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ABSTRACT

In this paper, we propose a novel measure, namely Image Downscaling Assess-
ment by Rate-Distortion (IDA-RD), to quantitatively evaluate image downscaling
algorithms. In contrast to image-based methods that measure the quality of down-
scaled images, ours is process-based that draws ideas from the rate-distortion the-
ory to measure the distortion incurred during downscaling. Our main idea is that
downscaling and super-resolution (SR) can be viewed as the encoding and decod-
ing processes in the rate-distortion model, respectively, and that a downscaling
algorithm that preserves more details in the resulting low-resolution (LR) images
should lead to less distorted high-resolution (HR) images in SR. In other words,
the distortion should increase as the downscaling algorithm deteriorates. However,
it is non-trivial to measure this distortion as it requires the SR algorithm to be blind
and stochastic. Our key insight is that such requirements can be met by recent SR
algorithms based on deep generative models that can find all matching HR im-
ages for a given LR image on their learned image manifolds. Empirically, we first
validate our IDA-RD measure with synthetic downscaling algorithms which sim-
ulate distortions by adding various types and levels of degradations to the down-
scaled images. We then test our measure on traditional downscaling algorithms
such as bicubic, bilinear, nearest neighbor interpolation as well as state-of-the-art
downscaling algorithms such as DPID (Weber et al., 2016), L0-regularized down-
scaling (Liu et al., 2017), and Perceptual downscaling (Oeztireli & Gross, 2015).
Experimental results show the effectiveness of our IDA-RD in evaluating image
downscaling algorithms.

1 INTRODUCTION

Image downscaling is a fundamental problem in image processing and computer vision. To ad-
dress the diverse application scenarios, various digital devices with different resolutions, such as
smartphones, iPads, and desktop monitors, co-exist, which makes this problem even more impor-
tant. In contrast to image super-resolution (SR), which aims to “add” information to low-resolution
(LR) images, image downscaling algorithms focus on “preserving” information present in the high-
resolution (HR) images, which is particularly important for applications and devices with very lim-
ited screen spaces.

Traditional image downscaling algorithms low-pass filter an image before resampling it. While this
prevents aliasing in the downscaled LR image, important high-frequency details of the HR image are
removed simultaneously, resulting in a blurred or overly-smooth LR image. To improve the quality
of downscaled images, several sophisticated approaches have been proposed recently, including
remapping of high-frequency information (Gastal & Oliveira, 2017), optimization of perceptual
image quality metrics (Oeztireli & Gross, 2015), using L0-regularized priors (Liu et al., 2017), and
pixelizing the HR image (Gerstner et al., 2012; Han et al., 2018; Kuang et al., 2021; Shang & Wong,
2021). Nevertheless, research in image downscaling algorithms has significantly slowed down due to
the lack of a quantitative measure to evaluate them. Specifically, standard distance measures (e.g. L1,
L2 norm) and full-reference image quality assessment (IQA) methods are not applicable here due
to the absence of ground truth LR images; existing No-Reference IQA (NR-IQA) metrics (Mittal
et al., 2012b;a; Bosse et al., 2017) cannot be applied either as they rely on the “naturalness” of HR
images, which is not present in LR images (we will verify this in our experiments).
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In this paper, we propose a new quantitative measure for image downscaling based on Claude
Shannon’s rate-distortion theory (Berger, 2003), namely Image Downscaling Assessment by Rate-
Distortion (IDA-RD). The main idea of our IDA-RD measure is that a superior image downscaling
algorithm would try to retain as much information as possible in the LR image, thereby reducing
the distortion when being up-scaled (a.k.a. super-resolved) to the size of the original HR image.
However, such an upscaling method is non-trivial as it must satisfy two challenging requirements: i)
blindness, i.e. it must apply to all kinds of downscaling algorithms without knowing them in advance;
ii) stochasticity, i.e. it must be able to generate a manifold of HR images that captures the conditional
distribution of the super-resolution process. Our key insight is that both such requirements can be
satisfied by the recent success of deep generative models in blind and stochastic super-resolution. To
demonstrate the flexibility of our IDA-RD measure, we show that it can be successfully implemented
with two mainstream generative models: Generative Adversarial Networks (Menon et al., 2020) and
Normalizing Flows (Lugmayr et al., 2020). Extensive experiments demonstrate the effectiveness of
our IDA-RD measure in evaluating image downscaling algorithms. Our contributions include:

• Drawing on Claude Shannon’s rate-distortion theory (Berger, 2003), we propose the Image
Downscaling Assessment by Rate-Distortion (IDA-RD) measure to quantitatively evaluate
image downscaling algorithms, which fills a gap in existing image downscaling research.

• We demonstrate the effectiveness of our IDA-RD measure with extensive experiments on
both synthetic and real-world image downscaling algorithms.

2 RELATED WORK

Image Downscaling has a long history and its traditional methods (e.g. bicubic) have now become
the standard for image processing and computer vision software, making it difficult to trace their
origins. To this end, we only review recent attempts in developing better image downscaling algo-
rithms. For example, Gastal & Oliveira (2017) conducted a discrete Gabor frequency analysis and
propose to remap the high-frequency information of HR images to the representable range of the
downsampled spectrum, thereby preserving high frequency details in image downscaling. Oeztireli
& Gross (2015) model image downscaling as an optimization problem and minimize a perceptual
metric (SSIM) between the input and downscaled image. However, the limitations of SSIM are also
carried over to their approach. DPID (Weber et al., 2016) preserves small details by assigning higher
weights to the input pixels whose color deviates from their local neighborhood within the convolu-
tional filter. Liu et al. (2017) propose an optimization framework using two L0 regularized priors
that addresses two issues of image downscaling, i.e. salient feature preservation and downscaled im-
age construction. Image thumbnailing, a special case of image downscaling, has been studied by Sun
& Ling (2013). Their two-component thumbnailing framework, named as Scale and Object Aware
Thumbnailing (SOAT) focuses on saliency measure and thumbnail cropping. Li et al. (2018) term
image downscaling as image Compact Resolution (CR) and address it with a Convolutional Neural
Network (CNN). Inspired by the success of CNNs in image super-resolution (SR), they introduce
the CNN-CR model for image downscaling that can be jointly trained with any CNN-SR model.
Although their CNN-CR model results in better reconstruction quality than other downscaling al-
gorithms, they only demonstrate results for small downscaling factors (×2). However, the majority
of both image downscaling and super-resolution algorithms tend to focus on larger scaling factors
(e.g. ×8). Despite the aforementioned works, there does not exist a good quantitative measure for
the evaluation of image downscaling methods, which impedes the research on them.

Image Quality Assessment (IQA) can be subjective or objective. Between them, subjective meth-
ods rely on the visual inspection by human assessors while objective methods resort to quantitative
measures, e.g., image statistics. Examples of the most commonly used objective IQA metrics include
Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index Measure (SSIM), Multi-Scale SSIM
(MS-SSIM) (Wang et al., 2003) and Learned Perceptual Image Patch Similarity (LPIPS) (Zhang
et al., 2018). However, such IQA metrics are not applicable in the evaluation of image downscaling
algorithms as there are no ground truth LR images for comparison. Thus, most researchers rely on
subjective evaluation of downscaled images, which is costly and time-consuming.

No-Reference Image Quality Assessment (NR-IQA) addresses IQA in the absence of a reference
(i.e. ground truth) image. For example, Mittal et al. (2012a) propose BRISQUE, an NR-IQA metric
that uses the natural scene statistics (NSS) to quantify loss of “naturalness” in distorted images.
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Figure 1: Illustration of the proposed IDA-RD measure. Given a downscaling method fds to be
evaluated, i) we first use it to downscale several HR images; ii) then, we upscale them back to the
original resolution with fus and measure the distortion from the corresponding HR images. Such
an upscaling method leverages the recent success in deep generative models and thus can i) apply to
arbitrarily down-scaled images and ii) output a manifold of HR images that captures the conditional
distribution given a downscaled image.

Using locally normalized luminances, BRISQUE models a regressor which maps the feature space to
image quality scores. Based on their NSS, Mittal et al. (2012b) further devised an Opinion Unaware
(OU) and Distortion Unaware (DU) model for blind NR-IQA, which is named as NIQE. Bosse et al.
(2017) follow a data-driven approach for NR-IQA. Inspired by Siamese networks, they train a deep
neural network for feature extraction and regression in an end-to-end manner. However, due to the
lack of a large enough training dataset, their model does not generalize well. However, such NQ-
IQA metrics are also not applicable, as the “naturalness” they rely on exists only in HR but not LR
images. To this end, we borrow ideas from Claude Shannon’s rate-distortion theory and propose a
new measure called Image Downscaling Assessment by Rate-Distortion (IDA-RD). Our IDA-RD
measure leverages the recent success in deep generative models and shows promising results in the
quantitative evaluation of image downscaling methods.

Deep Generative Models We refer interested readers to Bond-Taylor et al. (2021) for a detailed
survey on deep generative modeling. Here, we review the two deep generative models used in our
work, i.e. Generative Adversarial Networks (GANs) and normalizing flows. Since the pioneering
work by Goodfellow et al. (2014), GANs have experienced significant improvements. For exam-
ple, Radford et al. (2015) proposed DCGAN, which incorporates convolutional neural networks for
better image synthesis. Arjovsky et al. (2017) addressed the notorious instability of GAN training
by employing a novel loss function, i.e. the Wasserstein distance loss. To date, the StyleGAN se-
ries (Karras et al., 2019; 2020; 2021) developed by Nvidia has shown impressive (maybe even the
best) results in high-resolution and high-quality image synthesis, leading to various applications in
image processing and manipulation (Abdal et al., 2019; 2020; Zhu et al., 2020). In this paper, we
follow Menon et al. (2020) and implement our measure with a StyleGAN generator pre-trained on
portrait images. Nevertheless, normalizing flows (Rezende & Mohamed, 2015; Papamakarios et al.,
2021; Keller et al., 2021) that construct complex distributions by transforming a probability density
function through a series of invertible mappings have attracted increasing attention in the past sev-
eral years. In this paper, we employ the SRFlow (Lugmayr et al., 2020) model to implement our
measure, which directly learns the conditional distribution of the HR output given the LR input.

3 OUR APPROACH

In this section, we first introduce the definition of our metric derived from Claude Shannon’s rate-
distortion theory (Berger, 2003), and then detail how deep generative models help to sidestep the
data scarcity challenge that impedes the application of the proposed metric.

3.1 METRIC DEFINITION

We create a proxy task, namely the lossy compression problem underpinned by Claude Shannon’s
rate-distortion theory (Berger, 2003), and formulate image downscaling as its encoding process:

inf
Qf (x̂|x)

E[DQ(X, X̂)] s.t. IQ(X; X̂) ≤ R (1)
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where X is the set of input high-resolution images, X̂ is the set of output reconstructed images, R is
a rate constraint determined by the downscaling process1, Qf (x̂|x) or Q for short is the probability
density function (PDF) of reconstructed HR images x̂ conditioned on an input HR image x with
respect to a given lossy image reconstruction function f that x̂ = f(x) = fus(fds(x)), where fus
and fds denote image upscaling and downscaling functions respectively, DQ is a distortion metric
between two image sets where the image correspondence is determined by Q. Thus, we propose to
use the expectation of the distortion as an evaluation metric for image downscaling:

S(fds) = E[DQ(X, X̂)] = Ex{Ex̂|x[D(x, x̂)]}, (2)

where x ∈ X , x̂ ∈ X̂ , D is a distortion metric between two images, e.g., LPIPS (Zhang et al., 2018).
The lower S, the better the downscaling algorithm fds. Although straightforward, the application of
such a metric remained a challenge in the past as it requires a strong upscaling function fus that can:

• Reconstruct the input image x regardless of the input downscaling algorithm fds.

• Generate a conditional distribution of reconstructed images x̂|x for each x.

Between them, the first is commonly known as blind image super-resolution that is essentially a
many-to-one mapping problem that aims to map different distorted downscaled images to the same
high-resolution image; the second is commonly known as one-to-many super-resolution due to its
ill-posed nature caused by the information loss during downscaling (Lugmayr et al., 2020).

Data Scarcity Challenge Combining the above two requirements makes the desired fus an ex-
tremely challenging many-to-many mapping problem that has remained unsolved for decades.
Specifically, the numerous kinds of distorted downscaled images and the corresponding countless
high-resolution images for each of them makes it infeasible to collect sufficient data for supervised
learning methods:

fus = argmin
fθ

EILR
(EIHR

||IHR − fθ(ILR)||) (3)

where IHR and ILR denote the high-resolution (HR) and low-resolution (LR) training images re-
spectively, EIHR

indicates that there are many IHR corresponding to the same ILR, EILR
indicates

that there are many ILR obtained by different image downscaling methods fds.

3.2 EVALUATION WITH DEEP GENERATIVE MODELS

Our key insight is that the above-mentioned data scarcity challenge (Eq. 3) can be overcome by
the recent successes in deep generative modeling (Goodfellow et al., 2014; Radford et al., 2015;
Arjovsky et al., 2017; Karras et al., 2019; 2020; 2021; Rezende & Mohamed, 2015; Papamakarios
et al., 2021; Keller et al., 2021). In deep generative modeling, a neural network model is trained to
learn a manifold of natural and high-resolution (HR) images from samples in the training dataset.
This has been successfully applied to various image processing tasks (Abdal et al., 2019; 2020;
Zhu et al., 2020). To demonstrate the flexibility of our metric, we show its two implementations
using two mainstream deep generative models: i) Generative Adversarial Networks (GANs) and ii)
Normalizing Flows respectively as follows.

Implementation with a GAN generator. Similar to Menon et al. (2020), we implement the upsam-
pling function fus in our metric using an optimization-based GAN inversion method (Abdal et al.,
2019; 2020). Leveraging the power of a pre-trained StyleGAN (Karras et al., 2019) generator G,
we define our GAN-based fus (Eq. 2) as locating the optimized StyleGAN latent code z∗i so that its
corresponding HR image G(z∗i ) synthesized by G shares the same downscaled image as an input
LR image ILR = fds(x):

fus(ILR, i) = G(z∗i ) = argmin
G(zi)

||ILR − fds(G(zi))|| (4)

where ILR = fds(x) denotes the input LR image downscaled by fds, zi denotes the i-th randomly
initialized latent code to be optimized to get the i-th sample from x̂|ILR (i.e., G(z∗i )), i = 1, 2, 3, ...
is the index. It can be observed that i) our fus sidesteps the data scarcity challenge (Eq. 3) by using

1Note that in image downscaling, such a constraint on R is always satisfied as the downscaled images are
of a fixed resolution defined by users.
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a StyleGAN generator that is trained with HR images only (i.e., without any many-to-many LR-HR
training pairs); ii) it relocates the supervision to downscaling (i.e., enforcing different HR images to
be downscaled to the same LR image) and thus outputs high quality HR images G(z∗i ) that applies
to an arbitrary choice of fds; iii) it is inherently stochastic given the random choices of zi.

Implementation with a Flow model. We employ the SRFlow model (Lugmayr et al., 2020) and
implement the fus in our metric with a conditional invertible neural network. Leveraging its invert-
ible nature, fus is trained to explicitly learn the conditional distribution x̂|ILR by minimizing the
negative log-likelihood:

fus = argmin
fθ

− log pz(fθ(x|ILR)) (5)

where ILR = fbicubic
ds (x) is a bicubic downscaled image of HR input x, z denotes a random latent

variable whose distribution encodes x̂|ILR with a ‘reparameterization trick’. Although trained with
only bicubic downscaling, surprisingly, we observed that the resulting fus can also be applied to
evaluate other downscaling methods.

We use SRFlow in the final version of our metric as it shares similar performance as the GAN-based
implementation but has a much lower time cost. Please see Sec. 4.4 for a detailed ablation study.

4 EXPERIMENTS

To validate the effectiveness of our IDA-RD measure, we first test it with synthetic image downscal-
ing methods whose performance are known beforehand (Sec. 4.2). Specifically, we simulate differ-
ent types and levels of downscaling distortions by adding controllable degradations (e.g., Gaussian
Blur, Contrast Change) to bicubic-downscaled images. In principle, the heavier the degradation,
the worse the results of downscaling, and the higher our measure should be. We also validate the
effectiveness of our IDA-RD measure across different scaling factors. Then, we show that our mea-
sure can also be used to evaluate real-world image downscaling methods like Bicubic, Bilinear,
Nearest Neighbour, and state-of-the-art downscaling methods like L0-regularized (Liu et al., 2017),
Perceptual (Oeztireli & Gross, 2015) and DPID (Weber et al., 2016) (Sec. 4.3). Third, we perform
a thorough ablation study to justify the algorithmic choices of our measure (Sec. 4.4). Finally, we
empirically justify our motivation in Sec. 4.5. Please see the appendix for additional experiments
and examples of downscaled images (Appendix A.1).

4.1 EXPERIMENTAL SETUP

Dataset Unless specified, we use a balanced subset of 900 images from the FFHQ dataset (Karras
et al., 2019), including face images at 1024×1024 resolution, as the set of input high-resolution
images X in Eq. 2 for our IDA-RD measure. Please see Appendix A.2 for more details on how we
construct balanced subsets of images from FFHQ. The results on other datasets, including NPRpor-
trait 1.0 (Rosin et al., 2022) and AFHQ-Cat (Choi et al., 2020), are shown in Sec. 4.4. Note that
we use these domain-specific datasets as they are more stable for SRFlow. Please see Appendix A.8
for the results and discussions on real-world datasets, e.g., DIV2K (Agustsson & Timofte, 2017),
Flickr30k (Young et al., 2014).

Image Upscaling Algorithms We use SRFlow (Lugmayr et al., 2020) as the fus in Eq. 2. Specifi-
cally, we used the models provided by the authors for 4× and 8× super resolution that are pre-trained
on DIV2K (Agustsson & Timofte, 2017) and Flickr2K datasets2. Unless specified, we use the 8×
model for all experiments. Note that we also tested PULSE (Menon et al., 2020) as an alternative in
Sec. 4.4. For PULSE, we use the same StyleGAN generator pre-trained with FFHQ (Karras et al.,
2019). This model generates face images of size 1024×1024. We use a learning rate of 0.4, and
stop the optimization for each image after 200 steps of spherical gradient descent. The noise signals
of the StyleGAN generator were kept fixed.

Hyperparameters Unless specified, we use NQ = 5 as the number of images upscaled from a
single downscaled image for the estimation of Q in Eq. 2; we use LPIPS (Zhang et al., 2018) as
the distortion measure D in Eq. 2; we use NX = 900 as the number of images in the set of high-
resolution image X in Eq. 2.

2https://github.com/andreas128/SRFlow
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Table 1: IDA-RD scores for synthetic image downscaling with different types and levels of degrada-
tions (a), (b); with mixed degradations (c). The numbers in parentheses denote degradation param-
eters. As a reference, the IDA-RD score for the bicubic-downscaled image without degradation is
0.11±0.145. It is best to Zoom In to view the examples of downscaled images with different types
and levels of degradations.

Gauss. Blur Gauss. Noise Contrast Inc. Contrast Dec.
(1.0) 0.320±0.048 (0.05) 0.482±0.051 (1.5) 0.231±0.042 (0.75) 0.330±0.047
(2.0) 0.434±0.057 (0.10) 0.640±0.052 (2.0) 0.317±0.041 (0.50) 0.644±0.074
(4.0) 0.579±0.065 (0.20) 0.659±0.052 (2.5) 0.462±0.043 (0.25) 0.669±0.034

(a)

Quantization
(15) 0.164±0.002
(10) 0.205±0.003
(5) 0.463±0.064

(b)

Gauss. Blur (1) 0.320±0.048
+ Gauss. Noise (0.05) 0.585±0.062
+ Contrast Dec. (0.75) 0.664±0.046
+ Quantization (10) 0.795±0.063

(c)

Table 2: IDA-RD scores for synthetic image downscaling methods with different scaling factors.
(·): the resolution of downscaled images. Bicubic: bicubic-downscaled image without degradation.
G.B.: Gaussian Blur. The 32× super-resolution is achieved by a concatenation of a 8× and a 4×
upscaling implemented by pretrained SRFlow models.

Scaling Factor Bicubic G.B. (σ = 1.0) G.B. (σ = 2.0) G.B. (σ = 4.0)
4× (256 × 256) 0.058±0.142 0.146±0.032 0.269±0.043 0.412±0.055
8× (128 × 128) 0.110±0.145 0.320±0.048 0.434±0.057 0.579±0.065
32× (32 × 32) 0.228±0.056 0.614±0.068 0.680±0.066 0.741±0.065

4.2 TEST WITH SYNTHETIC DOWNSCALING METHODS

In this section, we demonstrate the effectiveness of our IDA-RD measure by testing its performance
on synthetic downscaling methods, which simulate the effects of different downscaling methods by
adding controllable degradations to bicubic-downscaled images.

4.2.1 EFFECTIVENESS ACROSS DEGRADATION TYPES AND LEVELS

As detailed below, we test our IDA-RD measure with four sets of synthetic downscaling methods
that apply different types and levels of degradations to bicubic-downscaled images respectively.

Gaussian Blur. We apply Gaussian blur to the bicubic-downscaled images. The standard deviation
of the blur kernel σ is chosen from {1.0, 2.0, 4.0}. The kernel size was set as (3σ + 1). The results
are shown in Table 1 (a).

Gaussian Noise. We add Gaussian noise to the bicubic-downscaled images. The standard deviation
σ of the noise is chosen from {0.05, 0.1, 0.2}. The results are shown in Table 1 (a).

Contrast Change. We apply contrast change to bicubic-downscaled images. To increase the con-
trast, we select the scale factor from {1.5, 2.0, 2.5}. Note that such scaling can cause degradation
due to the clipping of extreme intensity values. Similarly, to decrease the contrast, we select the
contrast parameter from {0.25, 0.50, 0.75}. The results are shown in Table 1 (a).

Quantization. We apply pixel quantization to bicubic-downscaled images and select the number
of color thresholds from {5, 10, 15}. Specifically, we apply Otsu’s multilevel thresholding algo-
rithm (Otsu, 1979) to the graylevel histogram which is derived from the color image, and then apply
these thresholds uniformly to each of the RGB color channels. The results are shown in Table 1 (b).

Mixed Degradations. In addition to single degradations mentioned above, we also demonstrate the
effectiveness of our IDA-RD measure on their mixtures. The results are shown in Table 1 (c).
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Table 3: IDA-RD scores for real-world image downscaling methods with different scaling factors.
S.F.: Scaling Factor, the resolutions of downscaled images (e.g., 512×512 for 2×, 64×64 for 16×),
are omitted for simplicity. N.N.: Nearest Neighbour. L0-reg.: L0-regularized. Note that the rela-
tively large standard deviations in some cases (especially when the scaling factors are small) indicate
the algorithmic biases of image downscaling methods against individual images, e.g., flat images
with large color blocks may suffer less from information loss. The 32× super-resolution is achieved
by a concatenation of a 8× and a 4× upscaling implemented by pretrained SRFlow models.

S.F. Bicubic Bilinear N.N. DPID Perceptual L0-reg.
4× 0.058±0.142 0.031±0.053 0.335±0.310 0.122±0.234 0.388±0.321 0.136±0.251
8× 0.110±0.145 0.090±0.067 0.512±0.340 0.127±0.294 0.398±0.337 0.213±0.301
32× 0.228±0.056 0.272±0.056 0.601±0.163 0.291±0.076 0.514±0.152 0.307±0.050

Table 4: Ablation study of fus, the image upscaling algorithms. PULSE (Menon et al., 2020) and
SRFlow (Lugmayr et al., 2020) have similar results but those of SRFlow are more distinguishable.

Bicubic Bilinear N.N. DPID Perceptual L0-reg.
PULSE 0.171±0.015 0.164±0.015 0.254±0.018 0.179±0.016 0.223±0.017 0.205±0.016
SRFlow 0.110±0.145 0.090±0.067 0.512±0.340 0.127±0.294 0.398±0.337 0.213±0.301

It can be observed that our IDA-RD measure works as expected (i.e., the stronger the degradation, the
worse the downscaling algorithm, and the higher the IDA-RD) for all synthetic image downscaling
methods, which demonstrates its effectiveness.

4.2.2 EFFECTIVENESS ACROSS SCALE FACTORS

We further demonstrate the effectiveness of our IDA-RD measure on synthetic downscaling algo-
rithms across different scaling factors. As Table 2 shows, we test our IDA-RD on synthetic down-
scaling algorithms of different levels of Gaussian Blur degradation as mentioned above. It can be
observed that: i) the larger the scaling factor, the more the information loss, and the higher the
IDA-RD; ii) the stronger the degradation, the worse the downscaling algorithm, and the higher the
IDA-RD; which justifies the validity of our IDA-RD measure.

4.3 EVALUATING EXISTING DOWNSCALING METHODS

We apply our method to compare six existing downscaling algorithms, consisting of three traditional
methods: Bicubic, Bilinear, Nearest Neighbor (N.N.), and three state of the art methods: DPID (We-
ber et al., 2016), L0-regularized downscaling (Liu et al., 2017), and Perceptual (Oeztireli & Gross,
2015) downscaling. The results are shown in Table 3. It can be observed that: i) when applied to
classical downscaling algorithms (i.e., Bicubic, Bilinear, and N.N.), our IDA-RD measure identifies
the quality of these algorithms in the correct order (Bilinear > Bicubic > N.N.), although the dif-
ference between the results of Bicubic and Bilinear downscaling is not significant as expected; ii)
when applied to SOTA ones, the common belief is that these algorithms should perform better than
Bilinear downscaling. However, none of these methods achieve a better in IDA-RD, suggesting that
although SOTA image downscaling methods excel in perceptual quality, they actually lose more in-
formation than Bilinear downscaling. Nevertheless, it can be observed that DPID and L0-regularized
methods are slightly better than Perceptual downscaling on our IDA-RD measure, which is consis-
tent with previous understanding. These indicate that our IDA-RD measure is a useful complement
to visual inspection, i.e., a good image downscaling algorithm should be both visually satisfying
and achieve a low IDA-RD score, which further validates the role of our measure in providing new
insights into image downscaling algorithms. Please see Appendix A.10 for a qualitative comparison.

4.4 ABLATION STUDY

In this experiment, we justify the algorithmic choices of our IDA-RD measure, i.e., fus, D, the
number of images used to estimate Q and in X , and the content of X in Eq. 2, by performing a
thorough ablation study on them.
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Table 5: Ablation study of NQ, the number of images required for a robust estimation of Q in Eq. 2.

NQ 1 3 5 10 15
Bicubic 0.103±0.141 0.109±0.142 0.110 ±0.145 0.111±0.145 0.110±0.145
Bilinear 0.090±0.069 0.090±0.067 0.090 ±0.067 0.090±0.067 0.090±0.067
N.N. 0.513±0.341 0.512±0.340 0.512 ±0.340 0.512±0.340 0.511±0.340

Table 6: Ablation study of D, the distortion measure in Eq. 2. Dec.: Decrease. Param.: Parameter.
Please see Table 14 in Appendix A.3 for experiments with other synthetic downscaling methods.

Param. PSNR SSIM MS-SSIM LPIPS
0.75 22.137±4.020 0.834±0.159 0.881±0.101 0.330±0.047

Contrast Dec. 0.50 17.814±2.148 0.714±0.087 0.819±0.080 0.644±0.074
0.25 14.790±1.461 0.578±0.072 0.579±0.028 0.669±0.034

Gaussian Blur
1.00 25.159±1.999 0.744±0.059 0.929±0.017 0.320±0.048
2.00 22.365±1.875 0.646±0.073 0.849±0.033 0.434±0.057
4.00 19.738±1.739 0.558±0.080 0.715±0.051 0.579±0.065

Choice of fus. As Table 4 shows, both PULSE (Menon et al., 2020) and SRFlow (Lugmayr et al.,
2020) have similar results when used as fus in our IDA-RD measure, i.e., N.N. > Perceptual >
L0-regularized > DPID > Bicubic > Bilinear. However, since SRFlow yields more distinguishable
results and runs much faster (Table 15 in Appendix A.4), we use it in our IDA-RD measure. Never-
theless, our IDA-RD is very flexible (i.e., not restricted to PULSE or SRFlow) and will benefit from
future progresses of blind and stochastic super-resolution methods (please see Appendix A.9).

Number of Images used to Estimate Q. As Table 5 shows, for a downscaled image, we investigate
how many images are required to be upscaled from it (by fus ) to achieve a robust estimation of the
conditional distribution Q and thus our IDA-RD, namely NQ. It can be observed that the results
become stable when NQ ≥ 5, so we choose NQ = 5 for our IDA-RD measure.

Choice of D. As Table 6 shows, we test different choices of D including multiple image distortion
metrics: Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index Measure (SSIM) (Wang
et al., 2004), MS-SSIM (Multi-Scale SSIM), and LPIPS (Zhang et al., 2018). Experimental results
demonstrate a similar trend across all of them, indicating the flexibility of our IDA-RD measure.
Nevertheless, since LPIPS is a more advanced metric that has been shown to be more consistent
with human perception, we use it in the final version of our IDA-RD measure.

Number of Images in X . As Table 7 shows, we investigate how many images are required in the test
dataset X consisting of high-resolution images to achieve a robust estimation of IDA-RD, namely
NX . It can be observed that the results become stable when NX ≥ 900, so we choose NX = 900
for our IDA-RD measure.

Table 7: Ablation study of NX , the number of images in test dataset X in Eq. 2. Synthetic image
downscaling methods with Contrast Decrease with σ = 0.75 (DG1); Gaussian Noise with σ = 0.05
(DG2); mixed noise consisting of Gaussian Blur with σ = 1.0, Contrast Decrease with σ = 0.75,
and Gaussian Noise with σ = 0.05 (DG3); are used in the experiments.

NX 30 300 600 900 1200 1500
DG1 0.320±0.026 0.321±0.047 0.321±0.046 0.330±0.047 0.325±0.047 0.329±0.047
DG2 0.501±0.055 0.473±0.051 0.481±0.050 0.482±0.051 0.483±0.051 0.484±0.051
DG3 0.483±0.088 0.312±0.048 0.321±0.045 0.320±0.048 0.321±0.047 0.322±0.048

The Content of X . As Table 8 shows, in addition to FFHQ (Karras et al., 2019), we test our IDA-
RD measure on another two datasets: the NPRportrait 1.0 benchmark set (Rosin et al., 2022) and
AFHQ-Cat (Choi et al., 2020). Between them, we use all 60 images at around 800×1024 resolution
from the NPRportrait 1.0 benchmark set as X , which was carefully constructed so as to include a
controlled diversity of gender, age and ethnicity; we use a random sample of 900 images at 512×512
resolution from the AFHQ-Cat dataset as X . We test them with 4× image downscaling. It can be

8
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Table 8: Ablation study of the contents of dataset X in Eq. 2. (1) Bicubic (2) Bilinear (3) Nearest
Neighbor (N.N.) (4) DPID (5) Perceptual (6) L0-regularized.

FFHQ NPRportrait 1.0 AFHQ-Cat
(1) 0.110±0.145 0.119±0.166 0.107±0.029
(2) 0.090±0.067 0.100±0.101 0.091±0.033
(3) 0.512±0.340 0.329±0.292 0.277±0.103
(4) 0.127±0.294 0.119±0.099 0.152±0.047
(5) 0.398±0.337 0.391±0.231 0.289±0.067
(6) 0.213±0.301 0.166±0.234 0.211±0.025

Bicubic

Bilin
ear

N. N
DPID

Perceptual

L0-re
gulariz

ed

0.1

0.2

0.3

0.4

0.5
NPRportrait

FFHQ

AFHQ-Cat

observed that our conclusions hold for all datasets, which further verifies the flexibility of our method
against the content of X . Without loss of generality, we use FFHQ in our IDA-RD measure.

4.5 MOTIVATION JUSTIFICATION

Invalidity of NR-IQA Metrics As Table. 9 shows, existing NR-IQA metrics, such as NIQE (Mittal
et al., 2012b) and BRISQUE (Mittal et al., 2012a), are not suitable for the image downscaling
problem, especially extreme downscaling. It can be observed that i) NIQE struggles to calculate
proper scores at all resolutions below 128×128; ii) BRISQUE does not provide the correct scores at
a resolution of 32×32. Please see Appendix A.5 for results on higher resolutions.

Table 9: NIQE and BRISQUE scores at different resolutions. The test image was randomly selected
from the FFHQ dataset and bicubic-downscaled to different resolutions (LR). Different levels of
Gaussian Blur with kernel σ = 1.0, 2.0, 4.0 were applied as synthetic image downscaling methods.

Resolution LR σ = 1.0 σ = 2.0 σ = 4.0
128×128 18.873 18.872 18.870 18.869

NIQE↓ 64×64 18.872 18.872 18.870 18.869
32×32 18.873 18.869 18.870 18.867

128×128 16.045 34.423 47.017 55.166
BRISQUE↓ 64×64 41.360 42.417 43.346 54.344

32×32 43.458 43.458 44.015 43.668

Invalidity of Non-blind and Non-stochastic SR method As Table 10 shows, non-blind and non-
stochastic SR methods like ESRGAN (Wang et al., 2018) and SR3 (Saharia et al., 2022) fail to
distinguish among image downscaling algorithms, which justifies the choice of blind and stochastic
SR methods in our IDA-RD.

Bicubic Bilinear N.N. DPID Perceptual L0-reg.
ESRGAN 0.022±0.012 0.017±0.006 0.058±0.016 0.025±0.009 0.024±0.004 0.024±0.007
SR3 0.169±0.048 0.164±0.047 0.179±0.040 0.171±0.044 0.172±0.043 0.171±0.049

Table 10: Invalidity of using ESRGAN and SR3 in our IDA-RD measure.

5 CONCLUSION

In this paper, we presented Image Downscaling Assessment by Rate Distortion (IDA-RD), a quan-
titative measure for the evaluation of image downscaling algorithms. Our measure circumvents
the requirement of a ground-truth LR image by measuring the distortion in the HR space, which
is enabled by the recent success of blind and stochastic super-resolution algorithms based on deep
generative models. We validate our approach by testing various synthetic downscaling algorithms,
simulated by adding degradations, on various datasets. We also test our measure on real-world image
downscaling algorithms, which further validates the role of our measure in providing new insights
into image downscaling algorithms. Please see Appendix A.6 for Limitation and Future Work.
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Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks.
In International Conference on Machine Learning, pp. 214–223. PMLR, 2017.

Toby Berger. Rate-distortion theory. Wiley Encyclopedia of Telecommunications, 2003.

Sam Bond-Taylor, Adam Leach, Yang Long, and Chris G Willcocks. Deep generative modelling: A
comparative review of VAEs, GANs, normalizing flows, energy-based and autoregressive models.
arXiv preprint arXiv:2103.04922, 2021.

Sebastian Bosse, Dominique Maniry, Klaus-Robert Müller, Thomas Wiegand, and Wojciech Samek.
Deep neural networks for no-reference and full-reference image quality assessment. IEEE Trans-
actions on Image Processing, 27(1):206–219, 2017.
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Welling. Self normalizing flows. In International Conference on Machine Learning, pp. 5378–
5387. PMLR, 2021.

Hailan Kuang, Nan Huang, Shuchang Xu, and Shunpeng Du. A pixel image generation algorithm
based on cyclegan. In 2021 IEEE 4th Advanced Information Management, Communicates, Elec-
tronic and Automation Control Conference (IMCEC), volume 4, pp. 476–480. IEEE, 2021.

Yue Li, Dong Liu, Houqiang Li, Li Li, Zhu Li, and Feng Wu. Learning a convolutional neural
network for image compact-resolution. IEEE Transactions on Image Processing, 28(3):1092–
1107, 2018.

Junjie Liu, Shengfeng He, and Rynson WH Lau. L0-regularized image downscaling. IEEE Trans-
actions on Image Processing, 27(3):1076–1085, 2017.

Andreas Lugmayr, Martin Danelljan, Luc Van Gool, and Radu Timofte. Srflow: Learning the super-
resolution space with normalizing flow. In European Conference on Computer Vision, pp. 715–
732. Springer, 2020.

Sachit Menon, Alexandru Damian, Shijia Hu, Nikhil Ravi, and Cynthia Rudin. Pulse: Self-
supervised photo upsampling via latent space exploration of generative models. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2437–2445, 2020.

Anish Mittal, Anush Krishna Moorthy, and Alan Conrad Bovik. No-reference image quality assess-
ment in the spatial domain. IEEE Transactions on Image Processing, 21(12):4695–4708, 2012a.

Anish Mittal, Rajiv Soundararajan, and Alan C Bovik. Making a “completely blind” image quality
analyzer. IEEE Signal Processing Letters, 20(3):209–212, 2012b.

A Cengiz Oeztireli and Markus Gross. Perceptually based downscaling of images. ACM Transac-
tions on Graphics (TOG), 34(4):1–10, 2015.

Nobuyuki Otsu. A threshold selection method from gray-level histograms. IEEE Transactions on
Systems, Man, and Cybernetics, 9(1):62–66, 1979.

George Papamakarios, Eric T Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji
Lakshminarayanan. Normalizing flows for probabilistic modeling and inference. Journal of
Machine Learning Research, 22(57):1–64, 2021.

Jordi Pont-Tuset and Ferran Marques. Measures and meta-measures for the supervised evaluation
of image segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 2131–2138, 2013.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.

Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In Interna-
tional Conference on Machine Learning, pp. 1530–1538. PMLR, 2015.

Paul L Rosin, Yu-Kun Lai, David Mould, Ran Yi, Itamar Berger, Lars Doyle, Seungyong Lee, Chuan
Li, Yong-Jin Liu, Amir Semmo, Ariel Shamir, Minjung Son, and Holger Winnemöller. NPRpor-
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A APPENDIX

A.1 EXAMPLES OF DOWNSCALED IMAGES USED IN OUR EXPERIMENTS

Table 11 and Table 12 show examples of images downscaled by synthetic and real-world image
downscaling methods used in our experiments, respectively.

A.2 BALANCING FFHQ INTO AGE-, GENDER-, AND RACE-BALANCED SUBSETS

We balance the FFHQ dataset Karras et al. (2019) into subsets (i.e., X in Eq. 2) that are balanced
in age, gender and ethnicity for a fair evaluation of our IDA-RD measure. For the gender and
age labels of FFHQ images, we use those offered by the FFHQ-features-dataset3; for the ethnicity
labels of FFHQ images, we use the recognition results of DeepFace4. According to the above, we
define i) four age groups: Minors (0-18), Youth (19-36), Middle Aged (36-54) and Seniors (54+);
ii) three major ethnic groups: Asian, White and Black; iii) two gender groups: Male and Female.
We apply K-means to cluster FFHQ images in 24 (4×3×2) groups and select images from them
evenly to generate the subsets used in our experiments. As Table 13 shows, the subsets used in our
experiments are highly-balanced in terms of age, gender and ethnicity.

A.3 ADDITIONAL ABLATION STUDY ON D THE DISTORTION MEASURE

As a complement to Table 6 in the main paper, Table 14 shows additional results for the ablation
study of D, which further justifies our choice of LPIPS as the distortion measure in our IDA-RD.

3https://github.com/DCGM/ffhq-features-dataset
4https://github.com/serengil/deepface
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Table 11: Examples of images downscaled by synthetic image downscaling methods, i.e., those adds
controllable degradations to bicubic-downscaled images (Sec. 4.2). The numbers below images are
the degradation parameters. LR: bicubic-downscaled images, Dec.: decrease, Inc.: increase, Gauss.:
Gaussian.

Guass. Blur

LR σ = 1.0 σ = 2.0 σ = 4.0
Contrast Dec.

LR 0.75 0.5 0.25
Contrast Inc.

LR σ = 1.5 σ = 2.0 σ = 2.5
Gauss. Noise

LR 0.05 0.1 0.2
Quantization

LR 15 10 5
Mixed Degradations

LR +Contrast Dec. +Gauss. Noise +Quantization
+Gauss. Blur

A.4 TIME COMPLEXITY

Table 15 shows the running times of our IDA-RD measure using PULSE and SRFlow as fus (Eq. 2)
on an Nvidia RTX3090 GPU, respectively. It can be observed that the SRFlow implementation runs
much faster, which justifies our choice of using it in our IDA-RD measure.
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Table 12: Examples of images downscaled by real-world image downscaling methods. N.N.: Near-
est Neighbour; L0-reg.: L0-regularized.

Bicubic Bilinear N.N. DPID Perceptual L0-reg.

Table 13: Statistics of our balanced FFHQ subsets. MI: Minors, Y: Youth, MA: Middle Aged, S:
Senior; A: Asian, W: White, B: Black; M: Male, F: Female. J.E.: Joint Entropy, which measures the
extent to which a subset is balanced. As a reference, a fully-balanced subset has a joint entropy of
−24 ∗ (1/24) ∗ log2(1/24) ≈ 4.5850.

Size Age Ethnicity Gender J.E.
MI Y MA S A W B M F

30 6 9 7 8 10 10 10 15 15 4.2817
300 76 75 70 79 102 100 98 150 150 4.4998
600 168 142 141 149 200 194 206 329 271 4.5245
900 222 227 215 236 304 295 301 452 448 4.5343

1200 445 442 453 460 608 591 601 902 898 4.5375
1500 684 664 673 679 909 887 904 1352 1348 4.5386

A.5 ADDITIONAL RESULTS WITH NIQE AND BRISQUE

As a complement to Table 9 in the main paper, Table 16a and Table 16b show additional results of
NIQE (Mittal et al., 2012b) and BRISQUE (Mittal et al., 2012a) at higher resolutions where the two
scores work better.

A.6 LIMITATION AND FUTURE WORK

Limitations. Since our measure makes use of GAN- and Flow-based super-resolution (SR) models,
the limitations of these models are carried over as well. First of all, we cannot use test data beyond
the learnt distribution of the SR model. For example, unlike the SRFlow (Lugmayr et al., 2020)
model trained on general images that are used in the main paper, our GAN-based implementation
uses a StyleGAN generator pre-trained on portrait images, which only allows for the use of portrait
face images to evaluate downscaling algorithms. Also, although highly unlikely to occur, we cannot

Table 14: Ablation study of D, the distortion measure in Eq. 2. Dec.: Decrease. Param.: Parameter.

Param. PSNR SSIM MS-SSIM LPIPS
0.75 22.137±4.020 0.834±0.159 0.881±0.101 0.330±0.047

Contrast Dec. 0.50 17.814±2.148 0.714±0.087 0.819±0.080 0.644±0.074
0.25 14.790±1.461 0.578±0.072 0.579±0.028 0.669±0.034

Contrast Inc.
1.50 16.641±4.019 0.603±0.223 0.772±0.150 0.231±0.042
2.00 13.450±3.539 0.482±0.192 0.693±0.131 0.317±0.041
2.50 11.032±2.893 0.357±0.159 0.602±0.120 0.462±0.043

Gaussian Noise
0.05 20.784±0.160 0.597±0.004 0.648±0.071 0.482±0.051
0.10 18.121±1.713 0.563±0.029 0.576±0.066 0.640±0.052
0.20 16.120±1.751 0.520±0.029 0.376±0.066 0.659±0.052

Gaussian Blur
1.00 25.159±1.999 0.744±0.059 0.929±0.017 0.320±0.048
2.00 22.365±1.875 0.646±0.073 0.849±0.033 0.434±0.057
4.00 19.738±1.739 0.558±0.080 0.715±0.051 0.579±0.065
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Table 15: Running times of our IDA-RD with PULSE and SRFlow as fus (Eq. 2) respectively. NX :
the number of images in test dataset X in Eq. 2.

NX PULSE SRFlow
300 3h08min 18min
600 6h10min 35min
900 9h08min 55min

Table 16: Additional results of NIQE and BRISQUE at higher resolutions (lower is better).

Resolution LR σ = 1.0 σ = 2.0 σ = 4.0
1024×1024 3.700 4.158 5.173 6.471

512×512 2.406 3.959 5.574 6.299
256×256 3.047 4.611 7.133 6.792
128×128 18.873 18.872 18.870 18.869

64×64 18.872 18.872 18.870 18.869
32×32 18.873 18.869 18.870 18.867

(a) NIQE scores

Resolution LR σ = 1.0 σ = 2.0 σ = 4.0
1024×1024 26.792 32.827 48.971 59.043

512×512 19.536 33.391 57.447 63.144
256×256 28.582 39.282 55.747 65.990
128×128 16.045 34.423 47.017 55.166

64×64 41.360 42.417 43.346 54.344
32×32 43.458 43.458 44.015 43.668

(b) BRISQUE scores

evaluate downscaling algorithms whose output images are of higher quality than those generated by
the SR model (i.e., no distortion).

Future work. Our framework still requires a ground truth HR image. However, we believe the
distortion can be calculated without such a ground truth image. To further validate our IDA-RD
measure, in the future we will we use the meta-measure methodology (Pont-Tuset & Marques,
2013; Fan et al., 2019), in which secondary, easily quantifiable measures are constructed to quantify
the performance of a less easily quantifiable measure.

A.7 ABLATION STUDY OF NX FOR IDA-RD IMPLEMENTED WITH PULSE

As Table 17 shows, we also investigate how many images are required in the test dataset X con-
sisting of high-resolution images to achieve a robust estimation of IDA-RD implemented with
PULSE (Menon et al., 2020). Similar to those in the main paper, it can be observed that the re-
sults become stable when NX ≥ 900, which further justifies our choice of NX = 900 for IDA-RD.

Table 17: Ablation study of NX for IDA-RD implemented with PULSE. Synthetic image down-
scaling methods with Contrast Decrease with σ = 0.75 (DG1); Gaussian Noise with σ = 0.05
(DG2); mixed noise consisting of Gaussian Blur with σ = 1.0, Contrast Decrease with σ = 0.75,
and Gaussian Noise with σ = 0.05 (DG3); are used in the experiments.

NX 30 300 600 900 1200 1500
DG1 0.351±0.014 0.342±0.019 0.343±0.012 0.339±0.022 0.339±0.021 0.339±0.023
DG2 0.361±0.011 0.383±0.011 0.374±0.012 0.351±0.023 0.353±0.022 0.352±0.021
DG3 0.471±0.011 0.483±0.012 0.391±0.013 0.293±0.019 0.289±0.022 0.291±0.021
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A.8 EXPERIMENTAL RESULTS ON REAL-WORLD DATASETS

Table 18 shows our IDA-RD scores on two real-world datasets: DIV2K (Agustsson & Timofte,
2017) and Flickr30k (Young et al., 2014). It can be observed that our conclusions still hold (N.N. >
Perceptual > L0-regularized > DPID > Bicubic > Bilinear), which further justifies the validity of
the proposed IDA-RD measure. Note that both experiments are conducted with a scaling factor of
4× as we observed SRFlow become unstable for higher scaling factors (Fig. 2). For stable uses of
SRFlow, we intentionally used domain-specific datasets in the main paper. Note that all state-of-the-
art image downscaling methods (i.e., Perceptual, L0-regularized, DPID) used in our experiments are
general ones that are applicable to all domains (i.e., not tuned for specific domains).

Table 18: IDA-RD scores on two real-world datasets: DIV2K (Agustsson & Timofte, 2017) and
Flickr30k (Young et al., 2014). UD: “unknown downscaled” images provided by DIV2K. A scaling
factor of 4× is used for both datasets as we observed higher scaling factors makes SRFlow unstable.

Bicubic Bilinear N.N. DPID Perceptual L0-reg. UD
DIV2K 0.157±0.073 0.129±0.089 0.374±0.079 0.216±0.057 0.336±0.068 0.226±0.072 0.355±0.128
Flickr30K 0.263±0.102 0.239±0.112 0.452±0.105 0.357±0.097 0.367±0.080 0.364±0.103 –

Figure 2: SRFlow becomes unstable for a scaling factor of 8× on real-world datasets, e.g., DIV2K
(Row 1), while such cases never happen for domain-specific datasets, e.g., FFHQ (Row 2).

(a) N.N. (b) DPID (c) Perceptual (d) L0-reg.

(e) N.N. (f) DPID (g) Perceptual (h) L0-reg.

A.9 ADDITIONAL ABLATION STUDY OF fus

As Table 19 shows, we tested our IDA-RD measure with some other choices of state-of-the-art SR
methods: BSRGAN (Zhang et al., 2021), RSR (Castillo et al., 2021) and Real-ESRGAN (Wang
et al.). However, all these methods are blind but non-stochastic (Sec. 4.5), which do not satisfy the
requirement of our IDA-RD measure and generate less informative results. Specifically, the results
of BSRGAN and Real-ESRGAN are less distinguishable among different downscaling methods; the
results of RSR are slightly better but still not comparable to SRFlow.

A.10 QUALITATIVE EVALUATION OF EXISTING DOWNSCALING METHODS

As Fig. 3 shows, state-of-the-art image downscaling methods achieve better perceptual quality by
“exaggerating” perceptually important features in the original image (e.g., building lights, water
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Table 19: Additional ablation study of fus, the image upscaling algorithms. Following Sec. A.8, we
use the DIV2K dataset and a scaling factor of 4×. BSRGAN (Zhang et al., 2021), RSR (Castillo
et al., 2021) and Real-ESRGAN (Wang et al.) are blind but non-stochastic SR methods (Sec. 4.5),
which do not satisfy the requirement of our IDA-RD measure and generate less informative results.

Bicubic Bilinear N.N. DPID Perceptual L0-reg.
BSRGAN 0.010±0.008 0.011±0.008 0.024±0.022 0.013±0.011 0.025±0.018 0.011±0.008
RSR 0.231±0.071 0.208±0.095 0.423±0.132 0.288±0.099 0.379±0.123 0.231±0.071
Real-ESRGAN 0.014±0.010 0.015±0.011 0.026±0.022 0.016±0.012 0.026±0.017 0.017±0.013

reflections), thus leading to over-exaggeration in the upscaled images. As a result, they have lower
IDA-RD scores than bicubic and bilinear downscaling.

0.1822 0.1844 0.1800

Original SR 1 SR 2 SR 3

MD 1 MD 3MD 2LR

(a) Bicubic

0.1583 0.1599 0.1578

Original SR 1 SR 2 SR 3

MD 1 MD 3MD 2LR

(b) Bilinear

0.3992 0.4012 0.4006

Original SR 1 SR 2 SR 3

MD 1 MD 3MD 2LR

(c) N.N.

0.2822 0.2830 0.2839

Original SR 1 SR 2 SR 3

MD 1 MD 3MD 2LR

(d) DPID

0.3378 0. 3357 0. 3340

Original SR 1 SR 2 SR 3

MD 1 MD 3MD 2LR

(e) Perceptual

0.2810 0.2813 0.2792

Original SR 1 SR 2 SR 3

MD 1 MD 3MD 2LR

(f) L0-reg.

Figure 3: Qualitative evaluation of existing image downscaling methods. Original: the input HR
image; LR: the downscaled LR image; SR1, SR2, SR3: three instances of upscaled images; MD1,
MD2, MD3: difference map visualizations of (SR1, Original), (SR2, Original), and (SR3, Original),
respectively. The white numbers on the left-top corners: the corresponding LPIPS scores of the
difference map visualizations. State-of-the-art image downscaling methods (DPID, Perceptual and
L0-reg.) achieve better perceptual quality by “exaggerating” perceptually important features in the
original image (e.g., building lights, water reflections), thus leading to over-exaggeration in the
upscaled images and lower IDA-RD scores.
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