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Abstract001

While language models show excellent capac-002
ity to model coherent text, it is commonly be-003
lieved that their limitations reside in tasks re-004
quiring exact representations, such as numeric005
values. This work shows that representations006
of numbers that encode their numeric values007
naturally emerge in text-only language models.008
Contrary to previous work assuming linearity009
of models’ representations, we find that differ-010
ent pre-trained models consistently learn highly011
precise sinusoidal representations within the in-012
put embedding, and can be accurately decoded013
with an appropriate probing method. These014
findings undermine existing assumptions about015
the inherent inability of language models to016
represent numeric information accurately and,017
consequently, point to the real limitation of ro-018
bust arithmetic proficiency in language models019
in their limited capacity to combine accurate020
input representations.021

1 Introduction022

The landmark paper of Brown et al. (2020) showed023

that generic neural networks trained on text pre-024

diction alone could develop surprising arithmetic025

capabilities. In the years since, this observation has026

flourished into a large and vibrant field interested in027

the arithmetic reasoning capabilities of Transform-028

ers (Ahn et al., 2024), rife with research opportuni-029

ties ranging from interpretability work (Akter et al.,030

2024) to solving Olympiad-level problems in math-031

ematics (Li et al., 2025). Yet this work has also032

underscored the limitations of LLMs on arithmetic033

tasks: Previous studies have explored how mod-034

els can benefit from incorporating precise numeric035

representations (Feng et al., 2024), or offloading036

the arithmetic computation to a tool (Schick et al.,037

2023; Kadlčík et al., 2023), suggesting that their na-038

tive learned representations are not reliable. Other039

works (Kantamneni and Tegmark, 2025; Zhou et al.,040

2024) have inspected such learned representations041

directly and tried to understand how models use 042

them. Although model probing methods showed 043

some success in interpreting numeric values from 044

model representations (Zhu et al., 2025), the ac- 045

curacy of those methods is low, suggesting that 046

learned representations are highly imprecise. 047

In this paper, we push back on this interpreta- 048

tion: we show that a probe with the right kind of 049

inductive bias can retrieve numeric information 050

from number embeddings with near-perfect accu- 051

racy across an extensive range of LMs, spanning 052

the Llama 3 (Grattafiori et al., 2024) and OLMo 2 053

(OLMo et al., 2025) series and ranging from 1B 054

to 72B parameters. Given that number embed- 055

dings usually follow a sinusoidal wave-like pat- 056

tern (Nanda et al., 2023; Kantamneni and Tegmark, 057

2025), this characteristic must be accounted for 058

when designing probes. 059

We further show how these insights can be lever- 060

aged to improve performances on arithmetic rea- 061

soning: errors on addition and subtraction tasks 062

can often be matched with an inability of the probe 063

to retrieve the expected numerical information for 064

a given embedding, and demonstrate that interven- 065

ing on number embeddings such that they more 066

cohesively follow the pattern of other number em- 067

beddings can directly improve arithmetic perfor- 068

mances. Lastly, we document edge cases that do 069

not fall within this previously understood pattern: 070

in particular, OLMo2 32B (OLMo et al., 2025) 071

learns embeddings that are not sinusoidal-like, de- 072

spite a high success rate on arithmetic tasks. 073

2 Related Work 074

One line of work focuses on incorporating numeri- 075

cal values directly into token representations, pro- 076

viding LMs with a prior. Charton (2022) explores 077

different number encodings based on scientific no- 078

tation for training LM solvers of linear algebra 079

problems. Golkar et al. (2023) propose represent- 080
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ing numbers as a learned <NUM> token scaled081

by the number scalar value, demonstrating how082

models can adopt this scheme for regression tasks.083

Another line of work investigates how models084

learn to represent and process numerical informa-085

tion. Nanda et al. (2023) show that a transformer086

with one-hot encoding trained from scratch on mod-087

ular addition discovers Fourier basis and its com-088

putation is interpretable in trigonometric functions.089

Kantamneni and Tegmark (2025) discover an anal-090

ogous circuitry for (non-modular) addition in a091

general pretrained language model, and find that its092

intermediate representations combine both linear093

and periodic components, reminiscent of a helix094

structure. Zhou et al. (2024) further identifies sub-095

components of the addition circuitry implemented096

by the attention mechanism and feedforward layers.097

Zhu et al. (2025) demonstrate that hidden states of098

pretrained language models can be approximately099

decoded with a linear (or multi-layer) probe to esti-100

mate the logarithm of the number value. Although101

the probe outputs correlate with the target value,102

decoding achieves low accuracy.103

In summary, prior works suggest that language104

models attempt to encode numerical information105

into token representations during pretraining, but106

their precision is rather limited. However, we hy-107

pothesize that this perception stems from inade-108

quate probing methods, and learned representations109

are much more precise than previously estimated.110

3 Recovering numerical information from111

number embeddings112

We study LMs from the Llama 3 (Grattafiori et al.,113

2024), Phi 4 (Abdin et al., 2024), and OLMo 2114

(OLMo et al., 2025) series, ranging from 1B to115

72B parameters. Wide selection allows us to verify116

the validity of our observations across a panel of117

models sharing the characteristic of representing118

all integers between 0 and 999 with unique tokens.119

Motivations. The central and foremost point to120

address is whether the embeddings representing121

specific numbers in LLMs contain the numeric in-122

formation of the value they represent. In practice,123

this is best addressed with a probing setup: If em-124

beddings do contain numerical information, we125

should be able to learn a decoding function from126

number embedding to the corresponding integer127

value. Probing as a methodology comes with its128

own set of caveats: probes should be kept as sim-129

ple as possible, and their expressivity should be130

compared against baseline benchmarks (Hewitt and 131

Liang, 2019). Our specific use case adds further 132

constraints: in particular, we have only one instance 133

per LLM of each integer representation, viz., there 134

is only one vector for the token 42. This rules out 135

naive classifier implementations, as we aim for the 136

probe to generalize to entirely unseen classes. 137

Probe architectures. We consider four probes: 138

flin(x) = aTx+ b (1) 139

flog lin(x) = exp
(
aTx+ b

)
− 1 (2) 140

fsin(x) = (WoutS)
T (Winx) (3) 141

fbin(x) = (WoutB)T (Winx) (4) 142

where a, b, Win, and Wout are learned parameters, 143

whereas S and B are means of injecting inductive 144

biases in the linear classifiers fsin and fbin: 145

Sij =

{
sin(iej1000/d) if j ≡ 0 mod 2

cos(iej+11000/d) if j ≡ 1 mod 2
146

B =


0 . . . 0 0 1
0 . . . 0 1 0
0 . . . 0 1 1
...

 147

I.e., the ith row of B corresponds to the integer 148

i expressed in binary, whereas S is defined as a 149

Fourier basis, suggested by Zhou et al. as the hid- 150

den structure learned by pretrained models. The 151

matrices S and B thus allows us to partition the 152

label projection of the classifier into three compo- 153

nents: a learned projection Win : Rd → Rh to 154

project the number embeddings into a reduced low- 155

dimensional space, a fixed matrix (S or B) allow- 156

ing us to encode integers using an a priori scheme, 157

and a learned projection Wout : Rd → Rh map- 158

ping these a priori representations onto the same 159

space as the reduced embeddings. Intuitively, Win 160

uncovers the underlying hidden structure of the 161

learned embeddings, while Wout expresses it in 162

terms of interpretable a priori basis, which allows 163

us to generalize to unseen tokens. 164

Implementation. We evaluate the probes in 165

Equations (1) to (4) using a cross-validation setup 166

with 20 folds. We report their accuracy measured 167

by rounding the output of the regression probes 168

Equations (1) and (2) to the nearest integer, or 169

by retrieving the index of the row in S or B that 170

maximizes the output distribution of the classifier 171
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probes Equations (3) and (4). We control the va-172

lidity of our probes by ensuring that they reach173

an accuracy of 0 for standard Gaussian vectors as174

well as for a random permutation of the embed-175

dings. Parameters for regressions are estimated176

using a least-squares algorithm; whereas our clas-177

sifiers’ parameters are optimized with Adam with178

a learning rate of 0.0001, weight decay of 0.001,179

and β = (0.9, 0.999). We choose a hidden di-180

mension of 100. The classifiers are optimized to181

distinguish output only between training tokens,182

and during testing, must choose between all tokens.183

The probes are optimized until loss converges on a184

validation split separate from the testing split.185
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Figure 1: Overview of probes’ accuracy (↑).

Results. We summarize performances, measured186

in terms of accuracy, in Figure 1. Crucially, we are187

almost systematically able to retrieve the integer188

value corresponding to the embedding’s number189

with very high accuracy. Another salient observa-190

tion is that fsin consistently outperforms all other191

probe architectures including the regression probe192

used in previous work of Zhu et al. (2025), con-193

tradicting their finding that LMs learn to encode194

numbers linearly. Explaining the success of the195

Fourier basis, we note that other prior literature196

has suggested that sinusoidal features are used for197

arithmetic computation in LMs (Zhou et al., 2024).198

Adding onto this, we can also stress that, qualita-199

tively, most of the models’ whose number embed-200

dings we survey here exhibit wave-like patterns in201

a PCA projection and have sparse Fourier trans-202

form, confirming regularity in the hidden structure.203

See Figures 3 and 4 in Appendix A.1 for visualiza-204

tions of PCA and its Fourier transform. Notably,205

OLMo 2 32B is the only model with low resem-206

blance of the pattern, which is consistent with the207

low performance of its sinusoidal probe.208

4 Leveraging numerical information from209

number embeddings210

Motivations. Having established that number211

embeddings do encode retrieval numerical informa-212

tion about the integers they represent, we now turn 213

to how this numerical information is leveraged 214

by LLMs to perform arithmetic tasks. We study the 215

zero-shot performances of a subset of our models 216

on addition and subtraction tasks. We define our 217

addition task as taking any pair of integers x1, x2 218

such that 0 < xi < 500 as input, and computing 219

the expected output x1 + x2. The subtraction task 220

is defined by taking as inputs any pair x1, x2 such 221

that 0 < x2 < x1 < 1000, and computing the 222

expected output x1 − x2. 223

Performances. To perform the arithmetic tasks, 224

we conduct minimal prompt engineering: we sys- 225

tematically evaluate a handful of natural language 226

prompts for their accuracy in a zero-shot setting 227

on the 1B models, and then select the highest- 228

performing for subsequent analyses. All prompts 229

are listed in Appendix B, see Table 4a for addition 230

and Table 4b for subtraction. 231
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Add. 22.21 1.12 0.21 0.05 2.58 0.45 0.24 0.00
Sub. 28.08 0.36 0.17 0.37 1.42 0.15 0.01 0.00

Table 1: Overview of error rates (%, ↓) on arithmetic
tasks in zero-shot setting.

An overview of the error rates from the LLMs we 232

study is listed in Table 1. As is apparent, most mod- 233

els achieve high degrees of performance (except 234

for OLMO 2 1B); we also observe a trend towards 235

fewer errors for models with more parameters. 236

Model behavior. To better explain the behavior 237

of the LLMs, we conduct a simple circuit analy- 238

sis and a feature attribution experiment using inte- 239

grated gradients (Sundararajan et al., 2017). For 240

convenience, we focus on the two smaller models 241

in our panel. OLMo 2 1B and Llama 3 1B. Both 242

experiments suggest one major difference between 243

operand pairs leading to failure and to success: the 244

probability assigned by the LLM to the predicted 245

output token tends to be statistically lower when the 246

model produces an incorrect output, see Figure 2. 247

We also observe the same subset of heads being 248

activated for failure and success on the arithmetic 249

task; further details are available in Appendix A.2. 250

Besides the usefulness of this difference in prob- 251

ability mass for diagnostic purposes, these exper- 252

iments also suggest a difference in degree rather 253

than kind between failures and successes. 254

3



False True
correct

0.0

0.2

0.4

0.6

0.8

1.0
p(

)

(a) Llama 3 1B, addition.

False True
correct

0.0

0.2

0.4

0.6

0.8

1.0

p(
)
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(d) OLMo 2 1B, subtraction.

Figure 2: Probability mass on the predicted output token
when the LLM yields a correct vs. incorrect answer.
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Add. 39.12 21.34 41.22 4.61 1.24 8.01
Sub. 9.06 29.51 26.83 0.39 1.04 0.00

Table 2: Proportion of errors on arithmetic tasks involv-
ing misrepresented numbers (%).

Error analysis. To assess how numerical infor-255

mation and arithmetic reasoning are linked, we256

evaluate whether the errors we see in these arith-257

metic tasks can be linked to defects of the number258

embeddings used as inputs. This entails verifying259

for every pair of operands x1, x2 that leads to fail-260

ure whether either of x1 or x2 also leads to a failure261

in the most accurate probes set up in Section 3, viz.262

the fsin probes. The proportion of errors that in-263

volve operands not well captured by the fsin probe264

varies greatly, depending on the model and task;265

ranging from more than 40% of all erroneous pairs266

to 0%; percentages tend to be higher for models267

that the fsin probe did not capture well. This sug-268

gests that the quality of representations is a factor269

impacting arithmetic capabilities in models.270

Direct intervention. Finally, we test whether in-271

tervening on embeddings that our probe fails to272

capture can improve zero-shot performances on273

arithmetic tasks. In practice, we start from the274

fsin probe described in Equation (3) and trained275

Token Before After
55 42 31
117 95 67
295 260 179

Table 3: Error rates before / after a direct intervention
on three tokens with high associated addition error rates.

for OLMo 2 1B fitted on one cross-validation fold, 276

freeze all parameters, and then perform gradient 277

descent to optimize the embeddings’ of incorrectly 278

decoded tokens with respect to the probes decoding 279

loss. We then replace all embeddings in OLMo 2 280

1B in the addition input range, namely tokens 55, 281

117, and 295 with updated embeddings. We finally 282

measure how the replacement impacts error rates. 283

Table 3 summarizes the number of errors on the 284

addition task for pairs of operands involving the 285

corresponding three integers before and after inter- 286

vention: error rates systematically decrease. This 287

experiment, while of an anecdotal scale, suggests 288

that we can directly intervene on defective number 289

embeddings to align them with the learned hidden 290

structure and observe an improvement in arithmetic 291

performance. 292

5 Conclusion 293

In this paper, we have inspected the embedding 294

representations for number tokens across a range 295

of widely used open-source LLMs. 296

Our observations consolidate a growing body of 297

studies showcasing how LLMs learn sinusoidal hid- 298

den structure in number representations. However, 299

building upon this observation, we design a probing 300

method leveraging this structure that decodes LMs’ 301

embeddings with near-perfect accuracy across mul- 302

tiple models, thus disputing and largely pushing 303

lower-bound estimates of the quality of numeric 304

representations in LMs shown in previous work. 305

Still, we find a model (OLMo 2 32B) that deviates 306

from this pattern, calling into question the general- 307

izability of the conclusions of works such as Zhou 308

et al.’s (2024). Finally, we explore how the knowl- 309

edge of the structure of numeric information can 310

be exploited by transfers: we show that the precise- 311

ness of embeddings relative to reference sinusoidal 312

embeddings can explain a proportion of practical 313

errors on arithmetic tasks. Moreover, we show it is 314

possible to improve accuracy on arithmetic tasks by 315

retrofitting imprecise embeddings by pushing them 316

closer to the model’s optimal sinusoidal pattern. 317
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Limitations318

Our work, while demonstrating the remarkable ac-319

curacy of number embeddings in pre-trained lan-320

guage models, comes with several limitations that321

warrant consideration for future research.322

First, our probing method, though highly effec-323

tive for many models, relies on an assumed hidden324

structure of models’ learned representations, and325

therefore expects a priori knowledge of models’326

mechanics. This necessarily limits the applicability327

of our approach to models where a known structure328

exists, e.g., it is not applicable for OLMo 2 32B.329

Second, our intervention method was performed330

on a small-scale experiment, and its generalization331

across a large suite of models remains an object for332

future work.333

Third, even when we do not perform any pre-334

training of models, reproducing our experiments335

requires access to computational resources. We336

estimate that replicating all our results requires337

around several hundred GPU hours.338

While we recognize the ethical risks associ-339

ated with AI research, given that our paper fo-340

cuses on fundamentals of internal representations341

of numbers within pre-trained language models342

and their immediate impact on basic arithmetic343

tasks, broader societal ethical concerns like bias,344

discrimination, privacy, or job displacement are not345

directly relevant. Our research operates at a funda-346

mental level of understanding how models encode347

numerical information, rather than exploring their348

application or misuse in real-world systems with349

downstream societal consequences.350
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A Supplementary visualization460

A.1 Wave-like patterns in embeddings461

Figure 3 displays the sinusoidal patterns in Llama462

3 70B and OLMo2 13B after re-alignment and de-463

trending with PCA. For clarity, we only include the464

first 16 principal components.465

A.2 Explainability plots for arithmetic tasks.466

In Figure 5, we present an overview of head-level467

attribution of the logits in Llama 2 1B. The same468

heads in Layers 13 through 15 appear activated in469

all cases, playing the same inhibitor and booster470

roles. Incorrectly performed addition leads to a471

noisier overall pattern. Remarkably, we observe472

that activity occurs in the latter stages of the model,473

whereas input embeddings (layer 0) already contain474

precise numeric information, as per our probing475

experiments. This delayed processing may explain476

some of the errors we observe, despite the high 477

accuracy of our probes in Section 3. 478

B Experimental details 479

“x1+x2 equals to ”
“The result of x1+x2 is ”
“The result of x1 plus x2 is ”
“The result of x1 plus x2 = ”
“The result of x1 plus x2 =”
“x1 plus x2 equals to ”
“x1+x2=”
“x1 plus x2 equals ”
“x1 plus x2 is equal to ”
“x1+x2 equals ”
“x1+x2 is equal to ”
“x1 plus x2 equals ”
“x1 plus x2 is equal to ”

(a) Prompts considered for addition task. x1 and x2 are place-
holders for the augend and the addend. Prompts are delimited
by double quotes; trailing white-space is significant.

“The result of x1 minus x2 is ”
“The result of x1 minus x2 = ”
“The result of x1 minus x2 =”
“x1 minus x2 equals to ”
“x1-x2=”
“x1 minus x2 equals ”
“x1 minus x2 is equal to ”
“x1-x2 equals ”
“x1-x2 is equal to ”
“x1 minus x2 equals ”
“x1 minus x2 is equal to ”

(b) Prompts considered for subtraction task. x1 and x2 are
placeholders for the minuend and the subtrahend. Prompts are
delimited by double quotes; trailing white-space is significant.

Table 4: Prompts considered for engineering of arith-
metic zero-shot setting.

C Disclosure of usage of AI assistance 480

We disclose that we used AI assistance during im- 481

plementation of this work and its writing. Specif- 482

ically, we used AI-based code auto-completion 483

(Github Copilot) for increasing productivity of pro- 484

gramming, and conversational chatbots (OpenAI 485

ChatGPT, Google Gemini) for improving gram- 486

mar and fluency of the text. We guarantee that all 487

content is original and factually accurate. 488
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Token Value

Figure 3: Visualization of PCA (DIM=16) reduced number embeddings, selected models. Although most model
exhibit relatively regular wave-like patterns, OLMO 2 32B exhibit little regularity.

(a) Llama 3 1B (b) Llama 3 70B

(c) OLMo 2 1B (d) OLMo 2 32B

Figure 4: Maximal contribution (magnitude) of each Fourier base frequency’s to embedding features in PCA (d=128)
reduced space. Sparsity in this plot indicates strong regularity in the hidden structure of model embeddings. OLMo
2 32B has noticeably stronger contribution of all low-contribution frequencies, indicating high irregularity.
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(a) Llama 3 1B, addition performed correctly.

(b) Llama 3 1B, addition performed incorrectly.

(c) Llama 3 1B, subtraction performed correctly.

(d) Llama 3 1B, subtraction performed incorrectly.

Figure 5: Head activations across arithmetic tasks for
Llama 3 1B, broken down by task (addition and subtrac-
tion) and success (correct or incorrect computation.
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