

# OPENPROS: A LARGE-SCALE DATASET FOR LIMITED VIEW PROSTATE ULTRASOUND COMPUTED TOMOGRAPHY

006 **Anonymous authors**

007 Paper under double-blind review

## ABSTRACT

013 Prostate cancer is one of the most common and lethal cancers among men, making  
 014 its early detection critically important. Ultrasound computed tomography (USCT)  
 015 has emerged as an accessible and cost-effective method that reconstructs quanti-  
 016 tative tissue parameters, which can serve as potential biomarkers for malignancy.  
 017 However, current prostate USCT faces considerable barriers: limited-angle acqui-  
 018 sitions due to anatomical constraints, tissue heterogeneity, proximity to organs  
 019 and bony pelvic structures, and lengthy processing times. The lack of large-  
 020 scale, anatomically precise datasets significantly hampers the development of  
 021 high-quality, efficient, and generalizable methods. To address this gap, we intro-  
 022 duce OPENPROS, the first large-scale benchmark dataset for limited-angle prostate  
 023 USCT, designed to evaluate machine learning algorithms for inverse problems  
 024 systematically. Our dataset includes over 280,000 paired samples of realistic 2D  
 025 speed-of-sound (SOS) phantoms and corresponding ultrasound full-waveform data,  
 026 generated from anatomically accurate 3D digital prostate models derived from  
 027 real clinical MRI/CT scans and ex vivo ultrasound measurements, annotated by  
 028 medical experts. Simulations are conducted under clinically realistic configurations  
 029 using advanced finite-difference time-domain (FDTD) and Runge-Kutta acoustic  
 030 wave solvers, both provided as open-source components. Through comprehensive  
 031 benchmarking, we find that deep learning methods significantly outperform tradi-  
 032 tional physics-based algorithms in inference efficiency and reconstruction accuracy.  
 033 However, our results also reveal that current machine learning methods fail to  
 034 deliver clinically acceptable, high-resolution reconstructions, underscoring critical  
 035 gaps in generalization, robustness, and uncertainty quantification. By publicly re-  
 036 leasing OPENPROS, we provide the community with a rigorous benchmark that not  
 037 only enables fair method comparison but also motivates new advances in physics-  
 038 informed learning, foundation models for scientific imaging, and uncertainty-aware  
 039 reconstruction—bridging the gap between academic ML research and real-world  
 040 clinical deployment.

## 1 INTRODUCTION

043 Prostate cancer is the second most common malignancy in men and is one of the leading causes  
 044 of cancer-related deaths worldwide. One in eight men suffers from it Radtke & Hadaschik (2020);  
 045 Tosoian et al. (2024). Since the 5-year survival rate for prostate cancer patients significantly drops  
 046 from nearly 100% to approximately 34% once the disease progresses from localized or regional  
 047 stages to distant metastases Institute (2024), early detection of aggressive prostate cancer is of vital  
 048 importance. Medical imaging plays an essential role in this early detection. Among the available  
 049 imaging modalities, multiparametric MRI (mpMRI) is currently recognized as the most advanced and  
 050 accurate imaging tool for detecting and localizing clinically significant prostate cancer. However, the  
 051 high cost and limited accessibility of mpMRI restrict its widespread adoption, particularly in rural or  
 052 low-resource settings De Rooij et al. (2014); Kasivisvanathan et al. (2018).

053 In contrast, ultrasound imaging is widely accessible, cost-effective, and capable of real-time imaging.  
 Prostate ultrasound is typically performed transrectally, producing B-mode (brightness-mode) images.

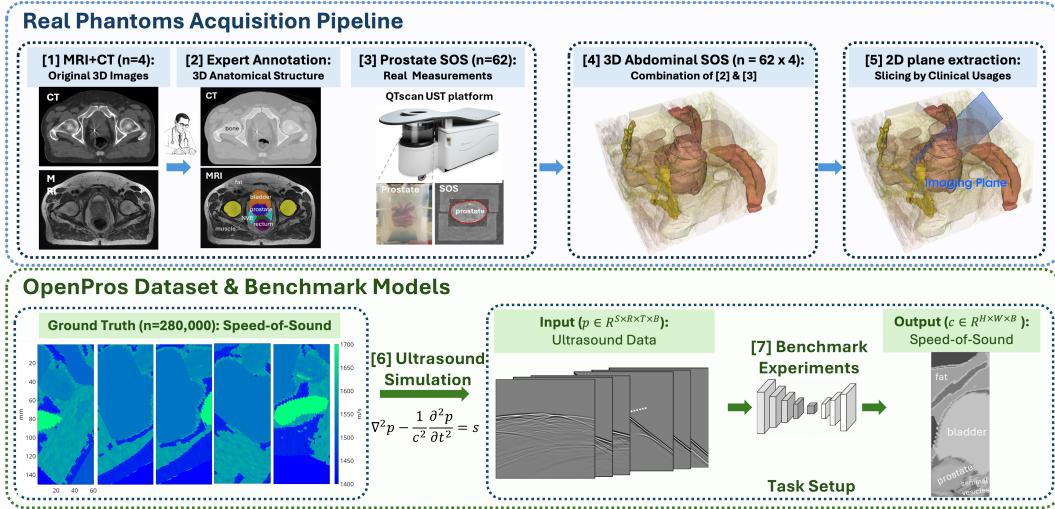


Figure 1: **OPENPROS dataset creation and benchmarking pipeline.** Top panel: Starting from clinical MRI and CT scans, we employ expert annotations to generate detailed 3D anatomical segmentations. We then incorporate real ultrasound speed-of-sound (SOS) measurements from ex vivo prostate samples acquired using the QTscan platform. These are integrated into comprehensive 3D abdominal SOS models. Clinically relevant 2D slices are extracted from these models to simulate limited-angle ultrasound tomography scenarios. Bottom panel: The extracted 2D SOS maps form the ground truth for ultrasound simulations governed by the acoustic wave equation. The resulting simulated ultrasound data are organized into the OPENPROS dataset. We utilize these data to train and benchmark physics-based and deep-learning inversion methods, facilitating the evaluation and development of rapid, clinically relevant SOS reconstruction methods under challenging limited-angle conditions.

Although transrectal ultrasound (TRUS) is the clinical standard for routine prostate evaluations and biopsy guidance, it has a sensitivity of only 30%–50% for detecting clinically significant tumors and a specificity of 70%–80% Beemsterboer et al. (1999); Chen et al. (2016). Studies have further shown that tumors located in the anterior or apical prostate regions are often undetectable with TRUS due to poor soft-tissue contrast and restricted acoustic windows, and TRUS cannot reliably distinguish malignant lesions from benign conditions such as chronic prostatitis Marićić et al. (2010).

Ultrasound computed tomography (USCT) has emerged as a promising alternative, reconstructing quantitative tissue parameters like speed-of-sound (SOS) and acoustic attenuation that serve as potential biomarkers for malignancy Wu (2024); Williams et al. (2021). However, the anatomical constraints of prostate imaging inherently limit the acquisition aperture, creating a challenging *limited-angle condition*. Unlike idealized setups where transducers surround the entire imaging domain, prostate imaging is anatomically restricted to transrectal and transabdominal placements, resulting in sparse and angularly limited data. Traditional physics-based methods typically struggle under these conditions, with slow convergence, severe ill-posedness, and significant reconstruction artifacts Wang et al. (2025); Gilboy et al. (2020). Developing robust USCT algorithms capable of accurately handling limited-angle data is thus critically needed for clinical prostate imaging.

Furthermore, clinical translation of prostate USCT faces considerable barriers due to the complexity and specialization of current imaging systems. To date, only two USCT systems (SoftVue and QTscan) have received U.S. FDA approval, and both systems focus exclusively on full-angle breast imaging with custom hardware setups unsuited for prostate applications Sandhu et al. (2015); Malik et al. (2018). These existing systems operate at relatively low frequencies, rely on patient positioning incompatible with prostate imaging, and require hours for reconstruction. Thus, there is an urgent need for efficient, generalizable, and clinically adaptable prostate-specific USCT platforms. Crucially, this advancement depends on the availability of realistic, anatomically precise digital phantoms and datasets, which are currently lacking in the field Gilboy et al. (2020); Aalamifar et al. (2017).

Additionally, prostate imaging complexity is increased by high tissue heterogeneity and proximity to multiple adjacent organs and bony pelvic structures, invalidating simplified fluid medium assumptions typically used in breast imaging. These factors severely compromise USCT image reconstruction quality, further emphasizing the necessity of specialized prostate-specific datasets.

Recent advances in deep learning, particularly convolutional neural networks (CNNs), have shown potential for overcoming these limitations by learning complex mappings directly from ultrasound

108 data to high-resolution SOS maps Chugh et al. (2021); Havaei et al. (2017). Data-driven approaches  
 109 bypass computational bottlenecks encountered by iterative solvers and demonstrate the ability to  
 110 reconstruct detailed tissue properties even under sparse and noisy acquisition conditions. Instead of  
 111 hours to days of image reconstruction using physics-based methods and the requirement of expert  
 112 reading as a follow-up, the relatively short inference time and the automatic analysis enable faster  
 113 and easier diagnosis for better patient experience. Furthermore, transformer-based architectures  
 114 have recently demonstrated remarkable performance in medical imaging by effectively modeling  
 115 long-range spatial dependencies, a feature particularly beneficial for ultrasound tomography due to  
 116 the extensive spatial interaction of acoustic waves.

117 Despite these advancements, progress has been significantly hampered by the lack of large-scale,  
 118 high-fidelity datasets supporting the development, evaluation, and reproducibility of innovative  
 119 reconstruction algorithms. Existing USCT datasets are typically for breast imaging, which are  
 120 either synthesized in simulation or derived from real phantoms. Related datasets are listed in Table  
 121 1. They exhibit diversity and reflect anatomical realism to a good extent, they are not optimal  
 122 for developing and benchmarking advancing prostate USCT algorithm. There are also anatomical  
 123 datasets for the male pelvic region but not for USCT purposes. The commercial anatomy softwares  
 124 such as Zygote Body and Complete Anatomy provide different pricing options for viewing and  
 125 downloading, but they generally lack anatomical varieties. Moreover, no publicly available dataset  
 126 adequately addresses the unique challenges posed by limited-view prostate USCT and the existence  
 127 of bones in the imaging view while simultaneously providing realistic wave propagation modeling  
 128 and comprehensive full-waveform data.

128 **Table 1: Comparison between our OPENPROS and other existing datasets for the male pelvic region or for**  
 129 **medical ultrasound computed tomography.** The symbols ✓, ✗, and NA indicate that the dataset contains,  
 130 does not contain, or is not applicable to the corresponding feature, respectively.

| Dataset                                   | Prostate | Acoustic parameters | Actual anatomy | Tissue heterogeneity | Bones | Limited angle | Public | Free access |
|-------------------------------------------|----------|---------------------|----------------|----------------------|-------|---------------|--------|-------------|
| <b>OPENPROS (ours)</b>                    | ✓        | ✓                   | ✓              | ✓                    | ✓     | ✓             | ✓      | ✓           |
| Li <i>et al.</i> Li et al. (2021)         | ✗        | ✓                   | ✗              | ✓                    | ✗     | ✗             | ✓      | ✓           |
| Ruiter <i>et al.</i> Ruiter et al. (2018) | ✗        | ✓                   | ✗              | ✓                    | ✗     | ✗             | ✓      | ✓           |
| OpenWaves Zeng et al. (2025)              | ✗        | ✓                   | ✗              | ✓                    | ✗     | ✗             | ✓      | ✓           |
| Segars <i>et al.</i> Segars et al. (2010) | ✓        | ✗                   | ✓              | NA                   | ✓     | NA            | ✓      | ✗           |
| The visible human project Ackerman (1998) | ✓        | ✗                   | ✓              | NA                   | ✓     | NA            | ✓      | ✓           |
| Zygote Body                               | ✓        | ✗                   | ✓              | NA                   | ✓     | NA            | ✓      | ✓           |
| Complete Anatomy                          | ✓        | ✗                   | ✓              | NA                   | ✓     | NA            | ✓      | ✗           |

131 Motivated by these challenges and the pressing need for prostate USCT, we introduce OPENPROS, the  
 132 first large-scale dataset specifically designed for limited-angle prostate USCT scenarios. A schematic  
 133 illustration of the overall pipelines of OPENPROS is shown in Figure 1. Our dataset comprises over  
 134 280,000 paired 2D SOS phantoms and ultrasound full-waveform data derived from anatomically  
 135 realistic 3D prostate models generated from clinical MRI/CT scans and ex vivo ultrasound mea-  
 136 surements, annotated meticulously by clinical experts. OPENPROS serves as a critical benchmark  
 137 facilitating advances in computational efficiency, limited-angle reconstruction accuracy, rapid clinical  
 138 adaptability, and comprehensive method comparisons across various imaging conditions, including  
 139 ray-based, single scattering, high-frequency, and limited-angle scenarios.

140 In summary, our contributions to the community include:

- 141 **1. Large-scale, anatomically realistic benchmark dataset:** The first comprehensive prostate  
 142 USCT dataset, derived from clinical MRI/CT scans and detailed expert annotations, designed  
 143 explicitly to address limited-angle imaging conditions.
- 144 **2. High-fidelity, publicly available simulation tools:** Advanced finite-difference time-domain  
 145 (FDTD) and Runge-Kutta implicit iterative acoustic solvers, openly accessible alongside our  
 146 dataset to facilitate reproducibility and method development.
- 147 **3. Comprehensive benchmarking of inversion methods:** Thorough evaluation of physics-based  
 148 and deep learning methods under realistic limited-angle conditions, including systematic tests of  
 149 generalization, robustness, and inference efficiency. These baselines establish clear performance  
 150 baselines and guide future algorithmic improvements.

151 The remainder of this paper is structured as follows: In Section 2, we overview the fundamentals  
 152 of USCT and our task setup. Section 3 details our dataset construction. Section 4 describes  
 153 benchmarking experiments. In Section 6, we discuss dataset strengths, limitations, and future  
 154 research directions. Finally, we conclude in Section 7 by summarizing our key contributions and the  
 155 broader implications of OPENPROS.

## 162 2 ULTRASOUND COMPUTED TOMOGRAPHY AND FORWARD MODELING 163

164 In the context of USCT, the forward problem involves simulating acoustic wave propagation through  
165 soft tissues, which is governed by the acoustic wave equation. Assuming an isotropic medium with  
166 constant density, the forward modeling equation is given by:  
167

$$168 \nabla^2 p - \frac{1}{c^2} \frac{\partial^2 p}{\partial t^2} = s, \quad (1)$$

170 where  $\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$  in 2D,  $c(x, y)$  denotes the spatially varying SOS map,  $p(x, y, t)$  is the  
171 acoustic pressure field, and  $s(x, y, t)$  represents the ultrasound source. In our simulations, the source  
172  $s$  is prescribed as a controlled ultrasound excitation. Clinically, the primary goal of ultrasound  
173 tomography is to reconstruct spatially varying SOS maps from recorded pressure fields, enabling  
174 accurate tissue characterization and anomaly detection, such as identifying tumors or lesions.  
175

176 The forward modeling of ultrasound propagation thus entails computing the pressure field  $p$  from  
177 a given SOS distribution  $c$ , represented by the highly nonlinear mapping  $p = f(c)$ , where  $f(\cdot)$   
178 encapsulates the complex wave propagation phenomena defined by Equation (1). In practice, the  
179 recorded ultrasound signals form a 4-dimensional tensor  $p \in \mathbb{R}^{S \times R \times T \times B}$ , where  $S$  is the number of  
180 sources,  $R$  is the number of receivers,  $T$  represents the number of time steps, and  $B$  denotes the batch  
181 dimension. Specifically, in our simulated prostate dataset, we set  $S = 20$ ,  $R = 322$ , and  $T = 1000$ .  
182 The output SOS maps to be reconstructed are represented as 3-dimensional tensors  $c \in \mathbb{R}^{H \times W \times B}$ ,  
183 where  $H$  and  $W$  represent the spatial height and width dimensions, respectively. In our specific  
184 configuration, each SOS map has a spatial resolution of  $401 \times 161$  grid points.  
185

186 Data-driven USCT leverages neural networks to directly approximate the inverse mapping  $c = f^{-1}(p)$ , as demonstrated in recent studies Wu & Lin (2019). Thus, the specific task addressed in this  
187 paper is the supervised learning problem, formulated as  $\min_{\theta} \mathbb{E} p, c [\mathcal{L}(c, \hat{c})]$ , where  $\hat{c} = f\theta^{-1}(p)$ .  
188 Here,  $f\theta^{-1}$  represents a deep neural network parameterized by  $\theta$ , trained on pairs of simulated  
189 ultrasound signals  $p$  and corresponding ground-truth SOS maps  $c$ . The training objective  $\mathcal{L}$  typically  
190 incorporates quantitative metrics such as Mean Absolute Error (MAE), Root Mean Squared Error  
191 (RMSE), Structural Similarity Index Measure (SSIM) and Pearson Correlation Coefficient (PCC).  
192

## 193 3 OPENPROS DATASET

194 OPENPROS is the *first* large-scale benchmark dataset explicitly designed to facilitate research in  
195 limited-angle prostate ultrasound computed tomography (USCT). It contains anatomically realistic  
196 2D speed-of-sound phantoms, organ segmentation labels, and corresponding simulated ultrasound  
197 waveforms derived from detailed 3D digital prostate models. The patient level anatomy ID is named  
198 as 3\_01, 3\_02, 3\_03 and 3\_04. The prostate level anatomy ID is named as the date of acquisition  
199 (in total 62 prostates). Detailed naming strategy can be found in the Appendix A.2. Example data  
200 pairs and FDTD simulation code are provided in the supplementary materials  
201

202 In the following subsections, we first show the basic statistics of our dataset and highlight the related  
203 domain interests. We then describe the design strategies of 3D/2D prostate phantoms which maximize  
204 the fidelity. At the end, we discuss the ultrasound data simulation setups.  
205

### 206 3.1 DATASET STATISTICS

207 OPENPROS consists of 280,000 paired examples of 2D SOS phantoms and ultrasound data, systematically  
208 derived from realistic 3D digital models. The essential characteristics and data dimensions are  
209 summarized in Table 2.  
210

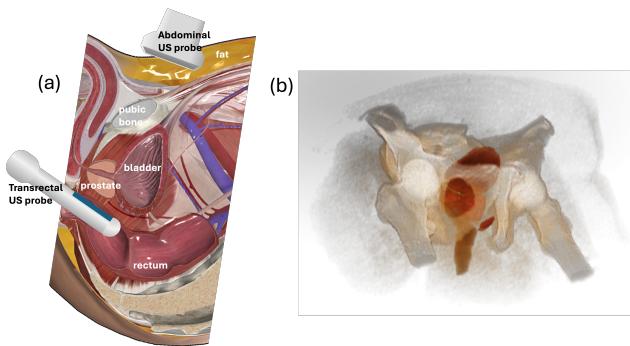
211 **Table 2: Dataset summary for the OpenPros USCT dataset.** SOS maps are formatted as (sample  $\times$  channel  
212 (#physical params, SOS here)  $\times$  depth (vertical)  $\times$  width (horizontal)); ultrasound data as (sample  $\times$  channel  
213 (#sources)  $\times$  time  $\times$  #receivers).  
214

| Dataset  | Size   | #Train / #Validation / #Test | Ultrasound Data Shape                   | SOS Map Shape                         |
|----------|--------|------------------------------|-----------------------------------------|---------------------------------------|
| OpenPros | 6.8 TB | 224K / 28K / 28K             | $1140 \times 40 \times 1000 \times 161$ | $1140 \times 1 \times 401 \times 161$ |

216 OPENPROS supports various critical research topics, including:  
 217  
**Tissue Interfaces:** Clearly defined interfaces among prostate, bladder, and surrounding tissues,  
 218 essential for organ boundary delineation and accurate pathology differentiation. Segmentation labels  
 219 enhance precision in evaluating inversion algorithms.  
 220  
**Lesion Characterization:** Realistically modeled synthetic lesions (e.g., tumors) introduce SOS  
 221 discontinuities, challenging algorithms in lesion detection and characterization, critical for diagnostic  
 222 accuracy.  
 223  
**Clinical Variability and Realistic Imaging Conditions:** Systematic slicing of high-resolution 3D  
 224 digital models captures realistic anatomical variability, with advanced finite-difference time-domain  
 225 (FDTD) simulations reflecting clinical imaging conditions, including limited aperture, acoustic noise,  
 226 and tissue heterogeneity.  
 227  
 Our sophisticated data generation pipeline, encompassing digital phantom modeling, detailed anatomical  
 228 labeling, and precise acoustic simulations, significantly enhances the clinical relevance and  
 229 diversity of the dataset.  
 230  
 231

### 232 3.2 3D PROSTATE PHANTOM DESIGN

233  
 234 It is important to note that the 3D dig-  
 235 ital phantoms were derived from hu-  
 236 man CT/MRI Nyholm et al. (2018)  
 237 and USCT scans of ex vivo prostate  
 238 specimens Parikh et al. (2024);  
 239 Wiskin et al. (2022); Williams et al.  
 240 (2021). Major organs were annotated  
 241 by experts using T2-weighted MRI,  
 242 fat was segmented from T1-weighted  
 243 MRI, bones were segmented from X-  
 244 ray CT, and the speed of sound and  
 245 attenuation of ex vivo prostate sam-  
 246 ples were measured using a QT scan-  
 247 ner (QT Imaging Inc., Novato, Cali-  
 248 fornia, USA). Speed of sound of other  
 249 organs were acquired from ITIS foun-  
 250 dation tissue database Baumgartner  
 251 et al. (2024). To best mimic the tissue  
 252 heterogeneity, we employed Gaussian  
 253 distributions with given mean values  
 254 and standard deviations from the tissue database to assign  
 255 speed of sound in different tissue types.  
 256 These derivations from human data reduces the reliance  
 257 on synthetic simulation and maximizes the fidelity of the dataset, especially in the prostate area.  
 258 Additional details on phantom construction, applications, and open access availability can be found  
 259 in Wu et al. (2024). The 3D abdominal anatomical structure and the ultrasound probe placement  
 260 sketch can be found in Figure 2(a) and the illustration of 3D phantom can be found in Figure 2(b).  
 261  
 262



263  
 264 Figure 2: **(a) Anatomical structure and probe placement.** Two  
 265 probes-abdominal (on the body surface) and transrectal (in the  
 266 rectum)-are used in our simulation. Image courtesy of Complete  
 267 Anatomy. **(b) 3D digital SOS phantom.** SOS distribution in the  
 268 anatomically realistic prostate model.

269 and standard deviations from the tissue database to assign  
 270 speed of sound in different tissue types. These derivations from human data reduces the reliance  
 271 on synthetic simulation and maximizes the fidelity of the dataset, especially in the prostate area.  
 272 Additional details on phantom construction, applications, and open access availability can be found  
 273 in Wu et al. (2024). The 3D abdominal anatomical structure and the ultrasound probe placement  
 274 sketch can be found in Figure 2(a) and the illustration of 3D phantom can be found in Figure 2(b).  
 275  
 276

### 277 3.3 2D PROSTATE PHANTOM EXTRACTION

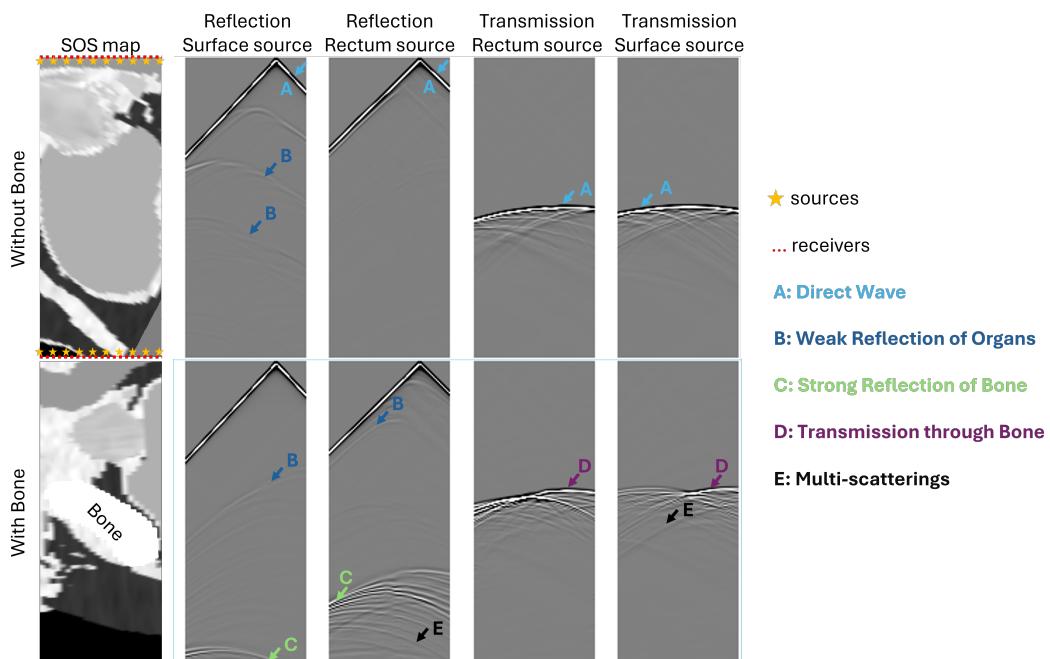
278 We generate 2D speed-of-sound phantoms by slicing our anatomically realistic 3D prostate volumes  
 279 under clinically realistic probe configurations. For each phantom, we place one transrectal probe  
 280 in the rectum and one abdominal probe on the body surface, then sample cross-sections across a  
 281 range of rotations ( $\pm 45^\circ$ ) and small random perturbations. This process yields 280 K paired 2D SOS  
 282 maps and corresponding ultrasound waveforms that faithfully capture patient-specific anatomy and  
 283 limited-angle acquisition variability.  
 284

285 More detailed 2D phantom extraction strategy can be found in Appendix A.1

270 3.4 ULTRASOUND DATA SIMULATION  
271

272 We simulate ultrasound wave propagation using a finite-difference time-domain (FDTD) solver based  
273 on the 2D acoustic wave equation discussed above. The numerical scheme adopts fourth-order  
274 accuracy in space and second-order accuracy in time, offering a reliable trade-off between numerical  
275 precision and computational efficiency. This configuration is particularly well-suited for capturing  
276 fine-grained wave interactions in heterogeneous prostate tissue environments.

277 Each simulation is conducted under two acquisition configurations, placing sources and receivers  
278 along the top and bottom boundaries of the computational grid. A total of 20 sources (10 at the  
279 top and 10 at the bottom, shown as yellow stars in Figure 3) are uniformly distributed along each  
280 boundary. For every source, 322 receivers (shown as red dots in Figure 3) are placed across the  
281 entire lateral extent of the domain, enabling comprehensive capture of the scattered wavefield. A  
282 Ricker wavelet with a 1 MHz peak frequency serves as the excitation pulse, consistent with clinical  
283 transducer characteristics. The wavefield is recorded over 1,000 time steps at a sampling interval of  
284  $\Delta t = 1 \times 10^{-7}$  seconds, covering a total duration of 100  $\mu s$ . To suppress artificial reflections, 120  
285 grid points of absorbing boundary condition (ABC) are applied to each boundary. Two examples of  
286 our simulations and the corresponding SOS maps are shown in Figure 3.



308 **Figure 3: Examples of simulated ultrasound data and phantoms:** without (top) and with (bottom) bone in  
309 the phantoms. We show two example channels of reflections and transmissions with sources (yellow stars)  
310 and receivers (red dots) on the two probes. Our PDE solvers can simulate complex and realistic ultrasound wave  
311 phenomena, including transmissions, reflections, direct waves, and multi-scatterings.

312 The spatial discretization of the domain uses a grid spacing of 0.375 mm, resulting in a field of view  
313 of approximately 60 mm in depth and 150 mm in width. This configuration mirrors the anatomical  
314 scale of the prostate and its surrounding structures. A summary of the physical simulation parameters  
315 and the physical meaning of the dimension is shown in Table 3.

317 **Table 3: Physical Meaning of the Prostate USCT Dataset**

| 318 Dataset | 319 Grid Spacing | 320 SOS Map Spatial Size | Source Spacing | Source Line Length | Receiver Spacing | Receiver Line Length | Time Spacing         | Recorded Time |
|-------------|------------------|--------------------------|----------------|--------------------|------------------|----------------------|----------------------|---------------|
| OpenPros    | 0.375 mm         | 60 mm $\times$ 150 mm    | 3.75 mm        | 60 mm              | 0.375 mm         | 60 mm                | $1 \times 10^{-7}$ s | 100 $\mu s$   |

321 Importantly, the simulated ultrasound data for each sample contains 40 distinct channels, organized  
322 to reflect practical probe configurations: Channels (0–9) source on body surface, receiver on body  
323 surface; (10–19) source on body surface, receiver in rectum; (20–29) source in rectum, receiver in

324 rectum; and (30–39) source in rectum, receiver on body surface. This setup emulates both conventional transabdominal and transrectal imaging pathways, enabling detailed studies of transmission  
 325 and reflection across diverse acoustic paths.  
 326  
 327

## 328 4 OPENPROS BENCHMARKS

329  
 330 OPENPROS enables systematic investigation of three core questions in limited-angle prostate USCT:  
 331 (1) **inference efficiency**, (2) **reconstruction accuracy**, and (3) **out-of-distribution (OOD) generalization**. We compare two physics-based baselines, Delay-and-Sum beamforming and multi-stage  
 332 USCT inversion, against two data-driven models: CNN-based InversionNet Wu & Lin (2019) and a  
 333 Vision Transformer (ViT)-based variant Dosovitskiy et al. (2020), referred to here as ViT-Inversion.  
 334 Performance is evaluated using four metrics: mean absolute error (MAE) and root-mean-square  
 335 error (RMSE) for numerical fidelity, and structural similarity index (SSIM) and Pearson correlation  
 336 coefficient (PCC) for perceptual and structural alignment. All models are trained and evaluated under  
 337 identical settings on NVIDIA H100 GPUs.  
 338  
 339

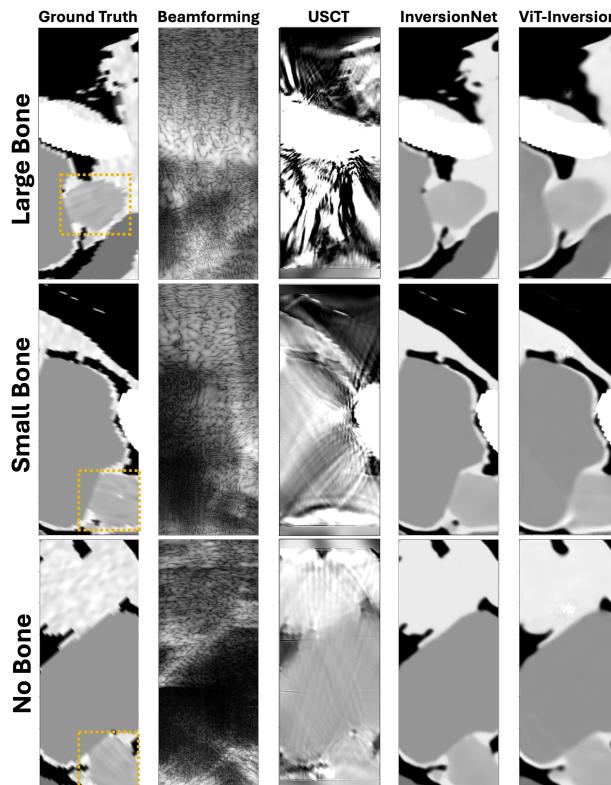
### 340 4.1 BENCHMARK METHODS FOR PROSTATE USCT

341  
 342 **Beamforming**, a classical ultrasound  
 343 imaging method, reconstructs images  
 344 by aligning and summing received ul-  
 345 trasond echoes according to assumed  
 346 sound speeds and propagation paths.  
 347 In this baseline, beamforming serves  
 348 as a fast, widely-adopted approach for  
 349 generating initial ultrasound images,  
 350 highlighting the inherent limitations  
 351 under restricted-view conditions.

352 **Physics-based USCT** is performed in  
 353 a three-stage multi-frequency frame-  
 354 work. Starting from a smoothed initial  
 355 SOS model, we first invert low-  
 356 frequency data, then mid-frequency  
 357 data, and finally full-band data. At  
 358 each stage, synthetic waveforms are  
 359 generated via our forward operator  
 360 and compared to observed data; the  
 361 SOS model is updated by minimizing  
 362 the waveform misfit.

363 **InversionNet** Wu & Lin (2019) pro-  
 364 posed a fully-convolutional network  
 365 to model the seismic inversion pro-  
 366 cess. With the encoder and the de-  
 367 coder, the network was trained in a su-  
 368 pervised scheme by taking 2D (time  
 369  $\times$  # of receivers) seismic data from  
 370 multiple sources as the input and pre-  
 371 dicting 2D (depth  $\times$  length) velocity  
 372 maps as the output.

373 **ViT-Inversion**: A Vision Trans-  
 374 former Dosovitskiy et al. (2020) that  
 375 partitions the 3D waveform tensor  
 376  $[S, T, R]$  into spatio-temporal patches, embeds them into tokens, and applies multi-head self-attention  
 377 to capture long-range wave interactions. A lightweight upsampling CNN refines the patch-wise  
 378 outputs into full-resolution SOS maps.



379  
 380 **Figure 4: Benchmark results for limited-angle prostate USCT.**  
 381 Each column shows a different inversion method on the same phantom: (col 1) ground-truth SOS map; (col 2) Delay-and-Sum beam-  
 382 forming; (col 3) physics-based USCT; (col 4) InversionNet; (col 5) ViT-Inversion. Rows correspond to three representative prostate  
 383 slices illustrating challenging (top), moderate (middle), and simple (bottom) anatomical scenarios. Zoom-in figures of the prostate  
 384 region (orange squares) are shown in Figure 5.

385 Training configurations and hyperparameters are provided in App. A.4.  
 386  
 387

378

## 4.2 RESULT ANALYSIS

379

**Quantitative Results** Table 4 reports MAE, RMSE, SSIM, and PCC for our two learned baselines. Traditional physics-based USCT (not shown) achieves RMSE  $\approx 0.16$  and SSIM  $\sim 0.90$ , leaving substantial room for improvement. In contrast, the learned models reduce RMSE to 0.0297 (InversionNet) and 0.0268 (ViT-Inversion)—about 5–6 $\times$  lower than the physics-based baseline—and reach near-perfect structural fidelity (SSIM 0.9877/0.9908). ViT-Inversion is best across all four metrics, followed closely by InversionNet

380

381 **Qualitative Observations**

382

Figure 4 presents three representative prostate slices under challenging (top), moderate (middle), and simple (bottom) anatomical conditions. Delay-and-Sum beamforming yields noisy, low-contrast images incapable of resolving detailed prostate structures. Physics-based USCT significantly reduces these artifacts and better recovers the general gland shape but produces overly blurred images lacking fine anatomical details. Machine learning-based methods, including InversionNet and ViT-Inversion, markedly outperform physics-based

402

USCT in reconstructing the global anatomical structure and boundaries. However, the zoom-in prostate images shown in Figure 5 illustrate that despite better overall shape reconstruction, these learned methods still cannot accurately resolve fine structures within the prostate. The internal prostate structures remain smoothed, and small lesions or detailed boundaries are not distinctly reconstructed, indicating significant room for improvement in imaging resolution and accuracy.

403

404

**Inference Efficiency Comparison** In addition to superior accuracy, data-driven methods offer remarkable computational efficiency suitable for real-time imaging applications, as summarized in Table 7 (see appendix). Traditional physics-based inversions, such as beamforming and multi-stage USCT, incur significant computational overheads, requiring approximately 4 hours and 24 hours per sample, respectively. In sharp contrast, the data-driven approaches achieve near-instantaneous reconstructions: InversionNet requires only 4.9 milliseconds per sample, while ViT-Inversion completes inference in roughly 8.9 milliseconds due to its transformer architecture. This stark difference highlights the practical feasibility and potential clinical value of learned models in enabling rapid, real-time prostate imaging.

423

424

## 5 ABLATION STUDY

425

426

**Generalization Tests** To assess how well our models generalize to truly unseen anatomies, we conducted three out-of-distribution tests using data splits that reflect realistic clinical scenarios: **(1) Patient-Level Generalization:** Train on patients 3\_01, 3\_02, 3\_03, test on an entirely unseen patient 3\_04. **(2) Leave-One-Prostate-Out:** Train on 60 prostates from all four patients except two held-out prostates (i.e., 2022-06-06 & 2022-06-09); test on those withheld prostates. **(3) Combined Generalization:** Train on 60 prostates drawn only from patients 3\_01–3\_03; test on both remaining prostates of patient 3\_04.

Table 4: Quantitative results of benchmarking methods.

| Method        | MAE $\downarrow$ | RMSE $\downarrow$ | SSIM $\uparrow$ | PCC $\uparrow$ |
|---------------|------------------|-------------------|-----------------|----------------|
| InversionNet  | 0.0074           | 0.0297            | 0.9877          | 0.9851         |
| ViT-Inversion | <b>0.0067</b>    | <b>0.0268</b>     | <b>0.9908</b>   | <b>0.9893</b>  |

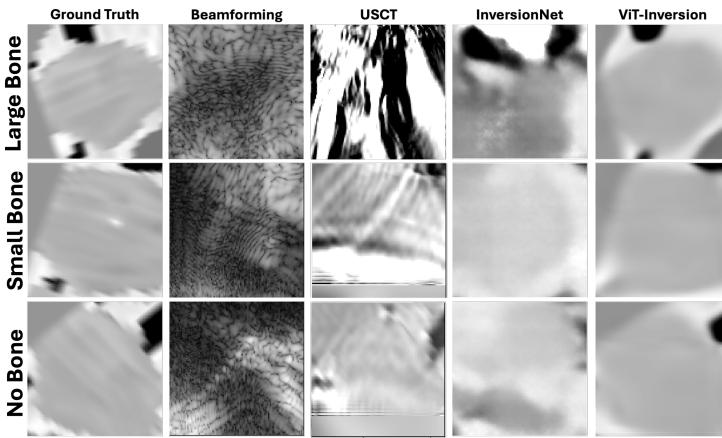


Figure 5: **Zoom-in comparison of prostate regions.** Enlarged views (orange squares in Figure 4) showing detailed reconstruction quality within the prostate region across baseline methods: (col 1) Ground truth; (col 2) Delay-and-Sum beamforming; (col 3) physics-based USCT; (col 4) InversionNet; (col 5) ViT-Inversion. Each row corresponds to the same anatomical scenario as in Figure 4. Note that although the learned methods recover general anatomical shapes more clearly, the fine internal structures and boundaries remain poorly resolved.

Figure 5 illustrates that despite better overall shape reconstruction, these learned methods still cannot accurately resolve fine structures within the prostate. The internal prostate structures remain smoothed, and small lesions or detailed boundaries are not distinctly reconstructed, indicating significant room for improvement in imaging resolution and accuracy.

432 Table 5 summarizes  
 433 MAE, RMSE, SSIM,  
 434 and PCC for Inversion-  
 435 Net and ViT-Inversion  
 436 under each scenario.  
 437 In the *patient-level*  
 438 split, performance  
 439 drops relative to  
 440 in-distribution (ID)  
 441 training, with errors  
 442 increasing by roughly  
 443  $3\text{--}5\times$ . ViT-Inversion  
 444 consistently outperforms  
 445 InversionNet, yielding lower MAE/RMSE and higher  
 446 SSIM/PCC, which indicates improved generalization ability  
 447 when encountering anatomies from  
 448 unseen patients. These results highlight the difficulty of patient-level generalization in limited-angle  
 449 prostate USCT.

450 By contrast, the *leave-one-prostate-out* split shows minimal and, in some cases, negligible degradation  
 451 compared to ID. ViT-Inversion achieves slight improvements over InversionNet across all metrics.  
 452 These results show that intra-patient anatomical variability poses little difficulty for the models, thus  
 453 generalization across unseen prostates is comparatively straightforward.

454 The *combined OOD* split mirrors the patient-level challenge: both models exhibit substantial error  
 455 increases, with ViT-Inversion consistently outperforming InversionNet across metrics. Overall, while  
 456 intra-patient generalization is well handled, robust patient-agnostic reconstruction under limited-angle  
 457 conditions remains a significant open challenge.

458 **Robustness to Input Noise** We also assess robustness to measurement corruption by adding zero-  
 459 mean Gaussian noise to the *test* waveforms while keeping all models trained on clean data only;  
 460 see App. A.6 for full protocol and tables. We sweep  $\sigma \in \{0.01, 0.02, 0.05\}$  (roughly 26/23/19 dB  
 461 PSNR). Performance decreases monotonically with noise, and ViT-Inversion is consistently more  
 462 resilient (SSIM 0.987  $\rightarrow$  0.935) than InversionNet (SSIM 0.944  $\rightarrow$  0.825). Details and additional  
 463 metrics (MAE/MSE/RMSE/PCC) are reported in App. A.6.

## 464 6 DISCUSSION

465 Our OPENPROS dataset offers an unprecedented resource for developing limited-angle prostate USCT  
 466 algorithms. With over 280,000 paired SOS phantoms and ultrasound simulations derived from clinical  
 467 data, it realistically captures tissue heterogeneity and anatomical constraints of prostate imaging. Our  
 468 open-source FDTD and Runge-Kutta solvers ensure transparent benchmarking and reproducibility.

469 However, the dataset currently includes a limited number of patient anatomies, potentially underrep-  
 470 resenting certain anatomical variations. Additionally, we simulate only SOS distributions, omitting  
 471 other critical acoustic parameters like attenuation and density. Our 2D simulations do not account for  
 472 three-dimensional propagation and out-of-plane scattering, simplifying some real-world conditions.

473 Future work will expand the patient dataset, introduce multiparametric acoustic maps, and extend  
 474 simulations to three dimensions. Incorporating clinically relevant pathologies and carefully designed  
 475 out-of-distribution scenarios will further enhance the robustness and clinical applicability of future  
 476 USCT solutions.

## 477 7 CONCLUSION

478 In this work, we have introduced OPENPROS, the first comprehensive, large-scale benchmark dataset  
 479 specifically designed for limited-angle prostate ultrasound computed tomography. With over 280,000  
 480 expertly annotated 2D speed-of-sound phantoms paired with high-fidelity simulated ultrasound data,  
 481 OPENPROS facilitates efficient benchmarking of both physics-based and advanced deep learning re-  
 482 construction algorithms. Our baseline experiments clearly demonstrate that deep learning approaches  
 483 significantly outperform conventional physics-based methods in terms of inference speed and image  
 484 quality. However, critical challenges remain, notably in resolving fine anatomical details within  
 485 the prostate and achieving robust generalization across unseen anatomies. By making OPENPROS  
 486 publicly available, we encourage the research community to leverage and expand this foundational  
 487 resource, ultimately advancing toward clinically viable, high-resolution prostate imaging solutions.

Table 5: **Generalization Test Results.** Evaluation of inversion methods on unseen prostate anatomies.

| Scenario           | Method        | MAE $\downarrow$ | RMSE $\downarrow$ | SSIM $\uparrow$ | PCC $\uparrow$ |
|--------------------|---------------|------------------|-------------------|-----------------|----------------|
| Patient-level      | InversionNet  | 0.0322           | 0.1010            | 0.9399          | 0.8271         |
|                    | ViT-Inversion | 0.0276           | 0.0890            | 0.9496          | 0.8689         |
| Leave-one-prostate | InversionNet  | 0.0069           | 0.0273            | 0.9899          | 0.9894         |
|                    | ViT-Inversion | 0.0061           | 0.0210            | 0.9934          | 0.9937         |
| Combined OOD       | InversionNet  | 0.0323           | 0.1017            | 0.9408          | 0.8251         |
|                    | ViT-Inversion | 0.0280           | 0.0916            | 0.9482          | 0.8663         |

3–5 $\times$ . ViT-Inversion consistently outperforms InversionNet, yielding lower MAE/RMSE and higher  
 SSIM/PCC, which indicates improved generalization ability when encountering anatomies from  
 unseen patients. These results highlight the difficulty of patient-level generalization in limited-angle  
 prostate USCT.

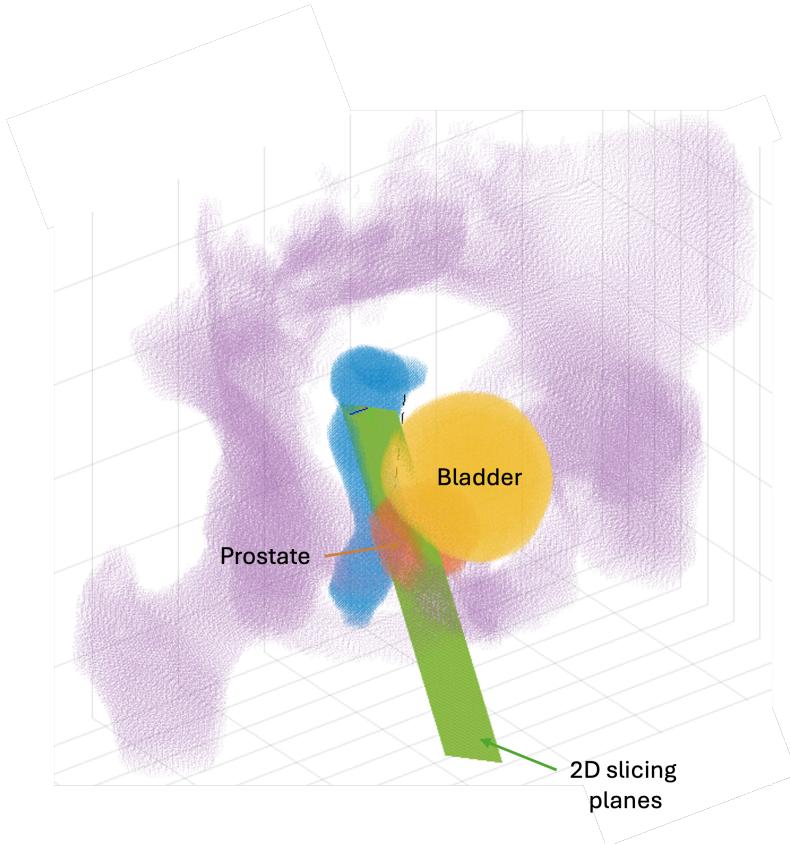
486 REFERENCES  
487

- 488 Fereshteh Alamifar, Rishabh Khurana, Alexis Cheng, Xiaoyu Guo, Iulian Iordachita, and Emad M  
489 Boctor. Enabling technologies for robot assisted ultrasound tomography. *The International Journal  
490 of Medical Robotics and Computer Assisted Surgery*, 13(1):e1746, 2017.
- 491 Michael J Ackerman. The visible human project. *Proceedings of the IEEE*, 86(3):504–511, 1998.
- 492 C Baumgartner, PA Hasgall, F Di Gennaro, E Neufeld, B Lloyd, MC Gosselin, D Payne, A Klingens-  
493 böck, and N Kuster. It's database for thermal and electromagnetic parameters of biological tissues.  
494 *IT'IS Found., Zurich, Switzerland, Tech. Rep*, 4, 2024.
- 495 PMM Beemsterboer, R Kranse, HJ De Koning, JDF Habbema, and FH Schröder. Changing role of 3  
496 screening modalities in the european randomized study of screening for prostate cancer (rotterdam).  
497 *International journal of cancer*, 84(4):437–441, 1999.
- 498 Frank K Chen, Andre Luis de Castro Abreu, and Suzanne L Palmer. Utility of ultrasound in the  
499 diagnosis, treatment, and follow-up of prostate cancer: state of the art. *Journal of Nuclear Medicine*,  
500 57(Supplement 3):13S–18S, 2016.
- 501 Gunjan Chugh, Shailender Kumar, and Nanhay Singh. Survey on machine learning and deep learning  
502 applications in breast cancer diagnosis. *Cognitive Computation*, 13(6):1451–1470, 2021.
- 503 Maarten De Rooij, Esther HJ Hamoen, Jurgen J Fütterer, Jelle O Barentsz, and Maroeska M Rovers.  
504 Accuracy of multiparametric mri for prostate cancer detection: a meta-analysis. *American Journal  
505 of Roentgenology*, 202(2):343–351, 2014.
- 506 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas  
507 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An  
508 image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint  
509 arXiv:2010.11929*, 2020.
- 510 Kevin M Gilboy, Yixuan Wu, Bradford J Wood, Emad M Boctor, and Russell H Taylor. Dual-robotic  
511 ultrasound system for in vivo prostate tomography. In *Medical Ultrasound, and Preterm, Perinatal  
512 and Paediatric Image Analysis: First International Workshop, ASMU 2020, and 5th International  
513 Workshop, PIPPI 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 4-8, 2020,  
514 Proceedings 1*, pp. 161–170. Springer, 2020.
- 515 Mohammad Havaei, Axel Davy, David Warde-Farley, Antoine Biard, Aaron Courville, Yoshua  
516 Bengio, Chris Pal, Pierre-Marc Jodoin, and Hugo Larochelle. Brain tumor segmentation with deep  
517 neural networks. *Medical image analysis*, 35:18–31, 2017.
- 518 National Cancer Institute. Cancer stat facts: Prostate cancer, 2024. URL <https://seer.cancer.gov/statfacts/html/prost.html>.
- 519 Veeru Kasivisvanathan, Antti S Rannikko, Marcelo Borghi, Valeria Panebianco, Lance A Mynderse,  
520 Markku H Vaarala, Alberto Briganti, Lars Budäus, Giles Hellawell, Richard G Hindley, et al.  
521 Mri-targeted or standard biopsy for prostate-cancer diagnosis. *New England Journal of Medicine*,  
522 378(19):1767–1777, 2018.
- 523 Fu Li, Umberto Villa, Seonyeong Park, and Mark A Anastasio. 3-d stochastic numerical breast phan-  
524 toms for enabling virtual imaging trials of ultrasound computed tomography. *IEEE transactions  
525 on ultrasonics, ferroelectrics, and frequency control*, 69(1):135–146, 2021.
- 526 Bilal Malik, Robin Terry, James Wiskin, and Mark Lenox. Quantitative transmission ultrasound  
527 tomography: Imaging and performance characteristics. *Medical physics*, 45(7):3063–3075, 2018.
- 528 Antun Maričić, Maksim Valenčić, Stanislav Sotošek, Romano Oguić, Aldo Ivančić, and Juraj Ahel.  
529 Transrectal sonography in prostate cancer detection—our 25 years experience of implementation.  
530 *Collegium antropologicum*, 34(2):239–242, 2010.
- 531 Tufve Nyholm, Stina Svensson, Sebastian Andersson, Joakim Jonsson, Maja Sohlin, Christian  
532 Gustafsson, Elisabeth Kjellén, Karin Söderström, Per Albertsson, Lennart Blomqvist, et al. Mr  
533 and ct data with multiobserver delineations of organs in the pelvic area—part of the gold atlas  
534 project. *Medical physics*, 45(3):1295–1300, 2018.

- 540 Sahil H Parikh, Charles Hesswani, William S Azar, Christopher R Koller, Kyle C Schuppe, Alexander P Kenigsberg, Neil Mendhiratta, Sarah Azari, Daniel Nethala, Yixuan Wu, et al. Mp30-01 a  
 541 new look: The promising use of 3-dimensional quantitative transmission ultrasound tomography  
 542 for the detection of prostate cancer an ex vivo study. *The Journal of Urology*, 211(5S):e490, 2024.  
 543
- 544 Jan Philipp Radtke and Boris Hadaschik. Re: Mri-targeted, systematic, and combined biopsy for  
 545 prostate cancer diagnosis. *European Urology*, 78(2):291–292, 2020.  
 546
- 547 Nicole V Ruiter, Michael Zapf, Torsten Hopp, Hartmut Gemmeke, Koen WA van Dongen, Jorge  
 548 Camacho, Joaquín L Herraiz, Mailyn Perez Liva, and Jose M Udías. Usct reference data base:  
 549 Conclusions from the first spie usct data challenge and future directions. In *Medical Imaging 2018: Ultrasonic Imaging and Tomography*, volume 10580, pp. 170–176. SPIE, 2018.  
 550
- 551 GY Sandhu, Cuiping Li, Olivier Roy, S Schmidt, and Neb Duric. Frequency domain ultrasound  
 552 waveform tomography: breast imaging using a ring transducer. *Physics in Medicine & Biology*, 60  
 553 (14):5381, 2015.  
 554
- 555 W Paul Segars, G Sturgeon, S Mendonca, Jason Grimes, and Benjamin MW Tsui. 4d xcat phantom  
 556 for multimodality imaging research. *Medical physics*, 37(9):4902–4915, 2010.  
 557
- 558 Jeffrey J Tosoian, Yuping Zhang, Lanbo Xiao, Cassie Xie, Nathan L Samora, Yashar S Niknafs, Zoey  
 559 Chopra, Javed Siddiqui, Heng Zheng, Grace Herron, et al. Development and validation of an  
 560 18-gene urine test for high-grade prostate cancer. *JAMA oncology*, 2024.  
 561
- 562 Bradley E Treeby and Benjamin T Cox. k-wave: Matlab toolbox for the simulation and reconstruction  
 563 of photoacoustic wave fields. *Journal of biomedical optics*, 15(2):021314–021314, 2010.  
 564
- 565 Hanchen Wang, Yixuan Wu, Emad Boctor, Songting Luo, and Youzuo Lin. Mask-enhanced deep-  
 566 learning for prostate ultrasound tomography with narrow data acquisition aperture. In *Medical  
 567 Imaging 2025: Ultrasonic Imaging and Tomography*, volume 13412, pp. 175–181. SPIE, 2025.  
 568
- 569 Cheyenne Williams, Michael Daneshvar, Yixuan Wu, Jeunice Owens-Walton, Nitin Yerram, Patrick T  
 570 Gomella, Luke P OConnor, Nabila Khondakar, Michael Ahdoot, Ayele Negussie, et al. Mp22-  
 17 prostate ultrasound tomography (ut): correlation with mri and whole mount histopathology.  
*Journal of Urology*, 206(Supplement 3):e398, 2021.  
 571
- 572 James W Wiskin, Jacob Enders, Cheyenne Williams, Ismail Turkbey, Michael Rothberg, Michael  
 573 Daneshvar, Maria Merino, Sheng Xu, Emad Boctor, Yixuan Wu, et al. Imaging of prostate cancer  
 574 with 3d ultrasound tomography. In *Medical Imaging 2022: Ultrasonic Imaging and Tomography*,  
 575 pp. PC1203809. SPIE, 2022.  
 576
- 577 Yixuan Wu. *Multiparametric prostate ultrasound imaging*. PhD thesis, Johns Hopkins University,  
 578 2024.  
 579
- 580 Yixuan Wu, Jacob Enders, Cheyenne Williams, Baichuan Jiang, James Wiskin, Michael B Rothberg,  
 581 Ayele H Negussie, John Klock, Lindsey Hazen, Sheng Xu, et al. Realistic digital phantoms for  
 582 prostate ultrasound and photoacoustic imaging. In *Medical Imaging 2024: Ultrasonic Imaging and  
 583 Tomography*, volume 12932, pp. 318–327. SPIE, 2024.  
 584
- 585 Yue Wu and Youzuo Lin. InversionNet: An efficient and accurate data-driven full waveform inversion.  
 586 *IEEE Transactions on Computational Imaging*, 6:419–433, 2019.  
 587
- 588 Zhijun Zeng, Youjia Zheng, Hao Hu, Zeyuan Dong, Yihang Zheng, Xinliang Liu, Jinzhuo Wang,  
 589 Zuoqiang Shi, Linfeng Zhang, Yubing Li, and He Sun. Openwaves: A large-scale anatomically  
 590 realistic ultrasound-CT dataset for benchmarking neural wave equation solvers, 2025. URL  
 591 <https://openreview.net/forum?id=u14Y236LwX>.  
 592
- 593

594  
595  
**A APPENDIX**596  
597  
Supplementary materials arrangement:

- 598
- 
- 599
- 
- Section A.1 describes the detailed steps of how 2D phantoms are sliced from the 3D speed of
- 
- 600
- 
- 601
- 
- 602
- 
- 603
- 
- 604
- 
- 605
- 
- 606
- 
- sound volumes.
- 
- Section A.2 shows the naming strategy of the OPENPROS dataset.
- 
- Section A.3 describes the benchmark evaluation metrics of OPENPROS.
- 
- Section A.4 shows the baseline models' training configurations and hyper-parameters.
- 
- Section A.5 compares the widely used conventional k-Wave simulation method and our OPEN-
- 
- 607
- 
- 608
- 
- 609
- 
- 610
- 
- 611
- 
- 612
- 
- 613
- 
- 614
- 
- 615
- 
- 616
- 
- 617
- 
- 618
- 
- 619
- 
- 620
- 
- 621
- 
- 622
- 
- 623
- 
- 624
- 
- 625
- 
- 626
- 
- 627
- 
- 628
- 
- 629
- 
- 630
- 
- 631
- 
- 632
- 
- 633
- 
- 634
- 
- 635
- 
- 636
- 
- PROS open-sourced simulation methods.

607  
608  
**A.1 DETAILS OF 2D PHANTOM EXTRACTION**  
609  
610  
611  
612  
613  
614  
615  
616  
617  
618  
619  
620  
621  
622  
623  
624  
625  
626  
627  
628  
629  
630  
631  
632  
633  
634  
635  
636637  
638  
Figure 6: Schematic of our 2D phantom extraction. The green plane indicates the area between transrectal and  
639  
abdominal probes.640  
641  
Starting from our 3D prostate volumes (SOS maps and organ masks), we apply the following pipeline  
642  
to produce each 2D phantom:

- 643
- 
- 644
- 
- 1.
- Volume loading and isotropic resampling.**
- We load the segmentation masks and SOS volumes
- 
- 645
- 
- from each patient scan, resample anisotropic voxels onto a uniform 0.375 mm grid, and pad exterior
- 
- regions with a baseline SOS of 1,500 m/s to emulate coupling gel.
- 
- 646
- 
- 2.
- Initial probe placement.**
- A pair of valid points separated by 6 cm within the segmented rectum
- 
- 647
- 
- defines the transrectal transducer line. The abdominal transducer is then positioned 15 cm anterior
- 
- along the same axis.

648 3. **Systematic rotation and translation.** To emulate clinical acquisition angles, we rotate both probe  
 649 lines jointly from  $-45^\circ$  to  $+45^\circ$  in  $5^\circ$  increments and translate them within  $\pm 1$  mm in each Cartesian  
 650 direction.

651 4. **Slice extraction.** At each probe configuration, we extract the 2D plane containing both transducer  
 652 lines. The resulting slice preserves the true anatomical interfaces, tissue heterogeneity, and relative  
 653 probe geometry.

654 5. **Random perturbations.** We add a small jitter of  $\pm 1^\circ$  to each rotation angle and  $\pm 1$  mm to each  
 655 transducer coordinate to enrich variability.

657 Altogether, this procedure produces 280,000 unique 2D SOS phantoms with matching ultrasound  
 658 data under limited-angle conditions. An illustration of the slicing geometry is shown in Figure 6.

## 660 A.2 NAMING OF OPENPROS

662 The data files follow a structured naming convention: `3_{i}_P_{Date}_{Category}.npy`,  
 663 where `{i}` represents patient IDs (1–4), `{Date}` denotes unique prostate sample identifiers, and  
 664 `{Category}` specifies data types, including ultrasound data (`data`) and SOS maps (`sos`). For  
 665 example, `3_02_P_2022-06-06_sos.npy` refers to SOS data for patient 3\_02 and prostate  
 666 sample 2022-06-06.

## 667 A.3 EVALUATION METRICS

669 To evaluate the performance of the proposed CNN-based reconstruction methods, we employ four  
 670 quantitative metrics that comprehensively assess numerical accuracy and perceptual similarity be-  
 671 tween the reconstructed and true SOS images. Here, we denote the true SOS image as  $s$ , the predicted  
 672 image as  $\hat{s}$ , and  $N$  as the total number of pixels in each image.

- 674 • **Mean Squared Error (MSE)** measures the pixel-wise squared differences:

$$675 \text{MSE} = \frac{1}{N} \sum_{i=1}^N (s_i - \hat{s}_i)^2, \quad (2)$$

678 where  $s_i$  and  $\hat{s}_i$  denote the true and predicted SOS values at pixel  $i$ .

- 679 • **Mean Absolute Error (MAE)** calculates the average absolute difference, providing robustness  
 680 against outliers:

$$681 \text{MAE} = \frac{1}{N} \sum_{i=1}^N |s_i - \hat{s}_i|. \quad (3)$$

- 684 • **Structural Similarity Index Measure (SSIM)** assesses the perceptual quality, accounting for  
 685 luminance, contrast, and structural similarities:

$$686 \text{SSIM}(s, \hat{s}) = \frac{(2\mu_s\mu_{\hat{s}} + C_1)(2\sigma_{s\hat{s}} + C_2)}{(\mu_s^2 + \mu_{\hat{s}}^2 + C_1)(\sigma_s^2 + \sigma_{\hat{s}}^2 + C_2)}, \quad (4)$$

688 where  $\mu_s, \mu_{\hat{s}}$  denote the means,  $\sigma_s, \sigma_{\hat{s}}$  the variances, and  $\sigma_{s\hat{s}}$  the covariance between true and  
 689 predicted images. Constants  $C_1$  and  $C_2$  stabilize division by weak denominators.

- 691 • **Pearson Correlation Coefficient (PCC)** quantifies the linear correlation between true and  
 692 predicted images, measuring structural consistency:

$$693 \text{PCC} = \frac{\sum_{i=1}^N (s_i - \bar{s})(\hat{s}_i - \bar{\hat{s}})}{\sqrt{\sum_{i=1}^N (s_i - \bar{s})^2} \sqrt{\sum_{i=1}^N (\hat{s}_i - \bar{\hat{s}})^2}}, \quad (5)$$

696 where  $\bar{s}$  and  $\bar{\hat{s}}$  denote the mean pixel values of the true and predicted SOS images, respectively.

## 698 A.4 TRAINING PROCEDURE

700 All baseline models (InversionNet and ViT-Inversion) were trained using a supervised learning  
 701 approach on the proposed large-scale OPENPROS dataset. The dataset comprises a total of 280,080  
 samples, with 255,360 used for training and 27,360 for validation/testing.

702 For fair comparison, we kept the training settings identical across all methods. We employed the  
 703 Adam optimizer with an initial learning rate of  $10^{-4}$ , a batch size of 512, and trained each model for  
 704 up to 120 epochs. Early stopping was implemented based on validation set performance to prevent  
 705 overfitting. Table 6 summarizes these training parameters.  
 706

707 Table 6: **Training parameters** consistently used across all baseline methods.  
 708

| Total Epochs | Training Samples | Test Samples | Batch Size | Optimizer | Learning Rate |
|--------------|------------------|--------------|------------|-----------|---------------|
| 240          | 255,360          | 27,360       | 512        | Adam      | $10^{-4}$     |

711 The model sizes and training times for each baseline method are listed in Table 7. All experiments  
 712 were conducted on NVIDIA H100 GPUs.  
 713

714 Table 7: **Computational cost and model size comparison** for baseline methods on the OPENPROS prostate  
 715 USCT dataset.  
 716

| Method        | Training Cost (GPU hour) | Inference Cost (GPU second/sample) | Model Size |
|---------------|--------------------------|------------------------------------|------------|
| Beamforming   | N/A                      | 14400                              | N/A        |
| USCT          | N/A                      | 86400                              | N/A        |
| InversionNet  | 240                      | 0.0049                             | 20.45M     |
| ViT-Inversion | 128                      | 0.0089                             | 28.33M     |

724 

## A.5 CONVENTIONAL K-WAVE VS. OUR ULTRASOUND SIMULATION ALGORITHMS

725 Ultrasound imaging methods can be broadly categorized by their simulation paradigms. Conventional  
 726 TRUS simulations, commonly used for B-mode imaging, rely on signal processing pipelines such  
 727 as delay-and-sum (DAS) beamforming applied to simulated echoes. These simulations are often  
 728 implemented using toolboxes like MATLAB k-Wave Treeby & Cox (2010), which model acoustic  
 729 wave propagation using pseudospectral methods and reconstruct images from envelope-detected  
 730 signals. While fast and widely adopted in the clinical ultrasound community, this approach simplifies  
 731 underlying physics and often introduces artifacts due to assumptions like homogeneous backgrounds,  
 732 limited diffraction modeling, or approximate transducer responses.  
 733

734 In contrast, our dataset adopts a physically grounded modeling framework based on the 2D acoustic  
 735 wave equation. We employ a finite-difference solver with fourth-order spatial and second-order  
 736 temporal accuracy to simulate full-wave propagation through heterogeneous tissue. This method  
 737 captures wavefront curvature, multi-path scattering, and fine-grained variations in the SOS map,  
 738 offering a far more realistic approximation of ultrasound interactions in complex anatomical regions  
 739 such as the prostate. This fidelity is especially critical under limited-angle acquisition constraints  
 740 common in prostate imaging, where traditional methods often fail to reconstruct accurate quantitative  
 741 maps.

742 Unlike DAS-based methods, our simulation does not rely on beamforming post-processing, allowing  
 743 it to serve as a foundation for quantitative imaging tasks like USCT. While k-Wave simulations are  
 744 computationally efficient for B-mode image formation, our FDTD method remains tractable at scale  
 745 and better suited for generating ground truth waveforms for learning-based inverse solvers.  
 746

747 Moreover, we provide two forward modeling solvers as part of our open-source release: a finite-  
 748 difference solver with fourth-order spatial and second-order temporal accuracy, and an alternative  
 749 Runge-Kutta implicit iterative solver. The former prioritizes accuracy and efficiency in time-domain  
 750 modeling, while the latter offers enhanced numerical stability and can serve as a basis for future  
 751 3D extensions. Both solvers are publicly available with our dataset, supporting reproducibility and  
 752 extensibility for ultrasound tomography and machine learning research. Additionally, the solvers  
 753 support execution on both GPU and CPU platforms.  
 754

755 

## A.6 NOISE ROBUSTNESS UNDER ADDITIVE MEASUREMENT PERTURBATIONS

756 **Setup** To assess robustness to measurement corruption, we perturb the test waveforms with zero-  
 757 mean i.i.d. Gaussian noise and evaluate the pretrained models *without* any fine-tuning (all models  
 758

were trained only on clean data):

$$\tilde{\mathbf{p}} = \mathbf{p} + \epsilon, \quad \epsilon \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I}).$$

Noise is applied to the input tensor after the same normalization used during training. We sweep  $\sigma \in \{0, 0.01, 0.02, 0.05\}$ ; for reference, these levels correspond to input PSNRs of approximately 26 dB, 23 dB, and 19 dB, respectively. Reconstructions are compared to the clean ground-truth SOS using MAE, MSE, RMSE, SSIM, and PCC.

**Results** Tables 8 and 9 summarize performance for ViT-Inversion and InversionNet. Both models degrade monotonically as noise increases, but ViT-Inversion is substantially more resilient across all metrics. At  $\sigma = 0.01$  ( $\approx 26$  dB), ViT-Inversion maintains SSIM  $\approx 0.987$  and PCC  $\approx 0.982$ , while InversionNet drops to SSIM 0.944 and PCC 0.837. At the highest noise level ( $\sigma = 0.05$ ,  $\approx 19$  dB), ViT-Inversion still preserves moderate structural fidelity (SSIM 0.935, PCC 0.796), whereas InversionNet falls to SSIM 0.825 and PCC 0.388. These trends suggest that attention-based models better suppress high-frequency perturbations by leveraging longer-range context in the wavefield.

Table 8: **Noise robustness of ViT-Inversion.** Gaussian noise  $\mathcal{N}(0, \sigma^2)$  added to test inputs; models trained on clean data only.

| ViT-Inversion | $\sigma = 0$ | $\sigma = 0.01$ | $\sigma = 0.02$ | $\sigma = 0.05$ |
|---------------|--------------|-----------------|-----------------|-----------------|
| PSNR (dB)     | –            | 26              | 23              | 19              |
| MAE           | 0.0067       | 0.0084          | 0.0137          | 0.0366          |
| RMSE          | 0.0268       | 0.0330          | 0.0521          | 0.1149          |
| PCC           | 0.9893       | 0.9824          | 0.9507          | 0.7965          |
| SSIM          | 0.9909       | 0.9872          | 0.9759          | 0.9347          |

Table 9: **Noise robustness of InversionNet.** Same protocol as Table 8.

| InversionNet | $\sigma = 0$ | $\sigma = 0.01$ | $\sigma = 0.02$ | $\sigma = 0.05$ |
|--------------|--------------|-----------------|-----------------|-----------------|
| PSNR (dB)    | –            | 26              | 23              | 19              |
| MAE          | 0.0074       | 0.0287          | 0.0573          | 0.1228          |
| RMSE         | 0.0297       | 0.0964          | 0.1700          | 0.3155          |
| PCC          | 0.9851       | 0.8372          | 0.6604          | 0.3881          |
| SSIM         | 0.9877       | 0.9437          | 0.8998          | 0.8252          |

**Takeaways and implications** (1) Robustness *without* noise exposure during training is limited—especially for convolution-only models—highlighting the importance of noise-aware data augmentation and/or denoising front-ends. (2) Attention mechanisms appear to confer greater stability to measurement noise in this task. (3) Practical deployment will likely benefit from simple defenses such as SNR-matched augmentation, temporal filtering of waveforms, and uncertainty-aware inference; we include these as future baselines in subsequent releases.

## A.7 USAGE OF LARGE LANGUAGE MODELS (LLMs)

During the preparation of this manuscript, we used a large language model (LLM) to assist with language polishing, structural refinement, and presentation clarity. The LLM provided feedback on phrasing, grammar, and flow, suggested alternatives to reduce redundancy, and generated L<sup>A</sup>T<sub>E</sub>X formatting for tables and equations. All scientific ideas, experiments, analyses, and conclusions were conceived, designed, and carried out entirely by the authors.