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Abstract
In the literature, existing studies on text-to-motion generation
(TMG) routinely focus on exploring the objective alignment of
text and motion, which largely ignore the subjective emotion in-
formation, especially the limb-level emotion information. With
this in mind, this paper proposes a new Emotion-enriched Text-to-
Motion Generation (ETMG) task, aiming to generate motions with
the subjective emotion information. Further, this paper believes
that injecting emotions into limbs (named intra-limb emotion in-
jection) and ensuring the coordination and coherence of emotional
motions after injecting emotion information (named inter-limb
emotion disturbance) is rather important and challenging in this
ETMG task. To this end, this paper proposes an LLM-guided Limb-
level Emotion Manipulating (L3EM) approach to ETMG. Specif-
ically, this approach designs an LLM-guided intra-limb emotion
modeling block to inject emotion into limbs, followed by a graph-
structured inter-limb relation modeling block to ensure the coordi-
nation and coherence of emotional motions. Particularly, this paper
constructs a coarse-grained Emotional Text-to-Motion (Emotion-
alT2M) dataset and a fine-grained Limb-level Emotional Text-to-
Motion (Limb-ET2M) dataset to justify the effectiveness of the
proposed L3EM approach. Detailed evaluation demonstrates the
significant advantage of our L3EM approach to ETMG over the
state-of-the-art baselines. This justifies the importance of the limb-
level emotion information for ETMG and the effectiveness of our
L3EM approach in coherently manipulating such information.
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1 Introduction
Human motion generation leverages various control signals (e.g.,
music [13, 14], action categories [11, 21] and text descriptions [10,
35, 37]) to generate vivid and realistic motions, which has numer-
ous practical applications in fields such as game production, film
and virtual reality. Among these control signals, text is extensively
applied as a control condition for motion generation due to its
rich semantic details and convenient user interaction, i.e., text-to-
motion generation (TMG). Existing studies in TMG focus on using
various generative models such as VAEs [10, 22] and diffusion mod-
els [5, 30] for the objective alignment of text and motion. However,
these studies largely ignore the diverse and subjective emotion
information, leading to existing approaches struggling to generate
emotion-enriched motions.

Inspired by the above observations, this paper proposes a novel
Emotion-enriched Text-to-Motion Generation (ETMG) task, aim-
ing to generate motions with rich emotional expressions, which can
significantly enhance audience resonance and emotional connec-
tion in the application of many fields, such as virtual avatar [3, 20]
and emotional robots [6, 27]. Specifically, the ETMG task generates
emotion-enriched motions via given text descriptions. Taking Fig-
ure 1 (b) as an example, given the text “A person, filled with sadness,
walks forward.”, the model requires to generate a more realistic and
expressive motion sequence with emotion sad, compared to the
generated motion sequence in Figure 1 (a) with text “A man walks
forward”. Especially, we explore two kinds of challenges inside the
ETMG task.
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A man walks forward.

（a）motion without emotion

A person, filled with sadness, walks forward.

（b）motion with emotion

Head: facing forward Head: lowered, looking downwards

Torso: slightly bent

Torso: straight

Legs: slow paceLegs: normal pace

Figure 1: Two motions generated by our approach. Darker
color indicates later frames in the sequence and the red col-
ored word refers to the emotion word. The red and blue box
denote limbs have and have not emotional expression.

For one thing, how to inject emotion into the human limbs is
challenging, namely the intra-limb emotion injection challenge. Fac-
tually, emotion-enriched motion sequences entail rich emotional
semantics, while text description usually contain only one emotion
word (e.g., sadness). Also as shown in Figure 1 (b), based on the
text description “A man, filled with sadness, walks forward.”, we
obtain the human limbs Head: lowered, looking downwards; Torso:
slightly bent; etc. with emotion sad, where human limbs associated
with the motions could correspond to emotional expression in the
generated motion sequence. Therefore, a well-designed approach
should consider injecting emotion into the human limbs, for pre-
cisely matching the human limbs to corresponding emotions and
effectively generating emotion-enriched motions.

For another, how to ensure the coordination and coherence of
emotional motions after injecting emotion information is challeng-
ing, namely the inter-limb emotion disturbance challenge1. We
assume that the injection of emotion would limit the generation
of motions, and affect the coordination and coherence of the gen-
erated motions. As shown in Figure 1 (a), the text description “a
man walks forward” without any emotion generates the motion
sequences with no limitations on the human limbs, while after
injecting emotion (e.g., sadness) into limbs, limbs related to the
motion should have corresponding emotional expression, such as
Head: lower; Torso: bent; etc. Thus, emotion information could cause
some disturbance and interference to the motions of the human
limbs, which may lead to incoordination and incoherence of the
generated emotion-enriched motions. Therefore, a better-designed
approach should consider capturing spatial position and relation
information between human limbs to tackle emotional disturbance
and ensure the coordination and coherence of emotional motions.

In this paper, we propose an LLM-guided Limb-level Emotion
Manipulating (L3EM) approach to tackle the above two challenges.
Specifically, this approach first designs an LLM-guided Intra-limb
Emotion Modeling (LEM) block via Large Language Models (LLM)
to inject emotion into the human limbs to address the intra-limb
emotion injection challenge. Then, this approach designs a Graph-
structured Inter-limb Relation Modeling (GRM) block via the limb
relation graph to capture limb spatial position and relation infor-
mation for addressing the inter-limb emotion disturbance chal-
lenge. Furthermore, a coarse-grained Emotional Text-to-Motion

1Comprehensive analysis is described in Section 5.3 “Is emotional disturbance really
addressed?”

(EmotionalT2M) dataset and a fine-grained Limb-level Emotional
Text-to-Motion (Limb-ET2M) dataset are constructed to evaluate
the effectiveness of the proposed L3EM approach. Detailed experi-
ments demonstrate that our L3EM approach achieves significant
improvements compared to the current state-of-the-art baselines.

2 Related Work
2.1 Text-to-Motion Generation
Text-to-motion generation has always been a popular research topic
in generative AI. There is a large body of work proposing different
generative neural networks to handle this task. Early studies [1, 9,
22, 29] focus on using joint-latent models to learn a joint embedding
space of motion and text. For example, MotionCLIP [29] aligns the
human motion manifold to CLIP space implicitly for generating
motion sequences with text descriptions. TEMOS [22] introduces a
VAE architecture to learn a joint latent space of human motions and
text descriptions and can generate different motion sequences given
one text description. Inspired by the significant success of diffusion
models in the field of image generation [2, 25, 26], some recent
works employ diffusion models to handle text-to-motion tasks. For
example, MotionDiffuse [36] firstly introduces Denoising Diffusion
Probabilistic Models (DDPM) for versatile and controllable human
motion generation. MDM [30] predicts the sample, rather than the
noise in each diffusion step, thus improving the quality of generated
motions. Furthermore, MLD [5] performs a diffusion process on the
motion latent space and substantially reduces the computational
overhead. Most recently, some works [12, 35, 38] quantize motion
sequences into discrete motion tokens and then a GPT-like structure
to generate subsequent tokens. For example, MotionGPT [12] uses
a Vector Quantised Variational AutoEncoder (VQ-VAE) to quantize
motion sequence and use a transformer to automatically generate
later tokens.

Although the aforementionedworks havemade significant progress
in the field of text-to-motion, they have always ignored subjective
emotion information. Unlike prior studies, this paper first proposes
a new Emotion-enriched Text-to-Motion Generation (ETMG) task
and proposes two intra-limb emotion injection challenge and inter-
limb emotion disturbance challenge in tackling this task.

2.2 LLM-enhanced Diffusion Models
Large language models(LLM) have demonstrated impressive capa-
bilities for text generation and semantic understanding [28, 39].
Recently, some works [4, 7, 8, 23, 41] have begun to explore lever-
aging the powerful abilities of LLM to enhance the generation
performance of diffusion models conditioned on text in the fields of
Text-to-Image and Text-to-Video. Specifically, in the field of Text-
to-Image, Qu et al. [23] use LLM to generate the layout of images
and then employ a diffusion model to synthesize high-fidelity im-
ages conditioned on both the prompt and the generated layout,
which is inspirational to our approach. Zhong et al. [41] propose a
Semantic Understanding and Reasoning Adapter (SUR-adapter) for
pre-training diffusion models. By transferring knowledge from a
large-scale language model (LLM) to the SUR-adapter, the diffusion
model is able to understand and reason concise natural language
without image quality degradation. In the field of Text-to-Video,
Fei et al. [7] take advantage of the existing powerful LLM (e.g.,



Towards Emotion-enriched Text-to-Motion Generation via LLM-guided Limb-level Emotion Manipulating MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia

Limb Emotional Guidance 

Graph-structured Inter-limb Relation Modeling Block

Limb Relation Graph 

(c)

Self-attention

Add & Norm

Limb-relation Aware 

CrossAttention

Add & Norm

Limb-relation Aware 

GraphTransformer

(a) Illustration of our approach

𝜀

𝐷 …

𝑍0

𝑍0

𝑍𝑡−1

𝑍𝑡

𝑍𝑡

Text

a man walks forward sadly.
…

LLM-guided Intra-limb 

Emotion Modeling Block

Graph-structured Inter-

limb Relation Modeling 

Block

CLIP

Diffusion Process

Denoising Process

ChatGLM

Instructions

Now you are an emotional text-to-

motion generation assistant. …… 

In-context examples

𝑐1, 𝑐2, ……

Text

Input: a man walks forward sadly.

LLM-guided Intra-limb Emotion Modeling Block

Head: Lowered, looking downwards  
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Left arm: Hanging and swaying, restricted in motion, slower and smaller in range.

Right arm: Hanging and swaying, restricted in motion, slower and smaller in range.  

Torso: Slightly bent.  
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Right foot: Landing slowly and softly.
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Right arm: Hanging and swaying…

Torso: Slightly bent.  

Right leg: Feeling slightly sluggish, with …

Left foot: Landing slowly and softly. Right foot: Landing slowly and softly. 

Left shoulder: Slightly sinking or retracting backward.Right shoulder: Slightly sinking or…

Left arm: Hanging and swaying, restricted in motion…

Left leg: Feeling slightly sluggish, with slow or… 

RL-based Emotional ICL Module

Candidate Set

Policy Network

(b)

𝑅𝑞

𝑅𝑚

𝑅𝑒

Reward
denoiser

h′

m′′

m′

m

Figure 2: Our LLM-guided Limb-level Emotion Manipulating (L3EM) approach overview. Wherein (a) is the overall framework
of our approach. (b) and (c) is the LLM-guided Intra-limb Emotion Modeling(LEM) Block and the Graph-structured Inter-limb
Relation Modeling (GRM) Block, respectively.

ChatGPT) to generate video dynamic scene graphs for tackling the
intricate video temporal dynamics issue in video generation.

Different from all the above studies, this paper first designs
an RL-based Emotional ICL module to assist LLM in generating
high-quality limb emotional guidance for addressing the intra-limb
emotion injection challenge, and then utilizes a limb relation graph
to capture limb spatial position and relation information to tackle
the emotion disturbance challenge.

3 Approach
In this section, we formulate the ETMG task as follows. Given a text
description 𝑦 (e.g., a man walks forward sadly), which describes a
motion and conveys an emotion 𝑒 (e.g., sad), the goal of ETMG is
to generate a 3D human motion sequence x1:𝐿 with the length 𝐿
that matches the text description 𝑦 and the emotion 𝑒 . In this paper,
we propose an L3EM approach for generating motions with rich
emotional expressions. The overall framework of L3EM is shown
in Figure 2, which mainly comprises the LLM-guided Intra-limb
Emotion Modeling (LEM) Block (Sec. 3.2) for addressing the intra-
limb emotion injection challenge and the Graph-structured Inter-
limb Relation Modeling (GRM) Block (Sec. 3.3) for addressing the
inter-limb emotion disturbance challenge.

3.1 Preliminary on Latent Diffusion Model
In this paper, we adopt the open-sourcedMotion Latent-based Diffu-
sion model (MLD) [5] as our backbone due to its high performance
and low computation overhead. MLD first employs a Variational

AutoEncoder (VAE) to obtain a representative and low-dimensional
latent code for a motion sequence and then performs a diffusion
process on the motion latent space, which substantially improves
the computational efficiency. Specifically, a motion sequence 𝑥1:𝐿
with the length 𝐿 is first mapped to a motion latent space through
motion encoder E of a pre-trained VAE, i.e., 𝑧0 = E(𝑥1:𝐿). The
diffusion process on latent space is modeled as a Markov nosing
process using the:

𝑞(𝑧𝑡 |𝑧𝑡−1) = N(√𝛼𝑡𝑧𝑡−1, (1 − 𝛼𝑡 )𝐼 ) (1)

where 𝑞(𝑧𝑡 |𝑧𝑡−1) denotes the posterior distribution. 𝛼𝑡 ∈ (0, 1) is
constant hyper-parameters. N represents the normal distribution
and 𝐼 represents the identity covariance matrix. {𝑧𝑡 }𝑇𝑡=0 denotes the
noising sequence in the motion latent space, where 𝑇 represents
the time step. Then, at the denoising process, a conditional denoiser
𝜖𝜃 (𝑧𝑡 , 𝑡, 𝑐) is used to predict the noise 𝜖 added to 𝑧𝑡−1 in the diffusion
process.i.e.,𝜖 = 𝜖𝜃 (𝑧𝑡 , 𝑡, 𝑐), where 𝑐 denotes the condition input. In
our ETMG task, the condition 𝑐 is the text embedding encoded by
the CLIP [24] text encoder. Subsequently, the denoised version 𝑧𝑡−1
of 𝑧𝑡 at each time step 𝑡 is obtained by 𝑧𝑡−1 = 𝑧𝑡−𝜖𝜃 (𝑧𝑡 , 𝑡, 𝑐). During
the inference stage, 𝑧0 is obtained with 𝑇 iterative denoising steps
given a noisy latent 𝑧𝑡 ∈ N (0, 1), timestep 𝑡 , and the conditioning
text embedding 𝑐 . Then, motion decoder 𝐷 of the pre-trained VAE
maps 𝑧0 to the original motion sequence.

3.2 LLM-guided Intra-limb Emotion Modeling
As shown in Figure 2 (b), the LLM-guided Intra-limb Emotion Mod-
eling (LEM) Block is designed to generate limb emotional guidance
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from LLM. Specifically, in this paper, we use in-context learning
(ICL) [31] to generate emotional guidance for ten major limbs (i.e.,
head, left shoulder, right shoulder, left arm, right arm, torso, left
leg, right leg, left foot, right foot) of humans from LLM (i.e., Chat-
GLM [34]). The ICL prompt we use consists of three parts, a task
description (Instruction), a few input-output examples (in-context
examples), and a test input (Test). Previous studies [18, 19, 40] in-
dicate that the efficiency of ICL is significantly affected by how
in-context examples are structured. Therefore, it is crucial to choose
appropriate in-context examples from the training set to activate the
ICL capability of LLM. In this paper, inspired by [23], we design an
RL-based Emotional ICL module in Figure 2 (b) to tackle this issue,
where RL and ICL refer to Reinforcement Learning and In-Context
Learning, respectively. The RL-based Emotional ICL module mainly
consists of two parts, i.e., policy network and emotion-enhanced
reward.

• Policy Network. Given a text 𝑦 (e.g., a man walks forward
sadly.) and the emotion 𝑒 (e.g., sad) in the text, we use the policy
network 𝜋𝜃 to select K in-context examples𝐶𝐼 = {𝑐𝑘 |𝑘 = 1, 2, ..., 𝐾}
from a candidate set𝐶 , i.e., 𝑐𝑘 ∼ 𝜋𝜃 (𝑐 |𝑦), where we randomly select
𝑁 samples from training set and annotate themwith limb emotional
guidance, forming the candidate set 𝐶 . 𝑐𝑘 ∈ 𝐶 is independently
sampled from the candidate set 𝐶 . Specifically, the policy network
𝜋𝜃 is implemented as follows:

𝜋𝜃 (𝑐 |𝑦) =
exp(𝑓 (𝑦 [𝑐]) · 𝑓 (𝑦) + 𝑓 (𝑒 [𝑐]) · 𝑓 (𝑒))∑

𝑐′∈𝐶 exp(𝑓 (𝑦 [𝑐′]) · 𝑓 (𝑦) + 𝑓 (𝑒 [𝑐′]) · 𝑓 (𝑒)) (2)

where 𝑦 [𝑐] and 𝑒 [𝑐] denote the text (e.g., A man steps forward,
looking very happy.) and the emotion (e.g., happy) concerning the
candidate 𝑐 . 𝑓 (·) represents a mapping function that transforms a
text and emotion into a latent embedding. In latent space, sentences
with similar semantics and close emotions are to be mapped close
to each other.

• Emotion-enhanced Reward. In this paper, our goal is on the
one hand to generate motions that are of high quality and match
the text, and on the other hand, we also want to make sure that the
generated motions are emotion-enriched. Therefore, we design an
Emotion-enhanced reward 𝑅, which consists of three main parts,
detailed as follows:

𝑅 = 𝛼𝑅𝑞 + 𝛽𝑅𝑚 + 𝛾𝑅𝑒 (3)

where 𝛼 , 𝛽 , 𝛾 are hyper-parameters. 𝑅𝑞 , 𝑅𝑚 , and 𝑅𝑒 are used to mea-
sure the quality of generated motions, the matching with the text,
and how much the generated motions correspond to the intended
emotions, respectively. Specifically, they are calculated by:

𝑅𝑞 = Cos(MotionEncoder(x̂1:𝐿),MotionEncoder(x1:𝐿))

𝑅𝑚 = Cos(MotionEncoder(x̂1:𝐿),TextEncoder(𝑦))
𝑅𝑒 = WF1 + NN-WF1

(4)

where Cos denotes the cosine similarity between two vectors. The
larger the value, the closer the distance between the two vectors.
MotionEncoder and TextEncoder denote the motion encoder and
text encoder in our trained evaluator (Detailed in Sec 4.2), which
aims at encoding the paired text and motion sequences into a joint
embedding space. x̂1:𝐿 and x1:𝐿 represent the generated motion and
the ground-truthmotion, respectively.𝑦 denotes the text description
corresponding to themotion.WF1 andNN-WF1 (Detailed in Sec 4.2)

is the overall classification weighted average f1-score and the non-
neutral classification weighted average f1-score, which reflects how
much the generated motions correspond to the intended emotion in
all emotion classes and non-neutral emotion classes, respectively.

Through the RL-based Emotional ICL module, we select the K
in-context examples 𝐶𝐼 . Then, we combine it with instruction and
𝑦, inputting them into ChatGLM [34] to obtain the limb emotional
guidance𝐺 = {𝑔1, 𝑔2, ..., 𝑔10}, i.e.,𝐺 = ChatCLM(Instruction,𝐶𝐼 , 𝑦),
where 𝑔𝑖 , 𝑖 ∈ {1, 2, .., 10} denotes the emotional guidance for each
limb (i.e., head, left shoulder, right shoulder, left arm, right arm,
torso, left leg, right leg, left foot, right foot).

3.3 Graph-structured Inter-limb Relation
Modeling

In the above LEM Block, we use LLM (i.e., ChatGLM [34]) to gen-
erate emotional guidance for each limb. However, this emotional
guidance lacks spatial position and relation information about the
limbs, which is crucial for guiding diffusionmodels in generating co-
ordinated and coherent emotional motions. In this paper, as shown
in Figure 2 (c), we integrate a limb relation graph into a Graph-
Transformer(namely the Limb-relation Aware GraphTransformer)
to capture this information.

Specifically, for each limb (i.e., head, left shoulder, right shoulder,
left arm, right arm, torso, left leg, right leg, left foot, right foot)
emotional guidance 𝑔𝑖 , where 𝑖 ∈ {1, 2, .., 10}, we first use the CLIP
text encoder C𝑇 to convert it into a vector representation f =

{C𝑇 (𝑔1),C𝑇 (𝑔2), ...,C𝑇 (𝑔10)}. Then, we use the skeleton structure
of SMPL [16] with 22 joints as our limb relation graph. In addition,
also as shown in Figure 2 (c), we use linear mapping to project
these vector representations f onto the corresponding joints as the
initialization for graph nodes(i.e., h = Linear (f), where h denotes
the initial vector representation of the graph nodes. Linear refers to
the linear mapping.). Subsequently, the limb relation graph is fed
into a GraphTransformer to capture spatial position and relation
information about the limbs based on the emotional guidance of
limbs.

h′ = GraphTransformer (h,A) (5)

where GraphTransformer denotes a graph transformer network [33].
A refers to the adjacency matrix of the limb relation graph. h

′
rep-

resents the output representation vector of the GraphTransformer,
which integrates both spatial position and relation information and
emotional guidance information of limbs.

In order to integrate the output representation vector h′ into the
transformer layer in denoiser, we introduce a Limb-relation Aware
CrossAttention. Specifically, as shown in Figure 2 (c), the output
motion feature m′′ of the transformer layer is obtained by:

m′ = CrossAttn
(
m, h′, h′

)
m′′ = LayerNorm

(
m +m′) (6)

where CrossAttn denote the Cross-Attention. LayerNorm denotes
the layer normalization.m denotes the intermediate motion feature.

3.4 Optimization for L3EM
To ensure the stability of reinforcement learning training, we em-
ploy a two-stage training strategy. Specifically, in the first stage,
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Table 1: Statistics of our Emotional Text-to-Motion ( EmotionalT2M) dataset.

Data #Happy #Surprise #Neutral #Sad #Angry #Fear #Disgust #Contempt Total

Texts 2300 1217 4530 3386 1944 367 839 209 14792
Motions 2199 1214 4524 3349 1883 336 839 209 14553
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Figure 3: Statistics of our Limb-level Emotional Text-to-
Motion (Limb-ET2M) dataset. The red box represents the
two limbs with the least neutral emotion in the dataset.

we optimize our model by the simple objective used in MLD [5]:

L𝜖∼N(0,1),𝑡 ∈[1,𝑇 ] = E𝜖,𝑡,𝑐
[
∥𝜖 − 𝜖𝜃 (𝑧𝑡 , 𝑡, 𝑐)∥22

]
(7)

This optimization objective is designed to enable the denoiser
𝜖𝜃 (𝑧𝑡 , 𝑡, 𝑐) to accurately predict the noise 𝜖 added during the diffu-
sion stage.

In the second stage, we use reinforcement learning to further
improve the performance of our L3EM model. We optimize the
policy network 𝜋𝜃 with policy gradient algorithm [32]. In detail,
we first obtain the reward 𝑅 according to Eq.(3). Then, the policy
gradient is computed by differentiating the maximized expected
reward ∇𝜃 𝐽 (𝜃 ) as follows:

∇𝜃 𝐽 (𝜃 ) = E𝑐∼𝜋𝜃 (𝑐 |𝑦)∇𝜃 log(𝜋𝜃 (𝑐 |𝑦)𝑅) (8)

4 Experimental Settings
4.1 Dataset Construction
To evaluate the effectiveness of our approach to the ETMG task,
we construct a coarse-grained Emotional Text-to-Motion (Emo-
tionalT2M) dataset and a fine-grained Limb-level Emotional Text-
to-Motion (Limb-ET2M) dataset.

•Coarse-grained EmotionalT2Mdataset. The coarse-grained
EmotionalT2M dataset is constructed based on the HumanML3D
dataset [10] and IDEA400 motion dataset [15]. Specifically, 1) for
the Humanml3D dataset, it consists of 14616 motions and 44970
texts. However, it lacks emotion labels, and only a small portion
of the data contains emotion information. Therefore, in order to
construct our EmotionalT2M dataset, we manually select data con-
taining emotions and annotate the emotion categories. 2) For the
IDEA400 motion dataset, it comprises 12513 motions and texts.
Each motion is labeled with an emotional label, but the text descrip-
tions in the IDEA400 dataset exhibit low quality and lack emotion
information. Such as, the text description Lifting Weights During
Walking lacks a subject and does not convey any emotion. There-
fore, in order to construct our high-quality EmotionalT2M dataset,
we use ChatGLM [34] to integrate emotion labels(i.e., sad) into the
text descriptions, resulting in text descriptions that are grammat-
ically complete and fluent (i.e., A woman is lifting weights while
walking, appearing sadly despite her efforts.). Furthermore, in the

IDEA400 motion dataset, motion is represented using tomato rep-
resentation [17], which is different from the motion representation
used in HumanML3D. To merge the two datasets, we convert the
tomato representation used in the IDEA400 motion dataset to the
motion representation used in HumanML3D. 3) In the end, we
obtain our EmotionalT2M dataset, which comprises 14553 mo-
tions and 14792 text descriptions, with 8 emotion categories (i.e.,
Happy, Surprise, Neutral, Sad, Angry, Fear, Disgust, Contempt).
Same as the HumanML3D dataset, we randomly split the dataset
into training, validation, and test sets in a ratio of 0.8: 0.15 : 0.05.
Detailed statistics of EmotionalT2M dataset are shown in Table 1.

• Fine-grained Limb-ET2M dataset. In order to validate that
our approach can generate emotion-enriched motions for all limbs
(i.e., head, shoulder, torso, arm, leg, and foot), we additionally anno-
tate a fine-grained Limb-level Emotional Text-to-Motion (Limb-
ET2M) dataset in the test set of our EmotionalT2M dataset. Specifi-
cally, we first spend about a month rendering a total of 500 emo-
tional motions using Blender2. Then, we assign two annotators to
annotate three emotions for each limb of every motion sequence.
Taking the motion sequence shown in Figure 1 (b) as an example,
all the limbs in this motion exhibit negative emotion expressions.
Therefore, we label all his limbs as “negative”. The Kappa consis-
tency check value of the annotation is 0.88. When two annotators
cannot reach an agreement, an expert will make the final decision,
ensuring the quality of data annotations. The Limb-ET2M dataset
comprises 500 motions and 500 text descriptions, with each motion
corresponding to a single text description. In addition, we randomly
split the dataset into training, validation, and test sets in a ratio of
0.7: 0.1: 0.2, and the statistics of the dataset is shown in Figure 3.
From Figure 3, we can observe that head and arm have the least
neutral emotion. This aligns with our intuition, i.e., people are more
prone to expressing emotions using them compared to other limbs3.

4.2 Evaluation Metrics
Evaluation Metrics are summarized in four parts. 1) Motion Qual-
ity: Frechet Inception Distance (FID) reports quality of the gener-
ated motion by calculating the distance between features extracted
from real and generated motion sequences. It can also to some
extent reflect the coordination and coherence of the generated mo-
tions. 2) Condition Matching: R Precision calculates the text and
motion Top 1/2/3 matching accuracy, which reflects the similarity
between the text description and the generated motion sequence.
Multi-modal Distance (MM Dist) measures the average Euclidean
distance between the motion feature and its corresponding text
description feature. 3) Generation Diversity: Diversity(DIV) eval-
uates the variability of the generatedmotion sequences, whileMulti-
Modality (MM) measures the average variance of generated motion
sequences within the same text description. 4) Emotion Perfor-
mance: We use the overall (e.g., positive, neutral, and negative)

2https://www.blender.org/download/releases/2-93/
3Code and dataset are released at https://github.com/aekx/L3EM

https://www.blender.org/download/releases/2-93/
https://github.com/aekx/L3EM
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Table 2: Results on the EmotionalT2M dataset. All methods use the real motion length from the ground truth for a fair
comparison. ‘↑’(‘↓’) indicates that the values are better if the metric is larger (smaller). We run all the evaluations 20 times. 𝑥±𝑦

indicates that the average metric is 𝑥 and the the 95% confidence interval is 𝑦.

Approach R Precision↑ FID↓ MM Dist↓ Diversity↑ MultiModality↑ WF1↑ NN-WF1↑
Top 1 Top 2 Top 3

Real motions 0.365±.003 0.572±.002 0.707±.002 0.005±.000 4.134±.001 8.512±.055 - 0.509±.000 0.523±.000

T2M 0.214±.003 0.326±.002 0.432±.002 1.065±.020 4.857±.007 10.293±.094 1.324±.060 0.371±.003 0.387±.002
MotionDiffuse 0.299±.003 0.407±.003 0.545±.003 0.893±.021 4.912±.012 9.012±.015 2.031±.069 0.381±.001 0.396±.002
MDM 0.211±.005 0.342±.006 0.456±.006 1.759±.034 6.314±.040 8.886±.013 4.838±.188 0.398±.005 0.415±.004
MotionGPT 0.218±.002 0.329±.005 0.500±.003 0.946±.013 6.161±.027 7.638±.053 1.677±.087 0.377±.004 0.395±.002
T2M-GPT 0.235±.004 0.385±.003 0.537±.004 0.800±.022 5.974±.016 7.948±.068 1.801±.050 0.389±.003 0.411±.001
MLD 0.248±.002 0.403±.002 0.559±.002 0.768±.018 4.840±.002 8.365±.043 1.639±.072 0.403±.002 0.419±.003
ReMoDiffuse 0.281±.002 0.447±.002 0.567±.002 0.117±.003 4.833±.006 8.440±.062 0.750±.022 0.417±.005 0.428±.006

L3EM (ours) 0.293±.002 0.455±.003 0.607±.003 0.488±.023 4.403±.003 8.679±.081 1.758±.066 0.445±.002 0.463±.003

w/o LEM 0.241±.003 0.411±.002 0.554±.002 0.783±.027 4.996±.002 8.284±.077 1.534±.058 0.396±.006 0.413±.005
w/o RL 0.278±.003 0.445±.002 0.589±.003 0.594±.028 4.537±.003 8.475±.063 1.702±.061 0.432±.002 0.454±.003
w/o GRM 0.265±.002 0.437±.003 0.566±.003 0.612±.030 4.815±.002 8.377±.061 1.664±.049 0.417±.001 0.435±.002

classification weighted average f1-score (WF1) and the non-neutral
(e.g., positive and negative) classification weighted average f1-score
(NN-WF1) to evaluate the emotional performance of generated
motions. Specifically, we first train a classifier based on the real
motion sequence and emotion labels in our EmotionalT2M dataset.
The trained classifier can accurately classify the emotion labels
of motions. Subsequently, we classify our generated motions us-
ing the trained classifier, and the resulting WF1 score reflects how
much the generated motions correspond to the intended emotions
in all emotion classes (i.e., Happy, Surprise, Sad, Angry, Fear, Dis-
gust, Contempt, Neutral), the NN-WF1 score reflects how much
the generated motions correspond to the intended emotions in the
non-neutral emotion classes (i.e., Happy, Surprise, Sad, Angry, Fear,
Disgust, Contempt). Similarly, based on the annotation information
in Figure 3, we separately train six emotion classifiers for six limb
parts (i.e., head, should, torso, arm, leg, foot) on the Limb-ET2M
dataset. Then, we input the generated motion sequences of each
limb (e.g., arm motion sequences) into the corresponding emotional
classifier (e.g., arm emotion classifier) and obtain theWF1 score and
the NN-WF1 score, which reflects how much the generated motions
of each limb correspond to the intended emotions in all emotion
classes (i.e., positive, neutral and negative) and how much the gen-
erated motions of each limb correspond to the intended emotions
in the non-neutral emotion classes (i.e., positive and negative).

For the Motion Quality, Generation Diversity, and Condi-
tion Matching, following Guo et al. [10], we train our contrastive
model on our EmotionalT2M dataset as the evaluator. Specifically,
this contrastive model consists of a motion encoder and a text en-
coder, which aims to map the paired text descriptions and motion
sequences into a joint embedding space. For the motion encoder, we
use the same motion encoder as employed by Guo et al. [10]. For the
text encoder, we employ the text encoder used in our approach (i.e.,
CLIP text encoder). We train the contrastive learning model with
the same loss in Guo et al. [10]. For the Emotion Performance,
previous studies [10, 37] on motion generation don’t evaluate the
emotional performance of generated motions. For the first time, we
use emotion classification metrics (i.e., weighted average f1-score)

to assess the emotional performance of generated motions and train
seven emotion classifiers(i.e., the overall motion emotion classifier
and the six motion emotion classifier for six limbs) as evaluators.

4.3 Baselines
We choose several advanced baselines in Text-to-MotionGeneration
(TMG) task to compare performance with our approach, described
as follows. T2M [10] proposes a two-stage approach: text2length
sampling and text2motion generation to tackle the TMG task. Mo-
tionDiffuse [36] is the first diffusion model-based text-driven mo-
tion generation framework.MDM [30] predicts sample rather than
noise in each diffusion step to facilitate the use of geometric losses.
MLD [5] designs a powerful VAE to get the low-dimensional latent
codes for human motion sequences and then performs a diffusion
process on the motion latent space. MotionGPT [38] can generate
consecutive human motions by interpreting multimodal signals as
unique input tokens within LLM. T2M-GPT [35] uses VQ-VAE and
GPT for the TMG task. ReMoDiffuse [37] integrates a retrieval
mechanism to refine the denoising process and enhances the gen-
eralizability and diversity of text-driven motion generation. This
model is the state-of-the-art model in text-to-motion tasks.

4.4 Implementation Detail
In our experiments, we re-implement all the baselines on our ETMG
datasets according to their open-source codes. Besides, the hyper-
parameters of these baselines reported by their public papers are
still adopting the same setting. The others and the hyper-parameters
of our L3EM approach are tuned according to the validation set.
In the first stage, we employ a frozen CLIP-ViT-L-144 model as
the text encoder. Adam is adapted as the optimizer to train the
model with a learning rate equal to 6e-5. The batch size and the
epoch are 32 and 5k, respectively. We use ChatGLM (130B5) [34]
to generate limb emotional guidance. In the second stage, The 𝛼 , 𝛽
and 𝛾 in Eq.(3) is 0.5, 0.5 and 0.7, respectively. The size of candidate
𝐶 is 32 (i.e., 𝑁 = 32), and we set 3 as the shot number (i.e., 𝐾 = 3)
4https://huggingface.co/openai/clip-vit-large-patch14
5https://www.zhipuai.cn/

https://huggingface.co/openai/clip-vit-large-patch14
https://www.zhipuai.cn/
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Table 3: Results on our Limb-ET2M Dataset to evaluate the emotional performance of each limb.

Approach Head Shoulder Torso Arm Leg Foot
WF1 NN-WF1 WF1 NN-WF1 WF1 NN-WF1 WF1 NN-WF1 WF1 NN-WF1 WF1 NN-WF1

Real motions 0.727±.000 0.786±.000 0.712±.000 0.773±.000 0.721±.000 0.775±.000 0.731±.000 0.789±.000 0.714±.000 0.772±.000 0.709±.000 0.761±.000

T2M 0.630±.002 0.688±.003 0.601±.003 0.647±.004 0.573±.001 0.635±.003 0.603±.002 0.661±.002 0.614±.003 0.653±.002 0.598±.003 0.644±.005
MotionDiffuse 0.655±.003 0.700±.002 0.642±.003 0.685±.003 0.609±.005 0.669±.003 0.627±.002 0.696±.006 0.648±.001 0.692±.004 0.611±.002 0.669±.003
MDM 0.641±.003 0.693±.004 0.630±.002 0.679±.003 0.621±.004 0.683±.002 0.643±.003 0.685±.005 0.647±.002 0.684±.003 0.627±.001 0.662±.006
MotionGPT 0.631±.002 0.682±.004 0.622±.001 0.673±.002 0.613±.003 0.675±.003 0.629±.005 0.676±.004 0.637±.006 0.680±.005 0.629±.003 0.667±.007
T2M-GPT 0.639±.004 0.699±.002 0.635±.002 0.682±.003 0.625±.002 0.686±.002 0.645±.003 0.692±.001 0.641±.002 0.691±.004 0.634±.002 0.683±.003
MLD 0.658±.002 0.711±.005 0.651±.003 0.699±.002 0.655±.003 0.706±.003 0.658±.004 0.714±.006 0.652±.003 0.696±.003 0.656±.002 0.698±.002
ReMoDiffuse 0.674±.003 0.733±.001 0.666±.002 0.721±.003 0.672±.002 0.725±.002 0.673±.001 0.731±.004 0.665±.004 0.719±.005 0.671±.003 0.720±.002

L3EM (ours) 0.700±.003 0.757±.002 0.691±.003 0.744±.003 0.696±.002 0.751±.004 0.708±.003 0.762±.003 0.692±.001 0.740±.002 0.692±.003 0.743±.002

w/o LEM 0.656±.002 0.706±.004 0.645±.004 0.701±.003 0.657±.001 0.703±.002 0.655±.003 0.708±.005 0.658±.003 0.698±.004 0.649±.005 0.691±.003
w/o RL 0.688±.003 0.744±.002 0.682±.002 0.733±.001 0.687±.003 0.739±.003 0.693±.003 0.749±.004 0.684±.002 0.729±.002 0.679±.004 0.731±.005
w/o GRM 0.667±.004 0.722±.005 0.663±.003 0.719±.004 0.668±.003 0.715±.002 0.670±.002 0.724±.003 0.667±.002 0.712±.006 0.660±.001 0.706±.003

A man steps forward, looking very happy.A man walks forward.

(a) L3EM (w/o GRM) (b) L3EM (w/o GRM) (c) L3EM (w GRM)

incoordination and 

incoherence

coordination and 

coherence

coordination and 

coherence

Figure 4: Three motions generated by our L3EM approach to
illustrate the inter-limb emotion disturbance challenge. The
red box indicates the instance of incoordination and incoher-
ence, and the blue box indicates the instance of coordination
and coherence.

by default. In addition, we find that only using few-shot learning
can achieve a high performance during this stage. Therefore, we
randomly sample 128 instances from the training set for training.
The total epochs, batch size, and learning rate are set to 50, 8, and
3e-5, respectively. All experiments are conducted on 1 A100 GPU
with 40GB GPU memory.

5 Discussion and Analysis
5.1 Experimental Results
Table 2 shows the performance comparison of different approaches
in the EmotionalT2M dataset. From this table, we can see that:
1) Motion quality. The emotional motions generated by our ap-
proach achieve comparable results in terms of FID compared to
other baselines, indicating that the emotional motions generated
by our appproach are natural, coherent, and closely resemble real
motions. 2) Condition matching. Our approach outperforms all
baselines in R-Precision Top 1 2 3 and MM Dist (e.g., outperforming
the state-of-the-art method ReMoDiffuse by 1.2%, 0.8%, 4%, and
0.43, respectively), indicating that the emotional motions generated
by our approach can better match text descriptions, demonstrating
superior conditional consistency. 3) Generation diversity. The Di-
versity and Multimodality are 8.679 and 1.758, respectively, which
are not particularly outstanding compared to baseline methods.
We believe this could be attributed to the introduction of emotion
information. After introducing emotion information, each limb
associated with the motions needs to exhibit a corresponding emo-
tional expression. This, to a certain extent, limits the diversity of
generated motions. And since our L3EM approach generates mo-
tions with better emotional performance, it consequently results in

lower diversity compared to some baselines. 4) Emotion Perfor-
mance. Our approach achieves WF1 score of 44.5% and NN-WF1 of
46.3%, surpassing all current baselines. More importantly, compared
to the state-of-the-art baseline ReMoDiffuse, our L3EM approach
improves WF1 and NN-WF1 by 2.8% and 3.5%, respectively. This
indicates that our approach, integrating limb emotional guidance
from LLM and limb relation graph, can generate emotion-enriched
motions compared to other baselines.

5.2 Are emotions really injected into limbs?
To validate our L3EM approach’s ability to inject emotion into hu-
man limbs (i.e., the intra-limb emotion injection challenge), we
conduct experiments on our Limb-ET2M dataset. Table 3 shows the
comparative results. From Table 3, we can see that: 1) WF1: Our
L3EM approach surpasses all the baselines in WF1 score, indicat-
ing that our approach could enable all limb to have corresponding
emotional expressions compared to the baselines. This justifies our
L3EM approach could inject emotions into limbs. 2) NN-WF1: Our
L3EM approach also achieve the SOTA performance in NN-WF1
score. Especially, compared to ReMoDiffuse, our L3EM approach
improves the NN-WF1 score of head, shoulder, body, arm, leg, and
foot by 2.4%, 2.3%, 2.6%, 3.1%, 2.1%, and 2.3%, respectively. This
indicates that, aside from neutral cases, our approach indeed en-
ables limb to exhibit corresponding positive or negative emotional
expressions. This further justifies that our L3EM approach could
inject emotions into limbs.

5.3 Is emotional disturbance really addressed?
To validate our approach’s ability to mitigate emotional distur-
bances and produce coordinate and coherent emotional motions
(i.e., the inter-limb emotion disturbance challenge), we conduct qual-
itative and quantitative experiments. 1) The qualitative results
are shown in Table 2. From this table, we can see that our L3EM
approach achieves a comparable FID of 0.488, indicating that the
motions generated by our approach are close to real motions, coor-
dinated and coherent. This justifies that our approach addresses the
challenge of emotion disturbance. 2) The quantitative analysis is
shown in Figure 4, from Figure 4 (b), we can observe that compared
to (a), after introducing emotion information, the generated motion
sequence exhibits instances of limb incoordination and incoherence
(such as the sudden high leg raise highlighted in the red box in
Figure 4 (b)). This validates our argument that emotion information
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smaller 

amplitudes

A figure dances and jumps excitedly, spreading joy and happiness all around.

Real MLDReMoDiffuseOurs

A person angrily paces around while thrusting their arms outward and upwards, expressing their intense anger.

Real Ours ReMoDiffuse MLD

good coordination

larger amplitudes

high intensity 

and speed

Figure 5: Qualitative comparison of our L3EM approach and the state-of-the-art methods. The blue box and red box reflect the
superiority of our L3EM approach compared to others.

can disturb motion generation. Furthermore, from Figure 4 (c), we
can observe that after incorporating the limb relationship graph
in GRM, compared to Figure 4 (b), our approach is capable of gen-
erating coordinated and coherent emotional motions. This further
justifies that our approach addresses the challenge of emotional
disturbance.

5.4 Contributions of Key Components
To further investigate the influence of key components within our
L3EM approach, we conduct a series of ablation studies as shown
in Table 2 and Table 3. From the tables, we can see that: 1) w/o
LEM exhibits inferior performance compared to L3EM with an
increase in FID, and a decrease in R-Precsion Top 1 2 3, WF1, and
NN-WF1. This further justifies the effectiveness of integrating limb
emotional guidance from LLM in aiding emotional motion gener-
ation. Furthermore, the WF1 and NN-WF1 of six limb parts also
show inferior performance compared to L3EM. This also justifies
that limb emotional guidance indeed facilitates the generation of
emotional motions for various limbs, ensuring that each limb of
generated motions has corresponding emotional expressions. 2)
w/o RL also display inferior results compared to L3EM in both Ta-
ble 2 and Table 3. This justifies that our designed RL-based Emotion
Modeling module can assist in selecting in-context examples for
LLM, thus enhancing the quality of LLM-generated limb emotional
guidance and consequently improving the model’s generation per-
formance. 3) w/o GRM yields an inferior performance compared
to L3EM with a increase in FID by 0.124. This demonstrates that
our proposed limb relation graph can effectively capture spatial
position and relation information among limbs, thereby aiding in
generating more coordinated and coherent motion sequences.

5.5 Qualitative Studies
To further justify the effectiveness of our approach for the ETMG
task, we provide a visualization and qualitative analysis as shown
in Figure 5. From Figure 5, we can see that MLD [5] and RemoDif-
fuse [37] are both able to understand the motion description (e.g.,

dance and jump in the example 1) in the text and generate cor-
responding motions. However, they struggle to have a deep un-
derstanding of the emotion information (e.g., spreading joy and
happiness all around) within the text. For example, in the first ex-
ample, the motions generated by MLD exhibit smaller movement
amplitudes and lack coordination in limbs, resulting in a weaker
expression of happy emotion. In the second example, the motions
generated by Remodiffuse, with a lower intensity and speed of
arm movement outward and upward, fail to convey the anger emo-
tion effectively. In contrast, our approach, which leverages limb
emotional guidance from LLM and limb relation graph, generates
emotional motions that not only consist with the text descriptions
but also exhibit rich emotional expressions.

6 Conclusion
In this paper, we propose an LLM-guided Limb-level Emotion ma-
nipulating (L3EM) approach to handle the ETMG task. Addition-
ally, the LEM Block and GRM Block are designed to address the
intra-limb emotion injection challenge and the inter-limb emotion
disturbance challenges in the ETMG task, respectively. To compre-
hensively evaluate L3EM, we construct a coarse-grained Emotional
Text-to-Motion (EmotionalT2M) dataset and a fine-grained Limb-
level Emotional Text-to-Motion (Limb-ET2M) dataset. Experimental
results on these datasets demonstrate the superior performance of
L3EM over several state-of-the-art baselines. In our future work,
we would like to incorporate emotion information into more gener-
ative tasks, such as text-to-image and text-to-video tasks. In these
tasks, subjective emotion information is also important and has
still been underachieving. In addition, we would like to integrate
LLM and diffusion more closely, in order to endow our approach
with LLM’s interactive capability for better emotion manipulating.
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