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ABSTRACT

Large language models are more beneficial for code generation in mainstream
languages such as Python and JavaScript, however, they are very ineffective for
resource-constrained languages such as Fortran, OCaml, and R. We rephrase this
discrepancy not as a consequence of inevitable data lack of information, but as
a problem in learning efficiency. In this work, we present PolyCode, which is
trained by a groupwise meta-normalised Proximal Policy Optimization (PPO)
which we refer to as GMPO. GMPO is a standard PPO-clip objective that has
two new additions: (i) Cross-Group Meta-Normalization (CGMN) that suppresses
variance by collecting meta-statistics across prompt similarities, and (ii) Surprise-
Based Advantage Modulation (SBAM) that gives preference to updates where the
reward signal deviates from a relative confidence of the model. We consequently
enforce language neutrality of evaluation by input and output only by binary re-
ward r in either 0 or 1 for exact conformity, and thus avoid the need for unit test
translation across languages. Empirically, PolyCode-4B always matches or signif-
icantly exceeds smaller baselines on our Ag-LiveCodeBench-X benchmark with
considerable improvements over WPLL for Fortran and OCaml. For a standard-
ised reporting, pass@1 is defined as a Monte Carlo estimate derived from multiple
single-sample trials (single draw 20 times per prompt reactance at T=0.2), but the
best of selection and voting were not used during implementation.

1 INTRODUCTION

Large language model (LLM) has greatly changed the way we develop software applications; how-
ever, the advantages of large language models are not equally distributed across programming lan-
guages. Practitioners working within scientific and engineering ecosystems (i.e., Fortran, R, Julia,
OCaml, and Lua) are faced with constraints both in the amount of data they use for training and
signed, mature tooling. The Stack V2 Lozhkov et al. (2024a) shows that there are strong disparities
and increase a self-affirming cycle whereby - low resource languages are at the bottom in terms of
model quality and robustness of evaluation infrastructures. We propose PolyCode, which is trained
by a GMPO-type PPO-like policy gradient approach enhanced with a so-called cross-task meta
normalized (CGMN) and a surprise-based advantage modulation (SBAM). CGMN alleviates the
variance of a batch of local statistics over similar prompts to minimise variance in regimes with low
signal; SBAM approaches the regimen of the samples in which the observed reward is contrary to
the model’s meta-not normalised sequence likelihood (relative confidence). This approach is cou-
pled to the language-neutral IO - only execution harness that can evaluate programmes only in terms
of deterministic stdin / stdout behaviour so as to eliminate the necessity for per language unit test
translations.

Scope and non-claims. We put interviewer-level interventions on top of PPO-clipped. We do
not add datasets and decoding tricks, as well as proprietary unit-test graders. Where we use
Ag-LiveCodeBench-X (evaluation) and Ag-Codeforces-X (training) these are split, reconstruction-
based splits taken from publicly available sources and have not been created with any new samples;
which we use to ensure the I/O-only protocol is consistent and auditable. Our aim is to isolate
algorithmic effects (Figure 2) while holding infrastructure and decoding fixed.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

On Ag-LiveCodeBench-X (from LiveCodeBench Jain et al. (2024)) at MultiPL-E Cassano et al.
(2023), PolyCode-4B provides significant advantages under lower-resources across languages main-
taining the competitiveness across better-resourced ones under a single draw pass@1 protocol. All
assertions are with respect to this conservative environment: no best-of, no majority voting, single-
point templates, and capture of decontamination and run-time cheques.

Design philosophy. The most significant challenges are not based solely on lack of data, but stem
from the gap between surface representations based on language as opposed to computationally
invariant representations based on the task. In both sparse and noisy models, such normalisation
on individual prompts may suffer from high variance whereas indiscriminate accumulation over
heterogeneous prompts could result in bias into the updates. CGMN reduces this through calculat-
ing the neighbourhood-weighted meta-statistics, which utilises the local structure in an attempt to
stabilise scale without overlooking local structural dependencies. SBAM complements this by sign-
preserving rescaling when reward disagrees with relative confidence, turning confident failures and
hesitant successes into disproportionately informative updates, all while preserving the PPO-clip
geometry.

Clarifying relation to GRPO and PPO. We leverage GRPO inspired grouped sampling to provide
robust within prompt statistics to augment a PPO clip objective aimed at the advantage scale-which
is numerically accomplished using meta normalisation and surprise modulation instead of asymp-
totic relative ranking surrogate. This way, GMPO is still fully compatible with conventional PPO
theoretical frameworks and implementation infrastructures, which allows an easy integration into
existing reinforcement-learning pipelines.

Contributions.

• GMPO, groupwise meta-normalised Proximal Policy Optimization (GP-MPO), carries a
meticulously extended greediness sophistication, referred to because surprise modulation.
Its clustered sampling interface is separated from the PPO objective, so it directly/decen-
tralised controls variance and information content through its advantage scaling.

• Language-neutral execution, lets per-language engineering is done to a bare minimum
of manifest specs, while remaining purely behavioural (stdin/stdout) while being portable
across programming languages.

• Empirical gains across Fortran, Julia, Lua, OCaml, and R using multiple model fami-
lies Guo et al. (2024); Microsoft et al. (2025), under identical decoding and infrastructure.

2 BACKGROUND AND RELATED WORK

Code-oriented pretraining improves general reasoning Ma et al. (2023) and can be realized via code-
only training Lozhkov et al. (2024b); Gehring et al. (2025) or continued pretraining from general
LMs Rozière et al. (2024). However, the ecosystem remains skewed toward high-resource lan-
guages Lozhkov et al. (2024b); Athiwaratkun et al. (2023); Wang et al. (2023). Reinforcement
learning (RL) for code advances beyond supervised fine-tuning Wang et al. (2025), with execution
feedback Gehring et al. (2025), prolonged RL Hu et al. (2025), and rule-based rewards DeepSeek-AI
et al. (2025). RL pipelines, however, often depend on language-specific infrastructure and extensive
unit-test harnesses, which are less available for low-resource languages. Our method targets this gap
by (i) avoiding per-language test translation, (ii) leveraging cross-task structure to stabilize learn-
ing in low-resource settings, and (iii) clarifying multi-language evaluation practices. We situate our
method within groupwise sampling settings (as in GRPO Shao et al. (2024)) while keeping opti-
mization strictly PPO-clip, with meta-normalization and surprise modulation layered on top.

3 PRELIMINARIES AND NOTATION

We consider program-synthesis tasks indexed by prompts x ∈ X , where outputs y are complete
programs emitted in one shot by a policy πθ(y|x). Programs are compiled and executed in a sandbox;
rewards are binary and deterministic:

r(x, y) ∈ {0, 1} with r(x, y) = 1 iff I/O matches exactly (format, precision, delimiters).

2
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Figure 1: GMPO Training Pipeline for PolyCode.

We use the sequence-level log-likelihood L(x, y) = log πθ(y|x) when appropriate. Unless noted,
expectations E are taken over data batches and sampling randomness. The PPO clipping radius is
ε ∈ (0, 1); numerical stabilizers used in denominators are denoted by δ > 0.

4 METHOD

4.1 PROBLEM SETUP AND BEHAVIORAL TASKS

We restrict to deterministic programs reading from stdin and writing to stdout. Each prompt
carries canonical input-output examples and format rules. The reward is binary: exact conformance
yields r=1, otherwise r=0 (compilation or runtime failures also map to 0). This abstraction makes
the benchmarking language-agnostic and as a result, cross-language benchmarking easy. Though
binary rewards are sparse, the complement of variance reduction provided by CGMN and concen-
tration of benefits provided by SBAM makes PPO-styled updates viable without the need to do fid-
dly reward-shaping. The obtained underlying structure is the same on all programming languages;
therefore, observed differences in performance should be explained by policy behaviour rather than
peculiarities in the evaluator.

4.2 GMPO: GROUPWISE META-NORMALIZED PPO

GMPO uses grouped sampling per prompt: for each xj in batch B, draw G responses {yj,i}Gi=1
from πold(·|xj). Grouping supports (i) per-prompt statistics and (ii) cross-task meta-normalization;
optimization remains PPO-clip.

Cross-Group Meta-Normalization (CGMN). For each xj , compute a task embedding hj =
Encoder(πold, xj) (no gradient). Define batch-local softmax weights

wjk =
exp(sim(hj , hk)/τ)∑
k′ exp(sim(hj , hk′)/τ)

, wjk ≥ 0,
∑
k

wjk = 1. (1)

For V ∈ {R,L}, let µV
k and (σV

k )2 be per-prompt sample statistics over {yk,i}Gi=1. Batch-local
meta-statistics follow the law of total variance:

µV,meta
j =

∑
k

wjk µ
V
k , (2)

(σV,meta
j )2 =

∑
k

wjk (σ
V
k )2 +

∑
k

wjk (µ
V
k − µV,meta

j )2. (3)
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Figure 2: Algorithm Flowchart.

A critic-free normalized advantage proxy is

Ameta
j,i =

r(xj , yj,i)− µR,meta
j

σR,meta
j + δ

, δ > 0. (4)

Owing to the pooling of statistical strength on neighbouring prompts, CGMN yields a decrease in
variance of Ameta under a low resource scenario. For the asymptotic case in which the weighting
coefficients wk get more and more concentrated on k=j, CGMN approaches the standard single-
difference confirmatory per prompt standardisation. Alternatively, when early similarities vanish so
much that prompt similarities can’t be observed anymore CGMN falls back to batch-wise normali-
sation which normalises the scale without introducing a substantial controlled bias.

Sequence Likelihood Normalization. Let Lj,i = log πold(yj,i|xj). Define

L̂meta
j,i =

Lj,i − µL,meta
j

σL,meta
j + δ

. (5)

This places relative confidence on a comparable scale across prompts. Meta-normalization miti-
gates, but does not entirely remove, known length effects of sequence-level likelihood; we therefore
accompany results with diagnostics (Section 8) and note token-level variants in Appendix K.

Surprise-Based Advantage Modulation (SBAM). Define Sj,i = Ameta
j,i · L̂meta

j,i and modulate

AGMPO
j,i = Ameta

j,i · (1 + λϕ(−Sj,i)) , λ > 0, (6)

with the stable ramp

ϕ(u) =
[
max(u, 0)

]γ
, γ = 1 . (7)

Hence, linear amplification applies when Sj,i<0 (confident failures or hesitant successes under
meta-normalized likelihood) and no amplification otherwise.1 SBAM preserves the sign of the ad-
vantage and scales it monotonically in a function ϕ that is globally 1-Lipschitz (but merely subdif-
ferentiable at 0), avoiding gradient blow-ups near S=0.

1When 0<γ<1, derivatives near S→0− can become large; we adopt γ=1 for disciplined behavior. Smooth
bounded ramps (e.g., softplus) are drop-in alternatives with similar qualitative effects.
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Algorithm 1 GMPO Training (Figure 1)

1: Sample mini-batch B = {xj}; for each xj draw G samples yj,i ∼ πold(·|xj)
2: Execute each (xj , yj,i) in sandbox; collect binary rewards rj,i ∈ {0, 1}
3: Compute task embeddings hj (no grad); compute wjk within batch
4: Compute per-prompt stats µV

j , σ
V
j and meta-stats µV,meta

j , σV,meta
j for V ∈{R,L}

5: Form Ameta
j,i , L̂meta

j,i , Sj,i, and AGMPO
j,i

6: Update θ by ascending PPO-clip surrogate with KL regularization
7: Set πold←πθ periodically

PPO-Type Objective. Let sj,i(θ) =
πθ(yj,i|xj)
πold(yj,i|xj)

. GMPO maximizes

LGMPO(θ) = EB

 1

G

∑
j,i

min
(
sj,i(θ)A

GMPO
j,i , clip

(
sj,i(θ), 1−ε, 1+ε

)
AGMPO

j,i

)
− βKL(πθ ∥πref) (8)

with PPO clipping parameter ε and optional KL penalty β ≥ 0 (commonly to πold). This makes
explicit that GMPO is PPO-type with grouped sampling and meta-normalized, surprise-modulated
advantages.

4.3 DESIGN CHOICES, REDUCTIONS, AND EDGE CASES

Batch-local neighborhoods. Batch-local wjk keeps compute predictable and avoids memory
banks while providing sufficient coverage in typical batch sizes. A memory-bank variant is compat-
ible (Appendix J) but not required.

Sequence vs token granularity. We use sequence-level ratios and likelihoods for simplicity and
coupling to sequence-defined binary rewards. Token-level variants (Appendix K) are compatible
and reduce residual length effects; in practice, sequence-level normalization plus CGMN already
stabilizes scales across prompts.

Edge cases. When G=1, per-prompt statistics degenerate; CGMN still aggregates across prompts
and remains useful. When similarities collapse (nearly uniform wjk), meta-statistics default to
batch-wide normalization, stabilizing scale with a small bias that is attenuated by top-K neigh-
borhoods (Appendix L).

Modulation family. The linear ramp γ=1 ensures disciplined, sign-preserving rescaling with
global 1-Lipschitz continuity (subdifferentiable at 0). Bounded smooth alternatives limit growth
under extreme surprises without altering qualitative behavior (Appendix M).

4.4 COMPLEXITY AND MEMORY CONSIDERATIONS

Computing all wjk is O(|B|2); top-K truncation yields O(|B|K). Per-batch statistics cost O(|B|G).
Memory scales with buffered logits for sequence likelihoods; sequence-level quantities keep this
modest relative to token-level variants. In distributed settings, only neighborhood summaries
(means, variances) require cross-replica reduction.

4.5 ALGORITHMIC OUTLINE

Algorithm 1 summarizes one epoch. The encoder for hj is detached to avoid coupling representation
learning to transient batch composition. We periodically update πold and optionally anneal β.

4.6 LANGUAGE-NEUTRAL RUNTIME AND MINIMAL CONFIGURATION

We extract programs from model outputs, compile and execute them inside OCI containers with lim-
its on CPU, memory, wall-clock, and stdout size. Each language is registered via a minimal YAML

5
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manifest specifying installation, compile, and run commands (Appendix D). Installation occurs at
image build time; evaluation runs offline without network access. We report orchestration over-
heads at the scheduler layer qualitatively to contextualize runtime invariants; these do not change
our conclusions.

5 DATASETS AND DECONTAMINATION

Training. Ag-Codeforces-X is a reconstruction-oriented split derived from Open-R1 Code-
forces Penedo et al. (2025), keeping I/O task format intact. We also construct an MBPP-based
variant to probe transfer from elementary problems to harder evaluation, following common prac-
tice that HumanEval-style tasks Chen et al. (2021) are easier than competition-style programs. No
new samples are introduced beyond upstream sources.

Evaluation. We use (i) MultiPL-E Cassano et al. (2023) for cross-lingual function-style eval-
uation and (ii) Ag-LiveCodeBench-X, adapted from LiveCodeBench Jain et al. (2024), for
competition-style I/O tasks. All LiveCodeBench-derived problems are excluded from training
through a two-sided screen.

Decontamination Protocol. We apply canonicalization, exact hashing, near-duplicate screening
using n-gram MinHash/LSH for both text and code, AST shingling where parsers exist, random
sampling for manual review near thresholds, and logging of exclusion lists (IDs and hash digests).
We also run our screen on third-party datasets that claim decontamination (Appendix B). The goal
is auditable exclusion of overlaps without altering benchmark content.

6 EVALUATION PROTOCOL AND STATISTICAL REPORTING

Unified Decoding. We use per-language prompt templates with uniform decoding: temperature
T=0.2 and sufficient max length to avoid truncation; no best-of reranking or majority voting for
primary pass@1 numbers. Templates are listed in Appendix C and kept fixed across models.

Pass@1 Estimation (Monte Carlo, No Best-of). For each prompt, take M=20 indepen-
dent single-sample draws at T=0.2, evaluate each once, and estimate pass@1 as p̂ =
1
M

∑M
m=1 1[success]. This estimates the single-draw success probability under the stated decoding

distribution; it performs no reranking or voting. Uncertainty reporting (e.g., Wilson intervals) and
macro-averaging over prompts are detailed in Appendix A. All percentages should be interpreted
alongside the number of evaluated prompts and the corresponding uncertainty envelopes.

Consistency and Auditability. We log compilation/execution outcomes, seeds, and decoded out-
puts per prompt. Decoding templates and sandbox manifests are fixed across models. When a
compile fails, reward is 0; we retain stderr/stdout to diagnose failure modes (Appendix H).

7 EXPERIMENTS

7.1 SETUP AND CONTROLS

All of the models considered in this study have the same decoding budget and follow the language
templates defined in Section 6. The results reported are point constructions of pass@1 based on
the basis of the MC estimator described above. Timestamp, random seed and testing results are
recorded for auditability purposes. Training schedule, batch organisation and container image are
also fixed across all experimental variants, to only allow purely algorithmic effect characterisation
with toggles toggled on or off.

Training protocol and data mixing. Each reinforcement learning run consists of lightweight on-
policy sampling and off-policy evaluation runs running back-to-back inside one single single con-
tainerized reinforcement learning harness. Proximal Policy Optimization clipping is used in con-
junction with the KL divergence to the reference policy which is updated periodically to decrease

6
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Figure 3: Performance comparison of PolyCode-4B-X models across five low-resource languages
on Ag-LiveCodeBench-X benchmark. GMPO-trained 4B parameter models have competitive re-
sults against much larger baselines (16B–70B parameters), supporting the effectiveness of meta-
normalization and surprise modulation.

the KL divergence at all times. Mini-batches are adjusted so that prompts of similar structural types
such as string parsing, numeric formatting, and combinatorial are clustered together enough to fill up
local neighborhoods for CGMN but with enough variety so that degenerate structures are avoided.
The reward function is an I/O-only one, this means that the amplitudes of the signals stay the same
for all languages.

Infrastructure parity and logging. We pin container images and toolchain versions, disable net-
work access during execution, and record compile commands, exit codes, and the first bytes of
stdout/stderr for each attempt. Seeds of sampling and data loader shuffling are recorded along with
the success indicators at the prompt level. This allows the reproducibility of any prompt-draw pair
thereby allowing the pass@1 calculations to be independently verified using these artefacts.

7.2 PRIMARY RESULTS AND DYNAMICS

Figure 3 summarizes Ag-LiveCodeBench-X results: the baseline Qwen3-4B achieves 11% pass@1
on Lua and 0% on Fortran; after GMPO training, PolyCode-4B-X reaches 25% on Lua and 16%
on Fortran, competitive with or better than larger baselines. We attribute variance reduction from
the use of CGMN through cross-task similarity and the emphasis on informative errors of SBAM
to languages with low available resources marked by reward sparsity and miscalibration of relative
confidence. As mentioned already, the given percentages are one-sample probabilities based on the
fixed decoding distribution and are not best-of metrics.

Learning dynamics. In the early stages of the training, the updates mostly prevent surface level
failures (e.g. syntax errors, lacking import statement, off-by-one format discrepancy etc.) because
such errors occur with high certainty level and thus are enhanced by according SBAM itself. And
the percent of refurbishing errors in the format of the compilation goes upward and adhere semantic
error rate to a corresponding number of errors of the boundary conditions.

Case narratives from under-served languages. In the Fortran language, a popular type of errors
is related to the usage of scientific notation and width specifiers. Programmes that contain no errors
(compiled successfully) have more often than not, generated outputs with leading spaces or incor-
rectly signed exponent. SBAM magnifies the gradient impact of these high-calibre failures and so
encourages edits to FORMAT statements or explicit WRITEs as opposed to the fundamental logic.
Like OCaml, we do have a lot of failures that stem from forgotten open’s or incomplete pattern
match, and the action of giving priority with confident errors will attract the interest less on the
missing modules and more on logic for boundary conditions.

7.3 GENERALIZATION TO FUNCTION-STYLE EVALUATION

Despite training on I/O-style tasks, function-mode prompting elicits function-conformant solutions
on MultiPL-E (Figure 4). This suggests that the learned improvements target algorithmic com-
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Figure 4: Generalization on MultiPL-E. Improvements across Lua, Julia, and R indicate that training
on I/O tasks transfers to function-style unit-test evaluation when guided by simple function-mode
templates.
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Figure 5: Scaling behavior with 8B models. The meta-normalization framework preserves efficacy
at higher capacity, showing compounding benefits on both benchmarks.

petence rather than I/O-specific patterns: reductions in surface/format errors carry over as fewer
extraneous prints, cleaner return values, and more deliberate guard conditions.

7.4 DIAGNOSTICS AND FAILURE TAXONOMY

We use a four-fold taxonomy consisting of: (i) occurrences of errors at a surface level (e.g. syntactic
violations, missing imports, non-existent APIs); (ii) problems in format coverage (i.e. I/O layout,
precision, delimiters); (iii) semantic inconsistencies (i.e. algorithmic boundary conditions); and (iv)
performance failures (e.g., timeouts). Our GMPO approach significantly reduces the first two cate-
gories especially in under-represented languages and the diagnostic labels are facilitating qualitative
analysis, but are not included in the quantitative.

8 THREATS TO VALIDITY AND PRACTICAL CONSIDERATIONS

Internal validity. Template drift and unconscious best-of selection are the main sources of con-
founding which are controlled for by fixing the templates as well as including the exclusion of
best-of set wtv or voting scheme from the main metric. Imposing Pass@1 rather than Pass@k offers
a focus on base capability; while other figures such as Pass@k may give more positive outcomes,
they are squarely out of the scope of the current study. However, although we have used five differ-
ent languages (two different flavours of evaluation style) our results do not necessarily generalise in
GUI/HTML/HTML-based service contexts or logic/array involve-oriented paradigms.

Residual length effects. Sequence level likelihood is correlated with programme duration. Notwith-
standing that meta-normalisation reduces the length-span effect, some effects of the residual length
on text quality may still hold, particularly between languages that display different stylistic pat-
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Figure 6: Training on simpler MBPP yields smaller but tangible gains, suggesting that SBAM ben-
efits from training distributions with sufficient difficulty and diverse failure modes.
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Figure 7: Architecture-neutrality: applying the same GMPO recipe to alternative families shows
consistent improvements without language-specific test translation.

terns. A further model justification of performance improvements over achieved results in related
studies confirms that the observed improvements over existing work rates are not solely a matter
of programme length of n, as was classed by other workers (cf. Appendix K for comparisons on a
token-level).

9 CONCLUSION

We propose PolyCode and GMPO showing that cross task meta normalisation combined with
surprise-based attention which is applied in a PPO-type objective enhances the multilingual coding
competence of compact models within resource constrained scenarios. By standardising evaluation
protocols and placing less voltage on language specific engineering, we move towards the goal of
equal-footing AI code assistance featuring computational structure.

10 REPRODUCIBILITY STATEMENT

As shown in Appendix P.

11 ETHICS STATEMENT

As code generation involves sensitive contexts in security applications, the use of a sandboxed ex-
ecution environment and of resource limits are made available to mitigate the risk associated with
training and evaluation.
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A STATISTICAL ESTIMATION DETAILS

Per-Prompt Estimator. For each prompt, run M i.i.d. single-sample draws, obtain p̂ =
1
M

∑M
m=1 1[success], and report Wilson intervals with center and halfwidth:

p̂W =
p̂+ z2

2M

1 + z2

M

, halfwidth =
z
√

p̂(1−p̂)
M + z2

4M2

1 + z2

M

,

where z = zα/2. All primary numbers refer to single-draw pass@1 estimates without best-of and
without voting.

Macro vs. micro averaging. Macro-averaging is the calculation of the unweighted average over
the prompts, micro-averaging assigns the weights to the prompts based on the frequency of their
occurrence in the corpus and can over-emphasize categories that contain more items. For cross-
language parity, we are using macro-averaging.

Seed discipline and independence. Separate seeds they are used for data-loader shuffling and
sampling randomness. To minimize the correlation between cross-prompt drawing of samples, we
sample decoding randomness for each prompt-draw pair. When reporting the means from seeds
averaged over, we are reporting mean ±.

Bootstrap and delta methods. Nonparametric bootstrap over prompts for variability of macro-
averaged pass@1 Delta-method approximations for delta-intervals under the weak dependence.

Length-related diagnostics. Because length affects the likelihoods at the sequence level, we test
for the difference in the distribution of values of the estimator of specificity of meta-haplotypes, the
likelihoods, of successes vs. failures, to ensure that improvements are not artifacts of length. Token
level diagnostics with a function of robustness cheque (Appendix K).

B DECONTAMINATION PSEUDOCODE, INVARIANTS, AND AUDIT TRAIL

Algorithm 2 Two-Sided Decontamination

1: Input: Train set T (prompts, solutions), Eval set E
2: Canonicalize: lowercase, trim spaces, strip comments/headers; normalize numeric literals and

whitespace
3: Hash exact strings and remove duplicates (prompt text and canonical code)
4: Build n-gram MinHash/LSH indices for prompts and code (both T , E)
5: Remove pairs with Jaccard similarity ≥ θtext or ≥ θcode (thresholds chosen conservatively)
6: if parsers available then
7: Parse code to AST, shingle subtrees, MinHash/LSH; remove near-duplicates by structure
8: end if
9: Sample borderline clusters near thresholds; manual review and prune if necessary

10: Log and export exclusion list (IDs, hash digests) for auditability

Invariants. (1) No token-level or AST-level structure from E appears in T after screening; (2)
Canonicalization is idempotent and language-agnostic; (3) Screening is re-run whenever T or E
changes; (4) The exclusion list is stable under re-hashing.

Borderline cluster adjudication. For clusters near thresholds, we prefer conservative pruning.
Reviewers adjudicate whether overlap is incidental (e.g., boilerplate) or substantive (algorithmic
core), erring on the side of exclusion in ambiguous cases.

C PROMPTING TEMPLATES AND INTERFACES

C.1 I/O MODE (TRAINING AND AG-LIVECODEBENCH-X)

12
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You are a helpful assistant writing a complete PROGRAM in <LANG>.
Constraints:
- Read all input from STDIN.
- Write output to STDOUT.
- Deterministic behavior only; no network or file I/O.
- Follow exactly the specified format (spacing, newlines, precision).

<Problem statement and I/O specification here>

Now output ONLY the code. Do not include explanations or tests.

C.2 FUNCTION MODE (MULTIPL-E)

You are writing a single function in <LANG> with the following signature:

<FUNCTION SIGNATURE HERE>

Implement ONLY this function. Do not add main(), I/O, prints, or tests.
Do not import nonstandard libraries unless stated.

We only add minimal language-specific boilerplate when required by the evaluator.

D MINIMAL LANGUAGE MANIFESTS (YAML)

D.1 FORTRAN (GFORTRAN)

language: fortran
install:

- apt-get update
- apt-get install -y gfortran

compile:
- ["bash","-lc","gfortran Main.f90 -O2 -o Main"]

run:
- ["bash","-lc","./Main"]

file_ext: ".f90"
stdin: true
stdout: true

D.2 OCAML (OCAMLOPT)

language: ocaml
install:

- apt-get update
- apt-get install -y ocaml

compile:
- ["bash","-lc","ocamlopt -o Main Main.ml"]

run:
- ["bash","-lc","./Main"]

file_ext: ".ml"
stdin: true
stdout: true

E IMPLEMENTATION NOTES

Task embeddings and similarities. We compute hj from a detached encoder representation; co-
sine similarity with temperature τ yields wjk. Top-K neighborhoods (Appendix L) reduce quadratic
cost while preserving local structure.

13
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Distributed training. Distributed training causes local computation of per-prompt statistics and
meta statistics that are aggregated across the replicas using arithmetic means and the second mo-
ments. Only the aggregate statistics are reported from replica to replica, thus the communication
overhead is small.

Regularization and trust. Additionally, a Kullback-Leibler loss penalty with respect to the pre-
vious policy p old is optionally introduced for the purposes of policy update stabilisation. Entropy
set bonuses are orthogonal to this term. Please note that while it is possible to use stronger KL con-
straints or trust-region formulations to bound the importance ratios s, our analysis uses the clipped
surrogate objective used in Proximal Policy Optimization, in which case it gives disciplined direc-
tionally strong guarantees.

Gradient hygiene. To minimise numerical instability, all z-scores are propagated with numerically
stable gradient clipping/addition of denominator stabilisers d. Thresholding may be done on the
extreme z-scores associated with he words with no impact to the UL of meta words of the same root
or metawordyond practical ordering of the words’ updates.

Logging and debuggability. The logging infrastructure is used to record the per prompt meta
statistics, success/failure flags, and error categories. Standard error and Out are saved for examina-
tion and the non-ending runs are stopped by wall timeouts.

F THEORETICAL REMARKS ON STABILITY

Approximate centering of meta-normalized advantages. Let Zj,i = (rj,i −
µR,meta
j )/(σR,meta

j + δ) with δ > 0. For fixed meta-statistics,

Ei[Zj,i] =
µR
j − µR,meta

j

σR,meta
j + δ

,

which is generally nonzero unless µR,meta
j ≈ µR

j . With neighborhood weights wjk concentrating
on prompts similar to xj , the bias term is typically small; normalization stabilizes scale and reduces
sensitivity to reward sparsity.

Proposition 1 (Range of the PPO-clip surrogate). Let A ∈ R and s = πθ(y|x)
πold(y|x) . Define f(s) =

min
(
sA, clip(s, 1− ε, 1 + ε)A

)
with ε ∈ (0, 1). Then

A > 0 : f(s) ≤ (1 + ε)A; A < 0 : f(s) ≤ (1− ε)A.

Moreover, for A < 0 no uniform lower bound exists, since s→∞ implies f(s)→ −∞.

Monotonicity of SBAM rescaling. For fixed Ameta, AGMPO increases monotonically with the
nonnegative ramp ϕ(−S) and preserves the sign of Ameta. With γ=1, ϕ is globally 1-Lipschitz
(subdifferentiable at 0), which avoids gradient instabilities near S = 0.

Reductions. If wjk = 1[j = k] and λ = 0, GMPO reduces to PPO with per-prompt standardiza-
tion. If G = 1 and neighborhoods are uniform, GMPO reduces to PPO with batch-wise standard-
ization, still stabilizing scale.

Neighborhood bias. Because CGMN aggregates from a soft neighborhood, a controllable bias
arises whenever neighboring prompts differ in reward difficulty. Temperature τ and top-K trunca-
tion bound this effect; empirically, similarities derived from the detached encoder track reward scale
sufficiently well to keep the bias modest.

G WORKED EXAMPLE OF CGMN

Consider prompts x1, x2, x3 with per-prompt reward stats (µR
k , σ

R
k ) and cosine similarities forming

wjk. The meta-mean µR,meta
j is

∑
k wjkµ

R
k , while meta-variance adds within-prompt variances and

14
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between-prompt dispersion
∑

k wjk(µ
R
k −µ

R,meta
j )2. When x1 is low-resource with noisy estimates,

contributions from x2, x3 stabilize scaling even when G is small.

H SANDBOX EXECUTION HARNESS

Algorithm 3 Sandboxed Execution and Rewarding

1: Extract code block for target language; write to file with correct extension
2: Compile using language manifest; if compile fails or times out, return reward 0
3: Run binary in container with CPU/memory/time/output caps; feed canonical inputs
4: If outputs match exactly (format, precision, delimiters), assign reward 1; else 0
5: Log stderr/stdout and resource usage for analysis

Determinism. We pin CPU/memory quotas and timeouts; environments are normalized to avoid
locale/rounding differences that could affect formatting. Randomized hashing in certain runtimes is
disabled where relevant.

I ABLATION DESIGN GRID

We recommend toggles: CGMN on/off; SBAM on/off; λ sweeps with γ=1; batch-local vs memory-
bank statistics; sequence-level vs token-level KL (β ≥ 0); top-K neighbor sizes. Each toggle
isolates the effect of a single component under fixed decoding and runtime.

J MEMORY BANK VARIANT

A FIFO memory of recent hj vectors enables neighborhood computation beyond the current batch.
The combination of coverage and staleness on neighbouring batch nodes is used to limit the memory
size and the weights of nodes are renormalized over the union of memory and batch neighbours.
Furthermore, summary statistics only are kept.

K TOKEN-LEVEL VARIANT

Seq-level variants are replaced with token-level variants in which the sum of log-probabilities in the
token sequence (s) replaces likelihood, and at least moderate residual length effect can be eliminated.
For clarity, simplicity, and to ensure a close relationship with the vulnerability-specific analysis
of the binary rewards rewarded by the protocols, we rebuild the sequence-level variants; doing so
requires extra bookkeeping and communication in order to aggregate per-account statistics per token.

L TOP-K NEIGHBORHOOD HEURISTIC

We cap neighbors at the top-K most similar prompts per xj , normalizing wjk over this set. Com-
plexity becomes O(|B|K). Choosing K to exceed a cumulative weight threshold under the current
τ yields robust neighborhoods without excessive compute.

M ALTERNATIVE MODULATION FAMILIES

Smooth bounded ramps such as softplus or tanh(u+) (u+ = max(u, 0)) are drop-in; they limit
growth for extreme surprises while retaining focus on S<0. We keep linear modulation as a princi-
pled, simple default.

15
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N FAILURE TAXONOMY AND ANALYSIS PROTOCOL

We categorize failures as: (i) surface (syntax, missing imports, non-existent APIs), (ii) format (I/O
mismatch, precision, delimiter mistakes), (iii) semantic (algorithmic logic, boundary conditions),
(iv) performance (timeouts, non-termination). Labels are used only for qualitative diagnosis; they
do not affect the primary metric.

O SECURITY AND SAFETY NOTES

We restrict network and filesystem access, enforce resource caps, and sanitize environment variables.
Container images are minimized to reduce attack surface. Evaluation runs without network access;
any package installation occurs during image build time.

P REPRODUCIBILITY CHECKLIST

• Code: training/eval harness, templates, manifests, logging of seeds and prompt IDs.

• Data: decontamination scripts, exclusion list (hash digests), dataset licenses and attribu-
tions.

• Compute: GPU/CPU details, container runtime, timeouts and limits.

• Hyperparameters: PPO clip ε, SBAM scale λ (with γ=1), similarity temperature τ , batch
size, group size G.

• Evaluation: fixed templates, T=0.2, M=20 independent draws per prompt for pass@1
estimation, no best-of.

• Uncertainty: Wilson intervals, seeds, macro-averaging across prompts.

• Safety: sandboxing, resource caps, deterministic builds where possible.

Q LICENSE AND ATTRIBUTION NOTES

We respect dataset licenses and attributions. Where third-party benchmarks provide license terms
(e.g., MultiPL-E), we follow them. Decontamination reduces inadvertent memorization of bench-
mark content; exclusion logs are maintained for auditability.

R NOTATION

Symbol Meaning

xj Prompt (task) index j in batch B
yj,i i-th sampled response for xj

G Group size (responses per prompt)
rj,i Binary reward r(xj , yj,i) ∈ {0, 1}
Lj,i Sequence log-likelihood log πold(yj,i|xj)
hj Task embedding for xj (detached)
wjk Similarity weight from xj to xk

µV,meta
j Meta-mean for V ∈ {R,L}

σV,meta
j Meta-std for V ∈ {R,L}

Ameta
j,i Meta-normalized advantage proxy

Sj,i Surprise index Ameta
j,i · L̂meta

j,i

AGMPO
j,i Surprise-modulated advantage

sj,i(θ) Importance ratio πθ/πold

16
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S FURTHER PRACTICAL TIPS

Numerical stability. Use denominator stabilizers δ > 0; combine with gradient clipping. Thresh-
old extreme z-scores for L̂meta if needed without altering sign.

Template hygiene. Keep templates simple and consistent; avoid evaluation-specific hints. Prevent
accidental inclusion of language-specific scaffolding in I/O-mode training.

Diagnostics. Track failure categories and the distribution of L̂meta on success vs. failure to verify
SBAM’s emphasis mechanism qualitatively.

T RELATIONSHIP TO PRIOR PRACTICE

Our evaluation choices (I/O-style behavioral tasks for training; function-style tests for MultiPL-
E) align with execution feedback Gehring et al. (2025) and multilingual evaluation Cassano et al.
(2023); Athiwaratkun et al. (2023); Wang et al. (2023). We deliberately avoid best-of or reranking in
the primary metric to measure single-draw performance under fixed decoding, reducing confounds
from selection.

U THE USE OF LARGE LANGUAGE MODELS

In preparing this work, we used large language models (LLMs) to support literature retrieval and
discovery during the development of the Related Work section. Specifically, LLMs were employed
to identify relevant publications and summarize existing approaches in multilingual code generation
benchmarks and reinforcement learning techniques for code LLMs. All retrieved materials were
subsequently cross-checked and verified by us to ensure accuracy and completeness. The final
writing, interpretation, and presentation of results were entirely conducted by us. Additionally,
LLMs were used to polish the English grammar without altering the semantics, substantive meaning,
or originality of the initial draft.
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