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Abstract

Causal reasoning can be considered a cornerstone
of intelligent systems. Having access to an un-
derlying causal graph comes with the promise of
cause-effect estimation and the identification of
efficient and safe interventions. However, depend-
ing on the application and the complexity of the
system one causal graph might be insufficient and
even the variables of interest and levels of abstrac-
tions might change. This is incompatible with
currently deployed generative models including
popular VAE approaches which provide only rep-
resentations from a point estimate. In this work,
we study recently introduced diffusion-based rep-
resentations which offer access to infinite dimen-
sional latent codes which encode different lev-
els of information in the latent code. In a first
proof of principle, we investigate the use of a sin-
gle point of these infinite dimensional codes for
causal representation learning and demonstrate
experimentally that this approach performs com-
parably well in identifying the causal structure
and causal variables.

1. Introduction
Causal representation learning consists of uncovering a sys-
tem’s latent causal factors and their relationships, from
observed low-level data. Causal representation learning
finds applicability in domains such as autonomous driving
(Schölkopf et al., 2021), robotics (Hellström, 2021), health-
care (Anwar et al., 2014), climate studies (Runge et al.,
2019), epidemiology (Hernán et al., 2000; Robins et al.,
2000), and finance (Hiemstra & Jones, 1994). In these tasks,
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the underlying causal variables are often unknown, and we
only have access to low-level representations.

There has been a growing interest in leveraging the power
of generative models in order to learn causal representations
with specific properties such as disentanglement. Variational
Autoencoders (VAE) are one of the most common frame-
works used in the literature (Locatello et al., 2020). Recently,
diffusion models have proven to be highly effective in mod-
eling the underlying data distribution (Sohl-Dickstein et al.,
2015; Ho et al., 2020; Song et al., 2021), and they have
demonstrated remarkable success across several domains
(Dhariwal & Nichol, 2021; Ramesh et al., 2022; Saharia
et al., 2022; Ho et al., 2022; Höppe et al., 2022; Abstreiter
et al., 2022). However, diffusion models have not yet been
employed for causal representation learning, indicating that
their potential has yet to be explored in this context.

Causal representation learning is a challenging problem,
because learning causal mechanisms from observational
data is impossible. There has been an ongoing effort to
study sets of assumptions that ensure the identifiability of
causal variables and their relationships (Yang et al., 2020;
Schölkopf et al., 2021; Liu et al., 2022; Subramanian et al.,
2022; Brehmer et al., 2022). These approaches consider
the availability of additional information or interventional
data, but they differ in how they incorporate and utilize such
information. Interestingly, Brehmer et al. (2022) consider a
weak form of supervision in which we have access to a data
pair, corresponding to the state of the system before and
after a random, unknown intervention. Brehmer et al. (2022)
prove that, in this weakly-supervised setting, the structure
and the causal variables are identifiable up to a relabeling
and element-wise reparameterization.

Diffusion-based representations have the appealing property
of infinite-dimensional latent codes, which allow manual
control of the level of detail encoded in the representation
(Abstreiter et al., 2022). This is of particular importance
for causal representation learning since for different down-
stream tasks different causal graphs with possibly different
causal abstractions (variables) might be needed from the
same input. As opposed to other generative models, such as
generative adversarial networks or VAEs, diffusion-based
representations encode different levels of information in the
latent code at different time steps.
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In this work, we study the connection between diffusion-
based models and causal structure learning. In particular,
our contributions are the following:

• We incorporate diffusion models for causal representa-
tion learning and study and test the connection between
the learned representations of diffusion score matching
with causal variables.

• We derive the Evidence Lower Bound (ELBO) for
learning both the causal variables and the underlying
mechanisms using conditional diffusion models and
weak supervision.

• We empirically illustrate that the noise and diffusion-
based representations contain equivalent information
about the underlying causal variables and causal mech-
anisms.

2. Related Work
Several previous methods rely on additional knowledge on
the data generating process, such as knowledge of the causal
graph or labels for the high-level causal variables. Causal-
GAN (Kocaoglu et al., 2017) requires the structure of the
underlying causal graph to be known. Yang et al. (2020);
Liu et al. (2022) assume a linear structural equation model,
and they require additional information associated with the
true causal concepts as supervising signals. Similar to Yang
et al. (2020), Komanduri et al. (2022) assume the availabil-
ity of supplementary supervision labels, but without requir-
ing mutual independence among factors. Von Kügelgen
et al. (2021) investigates self-supervised causal representa-
tion learning by utilizing a known, but non-trivial, causal
graph between content and style factors. Subramanian et al.
(2022) applies Bayesian structure learning in the latent space
and relies on having interventional samples. Brehmer et al.
(2022) proposes ILCM, a VAE-based model that identi-
fies the causal structure in a weakly supervised setting. A
unifying framework between independent component anal-
ysis and VAEs underlying many approaches is presented
in Khemakhem et al. (2020) and for an overview of causal
representation learning we refer to Schölkopf et al. (2021).

3. Background
3.1. Structural Causal Model

We describe the causal relationships between latent variables
as a Structural Causal Model (SCM). An SCM consists of a
set of equations associated with a directed graph G where the
nodes z1, ..., zn ∈ Z are high-level latent causal variables.
Each variable zi is defined by a structural equation of the
form

zi = fi(zpa(i), ϵi).

Here, zpa(i) ⊆ Z is a set of causal variables, and ϵi is ex-
ogenous noise. The variables zpa(i) are commonly referred

to as the causal parents of zi. Directed edges in G capture
cause-effect relationships, i.e., there is an edge zj → zi if
zj ∈ zpa(i). An intervention set I changes the causal mech-
anisms so that they no longer depend on the parents of the
causal variable being intervened on, i.e. zi = f ′

i(ϵi), i ∈ I .

3.2. Diffusion Models

Diffusion models are a class of generative models that com-
prise two processes: a forward process and a backward
process. The forward process is defined by a stochastic
differential equation (SDE) across a continuous time do-
main t ∈ [0, 1], aiming to transform the data distribution to
a known prior distribution, typically a standard Gaussian.
Given x0 ∈ Rd sampled from a data distribution p(x), the
forward process constructs a trajectory (xt)t∈[0,1] across the
time domain. We utilize the Variance Exploding SDE (Song
et al., 2021) for the forward process, defined as:

dx = f(x, t) + g(t)dw :=

√
d[σ2(t)]

dt
dw,

where w is the standard Wiener process and σ2(t) is the
noise variance of the diffusion process at time t. The back-
ward process is also formulated as an SDE:

dx = [f(x, t)− g2(t)∇x log pt(x)]dt+ g(t)dw̄ ,

where w̄ is the standard Wiener process in reverse time.

The backward process requires the score function
∇x log pt(x), which is not available. Vincent (2011) ad-
dresses this issue by proposing Denoising Score Matching.
A score function sθ is trained by minimizing the loss func-
tion:

L(θ) =Et

[
λ(t)Ex0

Ep(xt|x0)

[
||sθ(xt, t)

−∇xt
log pt(xt|x0)||2

]]
,

where the conditional distribution of xt given x0 is
pt(xt|x0) = N (xt;x0, [σ

2(t) − σ2(0)]I), and λ(t) is a
positive weighting function.

We can modify Denoising Score Matching, to perform rep-
resentation learning while training the score function. Fol-
lowing Abstreiter et al. (2022), the objective then becomes:

L(θ, ϕ) =Et

[
λ(t)Ex0

Ep(xt|x0)

[
||sθ(xt, Eϕ(x0), t)

−∇xt log pt(xt|x0)||2
]]

, (1)

where additional information about the data Eϕ(x0) is pro-
vided to the diffusion model through a learned encoder with
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parameters ϕ. With this formulation, the encoder learns
meaningful representations of the data (Abstreiter et al.,
2022; Mittal et al., 2022). Later on, we will develop this
objective function in the ELBO, and we will use it in our
subsequent analysis.

The key difference between the other generative models and
diffusion-based representations is that the first two are only
concerned with one final state that generates samples from
a desired distribution while in the latter, different levels of
information are encoded along an infinite-dimensional code,
i.e., the encoder will be conditioned on time t: Eϕ(x0, t).
Different steps along this latent code contain different lev-
els of detail and in this work, we start by investigating a
single point of this latent code and study the benefits and
implications of this formulation for causal representation
learning.

4. Diffusion-based Causal Representation
Learning

4.1. Identifiability

It is well-known that it is impossible to learn causal variables
from low-level observational data only (Schölkopf et al.,
2021). Causal representation learning requires datasets that
comprise both observational and interventional data. We
follow the weakly-supervised framework by Brehmer et al.
(2022). We consider a weak supervision in which the dataset
is in a paired format with each pair representing the system
before and after a random, unknown, and atomic interven-
tion. They demonstrate that under this weakly supervised
setting, it is possible to identify the causal variables and
causal mechanisms up to a permutation and elementwise
reparameterization of the variables. For the assumptions we
use in the data generation process, we refer to Brehmer et al.
(2022).

4.2. Problem Setup

We consider a system that is described by an unknown un-
derlying SCM among latent variables and we have access
to data pairs (x, x̃) ∼ p(x, x̃). The objective is to learn an
SCM that accurately represents the true underlying SCM
associated with the given data, up to a permutation and ele-
mentwise reparameterizations of causal variables. We con-
sider causal mechanisms and therefore, solution functions
in the SCM to be diffeomorphic. Under this assumption,
the noise encodings hold the same information as the causal
variables and mechanisms. Therefore, We try to learn noise
pairs (e, ẽ) -that are identical to the SCM noise variables-
from the input (x, x̃) and map each noise pair to the corre-
sponding latent pair (z, z̃) with learned solution functions.
We train the framework by minimizing β-VAE loss (Higgins
et al., 2017).
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Figure 1. The framework overview. A diffusion model receives the
input pair and is conditioned on noise encodings, while interven-
tion targets are obtained through the intervention encoder. Causal
variables are derived by applying solution functions to the noise
encodings and intervention targets.

4.3. Proposed Method

We incorporate several elements of the Implicit Latent
Causal Model (ILCM) introduced by Brehmer et al. (2022)
into our framework. We consider latent variables to be
noise encodings (e, ẽ). The inputs are mapped to the noise
encodings through an encoder q(e|x), and we formulate
the mapping from noise encodings to the input data by
a diffusion model that is conditioned on noise encodings.
The causal structure is represented with solution functions
s(e). After the training, the framework contains information
about the underlying causal structure and causal variables
and therefore, can be used in different related downstream
tasks.

Figure 1 provides a visual representation of the framework’s
architecture. In summary, our framework consists of:

• A noise encoder q(e|x) implemented as a VAE;
• An intervention encoder q(I|x, x̃);
• A projection phase on the noise encodings (e, ẽ) in

which for the noise components ei that are not in-
tervened upon, i /∈ I , the pre-intervention and post-
intervention noise encodings will be equal, ei = ẽi.
This prevents solution functions from deviating from
the weakly supervised structure. We write the combi-
nation of the noise encoder and the projection phase
as (e, ẽ) ∼ q(e, ẽ|x, x̃, I), and refer it to as the noise
encoding module;

• A conditional diffusion model q(u|x) where u is the
collection of the trajectory of latent variables in the
diffusion model (ut)t∈[0,1] corresponding to the in-
put x. We consider noise encodings to be diffusion-
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based representations. In other words, we consider
the encoder in Eq. 1 to be the noise encoding module
q(e, ẽ|x, x̃, I).

• Solution functions si(ei; ei) for i = 1, ..., n where n
is the number of causal variables. They are defined
as invertible affine transformations with parameters
learned with neural networks;

• The prior p(e, ẽ, I) which encodes the causal structure
and is defined as

p(e, ẽ, I) = p(I)p(e)p(ẽ|e, I),

where p(I) and p(e) are prior distributions we choose
as uniform categorical and standard Gaussian, respec-
tively, and

p(ẽ|e, I) =
∏
i/∈I

δ(ẽi − ei)
∏
i∈I

p(ẽi|e), (2)

where p(ẽi|e) is parameterized with a conditional
normalizing flow containing the solution functions
zi = si(ẽi; ei) and a prior over zi which we choose as
standard Gaussian.

For more details, see Appendix B.

Putting everything together, the lower bound on the paired
data distribution will be:

log p(x, x̃) ≥ Ep(x,x̃)Eq(I|x,x̃)Eq(e,ẽ|x,x̃,I)Et∼U(0,1)

Eq(ut|x)Eq(ũt|x̃)

[
log p(I) + log p(e)

+ log p(ẽ|e, I)− log q(I|x, x̃)− log q(e, ẽ|x, x̃, I)
+λ(t)||sθ(ut, e, t)−∇ut

log p(ut|x)||22

+λ(t)||sθ(ũt, ẽ, t)−∇ũt log p(ũt|x̃)||22

]
,

where λ(t) is a positive weighting function. For more de-
tails, see Appendix A.

We train the model by minimizing β-VAE loss:

Lmodel = Ep(x,x̃)Eq(I|x,x̃)Eq(e,ẽ|x,x̃,I)

Et∼U(0,1)Eq(ut|x)Eq(ũt|x̃)[
λ(t)||sθ(ut, e, t)−∇ut log p(ut|x)||22

+λ(t)||sθ(ũt, ẽ, t)−∇ũt
log p(ũt|x̃)||22

+β
[
log p(I) + log p(e) + log p(ẽ|e, I)

− log q(I|x, x̃)− log q(e, ẽ|x, x̃, I)
]]

,

where λ(t) is a positive weighting function. For more de-
tails, see Appendix A.

To prevent a collapse of the latent space to a lower-
dimensional subspace, we add the negative entropy of
the batch-aggregate intervention posterior (qbatchI (I) =
Ex,x̃∈batch[q(I|x, x̃]) as a regularization term:

Lentropy = Ebatches

[
−

∑
I

qbatchI (I) log qbatchI (I).
]

5. Experiments
Here we analyze the performance of the proposed model on
synthetic data. We employ our method for the task of causal
discovery and apply ENCO (Lippe et al., 2021), a continu-
ous optimization structure learning method that leverages
observational and interventional data, on top of the proposed
method to infer the underlying causal graph. Furthermore,
we evaluate how good the learned latent variables are by
employing DCI scores (Eastwood & Williams, 2018).

Data Generation In order to generate latent variables, we
adopted random graphs where each edge in a fixed topolog-
ical order is sampled from a Bernoulli distribution with a
probability of 0.5. We utilize an SCM with 5, 10, and 15
variables. For more details, see Appendix B.

Baselines We consider ILCM as our main baseline. To the
best of our knowledge, there aren’t any other methods that
consider the same weakly-supervised assumptions. We also
compare the results with a modification of disentanglement
VAE (Locatello et al., 2020) for the weakly supervised set-
ting. Similarly, we apply ENCO on top of both to obtain the
learned graph.

Metrics We assess the quality of the representations with
DCI disentanglement and completeness scores. DCI dis-
entanglement score measures the extent to which the la-
tent factors in a representation are independent, while the
completeness score assesses how well the representation
captures all the factors of variation in the data. In order
to evaluate how well the models recover the true causal
graph, we measure the Structural Hamming Distance (SHD)
between the inferred and the true graph.

Results Our method demonstrates superior or competitive
performance compared to the baselines, as indicated by the
metrics shown in Figure 2, and Figure 3 in the appendix. In
higher dimensions, our method excels by acquiring more
information about the causal variables and underlying causal
structure.

6. Conclusion
Identifying the underlying causal variables and mechanisms
of a system solely from observational data is considered
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Figure 2. Comparison of models on Causal Disentanglement score.
Our method is able to disentangle causal variables comparatively
well.

impossible without additional assumptions. In this project,
we use weak supervision as an inductive bias and study
if the information encoded in the latent code of diffusion-
based representations contains useful knowledge of causal
variables and the underlying causal graph.

This study serves as an initial exploration of applying diffu-
sion models to Causal Representation Learning, acknowl-
edging that there may exist more effective approaches for
integrating diffusion models within this domain. Addition-
ally, the representation learning process relies on an encoder,
which acts as an information channel, regulating the amount
of input information transmitted to the score function during
each step of the diffusion process. It is important to note that
in certain scenarios, the encoder may not be essential to the
diffusion process and could potentially result in collapsing
behavior.

Therefore, significant further research and extensions are
needed. This can include the extension to video or multi-
view data as well as the application in reinforcement learn-
ing or experimental design settings.
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Höppe, T., Mehrjou, A., Bauer, S., Nielsen, D., and Dittadi,
A. Diffusion models for video prediction and infilling,
2022.

Khemakhem, I., Kingma, D., Monti, R., and Hyvarinen, A.
Variational autoencoders and nonlinear ica: A unifying
framework. In International Conference on Artificial
Intelligence and Statistics, pp. 2207–2217. PMLR, 2020.

Kocaoglu, M., Snyder, C., Dimakis, A. G., and Vishwanath,
S. Causalgan: Learning causal implicit generative models
with adversarial training, 2017.

Komanduri, A., Wu, Y., Huang, W., Chen, F., and Wu, X.
Scm-vae: Learning identifiable causal representations via
structural knowledge. In 2022 IEEE International Con-
ference on Big Data (Big Data), pp. 1014–1023. IEEE,
2022.



Submission and Formatting Instructions for SPIGM @ICML 2023

Lippe, P., Cohen, T., and Gavves, E. Efficient neural causal
discovery without acyclicity constraints. arXiv preprint
arXiv:2107.10483, 2021.

Liu, Y., Zhang, Z., Gong, D., Gong, M., Huang, B., Hen-
gel, A. v. d., Zhang, K., and Shi, J. Q. Identifying
weight-variant latent causal models. arXiv preprint
arXiv:2208.14153, 2022.

Locatello, F., Poole, B., Rätsch, G., Schölkopf, B., Bachem,
O., and Tschannen, M. Weakly-supervised disentangle-
ment without compromises. In International Conference
on Machine Learning, pp. 6348–6359. PMLR, 2020.

Luo, C. Understanding diffusion models: A unified perspec-
tive. arXiv preprint arXiv:2208.11970, 2022.

Mittal, S., Lajoie, G., Bauer, S., and Mehrjou, A. From
points to functions: Infinite-dimensional representations
in diffusion models, 2022.

Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., and Chen,
M. Hierarchical text-conditional image generation with
clip latents, 2022.

Robins, J. M., Hernan, M. A., and Brumback, B. Marginal
structural models and causal inference in epidemiology.
Epidemiology, pp. 550–560, 2000.

Runge, J., Bathiany, S., Bollt, E., Camps-Valls, G., Coumou,
D., Deyle, E., Glymour, C., Kretschmer, M., Mahecha,
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A. Problem Formulation & ELBO
The ELBO for the proposed framework will be:

log p(x, x̃) ≥ Eq(e,ẽ,u,ũ,I|x,x̃)

[
log

p(x, x̃, u, ũ, e, ẽ, I)

q(e, ẽ, I, u, ũ|x, x̃)

]
(3)

=Eq(e,ẽ,u,ũ,I|x,x̃)

[
log

p(I)

q(I|x, x̃)
+ log

p(e)p(ẽ|e, I)
q(e, ẽ|x, x̃, I)

+ log
p(x, u|e)
q(u|x)

+ log
p(x̃, ũ|ẽ)
q(ũ|x̃)

]
(4)

=Eq(I|x,x̃)Eq(e,ẽ|x,x̃,I)Eq(u|x)Eq(ũ|x̃)

[[
log p(I) + log p(e) + log p(ẽ|e, I)− log q(I|x, x̃)− log q(e, ẽ|x, x̃, I)

]
(5)

+
[
log

p(x, u|e)
q(u|x)

+ log
p(x̃, ũ|ẽ)
q(ũ|x̃)

]]
(6)

The terms in Eq. 5 correspond to the intervention encoder and the noise encoding module, respectively, and the terms in Eq.
6 correspond to the diffusion model conditioned on pre- and post-intervention noise encodings.

It’s been shown that the discretization of SDE formulations of the diffusion model is equivalent to discrete-time diffusion
models (Song et al., 2021). Therefore, for simplicity, we derive the ELBO for discrete-time diffusion models. For a
discrete-time diffusion model where t ∈ [1, T ], we have (Luo, 2022):

Eq(I|x,x̃)Eq(e,ẽ|x,x̃,I)Eq(u|x)Eq(ũ|x̃)

[
log

p(x, u|e)
q(u|x)

]
= Eq(I|x,x̃)Eq(e,ẽ|x,x̃,I)Eq(u|x)Eq(ũ|x̃)

[
Eq(u1|x)[log p(x|u1)]

−DKL(q(uT |x)||p(uT ))−
T∑

t=2

Eq(ut|x)[DKL(q(ut−1|ut, x, e)||p(ut−1|ut, e)]

]
where

• Eq(u1|x)[log p(x|u1)] is the reconstruction term and it can be defined in a way that it is constant so it can be ignored
during training;

• DKL(q(uT |x)||p(uT )) is the prior matching term and can similarly be defined in a way that it is constant;

• Eut|x[DKL(q(ut−1|ut, x, e)||p(ut−1|ut, e)] is a denoising matching term. This term is the origin of different interpre-
tations of the score-based diffusion models. For the SDE formulation of the forward process, the denoising matching
term becomes (Song et al., 2021):

λ(t)||sθ(ut, e, t)−∇ut
log p(ut|x)||22

It’s been shown that the likelihood weighting of denoising matching terms is related to the diffusion coefficient of the
forward SDE, i.e. λ(t) = g2(t). Therefore, for a Variance Exploding SDE, we have:

λ(t) = 2σ2(t) log
(σmax

σmin

)
where

σ(t) = σmin ·
(
σmax

σmin

)t

Therefore, the ELBO will become:

log p(x, x̃) ≥ Ep(x,x̃)Eq(I|x,x̃)Eq(e,ẽ|x,x̃,I)Et∼U(0,1)Eq(ut|x)Eq(ũt|x̃)[
log p(I) + log p(e) + log p(ẽ|e, I)− log q(I|x, x̃)− log q(e, ẽ|x, x̃, I)

+λ(t)
[
||sθ(ut, e, t)−∇ut log p(ut|x)||22 + ||sθ(ũt, ẽ, t)−∇ũt log p(ũt|x̃)||22

]]
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Figure 3. Comparison of models on Causal Completeness score and Structural Hamming Distance (SHD). Our method performs well
compared to baselines.

B. Experiments
Data Generation We generate random graphs by sampling edges from a Bernoulli distribution with a probability of 0.5.
We consider the SCM to be linear Gaussian and we sample the weights from a Multivariate Normal distribution with a mean
of 0 and a variance of 1. We make sure the weights are not close to zero to avoid the violation of the faithfulness assumption.
We introduce additive Gaussian noise with equal variances across all nodes, with its variance set to 0.1. Data was then
sampled using ancestral sampling, and we generate 100k training samples, 10k train, and 10k validation samples. Finally, to
generate input data x, we apply a random linear projection on the obtained latent variables. We keep the dimension of x
fixed to 16. We generate data for 4 different seeds and present the results.

Training For the training, we follow the 4-phase training of Brehmer et al. (2022) and consider the same hyperparameters
for the training, with the new β-VAE loss as the objective function and consider the coefficient of the regularization term
Lentropy to be 1.

Architectures & Hyperparameters The noise encoder is considered Gaussian, with mean and standard deviation
parameterized as an MLP with two hidden layers and 64 units each and ReLU activation functions. The noise encodings
have a property that only for the elements that are intervened upon, we have ei ̸= ẽi, i ∈ I . Considering this property, the
intervention encoder is defined as:

log q(i ∈ I|x, x̃) = 1

Z
(α+ β|µe(x)i − µe(x̃)i|+ γ|µe(x)i − µe(x̃)i|2)

Where µe(x) is the mean of the noise encoder, α, β, γ are learnable parameters, and Z is a normalization constant. Finally,
in order to define p(ẽi|e) in Eq. 2 for i ∈ I , we use a conditional normalizing flow as:

p(ẽi|e) = p̃(si(ẽi|ei))
∣∣∣∂si(ẽi; ei)

ẽi

∣∣∣
The architecture of the score function in the diffusion model is based on NCSN++ architecture (Song et al., 2021). As
the input x is 16-dimensional and the score model follows a convolutional architecture, we reshape the input into a 4× 4
format and then feed it into the diffusion model. Furthermore, In the forward SDE, σmin and σmax are set to 0.01 and 50,
respectively.


