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Abstract

While language models show excellent capac-
ity to model coherent text, it is commonly be-
lieved that their limitations reside in tasks re-
quiring exact representations, such as numeric
values. This work shows that representations
of numbers that encode their numeric values
naturally emerge in text-only language models.
Contrary to previous work assuming linearity
of models’ representations, we find that differ-
ent pre-trained models consistently learn highly
precise sinusoidal representations within the in-
put embedding, and can be accurately decoded
with an appropriate probing method. These
findings undermine existing assumptions about
the inherent inability of language models to
represent numeric information accurately and,
consequently, point to the real limitation of ro-
bust arithmetic proficiency in language models
in their limited capacity to combine accurate
input representations.

1 Introduction

The landmark paper of Brown et al. (2020) showed
that generic neural networks trained on text pre-
diction alone could develop surprising arithmetic
capabilities. In the years since, this observation has
flourished into a large and vibrant field interested in
the arithmetic reasoning capabilities of Transform-
ers (Ahn et al., 2024), rife with research opportuni-
ties ranging from interpretability work (Akter et al.,
2024) to solving Olympiad-level problems in math-
ematics (Li et al., 2025). Yet this work has also
underscored the limitations of LLMs on arithmetic
tasks: Previous studies have explored how mod-
els can benefit from incorporating precise numeric
representations (Feng et al., 2024), or offloading
the arithmetic computation to a tool (Schick et al.,
2023; KadlIcik et al., 2023), suggesting that their na-
tive learned representations are not reliable. Other
works (Kantamneni and Tegmark, 2025; Zhou et al.,
2024) have inspected such learned representations

directly and tried to understand how models use
them. Although model probing methods showed
some success in interpreting numeric values from
model representations (Zhu et al., 2025), the ac-
curacy of those methods is low, suggesting that
learned representations are highly imprecise.

In this paper, we push back on this interpreta-
tion: we show that a probe with the right kind of
inductive bias can retrieve numeric information
from number embeddings with near-perfect accu-
racy across an extensive range of LMs, spanning
the Llama 3 (Grattafiori et al., 2024) and OLMo 2
(OLMo et al., 2025) series and ranging from 1B
to 72B parameters. Given that number embed-
dings usually follow a sinusoidal wave-like pat-
tern (Nanda et al., 2023; Kantamneni and Tegmark,
2025), this characteristic must be accounted for
when designing probes.

We further show how these insights can be lever-
aged to improve performances on arithmetic rea-
soning: errors on addition and subtraction tasks
can often be matched with an inability of the probe
to retrieve the expected numerical information for
a given embedding, and demonstrate that interven-
ing on number embeddings such that they more
cohesively follow the pattern of other number em-
beddings can directly improve arithmetic perfor-
mances. Lastly, we document edge cases that do
not fall within this previously understood pattern:
in particular, OLMo2 32B (OLMo et al., 2025)
learns embeddings that are not sinusoidal-like, de-
spite a high success rate on arithmetic tasks.

2 Related Work

One line of work focuses on incorporating numeri-
cal values directly into token representations, pro-
viding LMs with a prior. Charton (2022) explores
different number encodings based on scientific no-
tation for training LM solvers of linear algebra
problems. Golkar et al. (2023) propose represent-



ing numbers as a learned <NUM> token scaled
by the number scalar value, demonstrating how
models can adopt this scheme for regression tasks.

Another line of work investigates how models
learn to represent and process numerical informa-
tion. Nanda et al. (2023) show that a transformer
with one-hot encoding trained from scratch on mod-
ular addition discovers Fourier basis and its com-
putation is interpretable in trigonometric functions.
Kantamneni and Tegmark (2025) discover an anal-
ogous circuitry for (non-modular) addition in a
general pretrained language model, and find that its
intermediate representations combine both linear
and periodic components, reminiscent of a helix
structure. Zhou et al. (2024) further identifies sub-
components of the addition circuitry implemented
by the attention mechanism and feedforward layers.
Zhu et al. (2025) demonstrate that hidden states of
pretrained language models can be approximately
decoded with a linear (or multi-layer) probe to esti-
mate the logarithm of the number value. Although
the probe outputs correlate with the target value,
decoding achieves low accuracy.

In summary, prior works suggest that language
models attempt to encode numerical information
into token representations during pretraining, but
their precision is rather limited. However, we hy-
pothesize that this perception stems from inade-
quate probing methods, and learned representations
are much more precise than previously estimated.

3 Recovering numerical information from
number embeddings

We study LMs from the Llama 3 (Grattafiori et al.,
2024), Phi 4 (Abdin et al., 2024), and OLMo 2
(OLMo et al., 2025) series, ranging from 1B to
72B parameters. Wide selection allows us to verify
the validity of our observations across a panel of
models sharing the characteristic of representing
all integers between 0 and 999 with unique tokens.

Motivations. The central and foremost point to
address is whether the embeddings representing
specific numbers in LLMs contain the numeric in-
formation of the value they represent. In practice,
this is best addressed with a probing setup: If em-
beddings do contain numerical information, we
should be able to learn a decoding function from
number embedding to the corresponding integer
value. Probing as a methodology comes with its
own set of caveats: probes should be kept as sim-
ple as possible, and their expressivity should be

compared against baseline benchmarks (Hewitt and
Liang, 2019). Our specific use case adds further
constraints: in particular, we have only one instance
per LLM of each integer representation, viz., there
is only one vector for the token 42. This rules out
naive classifier implementations, as we aim for the
probe to generalize to entirely unseen classes.

Probe architectures. We consider four probes:
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where a, b, Wiy, and W, are learned parameters,
whereas S and B are means of injecting inductive
biases in the linear classifiers fgn and fpin:
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Le., the i row of B corresponds to the integer
1 expressed in binary, whereas S is defined as a
Fourier basis, suggested by Zhou et al. as the hid-
den structure learned by pretrained models. The
matrices S and B thus allows us to partition the
label projection of the classifier into three compo-
nents: a learned projection Wy, : R? — R to
project the number embeddings into a reduced low-
dimensional space, a fixed matrix (S or B) allow-
ing us to encode integers using an a priori scheme,
and a learned projection Wy : R — R map-
ping these a priori representations onto the same
space as the reduced embeddings. Intuitively, W,
uncovers the underlying hidden structure of the
learned embeddings, while W,,; expresses it in
terms of interpretable a priori basis, which allows
us to generalize to unseen tokens.

Implementation. We evaluate the probes in
Equations (1) to (4) using a cross-validation setup
with 20 folds. We report their accuracy measured
by rounding the output of the regression probes
Equations (1) and (2) to the nearest integer, or
by retrieving the index of the row in S or B that
maximizes the output distribution of the classifier



probes Equations (3) and (4). We control the va-
lidity of our probes by ensuring that they reach
an accuracy of 0 for standard Gaussian vectors as
well as for a random permutation of the embed-
dings. Parameters for regressions are estimated
using a least-squares algorithm; whereas our clas-
sifiers’ parameters are optimized with Adam with
a learning rate of 0.0001, weight decay of 0.001,
and 5 = (0.9,0.999). We choose a hidden di-
mension of 100. The classifiers are optimized to
distinguish output only between training tokens,
and during testing, must choose between all tokens.
The probes are optimized until loss converges on a
validation split separate from the testing split.
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Figure 1: Overview of probes’ accuracy (7).

Results. 'We summarize performances, measured
in terms of accuracy, in Figure 1. Crucially, we are
almost systematically able to retrieve the integer
value corresponding to the embedding’s number
with very high accuracy. Another salient observa-
tion is that fg, consistently outperforms all other
probe architectures including the regression probe
used in previous work of Zhu et al. (2025), con-
tradicting their finding that LMs learn to encode
numbers linearly. Explaining the success of the
Fourier basis, we note that other prior literature
has suggested that sinusoidal features are used for
arithmetic computation in LMs (Zhou et al., 2024).
Adding onto this, we can also stress that, qualita-
tively, most of the models’ whose number embed-
dings we survey here exhibit wave-like patterns in
a PCA projection and have sparse Fourier trans-
form, confirming regularity in the hidden structure.
See Figures 3 and 4 in Appendix A.1 for visualiza-
tions of PCA and its Fourier transform. Notably,
OLMo 2 32B is the only model with low resem-
blance of the pattern, which is consistent with the
low performance of its sinusoidal probe.

4 Leveraging numerical information from
number embeddings

Motivations. Having established that number
embeddings do encode retrieval numerical informa-

tion about the integers they represent, we now turn
to how this numerical information is leveraged
by LLMs to perform arithmetic tasks. We study the
zero-shot performances of a subset of our models
on addition and subtraction tasks. We define our
addition task as taking any pair of integers x1, x2
such that 0 < x; < 500 as input, and computing
the expected output 1 + 2. The subtraction task
is defined by taking as inputs any pair x1, 2 such
that 0 < z2 < x1 < 1000, and computing the
expected output z; — 2.

Performances. To perform the arithmetic tasks,
we conduct minimal prompt engineering: we sys-
tematically evaluate a handful of natural language
prompts for their accuracy in a zero-shot setting
on the 1B models, and then select the highest-
performing for subsequent analyses. All prompts
are listed in Appendix B, see Table 4a for addition
and Table 4b for subtraction.
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Add. 22.21 1.12  0.21 0.05 258 045 0.24  0.00
Sub. 28.08 036 0.17 0.37 142 0.15 0.01 0.00

Table 1: Overview of error rates (%, J) on arithmetic
tasks in zero-shot setting.

An overview of the error rates from the LLMs we
study is listed in Table 1. As is apparent, most mod-
els achieve high degrees of performance (except
for OLMO 2 1B); we also observe a trend towards
fewer errors for models with more parameters.

Model behavior. To better explain the behavior
of the LLMs, we conduct a simple circuit analy-
sis and a feature attribution experiment using inte-
grated gradients (Sundararajan et al., 2017). For
convenience, we focus on the two smaller models
in our panel. OLMo 2 1B and Llama 3 1B. Both
experiments suggest one major difference between
operand pairs leading to failure and to success: the
probability assigned by the LLM to the predicted
output token tends to be statistically lower when the
model produces an incorrect output, see Figure 2.
We also observe the same subset of heads being
activated for failure and success on the arithmetic
task; further details are available in Appendix A.2.
Besides the usefulness of this difference in prob-
ability mass for diagnostic purposes, these exper-
iments also suggest a difference in degree rather
than kind between failures and successes.
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(c) OLMo 2 1B, addition. (d) OLMo 2 1B, subtraction.

Figure 2: Probability mass on the predicted output token
when the LLM yields a correct vs. incorrect answer.

OLMo2 1B
OLMo2 7B
OLMo2 13B
Llama 3 1B
Llama 3 3B

2 | Llama 3 8B

Add. 39.12 21.34 41.22 461 1.24
Sub. 9.06 29.51 26.83 039 1.04 0.00

Table 2: Proportion of errors on arithmetic tasks involv-
ing misrepresented numbers (%).

Error analysis. To assess how numerical infor-
mation and arithmetic reasoning are linked, we
evaluate whether the errors we see in these arith-
metic tasks can be linked to defects of the number
embeddings used as inputs. This entails verifying
for every pair of operands x1, x5 that leads to fail-
ure whether either of 1 or x5 also leads to a failure
in the most accurate probes set up in Section 3, viz.
the fsin probes. The proportion of errors that in-
volve operands not well captured by the fg, probe
varies greatly, depending on the model and task;
ranging from more than 40% of all erroneous pairs
to 0%; percentages tend to be higher for models
that the fg, probe did not capture well. This sug-
gests that the quality of representations is a factor
impacting arithmetic capabilities in models.

Direct intervention. Finally, we test whether in-
tervening on embeddings that our probe fails to
capture can improve zero-shot performances on
arithmetic tasks. In practice, we start from the
fsin probe described in Equation (3) and trained

Token Before After
55 42 31
117 95 67
295 260 179

Table 3: Error rates before / after a direct intervention
on three tokens with high associated addition error rates.

for OLMo 2 1B fitted on one cross-validation fold,
freeze all parameters, and then perform gradient
descent to optimize the embeddings’ of incorrectly
decoded tokens with respect to the probes decoding
loss. We then replace all embeddings in OLMo 2
1B in the addition input range, namely tokens 55,
117, and 295 with updated embeddings. We finally
measure how the replacement impacts error rates.
Table 3 summarizes the number of errors on the
addition task for pairs of operands involving the
corresponding three integers before and after inter-
vention: error rates systematically decrease. This
experiment, while of an anecdotal scale, suggests
that we can directly intervene on defective number
embeddings to align them with the learned hidden
structure and observe an improvement in arithmetic
performance.

5 Conclusion

In this paper, we have inspected the embedding
representations for number tokens across a range
of widely used open-source LLMs.

Our observations consolidate a growing body of
studies showcasing how LLMs learn sinusoidal hid-
den structure in number representations. However,
building upon this observation, we design a probing
method leveraging this structure that decodes LMs’
embeddings with near-perfect accuracy across mul-
tiple models, thus disputing and largely pushing
lower-bound estimates of the quality of numeric
representations in LMs shown in previous work.
Still, we find a model (OLMo 2 32B) that deviates
from this pattern, calling into question the general-
izability of the conclusions of works such as Zhou
et al.’s (2024). Finally, we explore how the knowl-
edge of the structure of numeric information can
be exploited by transfers: we show that the precise-
ness of embeddings relative to reference sinusoidal
embeddings can explain a proportion of practical
errors on arithmetic tasks. Moreover, we show it is
possible to improve accuracy on arithmetic tasks by
retrofitting imprecise embeddings by pushing them
closer to the model’s optimal sinusoidal pattern.



Limitations

Our work, while demonstrating the remarkable ac-
curacy of number embeddings in pre-trained lan-
guage models, comes with several limitations that
warrant consideration for future research.

First, our probing method, though highly effec-
tive for many models, relies on an assumed hidden
structure of models’ learned representations, and
therefore expects a priori knowledge of models’
mechanics. This necessarily limits the applicability
of our approach to models where a known structure
exists, e.g., it is not applicable for OLMo 2 32B.

Second, our intervention method was performed
on a small-scale experiment, and its generalization
across a large suite of models remains an object for
future work.

Third, even when we do not perform any pre-
training of models, reproducing our experiments
requires access to computational resources. We
estimate that replicating all our results requires
around several hundred GPU hours.

While we recognize the ethical risks associ-
ated with AI research, given that our paper fo-
cuses on fundamentals of internal representations
of numbers within pre-trained language models
and their immediate impact on basic arithmetic
tasks, broader societal ethical concerns like bias,
discrimination, privacy, or job displacement are not
directly relevant. Our research operates at a funda-
mental level of understanding how models encode
numerical information, rather than exploring their
application or misuse in real-world systems with
downstream societal consequences.
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A Supplementary visualization

A.1 Wave-like patterns in embeddings

Figure 3 displays the sinusoidal patterns in Llama
3 70B and OLMo?2 13B after re-alignment and de-
trending with PCA. For clarity, we only include the
first 16 principal components.

A.2 Explainability plots for arithmetic tasks.

In Figure 5, we present an overview of head-level
attribution of the logits in Llama 2 1B. The same
heads in Layers 13 through 15 appear activated in
all cases, playing the same inhibitor and booster
roles. Incorrectly performed addition leads to a
noisier overall pattern. Remarkably, we observe
that activity occurs in the latter stages of the model,
whereas input embeddings (layer 0) already contain
precise numeric information, as per our probing
experiments. This delayed processing may explain

some of the errors we observe, despite the high
accuracy of our probes in Section 3.

B Experimental details
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(a) Prompts considered for addition task. z; and x> are place-
holders for the augend and the addend. Prompts are delimited
by double quotes; trailing white-space is significant.

“The result of x1 minus x5 is
“The result of x1 minus xo =
“The result of x1 minus x9 =
“r1 minus zo equals to ”
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(b) Prompts considered for subtraction task. x; and x2 are
placeholders for the minuend and the subtrahend. Prompts are
delimited by double quotes; trailing white-space is significant.

Table 4: Prompts considered for engineering of arith-
metic zero-shot setting.

C Disclosure of usage of Al assistance

We disclose that we used Al assistance during im-
plementation of this work and its writing. Specif-
ically, we used Al-based code auto-completion
(Github Copilot) for increasing productivity of pro-
gramming, and conversational chatbots (OpenAl
ChatGPT, Google Gemini) for improving gram-
mar and fluency of the text. We guarantee that all
content is original and factually accurate.
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Figure 3: Visualization of PCA (DIM=16) reduced number embeddings, selected models. Although most model
exhibit relatively regular wave-like patterns, OLMO 2 32B exhibit little regularity.
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Figure 4: Maximal contribution (magnitude) of each Fourier base frequency’s to embedding features in PCA (d=128)
reduced space. Sparsity in this plot indicates strong regularity in the hidden structure of model embeddings. OLMo
2 32B has noticeably stronger contribution of all low-contribution frequencies, indicating high irregularity.



Logit Difference From Each Head

Layer

(a) Llama 3 1B, addition performed correctly.
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(b) Llama 3 1B, addition performed incorrectly.
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(c) Llama 3 1B, subtraction performed correctly.
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(d) Llama 3 1B, subtraction performed incorrectly.

Figure 5: Head activations across arithmetic tasks for
Llama 3 1B, broken down by task (addition and subtrac-
tion) and success (correct or incorrect computation.
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