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Abstract
Time-series forecasting finds application across
domains such as finance, climate science, and
energy systems. We introduce the Conditional
Diffusion with Nonlinear Data Transformation
Model (CN-Diff), a generative framework that em-
ploys novel nonlinear transformations and learn-
able conditions in the forward process for time
series forecasting. A new loss formulation for
training is proposed, along with a detailed deriva-
tion of both forward and reverse process. The
new additions improve the diffusion model’s ca-
pacity to capture complex time series patterns,
thus simplifying the reverse process. Our novel
condition facilitates learning an efficient prior dis-
tribution. This also reduces the gap between the
true negative log-likelihood and its variational ap-
proximation. CN-Diff is shown to perform better
than other leading time series models on nine real-
world datasets. Ablation studies are conducted to
elucidate the role of each component of CN-Diff.

1. Introduction
Time series forecasting has become an essential element in
modern data-driven decision-making processes, spanning
a wide range of fields including financial pricing analy-
sis (Kim, 2003), economics (Henrique et al., 2019), trans-
portation planning (Huang et al., 2023), energy (Dumas
et al., 2022) and various other fields (Li et al., 2024a; Rasul
et al., 2022). There has been substantial advancement in
time series modeling, beginning with traditional statistical
techniques such as ARIMA and state-space models, which
initially dominated forecasting efforts. Later, various archi-
tectures of deep neural networks, such as recurrent neural
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networks (Hewamalage et al., 2021), convolutional neural
networks (Yue et al., 2022), and transformers (Vaswani,
2017a) have been used for time-series modeling.

In addition to traditional deep learning architectures, diffu-
sion models have recently gained prominence as effective
tools for generative tasks. Their outstanding performance
has been evidenced in various domains, exceeding the capa-
bilities of conventional generative approaches in image gen-
eration (Ho et al., 2020; Dhariwal & Nichol, 2021), video
synthesis (Harvey et al., 2022; Blattmann et al., 2023), and
cross-modal applications (Saharia et al., 2022). Given this
impressive success, there is a growing research interest in
leveraging the potential of diffusion models for time series
forecasting, leading to the development of several diffusion-
based frameworks for time series modeling. Each of these
frameworks is specifically designed to tackle the complex-
ities and difficulties that arise in the context of temporal
forecasting (Tashiro et al., 2021; Li et al., 2024b; Cao et al.,
2024; Shen & Kwok, 2023; Shen et al., 2024; Lopez Al-
caraz & Strodthoff, 2023). These approaches largely rely
on conditional diffusion models. For instance, TimeDiff
(Shen & Kwok, 2023) employs future mixup as a condition-
guided diffusion model. TimeGrad (Rasul et al., 2021)
merges a standard diffusion model with the recurrent neu-
ral network’s hidden states. CSDI (Tashiro et al., 2021)
uses self-supervised masking to steer a non-autoregressive
denoising process. While effective, these time-series dif-
fusion models do not completely exploit diffusion model
properties.

Conventional training for conditional diffusion models in-
volves gradually adding a fixed linear Gaussian noise at
each forward stage. The reverse process is then optimized
to closely replicate the forward process but with conditions
only applied to the reverse process. Firstly, this approach
confines diffusion models in the non-learnable forward pro-
cess. Secondly, simplifying into an isotropic Gaussian prior
complicates the data generation process in the reverse pro-
cess for time series applications.

This paper introduces the Conditional Diffusion with Nonlin-
ear Data Transformation Model (CN-Diff), a framework in-
corporating a nonlinear time-dependent learnable data trans-
formation into the forward process alongside the learnable
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condition. This modification results in a non-Markovian se-
ries of latent variables, each formed by transforming the data
and subsequently adding noise, which is learned through
the reverse process.

The main contributions of the present paper are as follows.

1. We introduce a nonlinear, time-dependent data trans-
formation along with a learnable condition for data
generation in the forward process for time series fore-
casting.

2. We develop an objective function based on a non-
Markovian learnable reverse generative process to train
CN-Diff.

3. Experimental results demonstrate that our model sur-
passes or matches the performance of other leading
time series forecasting models at the time of writing.

2. Preliminaries
2.1. Diffusion Model

Diffusion models are generative frameworks employing la-
tent variables. For a data sample x ∼ q(x), a forward
noising process produces latent variables x0, x1, x2, . . . , xT .
The reverse process aims to reconstruct x by generating the
same latent variables in reverse order.

In the standard diffusion model, the forward process fol-
lows a linear Gaussian Markov chain (Sohl-Dickstein et al.,
2015; Ho et al., 2020). In denoising diffusion probabilistic
models (DDPM), at step t, xt is generated by modifying
the previous state xt−1 (multiplied by

√
αt) with zero-mean

Gaussian noise and variance (1−αt), that is, q(xt|xt−1) =
N
(
xt;

√
αtx

t−1, (1− αt)I) . We derive the marginal dis-
tribution as q(xt|x) = N (xt;

√
ᾱtx, (1−ᾱt)I), where ᾱt is

defined as
∏t

s=1 αs. Hence, xt =
√
ᾱtx+

√
1− ᾱtϵ, with

ϵ ∼ N (0, I). Leveraging these marginal distributions, the
joint distribution for the latent variables x0, x1, x2, . . . , xT

is

q(x0:T |x) =
T∏

t=1

q(xt |xt−1) .

The forward process is typically fixed, lacking trainable
parameters, and it is designed so that q(x0|x) ≈ δ(x0 − x)
and q(xT |x) ≈ N (xT ; 0, I). If accessing q(xt−1|xt) were
feasible, we could sample from xT ∼ N (xT ; 0, I) and
reverse it to yield x0 ∼ q(x0) ≈ q(x). The distribution
q(xt−1|xt) depends implicitly on q(x), forming a complex
relationship. Hence, we approximate the reverse process
through a Markov chain adopting the form

pθ(x
0:T ) = p(xT )

T∏
t=1

pθ(x
t−1|xt),

with p(xT ) = N (xT ; 0, I). The integration of the forward
process q with the reverse process pθ is akin to a (hierar-
chical) variational autoencoder (Kingma, 2013a; Rezende
et al., 2014). During training, the standard variational bound
of the negative log-likelihood is minimized. In the case of
DDPM (Ho et al., 2020), the loss to be minimized is

L = Eq

[
DKL

(
q(xT |x) ∥ p(xT )

)︸ ︷︷ ︸
Lprior

− log pθ(x|x0)︸ ︷︷ ︸
Lrec

+

T∑
t=1

DKL

(
q(xt−1|xt, x) ∥ pθ(xt−1|xt)

)︸ ︷︷ ︸
Ldiff

]
.

Given the fixed nature of process q and distribution
pθ(x

T ) = p(xT ), the prior term Lprior can be disre-
garded as it does not depend on parameters θ. Since
log pθ(x|x0) is often modeled by a Gaussian distribution
with low variance, the reconstruction term Lrec also re-
mains unaffected by θ. Consequently, the diffusion term
Ldiff is the only part that the model parameters θ influ-
ence. Ldiff is the sum of Kullback–Leibler (KL) diver-
gences between the posterior distribution in the forward
process q(xt−1|xt, x) and the assumed normal distribu-
tion pθ(x

t−1|xt) = N (xt−1;µθ(x
t, t),Σθ(x

t, t)) in the re-
verse process. Here, the variance Σθ(x

t, t) is set to σ2
t I ,

while the mean µθ(x
t, t) is learned by a neural network

with parameters θ. This process is typically viewed as
a noise estimation or data prediction problem (Benny &
Wolf, 2022). To estimate noise, the network ϵθ forecasts the
noise in the diffused input xt and then computes µθ(x

t, t)

using the formula
(

1√
αt
xt − 1−αt√

1−ᾱt
√
αt
ϵθ(x

t, t)
)

. The
parameter θ is learned by minimizing the loss function
Lϵ = Ex,ϵ,t

[
∥ϵ− ϵθ(x

t, t)∥2
]
. Alternatively, in the data

prediction approach, a denoising network xθ is employed
to derive an estimate xθ(x

t, t) of the clean data x0 from xt,
and then set to

µθ(x
t, t) =

√
αt(1− ᾱt−1)

1− ᾱt
xt +

√
ᾱt−1βt

1− ᾱt
xθ(x

t, t) .

Here, the parameter θ is learned by minimizing the loss

Lx = Ex,ϵ,t

∥∥x− xθ(x
t, t)
∥∥2 .

For time series diffusion models, forecasting xθ has been
found to be more effective than predicting ϵθ, as shown in
(Feng et al., 2024; Shen & Kwok, 2023). Our work adopts
this method.

2.2. Conditional Diffusion models for time series
forecasting

In time series forecasting, the aim is to predict future values
x1:H ∈ Rd×H based on past observations x−L+1:0 ∈ Rd×L.
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(a) DDPM

(b) Conditional DDPM

(c) CN-Diff

Figure 1. Directed graphical models of (a)DDPM (b)Conditional
DDPM for time series and (c) CN-Diff

Here, L is the lookback window length, H is the forecast
window length, and d is the count of variables, with super-
scripts and subscripts indicating diffusion time steps and
time series values, respectively. When using conditional
diffusion models for time series prediction, the following
distribution is considered.

pθ(x
0:T
1:H |c) = pθ(x

T
1:H)

T∏
t=1

pθ(x
t−1
1:H |xt

1:H , c).

where xT
1:H ∼ N (0, I) and c represent the condition, which

changes depending on the specific models used (Rasul et al.,
2021; Shen & Kwok, 2023; Shen et al., 2024; Li et al.,
2024b). The procedure for denoising at step t is

pθ(x
t−1
1:H |xt

1:H , c) = N
(
xt−1
1:H ;µθ(x

t
1:H , t|c), σ2

t I)

During the inference process, the generated sample linked to
xt
1:H is denoted as x̂t

1:H . We start by setting x̂T
1:H as a noise

vector sampled from N (0, I). By repeatedly executing the
denoising step outlined in the above equation until reaching
t = 1, we derive the final generated sample, x̂1:H .

3. Methodology
Consider time series data x0:H = x0, x1, x2, . . . , xH ,
where each xi represents a vector with one or several vari-
ables with significant correlation between them at time i
(Liu et al., 2023). Current conditional diffusion models

for time series convert these correlated data distributions
into an isotropic Gaussian prior by adjusting data points
and progressively adding linear Gaussian noise to gener-
ate latent variables. Conditional generation is performed
only during the reverse process to help in learning these
latent variables. This method presents two issues: first, it
confines diffusion models during the forward process, ren-
dering them fixed and untrainable. Second, converting to a
simple isotropic Gaussian prior complicates data generation
during the reverse process. To address these challenges, we
propose CN-Diff, a nonlinear data transformation frame-
work that learns time-dependent distributions of latent space
and incorporates conditional distributions in the forward
process.

In what follows, first, we describe the nonlinear, time-
dependent data transformation devised for the forward pro-
cess. By integrating conditional information into the for-
ward formulation, we create a diffusion model specifically
designed for time series forecasting. Subsequently, we de-
rive the variational bound loss pertinent to this model. We
hypothesize that incorporating a more adaptable distribution
in the forward process can markedly decrease the dispar-
ity between the log-likelihood and the variational bound,
thereby enabling the model to more effectively capture tem-
poral dynamics and variable interrelationships. Furthermore,
embedding conditional information in the formulation aids
in synchronizing the prior distribution with the intrinsic
temporal dynamics seen in real-world data.

3.1. CN-Diff formulation and objective

Let us define the nonlinear time dependent data transforma-
tion of data for marginal distributions as

qϕ(x
t
1:H |x1:H) = N

(
xt
1:H ;

√
ᾱtTϕ(x1:H , t), (1− ᾱt)I

)
,

where Tϕ(x1:H , t) : Rd×H × [0, T ] 7→ Rd×H is a non-
linear neural operator parameterized by ϕ that applies a
time-dependent transformation to the data point x1:H . For
ease of notation, we replace x1:H with x in the following
discussion.

We now introduce a learnable condition to the forward pro-
cess, denoted c, inspired by a similar formulation used in
image diffusion (Pandey et al., 2022). Consequently, the
marginal distribution is (Figure 1):

qϕ(xt|x, c) = N (xt;
√
ᾱtTϕ(x, t)

+ (1−
√
ᾱt)c, (1− ᾱt)I) .

(1)

For t = T along with an appropriately regulated noise sched-
ule αt, ᾱT ≈ 0 results in qϕ(xT |x, c) ≈ N (c, I). Simply
put, the Gaussian N (c, I) serves as our learnable prior distri-
bution and inference requires executing our reverse process
on it.
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Algorithm 1 Training
Input: x(x1:H), x−L+1:0

repeat
ϵ ∼ N (0, I), t ∼ U [1, T ]
xt ∼ qϕ(xt|x, c)
Compute the loss in Eq. (4)
Take numerical optimization step on: ∇LCN-Diff

until until converged

Algorithm 2 Inference
xT ∼ N (c, I)
for t = T to 1 do

x̂ = x̂θ(xt, t, c)
xt−1 = ζ1xt + ζ2c − Tϕ(x̂, t)ζ1

√
ᾱt + Tϕ(x̂, t −

1)(ζ1
√
ᾱt + ζ0) + σ2

t−1|tϵ
end for
x̂ ∼ p(x|x0, c)

We get the following posterior distribution(
qϕ(xt−1|xt, x, c)

)
that satisfies Eq.(1):

xt−1 = ζ1xt + ζ2c

− Tϕ(x, t)ζ1
√
ᾱt

+ Tϕ(x, t− 1)(ζ1
√
ᾱt + ζ0) + σ2

t−1|tϵ

See Appendix A.1 for the detailed derivation.

Given that our forward process exhibits non-Markovian
characteristics(Eqn.7), employing a Markovian reverse pro-
cess is inadequate for accurately reconstructing the forward
process. We therefore define a framework that takes the
reverse process as non-Markovian which is one of many can
be taken. Our non-Markovian trainable reverse generative
process pθ(x0:T ) is as follows:

pθ(x0:T ) = p(xT )
T∏

t=1

pθ(xt−1|xt)pθ(x0|xt), (2)

where p(xT ) = N (xT ; c, I). (3)

For this choice, our Lemma A.1 shows that, this approach
results in a training objective analogous to that of DDPM
even without non linear transform.
Refer to Appendix A.1 for proof.

Consequently, the corresponding variational objective of
CN-Diff is represented by following form (Appendix A.2).

LCN-Diff = Eqϕ

[
DKL

(
qϕ
(
xT |x, c

)
∥p
(
xT |c

))︸ ︷︷ ︸
Lprior

−
T∑

t=1

log pθ
(
x|xt, c

)
︸ ︷︷ ︸

Lrec

+

T∑
t=1

DKL

(
qϕ
(
xt−1|xt, x, c

)
∥pθ

(
xt−1|xt, c

))
︸ ︷︷ ︸

Ldiff

]
.

(4)

Note that forward process is parametrized by ϕ by the trans-
formation Tϕ(.), making the objective different from (Ho

et al., 2020). Consequently, the prior and reconstruction
terms depend on ϕ, and therefore must be included in the
optimization process.

In the reverse process we approximate posteriors as,
pθ(xt−1|xt, c) ≈ qϕ(xt−1|xt, x̂θ(x

t, t), c). Thus, Ldiff and
Lprior are

Ldiff = DKL

(
qϕ(xt−1|xt, x, c)∥pθ(xt−1|xt, c)

)
=

1

2σ2
t−1|t

∥∥ζ1√ᾱt(Tϕ(x, t)− Tϕ(x̂θ(xt, t), t))−

(ζ1
√
ᾱt + ζ0)

(
Tϕ(x̂θ(xt, t− 1), t)− Tϕ(x, t− 1)

)∥∥2
2
,

Lprior = DKL

(
qϕ(xT |x)∥p(xT )

)
=

1

2
ᾱT ∥Tϕ(x, T )− c∥22 .

The complete derivation is given in Appendix A.3. It is
essential to distinguish between the objectives of DDPM
and CN-Diff. For DDPM, the objective is to accurately
predict only the original data point x. On the other hand,
CN-Diff is designed to predict the transformed data point
Tϕ(x, t) along with the original data point x. Despite this
modification, the optimization process for CN-Diff remains
simulation-free, thereby facilitating its efficient training
through KL divergence computed on samples at all time
steps. The procedures for both training and inference are
detailed in Algorithms 1 and 2.

4. Experiments
This section presents time series forecasting experiments
using CN-Diff and compares its performance against re-
cent deep neural models across nine popular real-world
datasets. We begin by describing the datasets, architectural
framework, and hyperparameters. We then present results
benchmarked against existing forecasting outcomes. An
ablation study follows to assess the unique components of
our CN-Diff model.
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Figure 2. An illustration of the CN-Diff architecture. During the training phase, historical data (x−L+1:0) is processed through a
conditional network, concatenated with noised data, and subsequently passed through the denoising network. During the inference phase,
the model initiates from (N (c, I)) and performs denoising to obtain (x̂0).

4.1. Experimental Setup

4.1.1. DATASET

We performed an experimental study on nine real-world
time series datasets for daily, weekly, and monthly forecasts
(Shen et al., 2024; Fan et al., 2022; Zhou et al., 2021; Wu
et al., 2021). These datasets are (1) Wind1 - wind power
data for 2020-2021 every 15 minutes; (2) Caiso2 - hourly
electricity loads over eight years from various California
regions; (3) Traffic3 - hourly road occupancy rates from
San Francisco Bay area sensors; (4) Electricity4- hourly
electricity use of 321 clients over two years; (5) Weather5 -
10-minute meteorological data for 2020-2021; (6) NorPool6

- eight years of hourly energy production data from various
European countries; (7) Exchange7 - daily exchange rates
for eight countries: Australia, United Kingdom, Canada,
Switzerland, China, Japan, New Zealand and Singapore (Lai
et al., 2018); (8) ETTh1 and (9) ETTm18 are benchmarks
for China’s electricity transformer temperature data, over
two years, ETTh1 reported hourly and ETTm1 every 15

1https://github.com/PaddlePaddle/
PaddleSpatial/tree/main/paddlespatial/
datasets/WindPower

2https://www.energyonline.com/Data/
3https://pems.dot.ca.gov/
4https://archive.ics.uci.edu/ml/datasets/

ElectricityLoadDiagrams20112014
5https://www.bgc-jena.mpg.de/wetter/
6https://data.nordpoolgroup.com/

power-system/production/
7https://github.com/laiguokun/

multivariate-time-series-data
8https://github.com/zhouhaoyi/ETDataset

minutes (Zhou et al., 2021). Additional details regarding
the dataset’s characteristics are available in Table 2.

Following (Shen et al., 2024), we adopt a
train:validation:test ratio of 7:1:2 for Exchange, Weather,
Wind, Traffic and Electricity data sets, and 6:2:2 for
ETTh1 and Ettm1 data sets. For Norpool, the training data
consists of observations before April 1, 2020; validation
data spans from April 1 to October 1, 2020; and testing
data is after October 1, 2020. For Caiso, the training set
includes data before January 1, 2020, the validation period
extends from January 1 to October 1, 2020, and the test
set is post-October 1, 2020. Given that data sets exhibit
different sampling intervals, we focus on prediction tasks
with suitable prediction lengths based on the characteristics
of the dataset (Shen & Kwok, 2023; Shen et al., 2024).

4.1.2. IMPLEMENTATION DETAILS

Our CN-Diff model is trained using the Adam optimizer
with a learning rate of 10−3. The training employs a batch
size of 64 and incorporates early stopping (maximum of 100
epochs). We use T = 100 diffusion steps with a quadratic
variance schedule beginning at β1 = 10−4 and progress-
ing to βT = 10−1. The length of the look-back window
is selected from the set {96, 192, 336, 720, 1440}, deter-
mined by performance evaluations on the validation dataset
averaged over ten runs. All experiments are executed on
a single Nvidia RTX A6000 GPU with 48GB of vRAM.
Figure 2 shows the architecture employed for the CN-Diff
model. For condition c, a single dense layer is used. For Tϕ,
two dense layers with tanh activation are used, one layer
handling the feature dimension and the other handling the

5
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Table 1. Multivariate prediction of MSEs on nine real-world time series datasets(subscripts is the rank). CSDI runs out of memory on
Traffic and Electricity. Results of all baselines are from (Shen et al., 2024)

Method NorPool Caiso Traffic Electricity Weather Exchange ETTh1 ETTm1 Wind Rank

Ours 0.531(1) 0.094(1) 0.374(2) 0.145(1) 0.296(1) 0.016(1) 0.405(1) 0.340(2) 0.988(5) 1.7

mr-Diff 0.645(3) 0.127(4) 0.474(7) 0.155(4) 0.296(1) 0.016(1) 0.411(4) 0.340(2) 0.881(1) 3.0
TimeDiff 0.665(5) 0.136(7) 0.564(8) 0.193(6) 0.311(3) 0.018(7) 0.407(2) 0.336(1) 0.896(2) 4.6
TimeGrad 1.152(21) 0.258(20) 1.745(23) 0.736(22) 0.392(15) 0.079(21) 0.993(23) 0.874(22) 1.209(22) 21.0
CSDI 1.011(20) 0.253(19) - - 0.356(10) 0.077(20) 0.497(8) 0.529(18) 1.066(10) 15.0
SSSD 0.872(13) 0.195(11) 0.642(12) 0.255(13) 0.349(9) 0.061(17) 0.726(19) 0.464(14) 1.188(20) 14.2

D3VAE 0.745(10) 0.241(18) 0.928(18) 0.286(16) 0.375(12) 0.200(23) 0.504(10) 0.362(9) 1.118(16) 14.7
CPF 1.613(24) 0.383(22) 1.625(22) 0.793(23) 1.390(24) 0.016(1) 0.730(20) 0.482(16) 1.140(18) 18.9
PSA-GAN 1.501(23) 0.510(24) 1.614(21) 0.535(21) 1.220(22) 0.018(7) 0.623(18) 0.537(19) 1.127(17) 19.1

N-Hits 0.716(8) 0.131(5) 0.386(3) 0.152(3) 0.323(5) 0.017(6) 0.498(9) 0.353(7) 1.033(7) 5.9
FiLM 0.723(9) 0.179(9) 0.628(11) 0.210(9) 0.327(6) 0.016(1) 0.426(6) 0.347(5) 0.984(4) 6.7
Depts 0.662(4) 0.106(3) 1.019(20) 0.319(18) 0.761(20) 0.020(10) 0.579(14) 0.380(11) 1.082(13) 12.6
NBeats 0.832(11) 0.141(8) 0.373(1) 0.269(14) 1.344(23) 0.016(1) 0.586(16) 0.391(12) 1.069(11) 10.8

Scaleformer 0.983(16) 0.207(14) 0.618(10) 0.195(7) 0.462(17) 0.036(13) 0.613(17) 0.481(15) 1.359(23) 14.7
PatchTST 0.851(12) 0.193(10) 0.831(17) 0.225(11) 0.782(21) 0.047(15) 0.526(12) 0.372(10) 1.077(12) 13.3
FedFormer 0.873(14) 0.205(12) 0.591(9) 0.238(12) 0.342(8) 0.133(22) 0.541(13) 0.426(13) 1.113(15) 13.1
Autoformer 0.940(15) 0.226(16) 0.688(16) 0.201(8) 0.360(11) 0.056(16) 0.516(11) 0.565(20) 1.083(14) 14.1
Pyraformer 1.008(19) 0.273(21) 0.659(13) 0.273(15) 0.394(16) 0.032(12) 0.579(14) 0.493(17) 1.061(9) 15.1
Informer 0.985(17) 0.251(17) 0.664(14) 0.298(17) 0.385(13) 0.073(19) 0.775(22) 0.673(21) 1.168(19) 17.7
Transformer 1.005(18) 0.206(13) 0.671(15) 0.328(19) 0.388(14) 0.062(18) 0.759(21) 0.992(23) 1.201(21) 18.0

SCINet 0.613(2) 0.095(2) 0.434(6) 0.171(5) 0.329(7) 0.036(13) 0.465(7) 0.359(8) 1.055(8) 6.4
NLinear 0.707(7) 0.135(6) 0.430(5) 0.147(2) 0.313(4) 0.019(9) 0.410(3) 0.349(6) 0.989(5) 5.2
DLinear 0.670(6) 0.461(23) 0.389(4) 0.215(10) 0.488(18) 0.022(11) 0.415(5) 0.345(4) 0.899(3) 9.3
LSTMa 1.481(22) 0.217(15) 0.966(19) 0.414(20) 0.662(19) 0.403(24) 1.149(24) 1.030(24) 1.464(24) 21.2

Table 2. Dataset characteristics
dataset dim #observations freq. H (steps)
NorPool 18 70,128 1 hour 1 month (720)
Caiso 10 74,472 1 hour 1 month (720)
Weather 21 52,696 10 mins 1 week (672)
ETTm1 7 69,680 15 mins 2 days (192)
Wind 7 48,673 15 mins 2 days (192)
Traffic 862 17,544 1 hour 1 week (168)
Electricity 321 26,304 1 hour 1 week (168)
ETTh1 7 17,420 1 hour 1 week (168)
Exchange 8 7,588 1 day 2 weeks (14)

forecast window dimension. More details of the code and
hyperparameters are in the Appendix B.

4.2. Main Results

Table 1 presents the mean squared errors (MSEs) in various
multivariate time series datasets. The data reveal that the
proposed CN-Diff method achieves superior performance
in 6 out of 9 datasets. In particular, the enhancement is
particularly pronounced in more complex datasets, namely
Norpool and ETTh1. In the remaining three datasets, CN-
Diff has Rank 2 in two cases, but only with a very narrow
margin with respect to Rank 1 for those data sets. For Wind,
CN-Diff achieves the fourth rank. The wind data set rep-
resents the highly volatile wind power data. The superior
performance of the multiresolution diffusion (mrDiff (rank

1 for wind)) model suggests that wind patterns need to be
analyzed at multiple time scales simultaneously. We be-
lieve that incorporating CN-Diff at multiple resolutions to
build multiresolution CN-Diff could help us to model such
datasets better.

Overall, the average ranking of the CN-Diff model is 1.7
showing its state-of-the-art performance. Section 5 has brief
descriptions of the other leading models.

Table 3 displays the mean squared errors (MSEs) for multi-
ple univariate time series datasets. The findings indicate that
the CN-Diff excels in four of nine datasets. In the other five
datasets, it secures second place in two instances. Overall,
the average ranking of the CN-Diff surpasses all other lead-
ing models. Additional results for the mean absolute error
(MAEs) are provided in Appendix D. Appendix F provides
a qualitative comparison with various models and includes
visualizations for different data sets. The visualizations
show that CN-Diff is capable of capturing seasonal patterns
without explicitly being trained to do so.

4.3. Qualitative analysis

Figure 3 illustrates the prediction results on ETTh1 gener-
ated by CN-Diff alongside three competitive models: In-
former, DLinear, and FiLM. It is evident that CN-Diff yields
predictions of superior quality compared to the other models.
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Table 3. Univariate prediction of MSEs on nine real-world time series datasets (subscript is rank). Results of all other models are from
(Shen et al., 2024).

Method NorPool Caiso Traffic Electricity Weather Exchange ETTh1 ETTm1 Wind Rank

Ours 0.606(2) 0.118(2) 0.126(4) 0.234(3) 0.002(1) 0.015(1) 0.066(1) 0.038(1) 2.171(3) 2.0

mr-Diff 0.667(5) 0.122(4) 0.119(1) 0.234(3) 0.002(1) 0.016(2) 0.066(1) 0.039(3) 2.182(5) 2.8
TimeDiff 0.636(3) 0.122(4) 0.121(2) 0.232(2) 0.002(1) 0.017(5) 0.066(1) 0.040(6) 2.407(14) 4.2
TimeGrad 1.129(23) 0.325(23) 1.223(24) 0.920(24) 0.002(1) 0.041(21) 0.078(11) 0.048(12) 2.530(19) 17.6
CSDI 0.967(22) 0.192(15) 0.393(21) 0.520(19) 0.002(1) 0.071(24) 0.083(16) 0.050(16) 2.434(16) 16.7
SSSD 1.145(24) 0.176(13) 0.151(9) 0.370(12) 0.004(12) 0.023(17) 0.097(21) 0.049(14) 3.149(23) 16.1

D3VAE 0.964(21) 0.521(24) 0.151(9) 0.535(20) 0.003(10) 0.019(13) 0.078(11) 0.044(10) 2.679(21) 15.4
CPF 0.855(16) 0.260(22) 0.279(19) 0.609(22) 0.002(1) 0.016(2) 0.080(14) 0.041(7) 2.430(15) 13.1
PSA-GAN 0.658(4) 0.150(8) 0.250(18) 0.273(8) 0.035(22) 0.020(14) 0.084(17) 0.051(17) 2.510(18) 14.0

N-Hits 0.739(10) 0.170(12) 0.147(8) 0.346(9) 0.002(1) 0.017(5) 0.089(18) 0.043(9) 2.406(13) 9.4
FiLM 0.707(8) 0.185(14) 0.198(14) 0.260(6) 0.007(15) 0.018(10) 0.070(4) 0.038(1) 2.143(2) 8.2
Depts 0.668(6) 0.107(1) 0.151(9) 0.380(15) 0.024(20) 0.020(14) 0.070(4) 0.046(11) 3.457(24) 11.6
NBeats 0.768(12) 0.125(6) 0.142(7) 0.378(14) 0.137(23) 0.016(2) 0.095(20) 0.048(12) 2.434(16) 12.4

Scaleformer 0.778(13) 0.232(17) 0.286(20) 0.361(10) 0.009(18) 0.035(20) 0.150(23) 0.078(23) 2.646(20) 18.2
PatchTST 0.595(1) 0.193(16) 0.177(13) 0.450(18) 0.026(21) 0.020(14) 0.106(22) 0.052(19) 2.698(22) 16.2
FedFormer 0.891(17) 0.164(10) 0.173(12) 0.376(13) 0.005(13) 0.050(23) 0.076(8) 0.065(22) 2.351(12) 14.4
Autoformer 0.946(20) 0.248(18) 0.473(22) 0.659(23) 0.003(10) 0.041(21) 0.081(15) 0.051(17) 2.349(11) 17.4
Pyraformer 0.933(19) 0.165(11) 0.136(5) 0.389(16) 0.020(19) 0.017(8) 0.076(8) 0.054(20) 2.279(7) 12.6
Informer 0.804(14) 0.250(19) 0.213(16) 0.363(11) 0.007(15) 0.023(17) 0.076(8) 0.049(14) 2.297(8) 13.6
Transformer 0.928(18) 0.250(19) 0.238(17) 0.430(15) 0.007(15) 0.018(10) 0.092(19) 0.058(21) 2.306(10) 16.0

SCINet 0.746(11) 0.154(9) 0.212(15) 0.272(7) 0.002(1) 0.018(10) 0.071(7) 0.039(3) 2.063(1) 7.1
NLinear 0.708(9) 0.147(7) 0.124(3) 0.231(1) 0.002(1) 0.017(5) 0.070(4) 0.039(3) 2.193(6) 4.3
DLinear 0.671(7) 0.118(2) 0.139(6) 0.244(5) 0.168(24) 0.017(5) 0.078(11) 0.041(7) 2.171(3) 7.8
LSTMa 0.836(15) 0.253(21) 1.032(23) 0.596(21) 0.005(13) 0.031(19) 0.167(24) 0.091(24) 2.299(9) 18.8

4.4. Ablation Study

To evaluate the individual effects of each component of the
CN-Diff model, we conducted various experiments. Initially,
we illustrate the impact of the introduction of the condition
c (Eqn.1), followed by an examination of the effects of the
nonlinear transformation.

In the condition ablation study (Table 4), we present the
forecast performance in terms of MSE and MAE when us-
ing only the diffusion model (DDPM (Ho et al., 2020)) and
when applying the condition only in the backward process,
which represents the standard conditional diffusion setting
for time series analysis). These numbers are compared with
the results with our CN-Diff conditional method, where the
condition is used in both forward and backward processes.
The MSE and MAE improve by 8% and 6% for ETTh1 (fea-
ture dimension of 7), 16% and 9% for electricity (feature
dimension of 321) and 21% and 16% for traffic (feature
dimension of 862). This clearly demonstrates that with an
increase in the feature dimension, the effect of our condition-
ing is enhanced while maintaining the same forecast window.
We can infer that, as the feature dimension increases, learn-
ing from an isotropic Gaussian prior becomes considerably
more challenging and CN-Diff solves this challenge.

For the ablation study on the time-dependent nonlinear data
transformation Tϕ, we consider four variations (Table 5): (i)
CN-Diff without introducing any nonlinear transformation;
nonlinear transformations (ii) only along the feature dimen-
sion, (iii) only along the look-back window dimension, and
(iv) along both dimensions. From variation (i) to (ii), the
MSE and MAE improved by 54% and 36% for ETTh1, 72%
and 52% for Electricity, 57% and 35% for Caiso and 51%
and 30% for Wind. From (i) to (iii), the improvements are
similar at 54% and 38% for ETTh1, 70% and 49% for Elec-
tricity, 25% and 8% for Caiso and 48% and 27% for Wind.
From (i) to (iv), an additional improvement is observed at
57% and 40% for ETTh1, 73% and 53% for Electricity, 61%
and 38% for Caiso and 53% and 31% for Wind. Clearly,
the incorporation of nonlinear data transformation in both
dimensions effectively captures the significant correlations
present within both the sequence and feature dimensions of
time series data.

We present a joint ablation study in Appendix E.1, examin-
ing the contributions due to variations of nonlinear transfor-
mation and CN-Diff condition. Additional ablation studies
for different diffusion parameters are found in Appendix
E.3, and for various look-back windows in Appendix E.2.
The results indicate a notable enhancement with each com-
ponent added to the diffusion model. Optimal performance
with varying diffusion parameters is attained at diffusion
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Figure 3. Visualizations of ETTh1 dataset predictions by (a)Informer(Zhou et al., 2021) (b)Dlinear(Zeng et al., 2023) (c)FiLM(Zhou et al.,
2022a) and (d) CN-Diff

Table 4. Predicting MSEs and MAEs for DDPM, conditional DDPM and CN-Diff condition

Methods Diff Cond Diff CN-Diff Cond

Datasets MSE MAE MSE MAE MSE MAE

ETTh1 1.748 0.927 1.030 0.746 0.943 0.704
Electricity 1.784 1.018 0.637 0.564 0.536 0.512

Traffic 1.794 0.885 1.071 0.573 0.848 0.479

noise steps T = 100 and an upper variance schedule of
βT = 0.1.

5. Related work
Time series forecasting is utilized in numerous aspects of
daily life, ranging from essential applications like traffic and
electricity monitoring, and healthcare (Liu et al., 2022b), to
more intricate uses such as predicting stock prices, weather,
and wind patterns (Shen & Kwok, 2023). Due to its wide
significance, research has advanced from traditional state
space models to contemporary deep learning methodologies.

Basis expansion has been utilized by several models for
time-series forecasting. FiLM (Zhou et al., 2022a) em-
ployed Fourier analysis and low-rank matrix approximation
to reduce noise, along with Legendre polynomial projection
to maintain historical data representations. NBeats (Ore-
shkin et al., 2019) is an interpretable architecture that com-
bines polynomial trend modeling with Fourier techniques
for detecting seasonality. Depts (Fan et al., 2022) builds on
NBeats by adding a periodicity module for periodic series,
while N-Hits (Challu et al., 2023) enhances the approach
using multi-scale hierarchical interpolation.

Models such as SCINet (Liu et al., 2022a) utilize a recursive

strategy involving downsampling, convolution, and inter-
action, to harness temporal dependencies in downsampled
subsequences. NLinear (Zeng et al., 2023) implements a
basic approach by normalizing the time series before using
a linear layer for prediction. DLinear (Zeng et al., 2023)
employs a seasonal-trend decomposition akin to Autoformer
(Wu et al., 2021).

Several models utilized the transformer (Vaswani, 2017b)
and its variations for time series prediction. Informer (Zhou
et al., 2021) used sparse attention to minimize computa-
tional load and employed a generative-style decoder for
rapid long-sequence forecasts in one forward pass. Auto-
former (Wu et al., 2021) substituted traditional self-attention
with an autocorrelation layer, while Fedformer (Zhou et al.,
2022b) incorporated frequency domain mapping through a
frequency-enhanced module. Pyraformer (Liu et al., 2022b)
introduced pyramidal attention for multi-resolution repre-
sentation, and Scaleformer (Shabani et al., 2023) adopted a
shared-weight multilevel forecasting approach, from broad
to fine scales. Inspired by vision transformers (Dosovitskiy
et al., 2020), PatchTST (Nie et al., 2023) partitions time
series data into subseries patches and uses self-supervised
pre-training to extract local semantic features, thus improv-
ing long-term prediction.
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Table 5. Predicting MSEs and MAEs by applying Nonlinear Transformations across different configurations

Methods Without Tϕ Feature dim Forecast window Both

Datasets MSE MAE MSE MAE MSE MAE MSE MAE

Electricity 0.536 0.512 0.150 0.246 0.160 0.260 0.145 0.243
ETTh1 0.943 0.704 0.429 0.447 0.430 0.439 0.405 0.421
Caiso 0.242 0.307 0.104 0.200 0.182 0.283 0.094 0.191
Wind 2.090 1.023 1.015 0.715 1.067 0.743 0.988 0.701

Recently, diffusion models have emerged as a promising
method for time series forecasting. TimeGrad (Rasul et al.,
2021) pioneered the use of conditional diffusion models,
leveraging autoregressive prediction informed by RNN
hidden states. CSDI (Tashiro et al., 2021), applies non-
autoregressive generation through self-supervised masking
but relies on dual transformers, facing boundary inconsisten-
cies and computational challenges with large datasets. SSSD
(Lopez Alcaraz & Strodthoff, 2023) aims to reduce CSDI’s
computational load using structured state-space models, but
it continues with masking-based conditioning, preserving
boundary issues. TimeDiff (Shen & Kwok, 2023) intro-
duced future mixup and autoregressive initialization within
an encoder-decoder scheme for denoising. TMDM (Li et al.,
2024b) integrates transformers with a diffusion process for
probabilistic multivariate time series forecasting. TimeDiT
(Cao et al., 2024) is a foundational model for time series,
which employed a transformer type architecture to capture
temporal dependencies and employs diffusion processes to
generate samples. mr-Diff(Shen et al., 2024) is a recent
study utilizing a multi-resolution strategy, incorporating
fine-to-coarse patterns as latent variables to aid in denois-
ing.

One step diffusion (Frans et al., 2024), a family of generative
models that use a single network and training phase to pro-
duce high-quality samples in a single or multiple sampling
steps in image diffusion. NDM(Bartosh et al., 2024) ap-
plies a non-linear time-dependent transformation for image
diffusion models with the Markovian reverse process. Poly-
diffuse (Chen et al., 2023) uses a guided diffusion model for
polygonal shape reconstruction, where the prior is learned
via guidance networks µ(x, t, i) and σ(x, t, i), which are in-
dependent of the condition. Also they have not incorporated
the condition in the forward process (ref. Fig. 3 [(Chen
et al., 2023)]). In contrast, our approach incorporates a con-
dition in forward formulation results in condition-dependent
prior. And our training procedure and loss function dif-
fers significantly, as polydiffuse uses separate stages for
prior learning and denoising. PriorGrad (Lee et al., 2021)
is diffusion-based generative model for speech synthesis,
which introduces a prior distribution based on data statis-
tics rather than a learned prior. While their reverse process
starts by sampling from N (0,Σ), our method samples from

N (c,Σ) as we include a learnable condition in the forward
process. These fundamental differences set our work apart
from the above.

6. Conclusion and Future work
This paper presents CN-Diff, a new framework for time
series forecasting that combines non-linear data transforma-
tion with conditional information in the forward process.
We have derived the variational loss for the diffusion model
from this framework. Our experiments indicate that CN-
Diff matches or surpasses the performance of top time series
models across nine real-world datasets. The avenues of fu-
ture work include adding an explicit seasonal trend diffusion
model, exploring different conditions using varied resolu-
tions, and metadata-based conditional generation. We also
plan to extend our model for imputation, telemetry-based
anomaly detection, and other engineering applications.
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A. Formal Derivations
A.1. Forward Posterior

Given:

qϕ(xt|x, c) = N (xt;
√
ᾱtTϕ(x, t) + (1−

√
ᾱt)c, (1− ᾱt)I) (5)

From (5), We can write,

xt =
√
ᾱtTϕ(x, t) + (1−

√
ᾱt)c+

√
1− ᾱtϵ

=
√
ᾱtTϕ(x, t) + (1−

√
ᾱt)c+

√
1− αtᾱt−1ϵ

=
√
ᾱtTϕ(x, t) + (1−

√
ᾱt)c+

√
1− αtϵ+

√
αt − αtᾱt−1ϵ

=
√
ᾱtTϕ(x, t) + (1−

√
ᾱt)c+

√
1− αtϵ+

√
αt

√
1− ᾱt−1ϵ

=
√
ᾱtTϕ(x, t) + (1−

√
ᾱt)c+

√
1− αtϵ+

√
αt

(
xt−1 −

√
ᾱt−1Tϕ(x, t− 1)− (1−

√
ᾱt−1)c

)
=

√
αtxt−1 +

√
ᾱt (Tϕ(x, t)− Tϕ(x, t− 1)) + (1−

√
αt)c+

√
1− αtϵ

(6)

By introducing nonlinear, time-dependent transformation of data, along with condition, results in a forward process that is
non-Markovian as:

qϕ(xt|xt−1, x, c) = N (xt;
√
αtxt−1 +

√
ᾱt (Tϕ(x, t)− Tϕ(x, t− 1)) + (1−

√
αt)c, (1− αt)I) (7)

From (7 and 5), Posterior distribution can be derived as:

qϕ
(
xt−1|xt, x, c

)
∝ qϕ(xt−1, xt, x, c)

qϕ(xt, x, c)

∝ qϕ(xt|xt−1, x, c)
qϕ(xt, x, c)

qϕ(xt−1, x, c)

∝ qϕ(xt|xt−1, x, c)qϕ(xt−1|x, c)

(8)

∝ exp

(
−1

2

((
xt −√

αtxt−1 −
√
ᾱt(Tϕ(x, t)− Tϕ(x, t− 1))− (1−√

αt)c
)2

1− αt

+

(
xt−1 −

√
ᾱt−1Tϕ(x, t− 1)− (1−

√
ᾱt−1)c

)2
1− ᾱt−1

))

∝ exp

(
−1

2

(
(

αt

1− αt
+

1

1− ᾱt−1
)(xt−1)2

−
(
2
√
αtxt−1(xt −

√
ᾱt(Tϕ(x, t)− Tϕ(x, t− 1))− (1−√

αt)c
)

1− αt

− 2xt−1

1− ᾱt−1

(√
ᾱt−1Tϕ(x, t− 1) + (1−

√
ᾱt−1)c

)))
(9)

By reformulating the above propotional form, akin to normal distribution, we can see that,

qϕ(xt−1|xt, x, c) = N (xt−1;µt−1|t, σ
2
t−1|tI) (10)

Where,

µt−1|t =

(√
αtxt −

√
ᾱt
√
αt(Tϕ(x, t)− Tϕ(x, t− 1))−√

αt(1−
√
αt)c

1− αt
+

√
ᾱt−1Tϕ(x, t− 1) + (1−

√
ᾱt−1)c

1− ᾱt−1

)
σ2
t−1|t

(11)
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σ2
t−1|t =

(1− αt)(1− ᾱt−1)

1− ᾱt

(12)

Mean(µt−1|t) can be simplified as,

µt−1|t =

(√
αtxt −

√
ᾱt
√
αt(Tϕ(x, t)− Tϕ(x, t− 1))−√

αt(1−
√
αt)c

(1− αt)

(1− αt)(1− ᾱt−1)

1− ᾱt

+

√
ᾱt−1Tϕ(x, t− 1) + (1−

√
ᾱt−1)c

(1− ᾱt−1)

(1− αt)(1− ᾱt−1)

1− ᾱt

)
=
(√

αtxt −
√
ᾱt
√
αt(Tϕ(x, t)− Tϕ(x, t− 1))−

√
αt(1−

√
αt)c

) (1− ᾱt−1)

1− ᾱt

+
(√

ᾱt−1Tϕ(x, t− 1) + (1−
√
ᾱt−1)c

) (1− αt)

1− ᾱt

(13)

µt−1|t = ζ1xt + ζ2c− Tϕ(x, t)ζ1
√
ᾱt + Tϕ(x, t− 1)(ζ1

√
ᾱt + ζ0)

Where,

ζ0 =
1− αt

1− ᾱt

√
ᾱt−1; ζ1 =

(1− ᾱt−1)

1− ᾱt

√
αt; ζ2 =

(
1 +

(
√
ᾱt − 1)(

√
αt +

√
ᾱt−1)

1− ᾱt

)
;

A.2. Loss Formulation

Although our intention was not to explicitly make the forward process non-Markovian, our formulation has resulted in a
non-Markovian forward process Eq.7. So, we can make use of joint distribution from DDIM (Song et al., 2020) as:

q(x0:T |x) = q(xT |x)
T∏

t=1

q(xt−1|xt, x),

Next, we define Non-Markovian trainable generative process pθ(x0:T ) as:

pθ(x
0:T ) = p(xT )

T∏
t=1

pθ(x
t−1|xt)pθ(x

0|xt), (14)

where p(xT ) = N (xT ; 0, I). (15)

This formulation is similar to Equation (55) in DDIM (Song et al., 2020). However, the objective in the referenced work is
to minimize the number of sampling time steps; therefore, certain time steps are employed for image generation, and others
are included in the variational objective, ultimately demonstrating that the loss formulation aligns with DDPM.

Our definition of trainable reverse generative process (15) is a result of introducing a nonlinear transformation in the marginal
distribution, which makes it challenging to learn from the reverse Markovian process. However, even without non-linearity,
the resulting loss will be similar to that of DDPM, (Refer Lemma A.1)

Now, by incorporating this into our variational loss term, the variational loss is given as:

Eqϕ

[
DKL

(
qϕ
(
xT |x, c

)
∥p
(
xT |c

))︸ ︷︷ ︸
Lprior

−
T∑

t=1

log pθ
(
x|xt, c

)
︸ ︷︷ ︸

Lrec

+

T∑
t=1

DKL

(
qϕ
(
xt−1|xt, x, c

)
∥pθ

(
xt−1|xt, c

))
︸ ︷︷ ︸

Ldiff

]
.

(16)
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Lemma A.1. For pθ(x0:T ) defined in Eq. 15, variational lower bound results in DDPM training objective.
Proof. Based on (Ho et al., 2020), the variational objective (Jxθ

) can be expressed as follows:

Jxθ
= Eq

[
log q(x1:T | x0)− log pθ(x

0:T )
]

= Eq

[
log q(xT |x0) +

T∑
t=1

log q(xt−1|xt, x0)−
T∑

t=1

log pθ(x
t−1|xt)−

T∑
t=1

log pθ(x
0|xt)− log pθ(x

T )

]

= Eq

DKL

(
q(xT |x0) ∥ p(xT )

)︸ ︷︷ ︸
Lprior

+

T∑
t=1

DKL

(
q(xt−1|xt, x0) ∥ pθ(xt−1|xt)

)
︸ ︷︷ ︸

Ldiff

+ Eq

[
−

T∑
t=1

log pθ(x
0|xt)

]
︸ ︷︷ ︸

Lrec

= Lprior +

T∑
t=1

Eq

[
1

2σ̄2
t

∥∥x0 − xθ(x
t, t)
∥∥2]+ T∑

t=1

Eq

[
1

2σ2
t

∥∥x0 − xθ(x
t, t)
∥∥2]

≈
∥∥x0 − xθ(x

t, t)
∥∥2︸ ︷︷ ︸

LDDPM

(17)

Therefore, When predicting x0, with a trainable non markovian reverse process defined in Eq. 15 will result in DDPM
training objective.

A.3. Variational Objective

To calculate the diffusion term Ldiff of the objective (4), we need to compute the KL divergence between the for-
ward posterior distribution qϕ(xt−1|xt, x, c) and the reverse distribution pθ(xt−1|xt, c). Since we use parameterization
pθ(xt−1|xt, c) = qϕ(xt−1|xt, x̂θ(x

t, t), c), both of these distributions are normal distributions with the same variance, so we
can evaluate the KL divergence between them analytically as follows:

DKL

(
qϕ(xt−1|xt, x, c)∥pθ(xt−1|xt, c)

)
=

1

2σ2
t−1|t

∥∥ζ1√ᾱt(Tϕ(x, t)− Tϕ(x̂θ(xt, t), t))− (ζ1
√
ᾱt + ζ0)

(
Tϕ(x̂θ(xt, t− 1), t)− Tϕ(x, t− 1)

)∥∥2
2
. (18)

We can compute the prior term as follows:

DKL

(
qϕ(xT |x, c)∥p(xT |c)

)
=

1

2

[
log

|I|
σ2
T I

− d+ Tr{I−1σ2
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∥∥√ᾱTTϕ(x, T ) + (1−
√
ᾱT )c− c

∥∥2
2

]
=

1

2

[
−d log σ2

T + dσ2
T +

∥∥√ᾱTTϕ(x, T )−
√
ᾱT c

∥∥2
2

]
=

1

2

(
d
(
σ2
T − log σ2

T − 1
)
+ ᾱT ∥Tϕ(x, T )− c∥22

)
.

=
1

2
ᾱT ∥Tϕ(x, T )− c∥22 .

(19)

The reconstruction term is considered for all latent variables similar to VAE(Kingma, 2013b)

B. Implementation Details
The MLP modules within the embeddings of the condition and noised input, as well as the decoder, are from TiDE (Das
et al., 2023a). This MLP framework is acknowledged as an effective component for universal time series analysis models
(Das et al., 2023b). The encoder employs the diffusion transformer block (DiT), with the diffusion time step adjusted by
adaptive layer normalization (Peebles & Xie, 2023; Esser et al., 2024). Hyperparameters are tuned specifically regarding
embedding layers, encoder layers, and hidden dimensions while other hyperparameters remain constant as detailed in
Section 4.1.2. Optimal hyperparameters are selected via cross-validation and summarized for various datasets in Table B.
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Table 6. Best hyperparameters for different datasets

datasets hidden dimension embedding layers encoder layers

NorPool 256 1 2
Caiso 128 1 2

Weather 64 1 1
ETTm1 512 1 1
Wind 512 1 1
Traffic 64 2 2

Electricity 256 2 1
ETTh1 256 2 3

Exchange 64 2 1

C. Baselines
We have thoroughly benchmarked our CN-Diff model against 23 baseline models using a variety of methodologies, from
basis expansion techniques to diffusion models. These include: (i) diffusion-based models (Shen et al., 2024; Shen & Kwok,
2023; Rasul et al., 2021; Tashiro et al., 2021; Lopez Alcaraz & Strodthoff, 2023); (ii) basis expansion methods such as
those detailed in (Challu et al., 2023; Zhou et al., 2022a; Fan et al., 2022; Oreshkin et al., 2019); (iii) alternative generative
techniques like GAN and VAE as noted in (Li et al., 2022a; Rangapuram et al., 2023; Jeha et al., 2022). We also evaluated
CN-Diff against transformers (Shabani et al., 2023; Nie et al., 2023; Zhou et al., 2022b; Wu et al., 2021; Liu et al., 2022b;
Zhou et al., 2021; Vaswani, 2017b) and other deep learning approaches (Liu et al., 2022a; Zeng et al., 2023; Bahdanau et al.,
2015). Note that we don’t implement these baseline models. Instead, we rely on the reported numbers in literature.

D. Results of MAE
Tables 8 and 9 present the mean absolute error (MAE) results for multivariate and univariate time series forecasting
tasks. It is evident that CN-Diff continues to demonstrate a superior overall performance for MAE as the evaluation
metric. The average rank difference for multivariate is significant, but for univariate, it is almost comparable to mr-Diff.
Furthermore, acknowledging that the performance of deep models in time series forecasting can be affected by various
random initializations, Table 7 illustrates the prediction results for univariate time series in five distinct random runs.

Table 7. Univariate prediction errors of CN-Diff obtained on five runs.

Exchange ETTh1 Weather Electricity
MSE MAE MSE MAE MSE MAE MSE MAE

0 0.0152 0.0933 0.0660 0.1991 0.0025 0.0342 0.2370 0.3465
1 0.0154 0.0934 0.0649 0.1975 0.0021 0.0341 0.2268 0.3387
2 0.0153 0.0936 0.0656 0.1985 0.0025 0.0343 0.2289 0.3426
3 0.0161 0.0950 0.0670 0.2001 0.0027 0.0349 0.2393 0.3431
4 0.0157 0.0943 0.0644 0.1977 0.0024 0.0346 0.2392 0.3429

mean 0.0155 0.0939 0.0656 0.1986 0.0024 0.0344 0.2342 0.3427
std deviation 0.0004 0.0007 0.0010 0.0010 0.0002 0.0003 0.0059 0.0027
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Table 8. Multivariate prediction of MAEs on nine real-world time series datasets(subscripts is the rank). CSDI runs out of memory on
Traffic and Electricity. Results of all baselines are from (Shen et al., 2024)

NorPool Caiso Traffic Electricity Weather Exchange ETTh1 ETTm1 Wind Rank

Ours 0.554(1) 0.191(1) 0.270(4) 0.243(2) 0.324(2) 0.079(1) 0.421(2) 0.378(5) 0.701(4) 2.4

mr-Diff 0.604(3) 0.219(4) 0.320(6) 0.252(4) 0.324(2) 0.082(4) 0.422(3) 0.373(2) 0.675(1) 3.2
TimeDiff 0.611(4) 0.234(7) 0.384(9) 0.305(7) 0.312(1) 0.091(8) 0.430(4) 0.372(1) 0.687(3) 4.9
TimeGrad 0.821(20) 0.339(19) 0.849(23) 0.630(22) 0.381(15) 0.193(20) 0.719(23) 0.605(23) 0.793(22) 20.8
CSDI 0.777(18) 0.345(20) - - 0.374(13) 0.194(21) 0.438(6) 0.442(16) 0.741(11) 15.0
SSSD 0.753(14) 0.295(11) 0.398(14) 0.363(13) 0.350(9) 0.127(13) 0.561(18) 0.406(11) 0.778(19) 13.6

D3 VAE 0.692(10) 0.331(17) 0.483(18) 0.372(15) 0.380(14) 0.301(23) 0.502(15) 0.391(9) 0.779(20) 15.7
CPF 0.889(22) 0.424(22) 0.714(22) 0.643(23) 0.781(24) 0.082(4) 0.597(21) 0.472(17) 0.757(16) 19.0
PSA-GAN 0.890(23) 0.477(23) 0.697(21) 0.533(21) 0.578(23) 0.087(7) 0.546(17) 0.488(19) 0.756(14) 18.7

N-Hits 0.643(8) 0.221(5) 0.268(2) 0.245(3) 0.335(5) 0.085(6) 0.480(9) 0.388(7) 0.734(9) 6.0
FiLM 0.646(9) 0.278(9) 0.398(14) 0.320(9) 0.336(6) 0.079(1) 0.436(5) 0.374(3) 0.717(6) 6.9
Depts 0.611(4) 0.204(3) 0.568(20) 0.401(18) 0.394(17) 0.100(10) 0.491(13) 0.412(13) 0.751(13) 12.3
NBeats 0.832(21) 0.235(8) 0.265(1) 0.370(14) 0.420(18) 0.081(3) 0.521(16) 0.409(12) 0.741(11) 11.6

Scaleformer 0.769(17) 0.310(13) 0.379(8) 0.304(6) 0.438(19) 0.138(15) 0.579(20) 0.475(18) 0.864(23) 15.4
PatchTST 0.710(11) 0.293(10) 0.411(17) 0.348(12) 0.555(22) 0.147(16) 0.489(12) 0.392(10) 0.720(7) 13.0
FedFormer 0.744(12) 0.317(14) 0.385(10) 0.341(11) 0.347(8) 0.233(22) 0.484(10) 0.413(14) 0.762(17) 13.1
Autoformer 0.751(13) 0.321(15) 0.392(13) 0.313(8) 0.354(10) 0.167(17) 0.484(10) 0.496(20) 0.756(14) 13.3
Pyraformer 0.781(19) 0.371(21) 0.390(11) 0.379(16) 0.385(16) 0.112(12) 0.493(14) 0.435(15) 0.735(10) 14.9
Informer 0.757(15) 0.336(18) 0.391(12) 0.383(17) 0.364(11) 0.192(19) 0.605(22) 0.542(21) 0.772(18) 17.0
Transformer 0.765(16) 0.321(15) 0.410(16) 0.405(19) 0.370(12) 0.178(18) 0.567(19) 0.592(22) 0.785(21) 17.6

SCINet 0.601(2) 0.193(2) 0.335(7) 0.280(5) 0.344(7) 0.137(14) 0.463(8) 0.389(8) 0.732(8) 6.8
NLinear 0.636(6) 0.223(6) 0.293(5) 0.239(1) 0.328(4) 0.091(8) 0.418(1) 0.375(4) 0.706(5) 4.4
DLinear 0.640(7) 0.497(24) 0.268(2) 0.336(10) 0.444(20) 0.102(11) 0.442(7) 0.378(5) 0.686(2) 9.8
LSTMa 0.974(24) 0.305(12) 0.510(19) 0.444(20) 0.501(21) 0.534(21) 0.782(24) 0.699(24) 0.897(24) 21.0

Table 9. Univariate prediction of MAEs on nine real-world time series datasets(subscripts is the rank). Results of all baselines are from
(Shen et al., 2024)

Method NorPool Caiso Traffic Electricity Weather Exchange ETTh1 ETTm1 Wind Rank

Ours 0.590(1) 0.206(2) 0.206(3) 0.343(4) 0.034(4) 0.094(1) 0.199(2) 0.149(1) 1.168(2) 2.2

mr-Diff 0.609(3) 0.212(5) 0.197(2) 0.332(1) 0.032(1) 0.094(1) 0.196(1) 0.149(1) 1.168(2) 1.9
TimeDiff 0.613(4) 0.209(4) 0.207(4) 0.341(3) 0.035(5) 0.102(8) 0.202(3) 0.154(7) 1.209(6) 4.9
TimeGrad 0.841(24) 0.386(23) 0.894(24) 0.898(24) 0.036(7) 0.155(22) 0.212(9) 0.167(13) 1.239(12) 17.6
CSDI 0.763(21) 0.282(15) 0.468(21) 0.540(20) 0.037(8) 0.200(24) 0.221(13) 0.170(15) 1.218(8) 16.1
SSSD 0.770(22) 0.263(13) 0.226(7) 0.403(9) 0.041(12) 0.118(17) 0.250(21) 0.169(14) 1.356(23) 15.3

D3VAE 0.774(23) 0.613(24) 0.237(10) 0.539(19) 0.039(10) 0.107(14) 0.221(13) 0.160(10) 1.321(20) 15.9
CPF 0.710(16) 0.338(19) 0.385(20) 0.592(22) 0.035(5) 0.094(1) 0.221(13) 0.153(6) 1.256(13) 12.8
PSA-GAN 0.623(6) 0.250(9) 0.355(18) 0.373(7) 0.139(23) 0.109(15) 0.225(17) 0.174(17) 1.287(17) 14.3

N-Hits 0.646(8) 0.276(14) 0.232(8) 0.419(10) 0.033(2) 0.100(6) 0.228(18) 0.157(9) 1.256(13) 9.8
FiLM 0.654(10) 0.290(16) 0.315(15) 0.362(6) 0.069(15) 0.104(11) 0.210(7) 0.149(1) 1.189(4) 9.4
Depts 0.616(5) 0.205(1) 0.241(11) 0.434(13) 0.102(20) 0.106(13) 0.202(3) 0.165(11) 1.472(24) 11.2
NBeats 0.671(11) 0.228(6) 0.225(6) 0.439(14) 0.130(22) 0.096(4) 0.242(19) 0.165(11) 1.236(10) 11.4

Scaleformer 0.687(13) 0.320(17) 0.375(19) 0.430(11) 0.083(18) 0.148(20) 0.302(23) 0.210(23) 1.348(22) 18.4
PatchTST 0.590(1) 0.260(12) 0.269(12) 0.478(18) 0.098(19) 0.111(16) 0.260(22) 0.174(17) 1.338(21) 15.3
FedFormer 0.725(18) 0.254(10) 0.278(13) 0.453(15) 0.057(14) 0.168(23) 0.212(9) 0.195(21) 1.271(15) 15.3
Autoformer 0.755(20) 0.339(20) 0.495(22) 0.623(23) 0.040(11) 0.152(21) 0.220(12) 0.174(17) 1.319(19) 18.3
Pyraformer 0.747(19) 0.257(11) 0.215(5) 0.455(16) 0.107(21) 0.104(11) 0.211(8) 0.179(20) 1.284(16) 13.1
Informer 0.698(14) 0.345(21) 0.308(14) 0.433(12) 0.069(15) 0.118(17) 0.212(9) 0.172(16) 1.236(10) 14.1
Transformer 0.723(17) 0.345(21) 0.336(17) 0.469(17) 0.071(17) 0.103(10) 0.247(20) 0.196(22) 1.212(7) 16.4

SCINet 0.653(9) 0.244(8) 0.322(16) 0.377(8) 0.037(8) 0.101(7) 0.205(6) 0.150(5) 1.167(1) 7.6
NLinear 0.637(7) 0.238(7) 0.192(1) 0.334(2) 0.033(2) 0.097(5) 0.203(5) 0.149(1) 1.197(5) 3.9
DLinear 0.671(11) 0.206(2) 0.236(9) 0.348(5) 0.310(24) 0.102(8) 0.222(16) 0.155(8) 1.221(9) 10.2
LSTMa 0.707(15) 0.333(18) 0.757(22) 0.557(21) 0.053(13) 0.136(19) 0.332(24) 0.239(24) 1.298(18) 19.3
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E. Ablations
In this section, we present ablation studies for various hyperparameters, beginning with an examination of different
components within CN-Diff, as well as the look-back window, diffusion time steps, and Gaussian variance schedule.

E.1. Architecture components

Table E.1 presents an analysis of the various components integrated into CN-Diff. Beginning with DDPM (Ho et al., 2020),
we provide results that illustrate the effects of incorporating only non-linearity, the conditional aspect independently, and the
combined integration of both into the DDPM, evaluated across multiple datasets.

Table 10. Predicting MSE and MAE for different components of CN-Diff for Multivariate forecasting (improvement relative to Diffusion
is denoted within brackets.)

Methods Diffusion + Tϕ + CN-Diff Cond All (CN-Diff)

Datasets MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 1.748 0.927 1.320(25%) 0.730(21%) 0.943(46%) 0.704(24%) 0.405(77%) 0.421(55%)
Exchange 0.090 0.219 0.016(82%) 0.080(63%) 0.021(60%) 0.101(54%) 0.015(83%) 0.079(64%)

Caiso 0.586 0.553 0.403(31%) 0.433(22%) 0.242(59%) 0.307(44%) 0.094(84%) 0.191(65%)
Norpool 1.819 1.047 1.441(42%) 0.918(12%) 1.142(37%) 0.814(22%) 0.531(71%) 0.554(47%)

Electricity 1.824 1.030 1.597(12%) 0.951(8%) 0.536(71%) 0.512(50%) 0.145(92%) 0.243(76%)
Traffic 1.794 0.885 1.397(22%) 0.799(10%) 0.848(53%) 0.479(46%) 0.374(79%) 0.270(70%)

E.2. Look back Window

Table E.2 presents the prediction MSE and MAE for CN-Diff utilizing various lengths of the lookback window. The
values considered are L = {96, 192, 336, 720, 1440}. It is evident that on the datasets Electricity, ETTh1, and weather
(corresponding to 168-step, 168-step, and 672-step-ahead predictions, respectively), satisfactory performance is achieved
when L is set to 336 or higher.

Table 11. Predicting MSE and MAE for different Lookback windows(L) for Multivariate forecasting

Look back window 96 192 336 720 1440

Datasets MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 0.433 0.437 0.426 0.437 0.405 0.421 0.434 0.448 0.440 0.452
Weather 0.530 0.503 0.347 0.367 0.339 0.354 0.307 0.335 0.296 0.324

Electricity 0.167 0.262 0.152 0.248 0.149 0.246 0.148 0.246 0.145 0.243

E.3. Diffusion Parameters

Diffusion steps, denoted as T, is a critical parameter. Table E.3 presents the MSE and MAE of CN-Diff as a function of T. It
is evident that establishing T = 100 results in consistent performance in all three datasets examined. This observation is
consistent with the findings in (Li et al., 2022b), which suggest that a minimal value of T may result in incomplete diffusion,
while an excessively large K might lead to superfluous computational overhead.(For all datasets analyzed, the best length of
the look-back window was considered.)

The variance of Gaussian noise βk, is formulated through the implementation of a quadratic variance schedule. In the
present study, the variable βT is varied within the set {0.001, 0.01, 0.1, 0.9}, while β1 is maintained at a constant value of
10−4. As evidenced in Table E.3, optimizing the parameter setting βT = 0.1 consistently results in enhanced performance.
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Table 12. Predicting MSE and MAE for different diffusion noise steps(T ) for Multivariate forecasting

Noise Steps 50 100 200 500

Datasets MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 0.415 0.431 0.405 0.421 0.409 0.426 0.422 0.437
Weather 0.299 0.330 0.296 0.324 0.325 0.360 0.362 0.378

Electricity 0.145 0.244 0.145 0.243 0.145 0.243 0.147 0.244

Table 13. Predicting MSE and MAE for different variance upper bound (βT ) for Multivariate forecasting

βT 0.001 0.01 0.1 0.9

Datasets MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 0.807 0.656 0.462 0.463 0.405 0.421 0.425 0.438
Weather 0.312 0.347 0.340 0.375 0.296 0.324 0.357 0.373

Electricity 1.745 0.986 0.243 0.345 0.145 0.243 0.146 0.243

F. Qualitative analysis
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Figure 4. Visualization of CN-Diff forecasts across various datasets

The qualitative analysis presented in Figure 4 demonstrates the forecasting capabilities of our CN-Diff model across four
diverse datasets: Weather, Caiso, Electricity, and Norpool. These visualizations provide strong evidence of the model’s
effectiveness in capturing temporal patterns and generating accurate predictions across varying domains. In Figure 4(a), the
Weather dataset results show CN-Diff successfully tracking the overall trend and seasonal patterns, with predictions (green
line) closely following the ground truth (blue line). For the Caiso dataset in Figure 4(b), the model effectively captures the
high-frequency oscillations that characterize this time series, with particularly strong alignment between the predicted and
actual values in the latter portions of the sequence. The Electricity dataset results in Figure 4(c) further illustrate CN-Diff’s
ability to model periodic patterns with consistent amplitude and frequency matching the ground truth. Finally, Figure 4(d)
showcases results on the Norpool dataset, where our model accurately predicts the irregular fluctuations and demonstrates
robustness to the dataset’s inherent volatility.
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G. Computational analysis
We present the computational cost analysis to compare our model with other diffusion-based time series forecasting methods.
Refer to the tables for training (Table:14) and inference (Table:15) comparisons (Results for other baselines are taken from
(Shen et al., 2024)). Note that, SSSD utilizes structural state-space-based diffusion layers along with multiple dense layers;
while TimeGrad leverages RNN hidden states; TimeDiff incorporates future mean and autoregressive initialization; and
mr-Diff employs multiple diffusion models. In contrast, our innovation lies in the diffusion formulation rather than in the
architectural modifications. Both key components we introduced, the nonlinear transform (Tϕ(·)) and the condition network,
consist of simple linear layers with an activation function. This design choice allows us to achieve greater computational
efficiency compared to existing diffusion models for time series forecasting, and this can be realized by the table below.

Table 14. Training time (ms) for different models and sequence lengths (H) for ETTh1 univariate.

H = 96 H = 168 H = 192 H = 336 H = 720

CN-Diff 0.21 0.26 0.27 0.31 0.39
mr-Diff 0.59 0.69 0.71 0.74 0.82
TimeDiff 0.71 0.75 0.77 0.82 0.85
TimeGrad 2.11 2.42 3.21 4.22 5.93
CSDI 5.72 7.09 7.59 10.59 17.21
SSSD 16.98 19.34 22.64 32.12 52.93

Table 15. Inference time (ms) for different models and sequence lengths (H) for ETTh1 univariate.

Model Trainable Params H = 96 H = 168 H = 192 H = 336 H = 720

CN-Diff 1.1M 6.2 6.7 6.9 7.8 9.1
mr-Diff 1.4M 12.5 14.3 14.9 16.8 27.5
TimeDiff 1.7M 16.2 17.3 17.6 26.5 34.6
TimeGrad 3.1M 870.2 1620.9 1854.5 3119.7 6724.1
CSDI 10M 90.4 128.3 142.8 398.9 513.1
SSSD 32M 418.6 590.2 645.4 1054.2 2516.9

H. Additional Results
H.1. Additional Datasets

In order to further validate our approach, we have carried out supplementary experiments employing multivariate synthetic
data. This data utilizes Gaussian process kernels as described by (Taga et al., 2025). Additionally, we incorporated the
CSI-300 dataset, which represents the price-weighted average index of 300 prominent companies listed on the Shanghai
and Shenzhen Stock Exchanges, as cited in (Jia et al., 2024). The results of these experiments, detailed in Table 16 below,
indicate that our model achieves a higher level of performance when benchmarked against other existing models.

Table 16. Performance comparison of CN-Diff across models on Stock and Synthetic datasets using MSE and MAE metrics.
Model Stock (MSE) Stock (MAE) Synthetic (MSE) Synthetic (MAE)
CN-Diff 0.020 0.109 0.722 0.308
Autoformer 0.058 0.190 0.767 0.339
PatchTST 0.028 0.129 0.771 0.345
FiLM 0.040 0.159 0.752 0.319
DLinear 0.044 0.170 0.747 0.311
CSDI 0.037 0.169 0.809 0.506
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H.2. Additional Models

In our experiments, we have compared our method with CPF(Rangapuram et al., 2023), a model using Graph Neural
Networks. To further strengthen our analysis, we now incorporate a comparison with SageFormer(Zhang et al., 2024) as well,
which is a series-aware graph-enhanced Transformer model for time series forecasting. The table below17 demonstrates
CN-Diff’s superiority over graph-based methods in time series forecasting.

Table 17. Comparison of Model Performance Metrics across different Datasets
Dataset CN-Diff (MSE/MAE) Sage Former (MSE/MAE)
ETTm1 0.340 / 0.378 0.370 / 0.388
Electricity 0.145 / 0.243 0.159 / 0.255
Stock 0.020 / 0.109 0.030 / 0.135
Exchange 0.016 / 0.079 0.016 / 0.081
ETTh1 0.405 / 0.421 0.421 / 0.419
Weather 0.296 / 0.324 0.324 / 0.344

H.3. Analysis of Non-linear Transformation(Tϕ(.))

In Table 5 and E.1, we have shown empirical evidence through the ablation results presented that CN-Diff performs better
than the ablation run without Tϕ. To understand what is learned by Tϕ, we take a trained model and explore the correlation
between the features in the learned latent representation space of Tϕ(x, t) at different diffusion model timesteps. We
observed that there are increasing correlations between the features in learned latent space at different timesteps as shown in
tables below. Thus, we hypothesize that this increased correlation and time-dependent adaptability perhaps facilitate a more
effective diffusion process for time series forecasting. Similar observations of correlation in latent space that help diffusion
models have been made in image and video diffusion works (Ge et al., 2023).

In the space of diffusion models for time series, paper (Tashiro et al., 2021) has noted that learning the correlation between
feature and temporal space is necessary for time series imputation tasks. We will add these to the discussion in the ablation
study section in the revision.

Table 18. Feature Correlation Matrix for Actual input(ETTh1 dataset)

Features 0 1 2 3 4 5 6

0 1.00 0.08 0.99 0.07 0.22 -0.20 -0.19
1 0.08 1.00 0.08 0.94 0.05 0.22 -0.06
2 0.99 0.08 1.00 0.09 0.12 -0.27 -0.19
3 0.07 0.94 0.09 1.00 -0.10 -0.06 -0.07
4 0.22 0.05 0.12 -0.10 1.00 0.56 -0.06
5 -0.20 0.22 -0.27 -0.06 0.56 1.00 0.11
6 -0.19 -0.06 -0.19 -0.07 -0.06 0.11 1.00

Table 19. Feature Correlation Matrix for Transformed Input Tϕ(.)(ETTh1 dataset)

Features 0 1 2 3 4 5 6

0 1.00 -0.52 -0.60 0.99 0.93 -0.96 -0.56
1 -0.52 1.00 -0.31 -0.58 -0.68 0.60 0.63
2 -0.60 -0.31 1.00 -0.57 -0.33 0.55 -0.08
3 0.99 -0.58 -0.57 1.00 0.94 -0.97 -0.59
4 0.93 -0.68 -0.33 0.94 1.00 -0.86 -0.80
5 -0.96 0.60 0.55 -0.97 -0.86 1.00 0.43
6 -0.56 0.63 -0.08 -0.59 -0.80 0.43 1.00
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