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Abstract

The accurate segmentation of the optic cup and disc in fundus images is essential for di-
agnostic processes such as glaucoma detection. The inherent ambiguity in locating these
structures often poses a significant challenge, leading to potential misdiagnosis. To model
such ambiguities, numerous probabilistic segmentation models have been proposed. In this
paper, we investigate the integration of these probabilistic segmentation models into a mul-
tistage pipeline closely resembling clinical practice. Our findings indicate that leveraging
the uncertainties provided by these models substantially enhances the quality of glaucoma
diagnosis compared to relying on a single segmentation only.

1. Introduction

Glaucoma is a chronic eye disease in which nerve fibers gradually degenerate, leading to
damage in the optic nerve head. It is the second leading cause of blindness worldwide
affecting one in ten people over the age of eighty (Sevastopolsky, 2017). Diagnosis involves
the exact localization of the optic disc and cup in the fundus image. Their shape, size, and
relationship to each other are crucial disease markers. Therefore, automated segmentation
of the cup and disc is an important step for computer-aided diagnosis frameworks. However,
delineation of those structures, in particular the optic cup, is highly challenging and subject
to large uncertainties with large disagreements even among experts.
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In this paper, we demonstrate that probabilistic segmentation techniques are effective
at capturing uncertainties in the segmentation of the optic disc and cup. Going further, we
propose a method to propagate this uncertainty through a multi-stage diagnostic pipeline.
Specifically, we propose a method for incorporating the uncertainty arising in an upstream
step in the final downstream task, and show that it substantially improves classification
performance with respect to a deterministic baseline1.

Several models have been proposed for optic cup and disc segmentation over the past
years (Sevastopolsky et al., 2019; Tulsani et al., 2021; Rasheed et al., 2023). However,
these methods do not take into account the inherent uncertainties of this problem. A
small number of works address expert disagreements. Edupuganti et al. (2018) incorporate
multi-annotator information into learning the segmentation by weighing the loss for pixels
depending on the agreement or disagreement of the annotators. Cheng et al. (2020) approx-
imate the joint distribution of the input fundus image and the ground truth segmentation
to regularize a U-Net segmentation network. However, estimation of the segmentation un-
certainty in optic cup and disc segmentation remains unexplored.

Most recent automated glaucoma diagnosis frameworks approach the problem with black
box solutions (Mirzania et al., 2021; Singh et al., 2022; Fan et al., 2023; De Vente et al.,
2023). While reaching high performance, end-to-end black box models may often not be
clinically desirable. In practice, systems that model the individual steps of a diagnostic
pipeline are more interpretable, easier to debug, and more likely to find clinical acceptance.
Moreover, data shifts can be addressed by retraining individual components rather than
the whole method. Indeed, clinical pipeline approaches have shown great promise in similar
areas (De Fauw et al., 2018). A number of works propose to first segment the cup and disc
and then extract the vertical or area cup-to-disc ratio (CDR) as a diagnostic marker (Al-
Bander et al., 2018; Sevastopolsky et al., 2019; Bi et al., 2019; Jiang et al., 2019; Bian et al.,
2020; Neto et al., 2022; Zhang et al., 2023). The vertical CDR measures the ratio between
the diameter of the cup and the disc along a vertical line through the center. The area CDR
measures the ratio of pixels belonging to the cup and disc respectively. However, clinical
literature shows that the rim thickness curve (RTC) (i.e. the distance between the disc and
the cup for every point) may be a more informative measure (Spaeth et al., 2002; Kumar
et al., 2019). In this work, we follow these insights and propose a clinically inspired multi-
stage pipeline based on initial probabilistic segmentation of the cup and disc, automated
RTC extraction, followed by glaucoma classification (see Fig. 1).

Uncertainty estimation is typically studied for individual deep learning models, and has
been shown to yield improved performance and robustness on individual tasks (Abdar et al.,
2023; Schmidt et al., 2023). However, when clinical workflows consist of tasks that are ar-
ranged in a cascading sequence – as is the case here – it becomes crucial to understand
how uncertainty in certain stages impacts subsequent tasks. Few studies have focused on
uncertainty propagation in clinical pipelines. Eaton-Rosen et al. (2018) propagate tumor
segmentation uncertainty to tumor volume measurement using the variance sum law. Mehta
et al. (2019, 2021) propose to append variance maps obtained using MC Dropout (Kendall
et al., 2016) in a segmentation stage as an additional input channel to a subsequent tumor
detection network. To our knowledge, these are the only studies showing that incorporat-

1. The code is available at https://github.com/annawundram/glaucoma-diagnosis-pipeline
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Figure 1: Proposed pipeline. a) Automatic ROI extraction from the full fundus im-
ages. b) Sampling of possible segmentations using probabilistic segmentation.
c) Extraction of rim thickness curves (RTCs) for each segmentation sample. d)
Classification of each RTC. e) Marginalization over possible segmentations pro-
duces the final glaucoma probability.

ing uncertainty can enhance downstream task performance. However, relying on variance
maps instead of the full distribution limits the downstream task to neural networks, as the
variance must be added as a channel. Recently, Feiner et al. (2023) and Fischer et al. (2023)
proposed two related approaches for propagating uncertainty arising in MR reconstruction
to subsequent classification, regression, or segmentation tasks. Both these approaches di-
rectly propagate samples from the conditional distribution through the pipeline rather than
relying on the variance. Similar, to those works, we propose a sampling-based uncertainty
propagation approach. However, we go one step further by using uncertainty to enhance
downstream performance. This is achieved by marginalizing over possible outcomes in the
highly uncertain segmentation stage.

In summary, our contributions are as follows:

1. An interpretable pipeline for glaucoma diagnosis which incorporates clinical knowledge
and closely mirrors clinicians’ reasoning.

2. The first application of segmentation uncertainty quantification techniques to cup-
and-disc segmentation in fundus images with a comparative analysis of four widely
used techniques.

3. A sampling-based approach for propagating uncertainty through a multi-stage pipeline
as well as a strategy for leveraging this approach to enhance downstream performance.

4. Introduction of RTC as a clinically motivated alternative to CDR in computer-aided
glaucoma diagnosis pipelines and empirical verification of its superior performance.

2. Methods

The proposed pipeline consists of five steps as illustrated in Fig. 1. We deterministically
extract the region of interest (ROI) containing the cup and disc to obtain the close-up images
x. For the highly uncertain step of optic disc and cup segmentation, we use probabilistic
segmentation to approximate the distribution p(s|x) of the segmentations s, and we produce
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segmentation samples si. The samples (which capture the uncertainty) are propagated
through a deterministic rim thickness extraction function g : si 7→ ri producing RTCs ri.
Following this, a deterministic classification function f : ri 7→ di takes the RTCs as input
and produces a predicted diagnosis di ∈ {0, 1} for each ri. Lastly, we marginalize over the
samples to obtain a final probability p(d|x) of the image being “glaucoma suspect”. All of
these steps will be introduced in detail below.

2.1. Automated Region of Interest Detection

The region of interest (ROI) for glaucoma diagnosis only includes a small area of the fundus
containing the optic nerve head, in particular the optic disc and cup (see Fig. 1a).

Prior work has shown that a two-step segmentation approach consisting of ROI extrac-
tion, followed by segmentation can improve segmentation results (Kim et al., 2019; Liu et al.,
2021). Following these works we use a U-Net for cup and disc segmentation on full-view
fundus images. Next, a padded quadratic bounding box is placed around the segmentations,
and the resulting ROI is cropped and resized to 320 × 320 pixels. All experiments in this
paper were performed with ROI images x obtained in this manner.

We use the improved U-Net first employed by Kohl et al. (2018) which operates on 7
rather than 5 resolution levels and uses bilinear upsampling instead of transposed convolu-
tions for all experiments, to ensure consistency with the Prob. U-Net (Kohl et al., 2018)
and PHiSeg (Baumgartner et al., 2019) baselines described in the next section.

2.2. Probabilistic Optic Cup and Disc Segmentation

The cup and disc segmentation step is characterized by large uncertainties and variability
even among human experts. Therefore, segmentations resulting from a deterministic ap-
proach, such as a U-Net, may be insufficient. It may for example produce segmentations
with a very thin rim in a subject where a thick and a thin rim are equally likely. The full
distribution of possible segmentations p(s|x) matching a given image x contains valuable
information for the downstream classification task. In recent years, several techniques have
been proposed which allow to approximate this conditional probability distribution. In
this work, we compare four such techniques: The probabilistic U-Net (Kohl et al., 2018),
PHiSeg (Baumgartner et al., 2019), MC Dropout (Kendall et al., 2016), and ensembles (Lak-
shminarayanan et al., 2017).

The probabilistic U-Net (Kohl et al., 2018) is a combination of the conditional
VAE (Sohn et al., 2015) approach with a U-Net architecture. PHiSeg further extends
the idea by a hierarchical latent space and was shown to provide closer approximations of
p(s|x). Both techniques estimate the aleatoric uncertainty.

Ensembles are implemented by training ten standard U-Nets with different random
seeds (Ensembleseeds). We additionally create an ensemble by training a U-Net for each of
the 11 expert annotators in our data (Ensembleexperts). The widely used MC Dropout
technique produces probabilistic segmentation samples by repeatedly predicting segmen-
tations for the same image with dropout enabled. We use a dropout rate of 0.2 on the
activation maps for training and testing. Dropout is applied to all layers except the final
four segmentation layers. Ensembles and MC Dropout estimate epistemic uncertainty. We
refer the reader to (Abdar et al., 2021) for definitions of aleatoric and epistemic uncertainty.
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We use the improved U-Net architecture first proposed in Kohl et al. (2018) for all
approaches with the exception of PHiSeg. PHiSeg employs the same U-Net encoder, but
requires a specific decoder. Crucially, all examined probabilistic segmentation methods
allow the generation of segmentation samples si from the estimated distribution of p(s|x).

2.3. Rim Thickness Curve (RTC) Extraction

Next, we extract RTCs ri from segmentation samples si. Rim thickness is defined as the
width of the rim between the borders of the optic cup and disc (Spaeth et al., 2002; Hwang
and Kim, 2012). To compute the RTC, a beam centered at the optic cup is rotated by
360 degrees. At every half-degree interval, the points where the beam intersects with the
borders of the optic disc and optic cup are determined. The rim thickness is calculated
as the Euclidean distance between these two intersections. This process results in a data
vector of length 720 for each segmentation sample si. The resulting RTCs were visualized
as polar plots (see Fig. 1 and 3). We denote the rim-thickness extraction procedure as a
deterministic function g : si 7→ ri. A visual explanation is shown in Appendix C.

2.4. Glaucoma Classification

The RTCs ri are classified as “glaucoma suspect” or “not glaucoma suspect”. We use a
logistic regression classifier since, in preliminary experiments, more powerful classifiers such
as SVMs or Random Forests did not lead to improvements. To prevent overfitting, the RTC
data is reduced by grouping the values into 72 bins and calculating their mean. We train an
individual classifier for the RTCs obtained from each of the examined segmentation methods.
The optimal decision threshold for each classifier is obtained by maximizing the Youden
index (sensitivity + specificity - 1) on the validation set. This results in a deterministic
classifier f : ri 7→ di that maps each rim thickness sample to a binary diagnosis.

2.5. Uncertainty Estimation and Robust Classification

The final probability p(d|x) of an input image x being “glaucoma suspect” is obtained
by marginalizing over all possible segmentations, that is p(d|x) =

∫
p(s|x)f(g(s))ds. We

approximate this integral using the Monte Carlo method with samples from the respective
segmentation techniques. We use 100 samples for all methods, except for ensembles which
are limited by the number of networks trained.

The probability p(d|x) is a natural measure for uncertainty as it can be interpreted as
a respective agreement or disagreement of the predictions resulting from the segmentation
samples. In that sense it is comparable to expert disagreement. We obtain the final robust
prediction of our pipeline by thresholding the above probability at 0.5.

3. Experiments and Results

3.1. Data

We used two publicly available fundus image datasets for experiments. The Cháks.u
dataset (Kumar et al., 2023) contains 1345 fundus images with cup and disc annota-
tions by five experts for each image. Additionally, each expert also provided a diagnosis
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Table 1: Quantitative results. AUROC, sensitivity and specificity refer to the glaucoma
classification task. Dice between the mean predicted segmentation and the con-
sensus ground truth segmentation. The correlation coefficient (CC) between the
mean pipeline prediction and the mean expert prediction for all test samples.

AUROC Sensitivity Specificity Dice CC

Segm. source RTC CDR RTC CDR RTC CDR

D
et
.

U-Net 0.857 0.8881 0.701 0.771 0.838 0.845 0.919 -

P
ro
ba
bi
li
st
ic

Ensembleexperts 0.863 0.890 0.719 0.789 0.802 0.853 0.907 0.629
Ensembleseeds 0.899 0.886 0.824 0.736 0.792 0.888 0.926 0.639
Prob. U-Net 0.876 0.869 0.877 0.824 0.749 0.799 0.871 0.612
PHiSeg 0.884 0.882 0.807 0.842 0.741 0.752 0.900 0.653
MC Dropout 0.885 0.887 0.736 0.736 0.835 0.874 0.894 0.592

Expert Annotations 0.957 0.930 0.921 0.883 0.884 0.866 - -

ResNet50 (black box) 0.884 0.754 0.853 - -

of “glaucoma suspect” or “not glaucoma suspect”. The dataset also contains consensus
segmentations obtained using the STAPLE algorithm (Warfield et al., 2004). The RIGA
dataset (Almazroa et al., 2018) consists of 750 fundus images with cup and disc annota-
tions by six experts for each image. In contrast to Cháks.u it contains no diagnosis labels,
and was only used for training the segmentation networks in our study.

We split the training portion of the Cháks.u data into a training and validation set
according to an 80/20 split. We used the official test split of the Cháks.u data for all
our evaluations. Additionally, we split the RIGA dataset into a training, and a validation
portion according to a 80/20 split.

3.2. Training

We trained the segmentation-based stages of our pipelines with combined RIGA and Cháks.u
datasets (see Sections 2.1 & 2.2), and the classifiers using only the Cháks.u dataset which
contains Glaucoma suspect labels (see Section 2.4). More details about the training and
model selection can be found in Appendix A.

3.3. Findings

Uncertainty quantification improves downstream predictions

In order to show that accounting for the uncertainty in the segmentation step leads to
improved performance in downstream tasks, we included a deterministic U-Net for the cup
and disc segmentation as an additional baseline. Again, we used the improved architecture
proposed in Kohl et al. (2018). Moreover, we included a classifier trained directly on the
expert annotations, as well as a black box ResNet50 network trained on the ROIs of the
Cháks.u dataset to get a sense of the maximum achievable performance.
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Figure 2: Mean expert disagreement versus mean pipeline prediction for all
methods. Values close to 1 or 0 indicate large agreement for “glaucoma sus-
pect” or “not glaucoma suspect”, respectively. Values close to 0.5 denote high
disagreement.

We observed that using probabilistic segmentation techniques consistently led to im-
provements in the downstream classification performance compared to the deterministic
U-Net (Tab. 1), with Ensembleseeds achieving the highest overall AUC score.

Notably, the black box ResNet50 model performed slightly worse than the best proba-
bilistic pipeline approaches. This suggests that our interpretable approach has the potential
to outperform black-box models in certain settings. We note that black box approaches may
perform better in a data-richer setting (De Vente et al., 2023).

Most methods showed similar performance in the segmentation task, as indicated by the
Dice scores in Table 1. However, despite its high Dice score, the deterministic U-Net fell
short on AUROC scores, indicating that accurate segmentation alone is insufficient, and that
considering the entire probability distribution of the upstream task leads to improvements.

RTCs outperformed CDR for glaucoma diagnosis

In order to confirm the hypothesis that RTCs are better suited for glaucoma diagnosis than
the widely used CDR, we additionally extracted the area CDR from all segmentations and
trained an additional set of logistic regression classifiers on those values. We observed that
the best AUROC scores were achieved with RTC, with particularly large improvements over
CDR for the highly performing Ensembleseeds.

Propagated uncertainty correlates with expert disagreement

We additionally calculated the Pearson’s correlation coefficient (CC) between the mean
expert prediction (i.e. all expert predictions averaged) and the mean pipeline prediction
p(d|x) in the last column of Tab. 1. PHiSeg achieved the highest CC with Ensembleseeds
also performing very well. Visual inspection of the mean expert and pipeline predictions
confirmed these findings (see Fig. 2). This indicates that the propagated uncertainty cor-
relates with the expert disagreement, and thus is an informative measure for prediction
uncertainty. However, further improvements may be achieved in future work by specifically
optimizing downstream calibration.

Qualitative analysis shows good segmentation and RTC agreement with experts

The entropy maps and RTCs in Fig. 3 confirm that the distributions of the annotator
disagreement approximately matched the estimated segmentation and RTC uncertainties.
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Fundus Image Expert Entropy Map PHiSeg Entropy Map Expert RTC PHiSeg RTC
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Figure 3: Entropy maps and RTCs for expert annotations as well as PHiSeg.
The mean rim-thickness (blue line) as well as the standard deviation (light blue
shading) are displayed. Three different scenarios are shown: an uncertain case
(top), a certain glaucoma suspect (middle) and a certain healthy eye (bottom).

We observed that the method correctly predicted higher uncertainties in areas where the rim
was obscured by blood vessels. Additional samples and methods are shown in Appendix B.

4. Discussion and Conclusion

Here, we proposed a pipeline for human-interpretable glaucoma prediction. We showed
that probabilistic segmentation techniques are suitable for capturing uncertainties in the
location of the cup and disc, and demonstrated an approach for propagating these uncer-
tainties through the pipeline steps to the final prediction. Knowledge about the uncertainty
adds an additional level of interpretability to the individual pipeline steps. We further-
more proposed a simple strategy for obtaining robust predictions by marginalizing over the
distribution of possible segmentations, and showed that accounting for the uncertainty in
this manner led to improved downstream predictions. Our analysis of different probabilistic
segmentation techniques revealed that a simple random seed ensemble provided the best
balance. However, PHiSeg provided the best qualitative results and correlation with expert
disagreements.

A limitation of our work is the sole focus on rim thickness as diagnostic feature. Future
work will focus on incorporating diagnostic markers such as the color and intensity of the
optic cup, and whether fundus corresponds to the right or left eye into our pipeline. These
features are known to be diagnostically important and may further improve performance.
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Appendix A. Training Details

The ROI extraction U-Net network (see Sec. 2.1) was trained with the combined RIGA
and Cháks.u training data sampling different expert ground truths for each batch. Model
selection was performed using the Dice score on the validation set.

The probabilistic segmentation networks described in Sec. 2.2 were trained in the same
fashion based on the regions extracted in the first step. Model selection for the probabilistic
U-Net, PHiSeg, and MC Dropout was performed using the generalized energy distance
(GED) metric (Kohl et al., 2018) between the expert annotations and the samples on the
validation sets. The ensembles were analogously trained by sampling different experts for
each batch, and model selection was performed based on the Dice score of the individual
networks.

We trained classifiers with RTCs resulting from each of the segmentation methods as
described in Sec. 2.4. The classifiers were trained using the Cháks.u training data, and
the optimal threshold was determined using the Cháks.u validation data. We used 100
RTC curve samples per training image for all methods except the Ensembleexperts and
Ensembleseeds, which were limited by design to 11 and 10 samples, respectively.

The ResNet50 baseline was initialized using ImageNet weights, and then fine-tuned on
predicting the glaucoma label from the automatically extracted ROI crops of the Cháks.u
dataset. During training we used random horizontal flips, and small random rotations in
[−10◦, 10◦] to augment the small dataset. Note that we did not use any augmentation for the
segmentation networks, as they were additionally trained with RIGA data and segmentation
tasks typically require fewer training data points due to the dense segmentation annotations.
We used the AUC computed on the validation set for model selection. In order to compute
the sensitivity and specificity in Table 1, we obtained the decision threshold which maximizes
the Youden index.

Appendix B. Additional qualitative results

In Fig. 4 we show additional qualitative results of the entropy for experts and models as
well as the corresponding RTCs.

Appendix C. Visual explanation of RTC extraction

Fig. 5 provides some intuition for the calculation of the RTC.
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Figure 4: Entropy maps and RTC plots for every model for three representative example
subjects.
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Figure 5: Rim-thickness calculation. A beam centered at the cup is rotated 360 degrees.
At every 0.5 degrees the Euclidean distance between the cup and the disc is
recorded in the rim thickness plot.
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