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ABSTRACT

Retrieval-Augmented Generation (RAG) enhances LLMs with external knowl-
edge, but current methods face key limitations. Most solutions operate at a
coarse passage or sentence level, indiscriminately concatenating retrieved text,
which introduces noise, overlooks decisive sub-sentential phrases, and is sus-
ceptible to positional bias where evidence is lost in the middle of long con-
texts. To overcome these challenges, we propose SpotlightRAG, an inference-
time framework that enhances factual accuracy through precise, span-level con-
text selection and explicit relevance signaling. SpotlightRAG employs a position-
aware scoring mechanism to identify and weight critical text spans, directly
countering positional bias. It then uses novel retrieval-aware prefix tokens
to explicitly annotate the relevance of each span for the generator, providing
fine-grained, interpretable control without model retraining. Extensive experi-
ments on four benchmarks—PopQA, TriviaQA, Natural Questions, and Multi-
HopQA—demonstrate that SpotlightRAG consistently outperforms state-of-the-
art baselines, including InstructRAG, RankRAG, and In-Context RALM, improv-
ing accuracy over strong baselines by 2.1% on PopQA and 1.2% on the chal-
lenging MultiHopQA dataset. An anonymized implementation is available at
https://anonymous.4open.science/r/SpotlightRAG-5F6A/.

1 INTRODUCTION

Large Language Models (LLMs) have significantly transformed information access, enabling users
to query vast corpora and obtain fluent, knowledge-grounded responses. However, despite their
remarkable capabilities, LLMs remain limited in terms of factual coverage, domain specificity,
and knowledge freshness. As a result, hallucinations and factual errors remain common(Huang
et al., 2025), particularly in knowledge-intensive tasks such as open-domain question answering
(QA). Retrieval-Augmented Generation (RAG) has emerged as a promising paradigm to address
these shortcomings by conditioning LLMs on external documents retrieved from large-scale cor-
pora. This design reduces reliance on parametric memorization while improving factual grounding,
interpretability, and adaptability.

Nevertheless, the effectiveness of RAG pipelines hinges on how retrieved evidence is represented
and integrated. Existing approaches face several critical challenges. A central issue is the trade-off
between efficiency and granularity(Khattab & Zaharia, 2020): single-vector dense retrievers often
fail to capture fine-grained token alignments and struggle on long-tail queries, whereas multi-vector
or late-interaction methods preserve token-level signals but incur substantial storage and computa-
tional overhead (Santhanam et al., 2021). Simply extending context length at inference does not
resolve this tension; larger retrieval sets frequently introduce irrelevant spans, diluting useful evi-
dence and exacerbating the lost-in-the-middle effect (Yue et al., 2024).

Another limitation lies in coarse integration strategies. Most RAG systems concatenate the top-k
passages without discrimination, inevitably introducing redundancy and distractors. Such retrieval
noise can significantly reduce accuracy, particularly in multi-hop reasoning where irrelevant con-
tent may cause cascading errors (Yu et al., 2024; Yang et al., 2018). Although re-ranking and
retriever-aware prompting mitigate this issue to some extent, they largely operate at the passage
or sentence level (Li et al., 2024), overlooking sub-sentential cues—such as entities, phrases, or
attributive clauses—that often provide decisive evidence (Nematov et al., 2025). Finally, retrieval
and generation remain loosely coupled. While some methods jointly pretrain retrievers and genera-
tors or refine indexing with similarity modeling, they still offer limited inference-time control. The
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Figure 1: Empirical motivation for fine-grained selection. (a) Positional distribution of evidence
importance: strongest in the first 20%, gradually declining across the 20–80% middle, and partially
rebounding in the final 20%. (b) Granularity distribution: phrase- and sentence-level spans domi-
nate, confirming that sub-sentential scopes are especially diagnostic for RAG.

generator passively consumes retrieved content without explicit mechanisms to amplify informative
spans or suppress distractors. This disconnect often leads to diluted attention and brittle reasoning,
especially in multi-hop scenarios.

Beyond these challenges, recent studies have highlighted two important trends in the RAG com-
munity. On the one hand, there is growing interest in interpretability and attribution, with methods
seeking to trace answers back to supporting evidence (Goldshmidt & Horovicz, 2024). On the other
hand, there is a push toward fine-grained evidence modeling, such as span-level attribution, hierar-
chical retrieval units, and structure-aware selection. Despite these advances, existing frameworks
often treat fine-grained signals as auxiliary rather than central components, leaving open the ques-
tion of how to design a unified pipeline that integrates them directly into inference-time decision
making.

To further investigate, we analyze how evidence importance is distributed across document po-
sitions. Figure 1 presents two key findings: (a) positional priors matter—useful evidence is not
evenly distributed but is most concentrated in the first 20% of sentences, gradually decreases in the
20–80% middle range, and shows a partial rebound in the final 20%; and (b) granularity mat-
ters—phrase- and sentence-level spans dominate evidence attribution (Goldshmidt & Horovicz,
2024), while token-only and paragraph-only signals are much less diagnostic.

These empirical findings highlight a fundamental gap: current RAG frameworks lack fine-grained,
interpretable, and controllable evidence selection mechanisms. To formalize this, let R denote the
set of retrieved contexts and R∗ the (unknown) set of truly relevant spans. The expected retrieval
utility for a query q can be expressed as:

U(q) = Es∼R
[
P (y = 1 | q, s)

]
, (1)

where P (y = 1 | q, s) represents the probability that a span s is relevant to the query. In practice,
U(q) degrades rapidly as distractors accumulate, underscoring the need for inference-time selection
strategies that approximate R∗ at the span level rather than passively accepting R.
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Q:What is the largest planet in 
the solar system?

Q:What is the largest planet in 
the solar system?
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A:The largest planet in the 
solar system is the Sun.
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system , with a diameter 
of about 142,000 km.
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A:The largest planet in the 
solar system is Jupiter.

Generate

Figure 2: Comparison of conventional RAG and SpotlightRAG. Conventional pipelines often admit
distractors (e.g., Sun, Venus), whereas SpotlightRAG emphasizes the decisive span about Jupiter,
thereby guiding the generator toward the correct answer.

Motivated by these observations, we propose SpotlightRAG, a fine-grained context selection
framework that unifies token-to-phrase alignment, position-aware priors, dynamic relevance weight-
ing, and retrieval-aware prefix tokens. By amplifying informative spans while suppressing distrac-
tors, SpotlightRAG achieves robust and interpretable retrieval integration, addressing the persistent
retrieval-noise challenge in RAG.

Contributions. This paper advances retrieval-augmented generation by explicitly addressing the
gap between coarse retrieval and fine-grained evidence integration. SpotlightRAG is designed as
an inference-time framework that unifies empirical analysis, theoretical motivation, and practical
design, aiming to enhance factual accuracy while preserving interpretability and efficiency. The key
contributions are summarized as follows:

1. Problem identification: Critical limitations of existing RAG pipelines are highlighted, in-
cluding coarse retrieval integration, lack of fine-grained control, and absence of inference-
time selection.

2. Empirical analysis: Position- and granularity-based studies reveal uneven evidence im-
portance, motivating span-level selection.

3. Framework design: SpotlightRAG is introduced, combining (a) span-level modeling, (b)
dynamic weighting with positional priors, and (c) retrieval-aware prefix tokens.

4. Experimental validation: Extensive experiments on multiple benchmarks demonstrate
consistent improvements, confirming both robustness and interpretability.

2 RELATED WORK

2.1 ADVANCES IN RETRIEVAL-AUGMENTED GENERATION

Retrieval-Augmented Generation (RAG) has emerged as a dominant paradigm for enhancing large
language models with external knowledge. Early implementations concatenated the top-k retrieved
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passages into the model input (Lewis et al., 2021), which improves recall but also introduces redun-
dancy and distractors that dilute model attention. Later research refined this pipeline by developing
stronger dense retrievers, hybrid lexical–semantic search, and lightweight re-ranking strategies to
suppress obvious noise. However, a persistent challenge remains the trade-off between efficiency
and granularity: single-vector dense retrievers struggle to capture fine-grained token alignments,
while late-interaction retrievers (Santhanam et al., 2021) preserve token-level signals at high mem-
ory cost. Long-context transformers (Tworkowski et al., 2023) extend input windows but often suffer
from diminishing returns due to the lost-in-the-middle effect (Liu et al., 2024; Yue et al., 2024).

2.2 FINE-GRAINED EVIDENCE SELECTION AND ATTRIBUTION

Beyond retrieval quality, finer-grained integration has been widely explored. Sentence-level re-
ranking improves precision by filtering irrelevant sentences (Yu et al., 2024; Li et al., 2024), but it
overlooks decisive sub-sentential cues such as entities, phrases, and appositive clauses. Token-level
alignment methods provide higher resolution, though they can be brittle without positional priors
and often fail to aggregate signals robustly. Attribution analyses further reveal that phrase- and
sentence-level spans dominate evidence importance, while token-only or paragraph-only signals are
less diagnostic (Goldshmidt & Horovicz, 2024).

Recent work has more directly addressed these issues. Han et al. (2025) propose Fine-grained
Knowledge Enhancement (FKE), which retrieves sentence-level knowledge and constrains decod-
ing with fine-grained signals (Han et al., 2025). Xu et al. (2024) present Tok-RAG, formalizing a
theory of benefit vs. detriment at the token level (Xu et al., 2025). Qi et al. (2024) introduce MI-
RAGE, which attributes generated answers to retrieved documents by analyzing saliency in internal
activations (Qi et al., 2024). While these approaches provide finer attribution and improved trans-
parency, they largely operate as post-hoc explanations or decoding constraints rather than offering
explicit inference-time control.

2.3 LIMITATIONS AND OPEN CHALLENGES

Despite these advances, existing RAG methods still face critical limitations. Retrieval integration
is typically performed at the passage or sentence level, overlooking short spans that carry decisive
evidence. Structural heuristics, such as prioritizing lead sentences, capture some positional biases
but fail to generalize across contexts. Interpretability also remains limited: exposing retrieved pas-
sages or citations shows what was retrieved, but not how much each piece should matter, leaving the
generator with little guidance on amplifying or suppressing spans.

Concurrent frameworks such as InstructRAG (Wei et al., 2025), RankRAG (Yu et al., 2024),
StructRAG (Li et al., 2024), and more recent designs including REGENT (Sridhar et al., 2025)
and MMed-RAG (Xia et al., 2024) refine retrieval through instruction-guided prompting, structured
units, or multi-modal reasoning. Yet these remain constrained by coarse granularity and lack explicit
inference-time controllability. In contrast, SpotlightRAG addresses this gap by combining token-to-
phrase alignment, positional priors, dynamic weighting, and retrieval-aware prefix tokens, thereby
enabling robust, fine-grained, and interpretable span selection directly at inference time without
retraining.

3 SPOTLIGHTRAG

3.1 TASK FORMULATION

Retrieval-augmented generation can be formalized as follows. Given a query q = {q1, q2, . . . , qn},
and a retrieved context set C = {c(1), c(2), . . . , c(M)}, the goal is to generate an answer y conditioned
on a compact subset S∗ ⊂ C that contains the most relevant spans. Unlike conventional RAG, which
concatenates the top-k passages, the proposed formulation explicitly models the expected utility of
selected spans:

S∗ = argmax
S⊂C

Es∈S
[
P (y | q, s)

]
, (2)

where P (y | q, s) denotes the contribution of span s to generating the correct answer. This definition
highlights that the quality of selection, rather than the number of retrieved passages, is critical.
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Figure 3: Overview of the SpotlightRAG pipeline. Phase 1: fine-grained scoring via token-to-
phrase alignment. Phase 2: annotation with score tokens and category tokens. This two-phase
integration suppresses distractors and highlights decisive spans.

3.2 FINE-GRAINED EVIDENCE INTEGRATION

The SpotlightRAG framework, illustrated in Figure 3, integrates evidence through two complemen-
tary phases that jointly suppress distractors and highlight decisive spans.

Phase 1: Fine-grained scoring. Queries and contexts are first encoded with position-aware
embeddings, after which token-to-token similarities are computed. These similarities are aggregated
with dynamic relevance weighting to assign scores to spans, ensuring that informative phrases and
entities are emphasized even within long passages. This fine-grained scoring mechanism provides a
more precise alternative to coarse passage concatenation.

Phase 2: Evidence annotation. The top-ranked sentences derived from Phase 1 are explicitly an-
notated with two types of prefix tokens: a score token, which reflects their computed relevance, and
a category token, which indicates the type of evidence (Li & Liang, 2021). By injecting these anno-
tations into the input, the generator receives interpretable and controllable signals during inference,
enabling span-level integration that goes beyond implicit attention mechanisms.

3.3 TOKEN-LEVEL ENCODING AND RELEVANCE SCORING

Each token from query and context is embedded using a shared encoder with positional priors:

hqi = E(qi) + pqi , (3)
hcj = E(cj) + pcj . (4)

Here, E(·) provides contextualized embeddings while p encodes sentence or document position, so
that early or concluding segments receive stronger inductive bias.

The similarity between each query token qi and context token cj is then computed as

si,j = sim(hqi ,hcj ), (5)

where cosine similarity is used in practice. To capture global importance, each context token receives
a normalized relevance weight:

wj =
exp (maxi si,j)∑
k exp (maxi si,k)

, (6)

which emphasizes tokens highly aligned with at least one query token. This step ensures that even
within long passages, fine-grained clues such as entities or attributive phrases can dominate the
scoring.
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3.4 SENTENCE-LEVEL AGGREGATION

For each query token, only the top-k aligned context tokens are retained, avoiding noise from weak
matches. The aggregated relevance score for query token qi is defined as

TopAvg(qi) =
1

k

∑
cj∈Tk(qi)

si,j · wj , (7)

where Tk(qi) denotes the top-k aligned tokens. This aggregation balances local similarity with
global weighting, stabilizing the contribution of each query token.

At the sentence level, a candidate sentence st consisting of tokens {cj1 , . . . , cjℓ} is scored by

R(st) =

n∑
i=1

αi · TopAvg(qi), (8)

where αi represent the importance weights of query tokens. In practice, these weights are not manu-
ally assigned but are produced by a lightweight neural scoring module inspired by ColBERT (Khat-
tab & Zaharia, 2020). Specifically, our improved variant computes token-level contributions through
late-interaction matching, providing finer attribution of which query terms drive relevance. Impor-
tantly, this neural module is independent of the generator and does not require retraining the lan-
guage model itself. To ensure robustness, we also compare against a uniform weighting scheme
(αi = 1/n), which achieves comparable results, confirming that SpotlightRAG remains effective
without relying on this additional component. The top-K sentences according to R(st) are then
selected as the evidence set.

3.5 RETRIEVAL-AWARE PREFIX TOKENS AND INFERENCE

Each selected sentence is annotated with a retrieval-aware prefix token. The literal tag associated
with sentence st is denoted by its normalized relevance score R(st) ∈ [0, 1] using math-safe nota-
tion:

s′t = ⟨RelR(st)⟩ ⊕ st. (9)
Here, ⟨RelR(st)⟩ is a symbolic prefix token whose subscript directly encodes the continuous-valued
relevance score, and ⊕ denotes concatenation.

In practice, the normalized relevance score R(st) ∈ [0, 1] is directly encoded into the prefix token,
resulting in a finite but continuous-looking vocabulary such as ⟨Rel0.82⟩ or ⟨Rel0.35⟩. This design
avoids the need for coarse binning (e.g., high/medium/low) while still conveying interpretable and
fine-grained signals of span importance to the generator.

To further enrich controllability, an additional category token can be attached to indicate the
semantic type of evidence (e.g., entity-level, temporal, causal).

By concatenating the query with these annotated sentences, the final input to the generator be-
comes

y = LM
(
q ⊕ { s′t }st∈S∗

)
. (10)

Because prefix tokens are appended in text form, this pipeline requires no retraining of the generator
and provides transparent inference-time control of how evidence influences generation. Compared
with R2AG (adaptive gating) and RankRAG (sentence-level re-ranking), SpotlightRAG achieves
finer granularity, interpretability, and efficiency.

3.6 COMPLEXITY ANALYSIS

SpotlightRAG is designed to remain lightweight at inference time. The overall complexity can be
analyzed in terms of time and space:

Time Complexity. For each retrieved context, token-level similarity scoring requires O(|q| · |c|)
operations. When multiple contexts are retrieved (e.g., N passages), the overall complexity becomes

O(N · |q| · |c|). (11)
In practice, N is typically 5–10, and each context is truncated to 512 tokens, yielding manageable
cost. Empirically, the overhead relative to a baseline RAG pipeline remains below 5% even when
processing N = 10 contexts end-to-end on a single A100 GPU. Detailed latency results for N =
1, 5, 10 are provided in the appendix, confirming that scaling to realistic retrieval settings does not
alter the overall efficiency claim.
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Space Complexity. The memory footprint is dominated by the similarity matrix between query
and context tokens, which has size O(|q| · |c|). Since only the top-k alignments are retained for each
query token, the effective storage is reduced to O(|q| · k). Additional space for storing annotated
prefix tokens is linear in the number of selected sentences, which is typically small. Hence the
overall space complexity remains manageable.

In summary, SpotlightRAG achieves fine-grained evidence selection with computational and
memory costs that are comparable to standard RAG pipelines, ensuring theoretical scalability with-
out introducing additional model parameters.

4 EXPERIMENTS

4.1 DATASETS AND EVALUATION METRICS

The proposed framework is evaluated on four widely used open-domain QA benchmarks:
PopQA(Mallen et al., 2023), TriviaQA(Joshi et al., 2017), Natural Questions(Kwiatkowski et al.,
2019), and MultiHopQA(Schnitzler et al., 2024). Each dataset is split into training, validation, and
test subsets following standard practice. For evaluation, the Exact Match (EM) Accuracy metric
is adopted, which measures whether the generated answer exactly matches the ground truth. This
metric has been widely used in prior RAG studies (e.g., InstructRAG, RankRAG, RetRobust) and
provides a stringent indicator of factual correctness.

4.2 BASELINES

The proposed method is compared against several competitive RAG-based baselines:

• InstructRAG (ICLR 2025)(Wei et al., 2025): Enhances relevance by combining retrieval
with instruction-guided prompting.

• RetRobust (ICLR 2024)(Yoran et al., 2024): Improves generalization via robust retrieval
and noise-aware re-ranking.

• Self-RAG (ICLR 2024)(Asai et al., 2023): Introduces self-reflection during retrieval and
generation.

• R2AG (arXiv 2024)(Ye et al., 2024): Incorporates re-ranking and adaptive gating for re-
trieval refinement.

• RankRAG (NeurIPS 2024)(Yu et al., 2024): Employs sentence-level re-ranking to filter
retrieval noise.

• In-Context RALM (TACL 2023)(Ram et al., 2023): Leverages retrieval-augmented in-
context learning by injecting retrieved rationales into prompts, improving controllability
and factual grounding.

To ensure a fair comparison, the implementation uses the same backbone retriever and generator
as the baselines.

4.3 EXACT MATCH ACCURACY RESULTS

For all main experiments, we set the number of selected sentences K = 6 and the token-level Top-
k = 5, as these values demonstrated optimal performance in our sensitivity analysis (see Table 4).

Table 1 and Table 2 summarize the performance across datasets and training configurations. Re-
sults are reported under two retrieval settings: w/ Training, where retrieval models are jointly trained
with the generator, and w/o Training, where frozen retrievers are used.

As shown in Table 1, the proposed method consistently achieves the best Exact Match scores
on both PopQA and TriviaQA. On PopQA, SpotlightRAG surpasses InstructRAG by +2.1% with
training and +1.4% without training. On TriviaQA, the framework slightly improves over RankRAG
and InstructRAG, reaching 79.1% EM with training and 82.7% without training. These results
indicate that the fine-grained scoring mechanism contributes to stable gains across single-hop QA
benchmarks.

In addition, Table 2 reports results on Natural Questions and the more challenging MultiHopQA
benchmark. On Natural Questions, SpotlightRAG achieves the highest accuracy (66.9% with train-
ing, 64.2% without training), outperforming InstructRAG, RetRobust, and RankRAG. On Multi-
HopQA, the method also leads by a clear margin, reaching 58.4% with training and 51.3% without
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Table 1: Exact Match Accuracy (%) on PopQA, TriviaQA benchmarks.

Method Source PopQA TriviaQA
w/Train w/o Train w/Train w/o Train

InstructRAG ICLR 2025 66.2 65.5 78.5 81.2
RetRobust ICLR 2024 56.5 53.9 71.5 67.2
Self-RAG ICLR 2024 55.8 52.7 71.4 69.3
R2AG arXiv 2024 64.4 65.3 74.2 73.5
RankRAG NeurIPS 2024 64.1 63.8 78.8 81.9
In-Context RALM TACL 2023 62.3 61.2 70.2 71.4
Ours This paper 68.3 66.9 79.1 82.7

Table 2: Exact Match Accuracy (%) on MultiHopQA and NaturalQuestions benchmark.

Method Source NaturalQuestions MultiHopQA
w/Train w/o Train w/Train w/o Train

InstructRAG ICLR 2025 65.7 62.1 57.2 50.4
RetRobust ICLR 2024 54.2 51.3 53.4 49.2
Self-RAG ICLR 2024 42.8 40.9 32.9 30.1
R2AG arXiv 2024 66.3 63.2 53.2 49.8
RankRAG NeurIPS 2024 53.2 50.6 37.2 35.3
In-Context RALM TACL 2023 52.3 50.7 45.2 43.4
Ours This paper 66.9 64.2 58.4 51.3

training, exceeding InstructRAG, RankRAG, and In-Context RALM. These improvements across
both single-hop and multi-hop QA tasks highlight the robustness and generality of the proposed
approach.

4.4 ABLATION STUDY

To better understand the contribution of each component in the proposed framework, an ablation
study is conducted. Starting from the full model, individual modules are removed, including the
fine-grained scorer, importance weighting, and special tokens.

As shown in Table 3, each module contributes positively to the final performance. Removing
the fine-grained scorer causes the most substantial drop, reducing EM by up to 3% on PopQA
and 3.7% on TriviaQA, confirming its critical role in capturing token-level alignment. Excluding
the importance weighting module also reduces accuracy, particularly on TriviaQA. The absence of
special tokens leads to a modest but consistent decline, showing that retrieval-aware signals benefit
the generator.

These results highlight that dynamic scoring and selective integration jointly enhance factual re-
call and robustness under retrieval noise. Together with the ablation results, these observations
indicate that each component of SpotlightRAG plays a complementary role, and the framework as
a whole achieves strong factual accuracy, robustness to noise, and resilience under parameter varia-
tion.

Table 3: Ablation study on PopQA, TriviaQA, and Natural Questions under trained retrieval. Re-
moving any component decreases performance, while the full SpotlightRAG achieves the best ac-
curacy.

Model Variant PopQA TriviaQA NaturalQuestions MultiHopQA
SpotlightRAG 68.3 79.1 66.9 58.4
w/o Fine-grained Scorer 65.9 75.4 64.5 50.2
w/o Importance Weighting 66.1 76.2 64.9 55.6
w/o Special Tokens 66.4 77.2 65.3 52.7
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Table 4: Sensitivity analysis of SpotlightRAG under different parameter settings. Accuracy (Acc.)
values are left blank (–) for later completion.

Hyper-parameter Setting Accuracy (%)
Sentence Selection K = 2 66.9
Sentence Selection K = 4 67.8
Sentence Selection K = 6 68.3
Sentence Selection K = 8 67.1
Token-level Top-k = 1 67.3
Token-level Top-k = 3 67.6
Token-level Top-k = 5 68.3
Token-level Top-k = 7 67.2
Positional Prior Weight = 0.0 (No bias) 65.1
Positional Prior Weight = 0.5 (Moderate) 68.3
Positional Prior Weight = 1.0 (Strong) 67.9
Context Length = 512 tokens 67.7
Context Length = 1024 tokens 68.0
Context Length = 2048 tokens 68.3

4.5 HYPER-PARAMETER SENSITIVITY STUDY

In addition to the ablation study, sensitivity to key hyperparameters is further investigated, including
the number of selected sentences K, the token-level Top-k parameter used in relevance aggregation,
and the weighting coefficient for positional priors. These parameters directly influence the balance
between precision and recall in evidence selection.

First, the number of selected sentences K is varied to examine how much context the generator
requires for optimal performance. Results show that performance improves when increasing K
from very small values (e.g., 1–2 sentences) to moderate values (e.g., 4–6 sentences), but plateaus
or slightly degrades when K is too large, as irrelevant sentences begin to dilute attention. This
confirms that SpotlightRAG benefits from compact but informative evidence sets.

Next, different values of the token-level Top-k parameter in the aggregation function are tested.
Smaller values emphasize only the strongest alignments, while larger values incorporate broader
contextual matches. The results indicate that moderate values (e.g., k = 3 or 5) achieve the best
trade-off, capturing sufficient evidence without introducing excessive noise.

Finally, the influence of positional prior weighting is assessed. Without positional priors, the
model tends to overemphasize mid-passage tokens, leading to reduced accuracy. With appropriately
scaled priors, SpotlightRAG consistently identifies lead and concluding spans as more informative,
which aligns with the empirical findings in Figure 1.

Overall, the sensitivity analysis validates that SpotlightRAG remains stable across a wide range of
hyperparameter values. While performance peaks at moderate settings, even suboptimal choices do
not cause severe degradation, demonstrating the practicality of the design in real-world deployments
where extensive tuning is infeasible.

5 CONCLUSION

This work presents SpotlightRAG, a fine-grained evidence selection framework for retrieval-
augmented generation (RAG). The framework introduces three key innovations: span-level model-
ing that pinpoints decisive phrases beyond sentence-level filtering, position-aware dynamic weight-
ing that alleviates the lost-in-the-middle effect, and retrieval-aware prefix tokens that provide explicit
and controllable guidance during inference. Together, these components enable lightweight yet ef-
fective inference-time integration without retraining. Experiments across single-hop and multi-hop
QA benchmarks demonstrate consistent gains over strong baselines, highlighting both robustness
and interpretability. Looking ahead, the framework offers a promising foundation for extending
fine-grained evidence selection to broader settings such as cross-domain adaptation, long-context
reasoning, and multimodal RAG applications(Gao et al., 2024).
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This research does not involve human subjects, personal data, or sensitive demographic attributes.
All experiments are conducted on publicly available datasets (PopQA, TriviaQA, Natural Questions,
and MultiHopQA), which are established benchmarks in open-domain question answering research.
Potential ethical concerns in retrieval-augmented generation include the risk of propagating biased
or factually incorrect content from retrieved documents. The proposed framework aims to mitigate
these risks by improving factual accuracy, interpretability, and robustness of retrieval integration.
Code and evaluation setups will be made available to facilitate transparency and accountability.

REPRODUCIBILITY STATEMENT

Reproducibility is ensured through the use of publicly available datasets, which are properly cited.
The implementation builds on standard open-source frameworks, and the complete source code,
including training and evaluation scripts, span selection modules, and configuration files, will be
released upon publication. Detailed hyperparameter settings, evaluation protocols, and results of
ablation and sensitivity studies are provided in the main text and appendix. These resources enable
independent verification and further extension of the reported results by the research community.
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