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ABSTRACT

Unsupervised dataset alignment estimates a transformation that maps two or more
source domains to a shared aligned domain given only the domain datasets. This
task has many applications including generative modeling, unsupervised domain
adaptation, and socially aware learning. Most prior works use adversarial learn-
ing (i.e., min-max optimization), which can be challenging to optimize and eval-
uate. A few recent works explore non-adversarial flow-based (i.e., invertible) ap-
proaches, but they lack a unified perspective. Therefore, we propose to unify and
generalize previous flow-based approaches under a single non-adversarial frame-
work, which we prove is equivalent to minimizing an upper bound on the Jensen-
Shannon Divergence (JSD). Importantly, our problem reduces to a min-min, i.e.,
cooperative, problem and can provide a natural evaluation metric for unsupervised
dataset alignment. We present empirical results of our framework on both simu-
lated and real-world datasets to demonstrate the benefits of our approach.

1 INTRODUCTION

In many cases, a practitioner has access to multiple related but distinct datasets such as agricultural
measurements from two farms, experimental data collected in different months, or sales data before
and after a major event. Unsupervised dataset alignment (UDA) is the ML task aimed at aligning
these related but distinct datasets in a shared space, which may be a latent space, without any pairing
information between the two domains (i.e., unsupervised). This task has many applications such
as generative modeling (e.g., (Zhu et al., 2017)), unsupervised domain adaptation (e.g., (Grover
et al., 2020; Hu et al., 2018)), batch effect mitigation in biology (e.g., (Haghverdi et al., 2018)), and
fairness-aware learning (e.g., (Zemel et al., 2013)).

The most common approach for obtaining such alignment transformations stems from Generative
Adversarial Networks (GAN)(Goodfellow et al., 2014), which can be viewed as minimizing a lower
bound on the Jensen-Shannon Divergence (JSD) between real and generated distributions. The
lower bound is tight if and only if the inner maximization is solved perfectly. CycleGAN (Zhu et al.,
2017) maps between two datasets via two GAN objectives between the two domains and a cycle
consistency loss, which encourages approximate invertibility of the transformations. However, ad-
versarial learning can be challenging to optimize in practice (see e.g. (Lucic et al., 2018; Kurach
et al., 2019)) in part because of the competitive nature of the min-max optimization problem. Per-
haps more importantly, the research community only has reasonable GAN evaluation metrics for
certain data types. Specifically, the commonly accepted Frechet Inception Distance (FID) (Heusel
et al., 2017) is only applicable to image or auditory data, which have standard powerful pretrained
classifiers, and even the implementation of FID can have evaluation issues (Parmar et al., 2021). No
clear metrics exist for tabular data or non-perceptual data.

Recently, flow-based methods that leverage invertible models have been proposed for the UDA task
(Grover et al., 2020; Usman et al., 2020). AlignFlow (Grover et al., 2020) leverages invertible
models to make the model cycle-consistent (i.e., invertible) by construction and introduce exact
log-likelihood loss terms derived from standard flow-based generative models as a complementary
loss terms to the adversarial loss terms. Yet, AlignFlow still leverages adversarial learning. Log-
likelihood ratio minimizing flows (LRMF) (Usman et al., 2020) use invertible flow models and
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Figure 1: Overview of our proposed method. In our framework, domain specific transformation
functions {Tj(·)}kj=1 and a density model Q are cooperatively trained to make the transformed
representations be indistinguishable in the shared latent space. (a) 1-D example. By minimizing our
proposed AUB loss, the transformation functions T1 and T2 are trained to map the corresponding
distributions PX1 and PX2 to latent distributions PT1(X1) and PT2(X2) that have higher likelihood
with respect to a base distribution Q. The density model Q, on the other hand, is trained to fit the
mixture of the latent distributions PT1(X1) and PT2(x2). (b) Intuitively, the optimization process of
our method can be seen to make the Q distribution tight around the mixture of latent distributions to
increase the likelihood (i.e., MLE) while the transformation functions T1 and T2 are encouraged to
expand to fill the latent space defined by Q. Eventually, the latent distributions and Q are converge
to be the same distribution, which means that they are aligned.

density estimation for distribution alignment without adversarial learning and define a new metric
based on the log-likelihood ratio. However, LRMF depends heavily on the density model class and
can only partially align datasets if the target distribution is not in the chosen density model class.
Additionally, the LRMF metric depends on this density model class and is only defined for two
datasets.

Therefore, to provide an alternative to adversarial learning and generalize previous flow-based ap-
proaches, we propose a unified non-adversarial UDA framework, which we prove is equivalent to
minimizing an upper bound on the JSD. Importantly, our problem reduces to a min-min, i.e., coop-
erative, problem, and the JSD upper bound can provide a natural evaluation metric for UDA that
can be applied in any domain. Our framework requires two parts, the outer minimization requires
an invertible model and the inner minimization requires a density model (e.g., Gaussian mixture
models or normalizing flows (Dinh et al., 2017)). We summarize our contributions as follows:

• We prove that a minimization problem over density models is an upper bound on a gen-
eralized version of JSD that allows for more than two distributions. Importantly, we also
theoretically quantify the bound gap and show that it can be made tight if the density model
class is flexible enough.

• We use this JSD upper bound to derive a novel regularized loss function for UDA and
explain its relationship to prior methods.

• We empirically demonstrate the benefits of our method compared to prior flow-based mod-
els on both simulated and real-world datasets.

Notation We will denote distributions as PX(x) where X is the corresponding random variable.
Invertible functions will be denoted by T (·). We will use Xj ∼ PXj

to denote the observed random
variable from the j-th distribution. We will use Zj ≜ Tj(Xj) ∼ PZj

≡ PTj(Xj) to denote the latent
random variable of the j-th distribution after applying Tj to Xj (and note that Xj = T−1

j (Zj)).
We will denote the mixtures of these observed or latent distributions as PXmix ≜

∑
jwjPXj and

PZmix ≜
∑

jwjPZj
, where w is a probability vector. We denote KL divergence, entropy, and cross

entropy as KL(·, ·), H(·), and Hc(·, ·), respectively, where KL(P,Q) = Hc(P,Q)−H(P ).

2 REGULARIZED ALIGNMENT UPPER BOUND LOSS

In this section, we will introduce our main theoretical result proving an upper bound on the gener-
alized JSD divergence, deriving our loss function based on this, and then showing that minimizing
this upper bound results in aligned distributions assuming large enough capacity of the model com-
ponents.
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Background: Normalizing Flows and Invertible Models Normalizing flows are generative
models that have tractable distributions where exact density evaluations and efficient samplings
are ensured (Kobyzev et al., 2021). Such models leverage the change of variables formula to cre-
ate an invertible mapping T such that PX(x) = PZ(T (x))|JT (x)| where PZ is a known latent
distribution and |JT (x)| is the absolute value of determinant of the Jacobian of the invertible map
T . For sampling in distribution PX , one need to first sample from the latent distribution PZ and
then apply the inverse transform T−1. Therefore the key challenge in designing invertible models
is to have computationally efficient inverse evaluation and Jacobian determinant calculation. Many
approaches have been proposed by parameterizing mapping function T as deep neural networks in-
cluding autoregressive structures (Kingma et al., 2016; Papamakarios et al., 2021), coupling layers
(Dinh et al., 2017)(Kingma and Dhariwal, 2018), oridinary differential equations(Grathwohl et al.,
2018), and invertible residual networks(Chen et al., 2019; Behrmann et al., 2019). Flow models can
be then learned efficiently by maximizing the likelihood for the given data.

Background: Generalized JSD We remind the reader of the generalized Jensen-Shannon diver-
gence for more than two distributions, where the standard JSD is recovered if w1 = w2 = 0.5.

Definition 1 (Generalized Jensen-Shannon Divergence (GJSD) (Lin, 1991)). Given k distributions
{PXj

}kj=1 and a corresponding probability weight vector w, the generalized Jensen-Shannon di-
vergence is defined as (proof of equivalence in appendix):

GJSDw(PX1 , · · · , PXk
) ≜

∑
jwj KL(PXj ,

∑
jwjPXj

)

≡ H
(∑

jwjPXj

)
−

∑
jwj H(PXj

) . (1)

2.1 GJSD UPPER BOUND

The goal of distribution alignment is to find a set of transformations {Tj(·)}kj=1 (which will be in-
vertible in our case) such that the latent distributions align, i.e., PTj(Xj) = PTj′ (Xj′ )

or equivalently
PZj = PZj′ for all j ̸= j′. Given the properties of divergences, this alignment will happen if and
only if GJSD(PZ1

, · · · , PZk
) = 0. Thus, ideally, we would minimize GJSD directly with respect

to Tj , i.e.,

min
T1,··· ,Tk∈T

GJSD(PT1(X1), · · · , PTk(Xk)) ≡ min
T1,··· ,Tk∈T

H
(∑

jwjPTj(Xj)

)
−

∑
jwj H(PTj(Xj)) ,

where T is a class of invertible functions. However, we cannot evaluate the entropy terms in Eqn.
2 because we do not know the density of PXj

; we only have samples from PXj
. Therefore, we

will upper bound the first entropy term in Eqn. 2 (H
(∑

jwjPXj

)
) using an auxiliary density model

and decompose the other entropy terms by leveraging the change of variables formula for invertible
functions.

Theorem 1 (GJSD Upper Bound). Given an auxiliary density model class Q, we form a GJSD
upper bound:

GJSDw(PZ1
, · · · , PZk

) ≤ min
Q∈Q

Hc(PZmix , Q)−
∑

jwj H(PZj
) ,

where the bound gap is exactly minQ∈Q KL(PZmix , Q).

Proof of Theorem 1. For any Q ∈ Q, we have the following upper bound:

GJSDw(PZ1 , · · · , PZk
) = Hc(PZmix , Q)−Hc(PZmix , Q)︸ ︷︷ ︸

=0

+H(PZmix)−
∑

jwj H(PZj )

= Hc(PZmix , Q)−KL(PZmix , Q)−
∑

jwj H(PZj
)

≤ Hc(PZmix , Q)−
∑

jwj H(PZj
) ,

where the inequality is by the fact that KL divergence is non-negative and the bound gap is equal
to KL(PZmix , Q). The Q that achieves the minimum in the upper bound is equivalent to the Q that
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minimizes the bound gap, i.e.,
Q∗ = argmin

Q∈Q
Hc(PZmix , Q)−

∑
jwj H(PZj

)︸ ︷︷ ︸
Constant w.r.t. Q

(2)

= argmin
Q∈Q

Hc(PZmix , Q) −H(PZmix)︸ ︷︷ ︸
Constant w.r.t. Q

(3)

= argmin
Q∈Q

KL(PZmix , Q) . (4)

The tightness of the bound depends on how well the class of density modelsQ (e.g., mixture models,
normalizing flows, or autoregressive densities) can approximate PZmix ; notably, the bound can be
made tight if PZmix ∈ Q. Also, one key feature of this upper bound is that the cross entropy term
can be evaluated using only samples from PXj

and the transformations Tj , i.e., Hc(PZmix , Q) =∑
jwjEPXj

[− logQ(Tj(xj))]. However, we still cannot evaluate the other entropy terms H(PZj
)

since we do not know the densities of PZj
(or PXj

). Thus, we leverage the fact that the Tj functions
are invertible to define an entropy change of variables.
Lemma 2 (Entropy Change of Variables). Let X ∼ PX and Z ≜ T (X) ∼ PZ , where T is an
invertible transformation. The entropy of Z can be decomposed as follows:

H(PZ) = H(PX) + EPX
[log |JT (x)|] , (5)

where |JT (x)| is the determinant of the Jacobian of T .

The key insight from this lemma is that H(PX) is a constant with respect to T and can thus be
ignored when optimizing T , while EPX

[log |JT (x)|] can be approximated using only samples from
PX .

2.2 ALIGNMENT UPPER BOUND (AUB)

Combining Theorem 1 and Lemma 2, we can arrive at our final objective function which is equiva-
lent to minimizing an upper bound on the GJSD:

GJSDw(PZ1
, · · · , PZk

) ≤ min
Q∈Q

Hc(PZmix , Q)−
∑

jwj H(PZj
) (6)

= min
Q∈Q

∑
jwjEPXj

[− logQ(Tj(x))|JTj (x)|]−
∑

jwj H(PXj ) , (7)

where the last term−
∑

jwj H(PXj
) is constant with respect to Tj functions so they can be ignored.

We formally define this loss function as follows.
Definition 2 (Alignment Upper Bound Loss). Given k continuous distributions {PXj

}kj=1, a class
of continuous distributionsQ, and a probability weight vector w, the alignment upper bound loss is
defined as follows:

LAUB(T1, · · · , Tk; {PXj}kj=1,Q,w) ≜ min
Q∈Q

∑
jwjEPXj

[− log |JTj (x)|Q(Tj(x))] , (8)

where Tj are invertible and |JTj
(x)| is the absolute value of the Jacobian determinant.

Notice that this alignment loss can be seen as learning the best base distribution given fixed flow
models Tj . We now consider the theoretical optimum if we optimize over all invertible functions.
Theorem 3 (Alignment at Global Minimum of LAUB). If LAUB is minimized over the class of all
invertible functions, a global minimum of LAUB implies that the latent distributions are aligned, i.e.,
PTj(Xj) = PTj′ (Xj′ )

for all j ̸= j′. Notably, this result holds regardless of Q.

Informally, this can be proved by showing that the problem decouples into separate normalizing flow
losses where Q is the base distribution and the optimum is achieved only if PTj(Xj) = Q for all Tj

(formal proof in the appendix). This alignment of the latent distributions also implies the translation
between any of the observed component distributions. The proof follows directly from Theorem 3
and the change of variables formula.
Corollary 4 (Translation at Global Minimum of LAUB). Similar to Theorem 3, a global minimum
of LAUB implies translation between any component distributions using the inverses of Tj , i.e.,
PT−1

j′ (Tj(Xj))
= PXj′ for all j ̸= j′.
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Regularization via Transportation Cost While the alignment objective is the most challenging
part of UDA, we suggest that regularization may also be useful for practical and stable alignment (or
translation) between datasets because there are many optimal alignment solutions—even infinitely
many in most cases (see appendix for two examples). We alleviate this issue by adding expected
transportation cost (usually squared Euclidean distance) as a regularization to our objective inspired
by optimal transport (OT) concepts.

Definition 3 (Regularized Alignment Upper Bound Loss, RAUB). Given similar setup as in Def. 2
and a transportation cost function c(a, b) ≥ 0 for transporting a point from a to b, the regularized
alignment upper bound loss is defined as:

LRAUB(T1, · · · , Tk; {PXj
}kj=1,Q,w, λ, c)

≜ min
Q∈Q

∑
jwjEPXj

[− log |JTj (x)|Q(Tj(x)) + λc(x, Tj(x))] .
(9)

Pseudo-code for training our model with RAUB objective can be found in the appendix Section C.

3 RELATIONSHIP TO PRIOR WORKS

AlignFlow without adversarial terms is a special case AlignFlow (Grover et al., 2020) without
adversarial loss terms is a special case of our method for two distributions where the density model
class Q only contains the standard normal distribution (i.e., a singleton class) and no regularization
is used (i.e., λ = 0). Thus, AlignFlow can be viewed as initially optimizing a poor upper bound on
JSD; however, the JSD bound becomes tighter as training progresses because the latent distributions
independently move towards the same normal distribution.

LRMF is special case with only one transformation Log-likelihood ratio minimizing flows
(LRMF) (Usman et al., 2020) is also a special case of our method for only two distributions, where
one transformation is fixed at the identity (i.e., T2 = Id) and no regularization is applied (i.e.,
λ = 0). While the final practical LRMF objective is a special case of ours, the theory is developed
from a different but complementary perspective. The LRMF metric developed requires an assump-
tion about a given density model class, which enables a zero point (or absolute value) of the metric
to be estimated but requires fitting extra domain density models. Usman et al. (2020) also do not
uncover the connection of the objective as an upper bound on JSD regardless of the density model
class. Additionally, to ensure alignment, LRMF requires that the density model class includes the
true target distribution because only one invertible transform is used, while our approach can the-
oretically align even if the shared density model class is weak (see Theorem 3 and our simulated
experiments). See Fig. 2 for a comparison of our approach to prior works.

AlignFlow  (MLE only) LRMF Ours

Fixed dist.Invertible function Changed dist. Q dist.

Getting closed
Getting
closed

Getting
closed

𝑋! 𝑋"𝑍"𝑍!
𝑇! 𝑇" 𝑋! 𝑋"𝑍! 𝑋! 𝑋"𝑍! 𝑍"

learnable 𝑄 learnable 𝑄fixed 𝑄

𝑇! 𝑇! 𝑇"

Figure 2: High-level comparison with the baseline models. AlignFlow, LRMF, and our setup are
illustrated in a row from left. Transformation functions in AlignFlow are independently trained to
be fitted to the fixed standard gaussian distribution. T1 in LRMF is aimed to directly map the given
X1 to another image distribution X2. The density model Q in LRMF is not fixed and learned to fit
to {Z1 ∩X2}. In our setup, T1 and T2 are trained to obtain the high likelihood from the learnable Q
distribution which is fitted to the shared latent distributions. In every setup, the latent distributions
Z1 and Z2 are getting closer to the target distribution as training goes by. Details are provided in
Section 3.
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Cooperative networks versus adversarial networks Analogous to the generator G and the dis-
criminator D in adversarial learning, our framework has two main networks, Tj and Qz . We can
use any invertible function for Tj (e.g., coupling-based flows (Dinh et al., 2017), neural ODE flows
(Grathwohl et al., 2018), or residual flows (Chen et al., 2019)) and any (approximate) density models
for Qz (e.g., kernel densities (in low dimensions), mixture models, autoregressive densities (Sali-
mans et al., 2017), normalizing flows (Kingma and Dhariwal, 2018), or even VAEs (Kingma and
Welling, 2019)). Thus, our framework has similar modularity compared to adversarial approaches.
In contrast, we have a min-min, i.e., cooperative, optimization problem, but our transformations
must be invertible. As another difference, the inner optimization problem may be more challenging
(i.e., fitting a density model Qz may be more difficult than fitting an auxiliary discriminator D), but
the overall min-min is likely to be more stable than the min-max problem—specifically, note that
our problem can align even if the density model Qz is not optimal (see Theorem 3). We expect some
of these limitations to be alleviated as new invertible models and density models are continually be-
ing developed. Therefore, the proposed approach provides a fundamental alternative to adversarial
learning with different strengths and weaknesses.

4 EXPERIMENT

4.1 2D DATASET COMPARISON WITH RELATED WORKS

We compare our method with related works in order to illustrate the limitations of prior methods
and how our method overcomes these limitations. All implementation details for the 2D dataset are
available in the appendix.
Single T vs. Double T (LRMF vs. Ours) We first compare our method with LRMF (Usman
et al., 2020) method. We construct the experiment to have the task: Translation between the two
half-circled distributions: X1 and X2 in the moons dataset. In this example, we made two models,
one with LRMF setup and one with our AUB setup. As illustrated in Fig. 3, the LRMF method
fails to transform between X1 and X2. Even though Q can model well enough for T1(X1), Q can
only model the mean and variance of X2 which is obviously not informative enough. Therefore, the
LRMF fails to transform between two datasets. While in the AUB setup, both T1(X1) and T2(X2)
are modeled to the same distribution which Q can be learned to fit with high likelihood which leads
to better translation results. In conclusion, the performance of the LRMF model is limited by the
power of the density model Q which means if Q fails to model one of the domain distribution in
high likelihood, data alignment cannot be achieved with good performances.
Simple Fixed Q vs. Learnable Q (AlignFlow vs. Ours) Next we compare our method with
AlignFlow(Grover et al., 2020; Hu et al., 2018) setup. We construct the experiment to have the task:
Transform between the two random patterns X1 and X2 from the randomly generated datasets.
Again, we made two models with AlignFlow and our AUB setups respectively. As illustrated in
Fig. 3, the AlignFlow method fails to transform between X1 and X2, because the transformed dataset
T1(X1) and T2(X2) failed to reach the normal distribution Q. While in the AUB setup, the density
model Q is learned to help fit the transformed distributions T1(X1) and T2(X2), which allows them
to be aligned with each other easier. In conclusion, the performance of the AlignFlow model is
limited by the performances of the invertible functions.
Regularized vs. Un-regularized (Some prior works vs. Ours) We finally show the importance
of the regularization term. We construct the experiment to have the task: Transform between two
concentric circles with the same mean but slighted different radius. In this example, we make two
models with our AUB approach, but one with regularization and one without. As illustrated in the
Figure 4, both models are able to transform between two distributions. However, the transformation
pattern is not natural in terms of the movement of each point. Each pair created by the unregularized
model has bigger transportation cost compared to the pairs created by the regularized model. There-
fore, we suggest that by adding transportation cost, the resulting transformation between samples
will be closer to the identity function and therefore more stable.

4.2 REAL-WORLD DATASETS

Metrics In this subsection, we use two metrics to measure the overall model performances:
Frechet Inception Distance (FID) (Heusel et al., 2017) implemented by (Seitzer, 2020) and our
metric Alignment Upper Bound (AUB).
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(a) Original (b) LRMF (c) RAUB(ours) (d) Original (e) AlignFlow (f) RAUB(ours)

Figure 3: Top row is latent space and bottom is the data translated into the other space. (a-c) LRMF,
which only has one transformation T may not be able to align the datasets if the density model class
Q is not expressive enough (in this case Gaussian distributions) while using two transformations as
in our framework can align them. (d-f) AlignFlow (without adversarial terms) may not align because
Qz is fixed at a standard normal, while our approach with learnable mixture of Gaussians for Qz is
able to learn an alignment (both use the same Tj models).

(a) (b) (c) (d)

Figure 4: An unregularized alignment loss (figure (a) and (b)) can lead to excessive and unexpected
movement of points in the latent representation (lines connect transported points), while our regular-
ized alignment loss ((figure (c) and (d))) yields a unique and regularized solution that moves points
significantly less and is closer to the identity function.

Unsupervised domain translation We first perform three image translation tasks on MNIST
dataset; more specifically, we are flipping digit images in ”0/1”, ”0/2” , and ”1/2” pairs shown
in Fig. 5. We use RealNVP invertible models for all translation maps Tj , as well as the density
model Q. We evaluate our model performances in Table 1 along with baseline models: LRMF and
MLE version of AlignFlow. Note that all methods are flow-based models and thus images translated
back to original domain are exactly the same, which implies exact cycle consistency.

As represented in Table. 1, both of our approaches outperform the baseline models in terms of FID
and AUB. The lower score in AUB indicates our model has the tighter bound than baseline model.
This implies the statistical distance between the shared distribution {Zj}kj=1 and our density model
Q is smaller than baselines, meaning our model has the better dataset alignment performance. We
believe this result comes from our model setup, i.e., a learnable density model and domain specific
invertible transformation functions with shared space. Specifically, AlignFlow with a fixed standard
normal distribution as their Q obtains worse AUB because the Q is not powerful enough to model
the complex shared space trained from the real world dataset. On the other hand, LRMF shows the
lack of stability when trained with relatively simple models that we are using, i.e., RealNVP T and
Real NVP Q. This is because the transformation function and the density model should be able to
directly model the complex real distribution in their setup. By comparing our approach with and
without transportation cost, we observe introducing transportation cost yields insignificant decrease
in AUB and an increase in FID. This indicates the transportation cost regularizes our method well
without degeneration, so that our method can find better solution (which is theoretically unique).

The impressive performance of our method in AUB shows a consistent pattern in FID score as well.
Across entire translation cases, our method shows the better performance in terms of FID. This
result can be intuitively understood by Fig. 5. AlignFlow shows less stable translation results than
our method especially for translating to digit ‘2’ from digits ‘0’ and ‘1’. We believe this phenomenon
comes from the lack of expressivity of their Q model. On the other hand, our model shows stable
results across all translation cases, which are also quantitatively verified via the lower FID score.
Also, from the comparison on the latent representations (second column of each macro column) of
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ours with and without transportation cost, we can observe that the latent representation of the λ = 1
setup contains numerous excessive values. This implies adding transportation cost (lambda = 1)
prevents the excessive movement in the latent space, thus, our model can find a simpler and smoother
solution during the training.

LRMF

AlignFlow (MLE)

Ours, 𝜆 = 0

Ours, 𝜆 = 1

translation from 0 translation from 1 translation from 2

Figure 5: All pair-wise translation results among MNIST digits 0-2 where each block has first image
as the original digit followed by the latent image, and three corresponding translated digits. Please
note that second column of LRMF is set to be black because it does not have latent representation,
and LRMF fails to translate in this situation which is why the numbers are all the same.

Table 1: FID and AUB score for three images translation tasks in MNIST (for both metrics, lower
the better). FID score for each translation task is calculated by averaging scores from each direction
and AUB score is shown in nats. This table shows that our model has overall better performances
than all baselines models in terms of both metrics.

FID AUB
0↔1 0↔2 1↔2 Avg. 0↔1 0↔2 1↔2 Avg.

AlignFlow (MLE) 38.90 71.17 61.33 57.13 -4797.27 -4504.20 -4834.30 -4711.92
LRMF 224.02 141.70 182.31 182.68 -713.54 -592.90 -1323.75 -876.73

Ours, λ = 0 31.26 43.29 41.55 38.70 -4824.69 -4555.30 -4862.84 -4747.61
Ours, λ = 1 29.30 45.21 39.95 38.15 -4819.73 -4547.76 -4857.67 -4741.72

Multi-domain translation To illustrate that our method can be easily scaled to more domain
distributions, we present qualitative examples of translating between every digit and every other
digit for MNIST in Fig. 6 with performances in Table 2. To show the effect of transportation cost
proposed in our paper, we also compare our model with and without transportation cost. Note that
we omit LRMF in this experiment because the multi-domain situation is hard to deal with for LRMF
setup due to LRMF’s two distribution setup and assymetric model structure.

As shown in Table 2, our approach with and without transportation cost shows better performance
in terms of FID and AUB than AlignFlow since our learnable density estimator can model more
complex distribution than fixed simple density model in AlignFlow. In other words, the shared
space of AlignFlow is limited because of the fixed simple density model. Note that the gap in the
AUB score between AlignFow and our model is larger in this multi-domain setting (Table 2) than
in the two domain case (Table 1). We hypothesize that this is because the shared density model
across many domains needs to be more complex than for only two domains and thus, our learnable
Q can create a better upper bound to optimize than AlignFlow. In this experiment, while ours with
transportation cost performs slightly worse, the results are comparable and it does provide a natural
regularization that ensures a theoretically identifiable solution.

The superiority of our method compared to AlignFlow in multiple-domain translation can also be
verifed through qualitative comparisons in Fig. 6. The leftmost column is an input image and the
second and third macro columns are the results from ours and AlignFlow. by forwarding a given k-th
latent Tk(xk) into 10 inverse transformation functions, respectively. It is easy to observe that ours
has more clear results in most cases than baseline. Moreover, our model shows better performance
in maintaining the original identity (e.g., width and type of a stroke) than the baseline, as seen in
third, fourth and ninth rows. This is because we jointly train our transformation functions with a
learnable density model, while AlignFlow independently train their transformation functions. This
benefit of our approach may be crucial for other datasets such as human faces (Choi et al., 2018)
where maintaining the original identity is important.
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Ours, 𝜆 = 1 AlignFlow, MLE

Figure 6: Qualitative comparison on translation
results across 10 classes with AlignFlow and ours
with transportation cost.

Table 2: FID and AUB score for do-
main alignment task in 10 domains. FID
score is calculated by average across
all paired translations and AUB score is
shown in nats

FID AUB
AlignFlow (MLE) 49.82 -4661.05

Ours, λ = 0 43.25 -4715.02
Ours, λ = 1 44.06 -4697.42

5 DISCUSSION AND CONCLUSION

Transfer Learning Capability The performance of our model can be improved by adapting pre-
trained density models. Fig. 7(a) shows preliminary results. Specifically, a MLE version of Align-
Flow model may still struggle to translate between USPS and MNIST dataset after learning for 200
epochs while ours can show qualitative results after only 1 epoch if we are using pretrained powerful
density model for Q Salimans et al. (2017).

Generative Tasks Our model is also capable of generating samples in each domain. One needs
to sample from the density model Q to have a latent image z first, and then forward to the inverse
function T−1

j to get the image sampled in jth domain. Examples of generated images for each
domain in MNIST data are shown in Fig. 7(b). The quality of the generative result also reflects the
tightness of the bound between the latent space and the latent density model as illustrated in Eqn. 4.

Training Test

Ours with pretrained
density model

(a) (b)

Randomly generated 
samples from ours

AlignFlow (MLE)

Figure 7: Figure (a) is translation result between USPS and MNIST dataset. Top two images are
the training and testing result if using pretrained PixelCNN++(Salimans et al., 2017) models after
only 1 epochs, and the bottom images are the results of MLE version of AlignFlow models after 200
epochs. Figure (b) shows the generated images of our model for all domains. Model used in this
task is adapted from multi-domain translation tasks in subsection 4.2.

In this paper, we proposed a novel upper bound on the generalized JSD that leads to a theoretically
grounded alignment loss function. We then show that this framework unifies previous flow-based
approaches to dataset alignment and demonstrate the benefits of our approach compared to prior
flow-based methods. Additionally, we show that our framework could enable the use of pre-trained
density models which would enable a type of transfer learning for distribution alignment. More
broadly, we expect that our AUB metric can be useful as a domain-agnostic metric for comparing
dataset alignment methods beyond images. An alignment metric that is not tied to a particular
pretrained model (as for FID) or to a particular data type will be critical for systematic progress in
unsupervised dataset alignment. We hope this paper provides one step in that direction.
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A PROOFS

Proof of Equivalence in Def. 1. While the proof of the equivalence is well-known, we reproduce
here for completeness. As a reminder, the KL divergence is defined as:

KL(P,Q) = EP [log
P (x)
Q(x) ] = EP [− logQ(x)]− EP [− logP (x)] = Hc(P,Q)−H(P ) , (10)

where Hc(·, ·) denotes the cross entropy and H(·) denotes entropy. Given this, we can now easily
derive the equivalence:

GJSDw(PX1 , · · · , PXk
) =

∑
jwj KL(PXj , PXmix) (11)

=
∑

jwj(Hc(PXj
, PXmix)−H(PXj

)) (12)

=
∑

jwj Hc(PXj
, PXmix)−

∑
jwj H(PXj

) (13)

=
∑

jwjEPXj
[− logPXmix ]−

∑
jwj H(PXj

) (14)

=
∑

jwj

∫
X −PXj (x) logPXmix(x)dx−

∑
jwj H(PXj ) (15)

=
∫
X −

∑
jwjPXj

(x) logPXmix(x)dx−
∑

jwj H(PXj
) (16)

=
∫
X −PXmix(x) logPXmix(x)dx−

∑
jwj H(PXj

) (17)

= H(PXmix)−
∑

jwj H(PXj ) . (18)

Proof of Lemma 2. First, we note the following fact from the standard change of variables formula:
PX(x) = PZ(T (x))|JT (x)|

⇒ PX(x)|JT (x)|−1 = PZ(T (x)) .
(19)

We can now derive our result using the change of variables for expectations (i.e., LOTUS) and the
probability change of variables from above:

H(PZ) = EPZ
[− logPZ(z)] = EPX

[− logPZ(T (x))]

= EPX
[− logPX(x)|JT (x)|−1]

= EPX
[− logPX(x)] + EPX

[− log |JT (x)|−1]

= H(PX) + EPX
[log |JT (x)|] .

Proof of Theorem 3. Given any fixed Q, minimizing LAUB decouples into minimizing separate nor-
malizing flow losses where Q is the base distribution. For each normalizing flow, there exists an
invertible Tj such that Tj(Xj) ∼ Q, and this achieves the minimum value of LAUB. More formally,

min
T1,··· ,Tk

LAUB(T1, · · · , Tk) (20)

= min
T1,··· ,Tk

∑
jwjEPXj

[− log |JTj
(x)|Q(Tj(x))] (21)

=
∑

jwj min
Tj

EPXj
[− log |JTj

(x)|Q(Tj(x))] + H(PXj
)−H(PXj

) (22)

=
∑

jwj min
Tj

EPXj
[− log |JTj (x)|Q(Tj(x))] + H(PXj )− EPXj

[− logPXj (x)]) (23)

=
∑

jwj H(PXj
) +

∑
jwj minTj

EPXj
[log

PXj
(x)|JTj

(x)|−1

Q(Tj(x))
] (24)

=
∑

jwj H(PXj
) +

∑
jwj minTj

EPXj
[log

PTj(Xj)
(Tj(x))

Q(Tj(x))
] (25)

=
∑

jwj H(PXj ) +
∑

jwj minTj EPTj(Xj)
[log

PTj(Xj)
(z)

Q(z) ] (26)

=
∑

jwj H(PXj
) +

∑
jwj minTj

KL(PTj(Xj), Q) . (27)

Given that KL(P,Q) ≥ 0 and equal to 0 if and only if P = Q, the global minimum is achieved only
if PTj(Xj) = Q,∀j and there exist such invertible functions (e.g., the optimal Monge map between
PXj

and Q for squared Euclidean transportation cost (Peyré and Cuturi, 2019)). Additionally, the
optimal value is

∑
jwj H(PXj

), which is constant with respect to the Tj transformations.
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B EXAMPLES OF NON-UNIQUE ALIGNMENT SOLUTIONS

B.1 GAUSSIAN EXAMPLE

Suppose the component distributions are normal distributions, i.e., X1 ∼ N (µ1, I) and X2 ∼
N (µ2, I), and for even greater simplicity, we assume T2 is the identity, i.e., T2(x) = x. Then, a
global optimal solution could be T1(x) = U(x− µ1 + µ2) for any orthogonal matrix U , i.e., there
are infinitely many invertible functions that align the distributions. Note that this lack of unique
solutions is not restricted to orthogonal rotations (see appendix for a more complex example).

B.2 COMPLEX EXAMPLE

Consider the 1D case where Q only contains the uniform distribution. Thus, T1 and T2 must map
their distributions to the uniform distribution for alignment. One solution would be that T1 = F1

and T2 = F2 where F1 and F2 are the CDFs of PX1 and PX2 . Yet, there are infinitely many other
possible solutions. Consider an invertible function that subdivides the unit interval into an arbitrar-
ily large number of equal length intervals and then shuffles these intervals with a fixed arbitrary
permutation. More formally, we could define this as:

Sm,π(x) =


x− 1

m + π(1)
m if x ∈ [0, 1

m )

x− 2
m + π(2)

m if x ∈ [ 1m , 2
m )

...
...

x− m
m + π(m)

m if x ∈ [m−1
m , 1]

, (28)

where π(·) is a permutation of the integers 1 to m. Given this, then other optimal solutions could be
T1 = Sm,π ◦F1 and T2 = F2 for any m > 1 and any permutation π. This idea could be generalized
to higher dimensions as well by mapping to the multivariate uniform distribution and subdividing
the unit hypercube similarly.

C ALGORITHM

We summarize our computation of regularized alignment upper bound in Alg. 1.

Algorithm 1 Training algorithm for our model

Input: datasets {Xj}kj=1 for k domains; normalizing flows {Tj(xj ; θj)}kj=1; density model
Q(z;ϕ); learning rate η; transportation cost factor λ maximum epoch Emax; initial parameters
value {T (0)

j (xj ; θj)}kj=1, Q(0)(z;ϕ);
Output: {θ∗}kj ;

for epoch = 1, Emax do
for each batch {xj}kj=1 do

ϕ← ϕ+ η · λθ logQ({Tj(xj ;ϕ)}kj=1) ▷ Update Q using data from all domains
end for
for each batch {xj}kj=1 do

for domainj = 1, k do
θ ← θ + η · log |JTj (x)|Q(Tj(x))− λc(x, Tj(x)) ▷ Update T independently across

all domains
end for

end for
end for

D DETAILED PARAMETERS USED IN 2D DATASET EXPERIMENT

D.1 LRMF VS. OURS EXPERIMENT

• T for LRMF setup: T1: 8 channel-wise mask for Real-NVP model with s and t derived
from 64 hidden channels of fully connected networks. T2: Identity function.
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• T for RAUB setup: T1 and T1: 8 channel-wise mask for Real-NVP model with s and t
derived from 64 hidden channels of fully connected networks. Regularization coefficient
λ = 0

• Q for both: A single Gaussian distribution with trainable mean and trainable variances.

D.2 ALIGNFLOW VS. OURS EXPERIMENT

• T for both: 2 channel-wise mask for RealNVP model with s and t derived from 8 hidden
channels of fully connected networks.

• Q for Alignflow setup: A single fixed normal distribution.

• Q for RAUB setup: A learnable mixture of Gaussian with 3 components. Regularization
coefficient λ = 0

D.3 REGULARIZED VS. UNREGULARIZED EXPERIMENT

1. T for both: 8 channel-wise mask for RealNVP model with s and t derived from 64 hidden
channels of fully connected networks.

2. Q for both: A learnable mixture of Gaussian with 2 components.

3. λ for unregularized Experiment : λ = 0

4. λ for regularized Experiment : λ = 1

E INTERPOLATION OVER LATENT SPACE

We use the same model used in the ”Multi-domain translation” part in section 4.2 and perform
interpolation in the latent space. We first randomly select two distinct real images in one domain (in
this case two 0s), and do a linear interpolation of the selected two images in the latent space. Then
we translate all the interpolated images (including the two selected images) to all of the domains
to generate ”translated-interpolated” images—i.e., the corresponding interpolations in each of the
domains.

As shown in Fig. 8, all ”translated-interpolated” results can preserve the trend of the stroke width of
the digits from the original interpolated domain. These results suggest that our approach aligns the
domains so that some latent space directions have similar semantic meaning for all domains.

F TABULAR/STRUCTURED DATA EXPERIMENT

We follow the same preprocessing for four UCI tabular datasets (Dua and Graff, 2017) from the MAF
paper (Papamakarios et al., 2017), specifically MINIBOONE, GAS, HEPMASS, and POWER. In
order to obtain a binary label for creating domains, we choose the last input feature for each dataset
and discretize it based on whether it is higher or lower than the median value, which ensures the
datasets are of equal size. We use the MLE version of AlignFlow as a baseline to compare with our
model and use the AUB score as the metric for comparison.

As shown in the Table. 3, our method shows better performance with a large gap across all com-
parisons. This provides strong evidence that our proposed method (trained with learnable Q) better
aligns the two domains than AlignFlow (trained with fixed Q).

It is worth emphasizing that there is no natural metric for evaluating GAN (Goodfellow et al., 2014)
in tabular dataset. We believe this demonstrates one of the key benefits of our proposed method over
GAN-based alignment methods.

G MULTI-TRANSLATION TASKS IN CELEBA DATASET

In order to verify our proposed method performs well in a more complex setup than MNIST, we
conducted experiments on the CelebA (Liu et al., 2015) dataset. We first create three domains
(Black Hair, Blond Hair and Brown Hair) by using the hair color attribute. We further center crop
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Figure 8: This figure shows the translation results of interpolated images. In the first row, the two
images selected by red rectangles are real images from the dataset; and all eight images in between
are generated by linear interpolation in the latent space. Starting from the second row, each row
contains translated images which are transformed from the same latent vector in the same column
and the first row.

15



Under review as a conference paper at ICLR 2022

Table 3: AUB score for the domain alignment task in four tabular datasets. AUB score is shown in
nats (the lower the better).

MINIBOONE GAS HEAPMASS POWER
AlignFlow (MLE) 13.26 -5.65 19.57 -0.89

Ours -47.39 -137.91 -148.11 -91.17

the images to have the size 148 × 148 then resize them to 64 × 64. For the baseline model, we
again uses MLE version of AlignFlow. We use both FID and AUB as a metric to compare the
performances.

As shown in the Table 4, our proposed method demonstrates better performance in almost all ex-
periments in terms of both FID and AUB. This consistently validates that the flexibility of Q in
our framework has clear advantages over the fixed Q in AlignFlow for the domain alignment task.
Intuitively, we think the tighter upper bound from our proposed method plays an important role in
aligning distributions in the latent space.

We also provide qualitative results in Fig. 9. Compared to the AlignFlow (MLE) baseline, our
model performs significantly better in translating between selected attributes. In particular, while
our approach maintains a valid face structure during translation, AlignFlow is unable to maintain
a valid face structure. Note that absolute image quality is not the focus of our paper as we use
relatively simple flow models, but rather the comparison to prior methods and to show the feasibility
of our approach in higher dimensions. We expect better qualitative results could be achieved using
more advanced flow models such as GLOW, Residual Flows, Flow++, etc. but given that the scope
of our work which focuses on the theoretical and foundational approach, we leave this to future
work.

Table 4: This table provides evidence that our model has overall better performances than all base-
lines models in terms of both metrics. FID and AUB score for three images translation tasks in
CelebA (for both metrics, lower is better). For domain names, 0 means Black Hair, 1 means Blond
Hair, and 2 means Brown Hair. FID score for each translation task is calculated by averaging scores
from each direction and AUB score is shown in nats.

FID AUB
0↔1 0↔2 1↔2 Avg. 0↔1 0↔2 1↔2 Avg.

AlignFlow (MLE) 243.27 99.11 127.10 156.49 -38109.25 -26437.60 -26288.98 -30278.61
Ours, λ = 0.01 101.20 104.72 109.99 117.86 -34041.39 -33884.92 -33902.84 -33943.05
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Ours, 𝜆 = 0.01 AlignFlow, MLE

Figure 9: This figure shows the translation results for three attributes (Black Hair, Blonde Hair,
Brown Hair) in CelebA dataset. The first column corresponds to real images in the test dataset. The
next three columns are translated results into three different attributes/domains (Each of the three
columns represents translation to Black Hair, Blonde Hair, Brown Hair attribute respectively) from
our model. The final three columns shows the translation results of MLE version of AlignFlow
model with the same format as the previous three columns.
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