Thus, under the conditions of Theorem 4.3, the following holds for f, .5 obtained through LAC-dWFL's step (ii):
n — 0o, Rl,g(fg_g) — 0. (A.38)

Furthermore, using Theorem 3.1, and additionally letting 7; — 0 as n increases for any j € [F"], the following holds:
n — 0o, Rl(fgj) — 0, Vg € G(r,S). (A.39)

Since [ is L;-Lipschitz continuous and f, z is Ls-Lipschitz continuous, using Talagrand’s lemma (Shalev-Shwartz &
Ben-David, 2014), the following holds:

R, (Grs (7. 8)) < LiLR;,(G(r, S)). (A.40)
Consequently, if R (G(r, S)) and R}, (G,(r;j,S;)) for any j € [F™"] are monotonically decreasing with respect to n and
converge to 0, the error bound established in Theorem 4.4 converges to 0 as n — 0.

O

B. Detail Information of Experiments
B.1. Details of Datasets

We used four real-world datasets: Adult (Becker & Kohavi, 1996), Bank Marketing (Moro & Cortez, 2014), kick (Vanschoren
et al., 2013), and Census-Income (KDD) (cen, 2000; Dua & Graff, 2017) in Section 5. In Section C.1, we additionally used
two datasets: Default of Credit Card Clients (Yeh, 2009) and Diabetes 130-US Hospitals for Years 1999-2008 (Kahn). We
will refer to them as Adult, Bank, Kick, Census, Default, and Diabetes, respectively. These datasets can be downloaded from
UCI Machine Learning Repository (Dua & Graff, 2017) or OpenML (Vanschoren et al., 2013). Table B.1 summarizes the
characteristics of these datasets. All binary features were set to take values of either O or 1, all categorical features were
encoded using one-hot encoding, and all continuous features were scaled to fall within the range [0, 1]. For the Adult, Bank,
Kick, Default, and Diabetes datasets, all available samples were used. For the Census dataset, experiments were conducted
using 50,000 randomly sampled data points.

Table B.1. Outline of datasets. binary, categorical, and numerical represent the number of features of each type, respectively.
dataset | Adult [ Bank | Kick | Census | Default | Diabetes

data size | 48842 | 45211 | 72983 | 299285 | 30000 101766
binary 1 3 3 3 1 10

categorical 7 5 12 22 2 12

numerical 6 8 16 10 20 10
target binary | binary | binary | binary | binary | 3 classes

B.2. Details of Experimental setup

We summarize the settings of feature estimation models g and label prediction model f. Both g and f were implemented
using two-layer perceptrons with hidden layers of width 500 and ReL.U as an activation function. The optimization algorithm
used across all models is Adam (Kingma & Ba, 2014), with the following hyperparameters: a learning rate of 0.0005, batch
size of 512, 100 epochs, and a weight decay of 0.0002. Logistic loss was used for training f.

We summarize the method for calculating the error bound presented in Theorem 4.2 for this experiment. The parameter
d was set to 0.01. Additionally, assuming that F is sufficiently expressive, we set R;(f#) = 0. During inference, the
predicted label from f was determined based on the largest output value of f. Consequently, scaling the outputs of f
does not affect the inference results. Thus, we assumed that the maximum value of each element in f’s output is 1 and
set Uy = 2.0. Since the loss function [ for label prediction is the logistic loss, which is 1-Lipschitz continuous, it follows
that R: (F;) = R:(F) and RE(F;) = RI(F) (Lemma 26.9 in (Shalev-Shwartz & Ben-David, 2014)). The terms R} (F)
and Y (F) were computed using the upper bound on the Rademacher complexity of a multilayer perceptron derived by
Neyshabur et al. (Theorem 1 in (Neyshabur et al., 2015)). To compute this upper bound, it is necessary to determine g,
which represents the upper bound on the /,-norm of all parameters of f, as well as the value of p. In this experiment, p = 2
was chosen. Furthermore, since it is possible to scale all parameter values of f without affecting the inference results for
predicting a single label, we set u = 1.
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Figure C.3. A comparison between R, 4(f, 5) and the error bound derived in Theorem 4.2, for various estimation errors of g using
Default and Diabetes datasets.

C. Additional Experiments
C.1. Additional Datasets

In Section 5, we validated our theoretical results through numerical experiments using real-world datasets. In this section,
we further examine the validity of our findings on two additional datasets that were not used in Section 5.2. The datasets
used here are Default (Yeh, 2009) and Diabetes (Kahn), with details provided in Appendix B.1. Figure C.3 presents the
results of the same experimental procedure applied to these datasets, following the methodology outlined in Section 5.2. In
these datasets, variations in the estimation accuracy of the exact values of WFs resulted in only minor changes in the risk of
the downstream task. As a consequence, visualizations similar to those in Figure 5.2 significantly compromised readability.
To address this, we separately plot the observed risks and the theoretical bound derived from Theorem 4.7.

From Figure C.3, we observe that a smaller value of Ry, ;(g;) leads to a greater reduction in Rg ;(f, a. g) as n increases. This
trend is consistent with the behavior of the error bounds illustrated in the same figure. Regarding the rate of decrease in both
Rg,(f, 5) and the bound with respect to n, we find that their sensitivity to changes in Ro1,;(g;) is less pronounced in the
Default dataset than in the Diabetes dataset. This difference can be attributed to the fact that the Default dataset contains
only two WFs, whereas the Diabetes dataset includes four. Consequently, the influence of WFs on downstream tasks is
inherently smaller in the Default dataset. Therefore, from the results on these two additional datasets, we further confirm
that our derived error bound in Theorem 4.7 successfully capture the relationship between the rate of decrease in Rg ;( f g, 3)
with increasing n and the value of Ry ;(g;).

C.2. Comparison with the Case WFs are Used for the Inputs of f

In this section, we compared the risk of the f obtained by directly using X% for training (i.e., g(X°) = X %) with the
experimental results on risks presented in Section 5. We focused on the four datasets used in Section 5, as the two additional
datasets examined in Section C.1 exhibited a relatively weaker dependency of the risk of f on the estimation accuracy of g.
The training procedure for f remained identical to that described in Section 5. By conducting this comparison, we aim to
provide empirical insight into how accurately g must estimate the exact values of WFs in order to improve the generalization
performance of f.

Figure C.4 shows the results under the setting where all WFs are complementary features (CFs). Each observation of a

19



A Unified Framework for Generalization Error Analysis of Learning with Arbitrary Discrete Weak Features
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Figure C.4. Comparison between the risks in Section 5 and the risk of f when g(X°) = X . The results correspond to the case where
all WFs are CFs, and both the mean and standard deviation over five trials are reported.
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Figure C.5. Comparison between the risks in Section 5 and the risk of f when g(X°) = X . The results correspond to the case where
each WF is observed as a set of size two including the exact value, with mean and standard deviation over five runs reported.

CF is sampled uniformly from all values except the exact one. From this figure, we observe that for the Adult, Kick, and
Census datasets, a classification error of g; below 0.5 is sufficient to achieve a model f that outperforms the baseline where
g(X°) = X™. In contrast, for the Bank dataset, the classification error of g; must be below at least 0.3 to achieve similar
improvement.

Figure C.5 presents the results for the setting in which each observed value of every WF is represented as a set of size two
that includes the exact value. The additional value in the set, apart from the exact value, is uniformly sampled at random.
When using such X ¥ as input to f, each WF is encoded as a one-hot vector, where the entries corresponding to the values
in the observed set are set to one. These vectors are then used as inputs to f. From Figure C.5, in contrast to the case
where WFs are CFs, we observe that g yielding better performance than the case where g(X°) = X" depends on n. This
difference is attributed to the fact that X" always includes the exact value, whereas estimation via g inevitably produces
instances with incorrect values due to estimation errors. These results suggest that, for estimating the exact values of WFs, it
may be more effective to output a probability distribution over possible values, rather than predicting a single deterministic
value. Accordingly, developing methods where g produces a distribution as output, along with establishing a theoretical
framework that accommodates such g, are important future directions for WFL. The findings in this paper are considered to
provide a fundamental basis for such extensions.

D. Limitation

In this paper, we consider the basic framework of WFL, where a feature estimation model is constructed for each WF
independently, using OFs as inputs. Accordingly, our framework does not consider approaches that incorporate dependencies
among WFs into the construction of feature estimation models. For example, we do not address methods that first estimate
the exact values of a given WF and then use those estimates as input features to infer the exact values of other WFs, or
approaches that jointly estimate the exact values of multiple WFs within a single model. Developing such approaches
is of practical importance and is left for future work. Furthermore, analyzing such methods would require a theoretical
framework for quantifying how well the dependencies among WFs are captured, as well as for modeling these dependencies.
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Theoretical insights presented in this paper are considered to provide a foundational basis for such future investigations.

For similar reasons, methods that construct f and g as a single unified model and train it jointly are not yet covered by the

analysis presented in this paper. Developing and analyzing such methods also constitutes an important direction for future
research.

Our analysis does not account for the feature importance of each WF in the downstream prediction task. Intuitively, the
estimation accuracy for WFs that are more strongly related to the downstream target variable should have a greater impact
on the error bound for learning f, compared to those WFs that are weakly related or irrelevant. However, the error bound we
derived does not account for such feature importance and thus cannot differentiate the relative contributions of individual
WFs. Therefore, deriving an error bound that incorporates feature importance remains an important direction for future
work. It is considerd that the results presented in this paper provide a solid foundation for such an extension.
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