Under review as a conference paper at ICLR 2023

KOOPMAN NEURAL OPERATOR FOR LEARNING NON-
LINEAR PARTIAL DIFFERENTIAL EQUATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

The lacking of analytic solutions of diverse partial differential equations (PDEs)
gives birth to series of computational techniques for numerical solutions. In ma-
chine learning, numerous latest advances of solver designs are accomplished in
developing neural operators, a kind of mesh-free approximators of the infinite-
dimensional operators that map between different parameterization spaces of
equation solutions. Although neural operators exhibit generalization capacities
for learning an entire PDE family simultaneously, they become less accurate and
explainable while learning long-term behaviours of non-linear PDE families. In
this paper, we propose Koopman neural operator (KNO), a new neural operator,
to overcome these challenges. With the same objective of learning an infinite-
dimensional mapping between Banach spaces that serves as the solution operator
of target PDE family, our approach differs from existing models by formulating a
non-linear dynamic system of equation solution. By approximating the Koopman
operator, an infinite-dimensional linear operator governing all possible observa-
tions of the dynamic system, to act on the flow mapping of dynamic system, we
can equivalently learn the solution of an entire non-linear PDE family by solving
simple linear prediction problems. In zero-shot prediction and long-term predic-
tion experiments on representative PDEs (e.g., the Navier-Stokes equation), KNO
exhibits notable advantages in breaking the tradeoff between accuracy and effi-
ciency (e.g., model size) while previous state-of-the-art models are limited.

1 INTRODUCTION

Partial differential equation solvers are important. In science and engineering, partial differ-
ential equation (PDE) is a fundamental tool to characterize various problems (e.g., problems in fluid
mechanics, quantum mechanics, and civil engineering) Debnath & Debnath| (2005). However, even
though significant progress has been achieved on solving PDEs|Tanabe| (2017), numerous important
PDEs, such as the Navier-Stokes equation, still lack analytic solutions (Gockenbach/ (2005). Con-
sequently, the urgent needs of solving complicated PDEs in real applications have given birth to
diverse techniques for computationally approximating PDE solutions Mattheij et al.| (2005).

Given & = ¢ (D; Rd¢), a Banach space of inputs, and I' = T° (D; RdW), a Banach space of solu-
tions, defined on a bounded open set D C R%, these PDE solvers are expected to approximate a
solution operator F that relates ® with I for a typically time-dependent PDE family

oy (z1) = (L) (w0) + 1 (20) , 2 € D x T, (1)
v (x¢) =vB, ¢ € 0D x T, 2
v (o) =71, o € D x {0}. 3)

In Eq. , notions yp and 7; denote the boundary and initial conditions, set 7' = [0, c0) is the
time domain, differential operator £, is characterized depending on ¢, fixed function) (-) lives in
an appropriate function space determined by L, and (-) is the solution of the PDE family. This
formulation gives rise to the solution operator F : (¢, yg,yr) — -, which reduces to F : ¢ — ~ if
boundary and initial conditions are constant. For convenience, we always consider fixed boundary
and initial conditions in our subsequent derivations. In application, researchers consider a parametric
counterpart Fy ~ F parameterized by 6 to define optimization problems|Li et al.| (2020b).

Under review as a conference paper at ICLR 2023

Existing partial differential equation solvers are diverse. To date, diverse types of PDE solvers
have been developed, which can be generally classified as following:

¢ Classic numerical solvers. The earlist and commonest PDE solvers, such as finite element
Reddy| (2019) and finite difference [Lipnikov et al, (2014) methods, solve PDEs by dis-
cretizing the space according to specific mesh designs. These approaches are granularity-
dependent, whose accuracy favors fine-grained meshes while efficiency prefers coarse-
grained meshes Tadmor| (2012). Therefore, they inevitably face the tradeoff between accu-
racy and efficiency when the target PDE is complicated |Li et al.[(2020a).

* Neural-network-based solvers. To revolutionize the computational techniques of PDE
solving, three types of neural-network-based solvers have been proposed to approximate or
enhance the classic ones in a fast manner Raissi et al.| (2019)); Kochkov et al.| (2021)):

— Mesh-dependent and finite-dimensional operators. The first type of solvers ap-
proximate the solution operator as a parameterized neural network between finite
Euclidean spaces after discretizing domains D and T into = and y meshes, i.e.,
Fp : R* x RY x © — R* x RY|Guo et al.|(2016); |Zhu & Zabaras|(2018)); Bhatnagar
et al. (2019). These solvers are mesh-dependent and require fine-tuning on different
values of n, leading to limited generalization capacities [Li et al.| (2020b).

— Neural finite element methods. The second type of solvers directly parameterize
equation solution « () as a neural network, which equivalently gives rise to Fy :
D xT x © — R|Yu et al.|(2018)); Raissi et al.| (2019); Bar & Sochen| (2019); [Pan &
Duraisamy| (2020). Although these solvers are mesh-independent and accurate, they
are limited to learn a certain instance of the PDE rather than the entire family |Li et al.
(2020b). Therefore, similar to the classic numerical ones, these solvers requires new
network design and training whenever the instance is changed. Meanwhile, they are
not applicable to the cases where the underlying PDE remains unknown.

— Neural operators. The third type of solvers are developed to learn a mesh-dependent
and infinite-dimensional solution operator with neural networks, i.e, g : # x © — T’
Lu et al| (2019); Bhattacharya et al.| (2020); Nelsen & Stuart| (2021)); [Li et al.
(2020bja); [Kovachki et al.| (2021)); Li et al.| (2022). These solvers overcome the depen-
dence on meshes by learning networ parameters in a manner applicable to different
discretizations. Because these solvers learn the solution operator directly, they only
need to be trained once for a target PDE family. Generating equation solution -y (-)
of different instances of the PDE family only requires a forward pass of networks,
which is computationally favorable L1 et al. (2020bja)). Although neural operators are
initially not competitive with other neural-network-based solvers because evaluating
kernal integral operators is costly, the latest approach, named as Fourier neural opera-
tor|L1 et al.| (2020a), resolves this limitation by fast Fourier transform.

Compared with classic numerical solvers, neural-network-based solvers, especially neural operators,
are more efficient in dealing with science and engineering questions where PDEs are complicated
Li et al.|(2020bza). Therefore, our research primarily focus on neural operator designs.

Existing partial differential equation solvers are not perfect. Despite substantial progress
achieved by neural operators in theoretical foundations (e.g., Kovachki et al.| (2021)), approximator
designs (e.g., [Li et al| (2020a; 2022))), and applications (e.g., |(Guibas et al| (2021))), there still re-
main numerous challenges in existing neural operator solvers, among which, a critical one lies in
the limited capacity of existing models to learn the long-term dynamics of complicated PDEs.

Let us rethink about the iterative update strategy of neural operators Li et al.| (2020b)

Y (Tt4e) =0 (Wﬁ () +/D Ko (:ct,yt,¢(:vt),qﬁ(yt))ﬁ(yt)dyt) , Vaye D x {t}, 4)

x{t}

where ¢ € (0,00) denotes time difference, 7 : D x T — R% denotes the neural network repre-
sentation of equation solution ~ generated by specific embedding, mapping o : R — R denotes
an element-wise activation function, notion W : R% — R% denotes a linear transformation, and
kg : R2(d+ds) 5 R4 is a neural network parameterized by 6 |Li et al. (2020b). The integral term
related to xy defines the kernel integral operator mentioned above, whose computing efficiency is

Under review as a conference paper at ICLR 2023

improved by the well-known Fourier neural operator |Li et al.| (2020a), i.e., Eq. () can be reformu-
lated as 7 (zy4c) = 0 [WH (z4) + F 1 (F (ko) - F (3 (w¢)))] for any @, € D x {t} (notion F (-)
is the Fourier transform that can be realized by fast Fourier transform in application).

At the first glance, Eq. (4)) is similar to a dynamic system perspective where we study the flow map-
ping ¢ : R% x T — R of an infinite-dimensional non-linear dynamic system ; =~ (D x {t})
(notion 7y (D x {t}) represents that function acts on all elements in set D x {t})

t+e
Vite =Nt +/ ¢ (yr,7)dr, VEET. (5)
t

For most non-linear PDE families, the concerned flow mapping (is even more intricate than the
equation solution =y itself. Similar to other dynamic system prediction tasks, challenges frequently
arise as time difference € enlarges. The infinite-dimensional non-linear flow mapping ¢ makes the
accurate prediction of long-term dynamics (i.e., ¢ — o0) of 7, nearly impossible, limiting the pre-
diction accuracy of existing models. To maintain accuracy, existing models are required to enlarge
model size or complexity, inevitably facing the trade-off between accuracy and efficiency. Certainly,
a model can constrain its strategy to only predict short-term dynamics (i.e., ¢ = 1). However, learn-
ing long-term dynamics of PDEs serves as the cornerstone of diverse important applications, such as
meteorological forecast [Pathak et al.| (2022), epidemic prevention |Cao et al|(2020), and economic
system modelling Aminian et al.|(2006)). Therefore, overcoming the limitation in learning long-term
PDE behaviours is necessary for optimizing PDE solvers, which is the core objective of our research.

Our framework and contribution. In this paper, we attempt to overcome the challenge of pre-
dicting long-term PDE dynamics by proposing a new neural operator named as Koopman neural
operator (KNO). Our framework and contributions are summarized as following

* Long-term behaviour of the PDE family as an non-linear dynamic system of equa-
tion solution. Besides learning the solution operator of an entire target PDE family, we
formalize a non-linear dynamic system of equation solution described by Eq. (5) in the
meanwhile. This characterization supports to optimize the iterative update strategy of neu-
ral operators in Eq. (@) using dynamic system theory.

* Equivalent linear prediction of non-linear dynamics via Koopman operator. To cap-
ture intricate long-term dynamics, our model is designed to learn the Koopman operator,
an infinite-dimensional linear operator governing all observations of a dynamic system, to
act on the flow mapping ¢ of the dynamic system of equation solution. By doing so, we
can transform the original task into an equivalent but simpler linear prediction problem.

* Balance between accuracy and efficiency in zero-shot and long-term prediction. We
compare KNO with existing state-of-the-art models (e.g. the Fourier neural operator [Li
et al. (2020a)) in zero-shot prediction (i.e., testing on an untrained discretization granularity
or an untrained prediction length) and long-term prediction (i.e., with a large) experiments
with representative PDEs (e.g., the Navier-Stokes equation and the Bateman—Burgers equa-
tion). While previous methods suffer from the tradeoff between accuracy and efficiency
(e.g., model size), KNO is shown to achive higher accuracy with a smaller model size.

2 FRAMEWORK OF KOOPMAN NEURAL OPERATOR

Non-linear dynamic system of equation solution. We begin with formalizing the non-linear dy-
namic system of equation solution. As defined in Eq. (5), the dynamic system is given as

Oyt = C(e,t), Yy € R™ x T, (©6)

which can be either non-autonomous (i.e., the flow mapping 6 associated with ¢ (-,) is time-
dependent) or autonomous (i.e., the flow mapping 6 is time-independent such that 9;¢ (-,¢) = 0)
in different PDE families. In modern dynamic system theory Brunton et al.| (2022), Eq. (6) gener-
ally leads to the cocycle property of the flow mapping

0f =0, 00" Vt<t+T<teT M

where notion o denotes the composition of mappings. This cocycle property defines how ~, the
equation solution of target PDE family, evolves across adjoining time intervals.

Under review as a conference paper at ICLR 2023

Time-dependent Koopman operator. The non-linear, and potentially non-autonomous, dynamic
system in Eq. (6) makes long-term prediction a daunting challenge. In practice, researchers always
expect to deal with a linear dynamic system (i.e., 0;y: = Ay; where A is a linear operator), whose
dynamics is sufficientlly simple and can be accurately learned. Therefore, a natural question is
whether we can transform the original system in Eq. (6)) to a linear one to simplify the learning task.
According to modern dynamic system theory, such an objective can be realized by formulating the
Koopman operator K, an infinite-dimensional linear operator governing all possible observations of
a dynamic system, to act on the flow mapping ¢ and linearizing the original system in an appropriate
space [Brunton et al.| (2022). Let us take the case where system ; is autonomous (i.e., 95/ can be
simplified as 6'') as a simple illustration, the family of Koopman operators K¢ : G (Rdv X T) —
g (Rdw x T) parameterized by time difference ¢, is defined based on a set of observation function

(or named as measurement function) G (IR{d7 x T) = {g|g : R® x T — C} |Brunton et al.|(2022)
Kg (v) =g (0° (m)) = 8 (Ye4e) , Ve €R™ x T. ®)

Given with an appropriate space defined by G (IRd7 X T), we can linearize the dynamics of 7, via
Eq. @) This idea has seen notable success in fluid dynamicsRowley et al.|(2009)), robotics Abraham
& Murphey|(2019), plasma physics |Taylor et al.[|(2018), and neuroscience |Brunton et al.| (2016).

Different from existing machine-learning-based Koopman operator models that either are limited
to autonomous dynamic systems (e.g., the case described by Eq. (8)) Takeishi et al|(2017); [Azen-
cot et al.| (2020); |Otto & Rowley| (2019); |Alford-Lago et al.| (2022) or require a priori knowledge
about the eigenvalue spectrum (e.g, the numbers of real and complex eigenvalues) of Koopman op-
erator for non-autonomous dynamic systems |Lusch et al.| (2018)), our approach is rooted in a more
general perspective where we consider a time-dependent Koopman operator applicable to both non-
autonomous and autonomous dynamic systems Macesic et al.[(2018])

Kieg(w) =g (07 (w) =g (vige), VE<t+e€T.)
As shown in Eq. (9)), this Koopman operator governs a time-dependent linear evolution flow of
g (7¢) in a space defined by G (R% x T')

) ,Ct-‘re _
dug () = lim 800 — 800, (10)
e—0 IS

In mathematics, the adjoint of the Koopman operator defined by Eq. (9) is the Perron-Frobenius op-
erator of dynamic systems|Lasota & Mackey|(1985)) while the adjoint of the associated Lie operator
(see Appendix[A) is the Liouville operator of Hamiltonian dynamics Gaspard et al.| (1995);Gaspard
(2005). These properties relate our approach with well-known theories about linear representation
of dynamic systems in statistical physics and quantum mechanics |Lasota & Mackey| (1998).

Computational approximation of Koopman operator. After formalizing the time-dependent
Koopman operator, we suggest an efficient computation approach to represent it.

Inspired by the Hankel-DMD |Arbabi & Mezic| (2017), sHankel-DMD Crnjaric’-Zic et al. (2020),
and HAVOK Brunton et al.| (2017) algorithms, we consider the Krylov sequence |Saad|(2011) of the
observable defined by a unit time step € € [0, oo

Ry =[g(v0).8(e),8(v2e) -+, 8 (ne)] (11)
= |80 Kig (10) , KEKag (10) - K1y K) Kig (o). (12)

which can be seen in the Krylov subspace method for computing matrix eigenvalues |Saad| (2011).
Such a sequence can be efficiently sampled by a Hankel matrix representation of the system

g (7o) glye) - g (Yne)
g (’Y(mfl)a) g(Yme) 0 8 (’Y(m+n71)€)

whose dimension of delay-embedding is m € NT. The columns of H,, x,, approximate functions in
the Krylov subspace. Our motivation to consider the Krylov subspace lies in that it has opportunities
to span an invariant subspace, K C G (RdW x T) , of the Koopman operator

K = span (R,,) ~ span (H (.n)) (14)

Under review as a conference paper at ICLR 2023

if n > dim(K) — 1 (notion dim (-) measures the dimensionality). To see these possibili-
ties, we consider the Galerkin projection of the original Koopman operator to K, denoted by

I€f+s 1 g (]Rd7 X T) — K forany ¢t € T. For any functionh (-) € G (Rdv X T), we have

(K h (), g (ie)) = (KiT°h () , g (ie)), Vi=0,...,m, (15)

where (-,-) is the inner product. According to [Korda & Mezi¢ (2018); [Li & Jiang| (2022), the
Koopman operator restricted to K approximates the original Koopman operator

lim IKEh () — Ki**h () [pdu = 0, Yh () € G (R% x T) (16)
m—ro0 Q(Rd‘YXT)

if the original Koopman operator is bounded and K happens to be its invariant subspace (or simply
n — 0o). Notion y denotes a measure on G (R% x T') and || - || is the Frobenius norm. Therefore,
we are expected to approximate the original Koopman operator via a restricted one such that

Hosen (+1) = KEY0 (B), VE=1,...m, (17)
where H,, x (k) denotes the k-th column of H,,, .-

However, the time-dependent property of I€§+€ essentially requires an online optimization if we
learn it by a neural network. The expensive online optimization is not favorable for solving PDEs,
persuading us to consider an alternative solution. Inspired by ergodic theory|Arbabi & Mezic|(2017);
Cornfeld et al.|(2012)), we assume that the dynamic system of , is ergodic (i.e., 7y eventually visits
all possible states in R% as t — oo, thus the proportion of time that ~; spends on a particular state
equals the probability of this state). This assumption makes the time-averaging approximate the true
expectation of of an observable as the time approaches to infinity. Under this assumption, we can
define an expectation of the Koopman operator controlled by time difference

1 - ¢
Ke = thm - g () g (Yrge)dT argmmz [Hmxn (k+1) — PHuxn (k) || (18)
=0t J(0,¢) PeR

Given a fixed ¢, the Koopman operator K. : G (R x T') — K in Eq. can be understood as

the time-average of I@“ at different t. A neural network representation of K. only requires offline
optimization and, therefore, is computationally favorable for solving PDE:s.

Neural network architectures of Koopman neural operator. In this section, we realize our
framework defined above on neural network architectures, in combination with the objective of
solving PDEs. Our neural network model, named as Koopman neural operator (KNO), not only im-
plements the mathematical framework defined above but also utilizes various numerical techniques
to optimize its computational efficiency. Below, we introduce the details of architecture designs.

Part 1: Observation. Given an input ¢; = ¢ (D x {¢}) of the PDE in Eqs. (1}{3), we first trans-
form it as g (9;) in space G (R%% x T') by an encoder (a single non-linear layer with
tanh (-) activation function) that represent observation function g (-). Please see Fig. 1.

Part 2: Fourier transform. Although our approach focuses on the Koopman operator, it is not
necessary to give up the computation acceleration of iterative update strategy in Eq. (@)
realized by Fourier transform (see Fourier neural operator |Li et al.| (2020a) for detailed
explanations). In our approach, we also apply the Fourier transform to map g (%;) as
gr (3¢) = F o g (7:) and parameterize the subsequent parts of our network in the Fourier
space. Similar to|Li et al.| (2020a), g+ (7:) is computed by fast Fourier transform, where
we truncate the Fourier series at w, a maximum number of frequency modes. Although
this setting is acceptable in computational implementation, it does implies the loss of high-
frequency information. To complement the lost information, we design an extra part (Part
5) in our model to extract high-frequency information of g (7;). See Fig. 1 for details.

Part 3: Hankel representation and offline Koopman operator. Given g (7;) for every t €

eNT, we set a dimension of delay-embedding, m € N, to define a Hankel matrix H,, xx
of g7 (7:) (note that n equals the number of accessible samples). To ensure that the space

K spanned by the Hankel matrix approximates the invariant sub-space of target Koopman

Under review as a conference paper at ICLR 2023

Ground truth

L/

Part 1 Part 2 Part 3 Part 4 Part 6

L

\

i

(i+m+r)e

(l + m)e

'~ g,

Truncate

: i 1 3
xR
t'—t

Figure 1: Conceptual illustrations of neural network architectures of KNO. Parameter r = *— is
prediction length. Note that the layout of every part is slightly reorganized to offer a clear version.

______-___l-..___-~

operator, we train a o x o linear layer to learn KC. : G (Rd@ x T) - K following Egs.
(1819). Based on the learned K., we can predict the future state of the latest observable

T
87 (Ymsn—1)c) a8 87 (Vomtn)e) = [IC Honxn (n)} (m), where notion T denotes the
transpose of a matrix. Please see Fig. 1 for illustrations of Part 3.

Part 4: Inverse Fourier transform. Given each predicted state gx (Y(;4n)-) in Part 3, we
transform it from the Fourier space to G (Rdﬂ X T) by an inverse Fourier transform, i.e,
g (ﬁ(m+n)5) =Flogr (:Y\(m-m)s)- See Fig. 1 for instances.

Part 5: High-frequency information complement. According to the Fourier analysis imple-
mented on feature maps, convolutional layers can amplify high-frequency components
Park & Kim| (2022). Therefore, we train a convolutional layer C on the outputs of
Part 1 to extract their high-frequency information, denoted by gc (7:), as a comple-
ment of Parts 2-4. Meanwhile, the convolutional layer also implements an indepen-

dent forward prediction parallel to Parts 2-4, i.e, [gc (Y(i+1)c) »---.8 (3 (Hm“)a)]T =
C [ge (Fic)s--- 8¢ (3 (Hm)s)]T forany i = 1,...,n. See Fig. 1 for illustrations.

Part 6: Inverse observation. Given two future states, g (Ym+n)-) and ge (Y(m-n)e), of the
latest observable independently predicted by Parts 2-4 and Part 5, we unify them by
gu ((m+n)5) =g (W(ern)E) + gc ((m+n)5) We train an non-linear decoder (a single
non-linear layer with tanh (-) activation function) to represent the inverse of observation
function g1 (-) ~ g;,;' () and transform gy (Yimin)e) O A(mn)e, the target state of
equation solution in space R% . Please see Fig. 1.

Based on Parts 1-6, we have developed a new iterative update strategy different from Eq. ({@). For
any t’ > t € eN, we have

~ “1f o1t t t— ~ T
Yo = |:g (]: OICE O]:Og(Vt— met])+c Og(ly[tfms,t]))} (m)a (19)

Parts 1-4 Part 1 and part 5

where ;e 4] 1S a Vector [3s _me, . . ., V¢] defined by m € N, the dimension of delay-embedding.
In Fig. 1, we illustrate the one-unit architecture of KNO. Similar to Fourier neural operator [Li et al.|

Under review as a conference paper at ICLR 2023

(2020a), a z-unit KNO architecture can be produced by cascading the copy of Parts 2-5 = times.
Based on Eq. (19), the loss function of KNO is defined as

m
L=a|fe —ywlr+8Y llg™" o8 Fimime) — V—imellF, (20)
i=0
where «, 3 € (0, 00) control the weights of prediction and reconstruction processes in loss function,
respectively. Below, we test our KNO model in experiments.

3 EXPERIMENTS

Details of implemented PDEs. We implement our experiments on the l-dimensional Bate-
man-Burgers equation Benton & Platzman| (1972) and the 2-dimensional Navier-Stokes equation
Wang| (1991)). Please see Appendix [B|for mathematical definitions of these PDEs. The data of these
PDE:s is provided by |Li et al.[(2022) to ensure reproducibility.

Details of experiment designs. We conduct five experiments to validate our model:

* Mesh-independent experiment. As suggested in previous works [Lu et al.| (2019)); [Bhat-
tacharya et al.| (2020); Nelsen & Stuart| (2021); [Li et al.| (2020bfa); [Kovachki et al.| (2021);
Li et al.[(2022), neural operator models are expected to be mesh-independent becasue they
learn the solution operator of an entire PDE family. Therefore, we design an experiment to
validate the mesh-independent property of KNO.

* Long-term prediction experiment. To validate the long-term prediction capacity of KNO,
we design prediction tasks where t' — ¢ varies across different values and verify if KNO
robustly maintains accuracy as t’ — ¢ in Eq. enlarges.

» Zero-shot prediction experiment (discretization granularity). Following the idea [Li
et al.| (2020a), we test the generalization ability of KNO by testing it on untrained dis-
cretization granularity (e.g., in a way similar to super-resolution [L1 et al.| (2020a)).

* Zero-shot prediction experiment (prediction length). Apart from the generalization on
untrained discretization granularity, we also validate the generalization capacity of KNO
on untrained prediction length (e.g., train a KNO on a time difference ¢’ — ¢ = 7 and test
it on another time difference r’s > re in Eq. (19)).

» Ablation experiment. To demonstrate the significance of the learned Koopman operator
in KNO designs, we implement an ablation experiment in Appendix[C|

All experiments are implemented on a single Nvidia Titan V GPU with 12GB memory.

Details of implemented models. Besides KNO, we implement the following models for compar-
ison: Fourier neural operator (FNO) |Li et al| (2020a), U-shaped neural operator (UNO) [Rahman
et al. (2022), convolutional LSTM (ConvLSTM) Wang et al.| (2020), and U-Net |Ronneberger et al.
(2015)). Other common neural network models, such as the vanilla residual neural network (ResNet)
He et al.| (2016) and deep hidden physics model (DHPM) Raissi| (2018)), are shown as less efficient
on complex fluid systems|Wang et al.[|(2020) and, therefore, are not considered in our research. Each
model is trained by its default optimizer (e.g., KNO and FNO are trained by the Adam optimizer).

Mesh-independent experiment. Our mesh-independent experiment is implemented on the data of
1-dimensional Bateman—Burgers equation generated under different discretization conditions (i.e.,
spatial resolution of meshes). The data with highest resolution is generated following the Gaussian
initialization introduced in |Li et al.| (2020a). The data with lower resolution are directly down-
sampled from the data with higher resolution. We choose FNO as a baseline for comparison. As for
other baseline models less efficient than FNO in mesh-independent experiment, such as graph neural
operator (GNO)|L1 et al.|(2020b) and multipole graph neural operator (MGNO)|Li et al.| (2020c) (see
results reported by [Li et al.[(2020a)), we no longer discuss them for convenience. We implement
multiple versions of KNO and FNO with different hyper-parameters (e.g., operator size o, frequency
mode number f, the iteration number of the Koopman operator r = t/T_t in KNO, and the width of
FNO w). Under every condition, these models are trained on 1000 samples and conduct 1-second

Under review as a conference paper at ICLR 2023

forward prediction (i.e., ' — ¢ = 1) on 200 samples for performance evaluation. During training,
the batch size is fixed as 64. The learning rate is initialized at 0.001 and is halved every 100 epochs.
The weights of prediction and reconstruction in the loss function are defined as & = 5 and 8 = 0.5,
respectively. As illustrated in Fig. 2(a), KNO achieves almost constant prediction error in different
discretization settings. Compared with FNO models, the prediction error of KNO models maintains
more stable across different conditions. Notably, a one-unit KNO architecture only requires about
5 x 103 parameters to outperform a one-unit FNO architecture with more than 2 x 107 parameters,
suggesting the potential of KNO to break the trade-off of accuracy and efficiency.

Long-term prediction experiment. Our long-term prediction experiment is implemented on
the 2-dimensional Navier-Stokes equation, where we consider the low viscosity cases, i.e., v €
{1073,107*}. The spatial discretization of all systems is implemented with 2'2 grids. In the case
where v = 1073, we consider a 40-time-interval prediction task whose samples are the state se-

quences of vorticity fields in space <(0, 1% x [0, 10)) and prediction targets are the future state

sequences in space 7y ((0, 1)2 x (10, 50}). Models are trained and tested on 1000 and 200 samples,
respectively. In a more difficult case with v = 10~*, we consider a 10-time-interval prediction task
from ~ ((0, 1)% x [0, 10)) to y ((0, 1)% x (10, 20]). Models are trained and tested on 8000 and

200 samples, respectively. Table 1 reports our full results, Fig. 2(b) visualizes the performance of
experiment with v = 1073, and Fig. 2(d) visualizes instances of predicted results with v = 107
These results suggest that KNO is optimal in balancing between accuracy and efficiency.

Zero-shot prediction experiment concerning discretization granularity. As suggested by
(20204)), a mesh-independent neural operator model can be trained only on the data with lower
resolution to predict the data with higher resolution (referred to as zero-shot super-resolution
(2020a)). In our research, we validate this property by implementing a zero-shot experiment.
Same as our long-term prediction experiment, there are two data sets of the 2-dimensional Navier-
Stokes equation distinguished according to the viscosity v € {1072,10~*} and one data set of the
1-dimensional Bateman—Burgers equation. The settings and objective of prediction tasks on each

(@) | — FNOw=64,=16.1 unit,143873) (b) w0 ——unet 1 (c) —o— U-net
. —¥— FNO(w=64,f=64,1 unit,537089) ConvLSTM . ConvLSTM
1071 —— FNO(W=128,f=64,1 unit,2130689) —+ UNO 10 —+— UNO o
¥ FNO(w=64,f=16,4 units,549569) ~¥- FNO o ~¥-— FNO o
KNO(0=8,f=10,r=10,1 unit,1377) —e— KNO —e— KNO
~o— KNO(0=16,f=10,r=10,1 unit,5441) 102 10
w —e— KNO(0=32,f=10,r=16,1 unit,21633) w w
N 10| —8= KNO(0=128,f=10,r=16,1 unit,344577) Il n
s s N s
o o -4
— e 10 4
po—o-
107%
1074
——
10"
10 25 30 35 40 1 5 10 15 20 25 30 35 40
Resolutlon Predltlon step Predltlon step
Initial condition Ground truth FNO UNet
"/ ¥
Py
4
¥ / i [}
} \
I~ |
a |)
Error (KNO) Error (FNO) Error (UNet) Error(ConvLSTM)

Figure 2: Experiment results of KNO. (a) Results of the mesh-independent experiment. (b) Results
of the long-term prediction experiment on the 2-dimensional Navier-Stokes equation with a viscos-
ity coefficient v = 1073. (c) Zero-shot prediction experiment concerning prediction length. (d)
Visualization of prediction results on the 2-dimensional Navier-Stokes equation with v = 1074,

Under review as a conference paper at ICLR 2023

Models Parameters | v = 10> v=10"1
FNO (default settings, one-unit) 233897 1.78x1073 2.61x102
FNO (default settings, two-unit) 464717 2.12 x 10™% 7.72x1073
ConvLSTM (default settings) 10001 6.05x1072 1.69x107!
U-Net (default settings) 24950491 | 1.77x1073 7.90x107?2
KNO (0 = 24, f = 10, r = 12, one-unit) | 80850 3.00x107* 9.60x1073
KNO (0 = 32, f = 10, r = 12, one-unit) | 206538 2.37x1074 6.66 x 1073

Table 1: Full results of long-term prediction experiment. Accuracy is measured by RMSE. The best
model is marked in bold while the second best one is marked by the underline.

Grid number 2% 29 210

Setting 1 3.820924x10° 3.820929x10™° 3.820926x10°°
Setting 2 1.521201x107% 1.521201x107° 1.521200x107°
Setting 3 5.403627x107° 5.403630x107°% 5.403628x10°°
Setting 4 3.553927x107% 3.553980x107° 3.553943x10~°
Grid number 27 212 213

Setting 1 3.820927x10~° 3.820931x10~° 3.820932x10~°
Setting 2 1.521202x107% 1.521202x107° 1.521200x107°
Setting 3 5.403630x107% 5.403632x107% 5.403615x107°
Setting 4 3.553957x107% 3.553942x107% 3.553938x10°

Table 2: Zero-shot experiment (discretization granularity) on the 1-dimensional Bateman—Burgers
equation. KNO settings (o, f,r) € {(8,10,10),(16,10,10),(32,10,16),(128,10,16)} are re-
ferred to as Settings 1-4, respectively. Accuracy is measured by RMSE.

v=10"° v=10"1

32 64 32 64
FNO (default settings, one-unit) 1.78x1073 1.79%103 1.41x1072 1.54x102
KNO (0 = 24, f = 10, 7 = 12, one-unit) | 3.22 x 10~% 3.31 x 107% | 9.63 x 10~2 | 9.60 x 103

Table 3: Zero-shot experiment (discretization granularity) on the 2-dimensional Navier-Stokes equa-
tion. Accuracy is measured by RMSE.

data set is exactly same as the long-term prediction experiment expect that all models are trained
on a lower resolution and tested on a higher resolution. Specifically, models are trained on 28 grids
and tested on {2°,...,213} grids for the 1-dimensional Bateman—Burgers equation while they are
trained on 2'© grids and tested on 2'2 grids for the 2-dimensional Navier-Stokes equation. Tables
2-3 suggest the optimality of KNO in this task.

Zero-shot prediction experiment concerning prediction length. Because KNO is proposed to
model the intricate dynamics of PDE solutions, it is natural to wonder if KNO can achieve opti-
mal performance in zero-shot prediction with an untrained prediction length, i.e., train the model
on a prediction length ¢ — ¢ = re and test it on a larger prediction length ' > re. This objec-
tive can be simply realized by increasing r = tle—’t, the iteration number of the Koopman operator,
during prediction. To validate the optimality of KNO in such a task, we implement an experiment

on the 2-dimensional Navier-Stokes equation with a viscosity coefficient v = 1072 and 22 grids.
All models are trained on =y ((0, 1)% x [0, 10)) to predict the label in ((O, 1)% x (10, 30]) (super-
vised learning). Apart from the trained supervised learning task, models are also required to predict
o ((O, 1)% x (30, 50]), an untrained target. As illustrated by Fig. 2(c), KNO outperforms other
models in both supervised prediction and zero-shot prediction tasks.

4 CONCLUSION

In summary, we develop the Koopman neural operator, a neural operator with the potential to break
the tradeoff between accuracy and efficiency in solving PDEs. See Appendix [D|for its basic code.

Under review as a conference paper at ICLR 2023

REFERENCES

Ian Abraham and Todd D Murphey. Active learning of dynamics for data-driven control using
koopman operators. IEEE Transactions on Robotics, 35(5):1071-1083, 2019.

Ralph Abraham, Jerrold E Marsden, and Tudor Ratiu. Manifolds, tensor analysis, and applications,
volume 75. Springer Science & Business Media, 2012.

Daniel J Alford-Lago, Christopher W Curtis, Alexander T Ihler, and Opal Issan. Deep learning en-
hanced dynamic mode decomposition. Chaos: An Interdisciplinary Journal of Nonlinear Science,
32(3):033116, 2022.

Farzan Aminian, E Dante Suarez, Mehran Aminian, and Daniel T Walz. Forecasting economic data
with neural networks. Computational Economics, 28(1):71-88, 2006.

Hassan Arbabi and Igor Mezic. Ergodic theory, dynamic mode decomposition, and computation of
spectral properties of the koopman operator. SIAM Journal on Applied Dynamical Systems, 16
(4):2096-2126, 2017.

Omri Azencot, N Benjamin Erichson, Vanessa Lin, and Michael Mahoney. Forecasting sequential
data using consistent koopman autoencoders. In International Conference on Machine Learning,
pp. 475-485. PMLR, 2020.

Leah Bar and Nir Sochen. Unsupervised deep learning algorithm for pde-based forward and inverse
problems. arXiv preprint arXiv:1904.05417, 2019.

Edward R Benton and George W Platzman. A table of solutions of the one-dimensional burgers
equation. Quarterly of Applied Mathematics, 30(2):195-212, 1972.

Saakaar Bhatnagar, Yaser Afshar, Shaowu Pan, Karthik Duraisamy, and Shailendra Kaushik. Predic-
tion of aerodynamic flow fields using convolutional neural networks. Computational Mechanics,
64(2):525-545, 2019.

Kaushik Bhattacharya, Bamdad Hosseini, Nikola B Kovachki, and Andrew M Stuart. Model reduc-
tion and neural networks for parametric pdes. arXiv preprint arXiv:2005.03180, 2020.

Bingni W Brunton, Lise A Johnson, Jeffrey G Ojemann, and J Nathan Kutz. Extracting spatial—
temporal coherent patterns in large-scale neural recordings using dynamic mode decomposition.
Journal of neuroscience methods, 258:1-15, 2016.

Steven L Brunton, Bingni W Brunton, Joshua L Proctor, Eurika Kaiser, and J Nathan Kutz. Chaos
as an intermittently forced linear system. Nature communications, 8(1):1-9, 2017.

Steven L Brunton, Marko Budisic, Eurika Kaiser, and J Nathan Kutz. Modern koopman theory for
dynamical systems. SIAM Review, 64(2):229-340, 2022.

Defu Cao, Yujing Wang, Juanyong Duan, Ce Zhang, Xia Zhu, Congrui Huang, Yunhai Tong, Bix-
iong Xu, Jing Bai, Jie Tong, et al. Spectral temporal graph neural network for multivariate time-
series forecasting. Advances in neural information processing systems, 33:17766—17778, 2020.

Carmen Chicone and Yuri Latushkin. Evolution semigroups in dynamical systems and differential
equations. Number 70. American Mathematical Soc., 1999.

Isaac P Cornfeld, Sergei Vasilevich Fomin, and Yakov Grigor’evic Sinai. Ergodic theory, volume
245. Springer Science & Business Media, 2012.

Nelida érnjarié-Zic, Senka Macesi¢, and Igor Mezi¢. Koopman operator spectrum for random
dynamical systems. Journal of Nonlinear Science, 30(5):2007-2056, 2020.

Lokenath Debnath and Lokenath Debnath. Nonlinear partial differential equations for scientists
and engineers. Springer, 2005.

Pierre Gaspard. Chaos, scattering and statistical mechanics. Chaos, 2005.

10

Under review as a conference paper at ICLR 2023

Pierre Gaspard, Grégoire Nicolis, Astero Provata, and S13835391995PhRvVE Tasaki. Spectral sig-
nature of the pitchfork bifurcation: Liouville equation approach. Physical Review E, 51(1):74,
1995.

Mark S Gockenbach. Partial differential equations: analytical and numerical methods, volume 122.
Siam, 2005.

John Guibas, Morteza Mardani, Zongyi Li, Andrew Tao, Anima Anandkumar, and Bryan Catanzaro.
Efficient token mixing for transformers via adaptive fourier neural operators. In International
Conference on Learning Representations, 2021.

Xiaoxiao Guo, Wei Li, and Francesco Iorio. Convolutional neural networks for steady flow ap-
proximation. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge
discovery and data mining, pp. 481-490, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770-778, 2016.

Dmitrii Kochkov, Jamie A Smith, Ayya Alieva, Qing Wang, Michael P Brenner, and Stephan
Hoyer. Machine learning—accelerated computational fluid dynamics. Proceedings of the National
Academy of Sciences, 118(21):e2101784118, 2021.

Bernard O Koopman. Hamiltonian systems and transformation in hilbert space. Proceedings of the
National Academy of Sciences, 17(5):315-318, 1931.

Milan Korda and Igor Mezi¢. On convergence of extended dynamic mode decomposition to the
koopman operator. Journal of Nonlinear Science, 28(2):687-710, 2018.

Nikola Kovachki, Samuel Lanthaler, and Siddhartha Mishra. On universal approximation and error
bounds for fourier neural operators. Journal of Machine Learning Research, 22:Art—No, 2021.

Andrzej Lasota and Michael C Mackey. Probabilistic properties of deterministic systems. Cam-
bridge university press, 1985.

Andrzej Lasota and Michael C Mackey. Chaos, fractals, and noise: stochastic aspects of dynamics,
volume 97. Springer Science & Business Media, 1998.

Mengnan Li and Lijian Jiang. Reduced-order modeling for koopman operators of nonautonomous
dynamic systems in multiscale media. arXiv preprint arXiv:2204.13180, 2022.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential
equations. arXiv preprint arXiv:2010.08895, 2020a.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Neural operator: Graph kernel network for partial differ-
ential equations. arXiv preprint arXiv:2003.03485, 2020b.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Andrew Stuart, Kaushik Bhat-
tacharya, and Anima Anandkumar. Multipole graph neural operator for parametric partial differ-
ential equations. Advances in Neural Information Processing Systems, 33:6755-6766, 2020c.

Zongyi Li, Daniel Zhengyu Huang, Burigede Liu, and Anima Anandkumar. Fourier neural operator
with learned deformations for pdes on general geometries. arXiv preprint arXiv:2207.05209,
2022.

Konstantin Lipnikov, Gianmarco Manzini, and Mikhail Shashkov. Mimetic finite difference method.
Journal of Computational Physics, 257:1163—-1227, 2014.

Lu Lu, Pengzhan Jin, and George Em Karniadakis. Deeponet: Learning nonlinear operators for iden-

tifying differential equations based on the universal approximation theorem of operators. arXiv
preprint arXiv:1910.03193, 2019.

11

Under review as a conference paper at ICLR 2023

Bethany Lusch, J Nathan Kutz, and Steven L Brunton. Deep learning for universal linear embeddings
of nonlinear dynamics. Nature communications, 9(1):1-10, 2018.

Senka Macesic, Nelida Crnjaric-Zic, and Igor Mezic. Koopman operator family spectrum for nonau-
tonomous systems. SIAM Journal on Applied Dynamical Systems, 17(4):2478-2515, 2018.

Robert MM Mattheij, Sjoerd W Rienstra, and JHM Ten Thije Boonkkamp. Partial differential
equations: modeling, analysis, computation. SIAM, 2005.

Nicholas H Nelsen and Andrew M Stuart. The random feature model for input-output maps between
banach spaces. SIAM Journal on Scientific Computing, 43(5):A3212-A3243, 2021.

Samuel E Otto and Clarence W Rowley. Linearly recurrent autoencoder networks for learning
dynamics. SIAM Journal on Applied Dynamical Systems, 18(1):558-593, 2019.

Shaowu Pan and Karthik Duraisamy. Physics-informed probabilistic learning of linear embeddings
of nonlinear dynamics with guaranteed stability. SIAM Journal on Applied Dynamical Systems,
19(1):480-509, 2020.

Namuk Park and Songkuk Kim. How do vision transformers work? arXiv preprint
arXiv:2202.06709, 2022.

Jaideep Pathak, Shashank Subramanian, Peter Harrington, Sanjeev Raja, Ashesh Chattopadhyay,
Morteza Mardani, Thorsten Kurth, David Hall, Zongyi Li, Kamyar Azizzadenesheli, et al. Four-
castnet: A global data-driven high-resolution weather model using adaptive fourier neural opera-
tors. arXiv preprint arXiv:2202.11214, 2022.

Md Ashiqur Rahman, Zachary E Ross, and Kamyar Azizzadenesheli. U-no: U-shaped neural oper-
ators. arXiv preprint arXiv:2204.11127, 2022.

Maziar Raissi. Deep hidden physics models: Deep learning of nonlinear partial differential equa-
tions. The Journal of Machine Learning Research, 19(1):932-955, 2018.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational physics, 378:686-707, 2019.

Junuthula Narasimha Reddy. Introduction to the finite element method. McGraw-Hill Education,
2019.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedi-
cal image segmentation. In International Conference on Medical image computing and computer-
assisted intervention, pp. 234-241. Springer, 2015.

Clarence W Rowley, Igor Mezi¢, Shervin Bagheri, Philipp Schlatter, and Dan S Henningson. Spec-
tral analysis of nonlinear flows. Journal of fluid mechanics, 641:115-127, 2009.

Yousef Saad. Numerical methods for large eigenvalue problems: revised edition. SIAM, 2011.

Eitan Tadmor. A review of numerical methods for nonlinear partial differential equations. Bulletin
of the American Mathematical Society, 49(4):507-554, 2012.

Naoya Takeishi, Yoshinobu Kawahara, and Takehisa Yairi. Learning koopman invariant subspaces
for dynamic mode decomposition. Advances in Neural Information Processing Systems, 30, 2017.

Hiroki Tanabe. Functional analytic methods for partial differential equations. CRC Press, 2017.

Roy Taylor, J Nathan Kutz, Kyle Morgan, and Brian A Nelson. Dynamic mode decomposition for
plasma diagnostics and validation. Review of Scientific Instruments, 89(5):053501, 2018.

CY Wang. Exact solutions of the steady-state navier-stokes equations. Annual Review of Fluid
Mechanics, 23(1):159-177, 1991.

12

Under review as a conference paper at ICLR 2023

Rui Wang, Karthik Kashinath, Mustafa Mustafa, Adrian Albert, and Rose Yu. Towards physics-
informed deep learning for turbulent flow prediction. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, pp. 1457-1466, 2020.

Bing Yu et al. The deep ritz method: a deep learning-based numerical algorithm for solving varia-
tional problems. Communications in Mathematics and Statistics, 6(1):1-12, 2018.

Yinhao Zhu and Nicholas Zabaras. Bayesian deep convolutional encoder—decoder networks for
surrogate modeling and uncertainty quantification. Journal of Computational Physics, 366:415—
447, 2018.

13

Under review as a conference paper at ICLR 2023

A THE ASSOCIATED LIE OPERATOR OF THE KOOPMAN OPERATOR

Besides the linear system in Eq. (9)) in the main text, we can also consider the generator operator
of such a Koopman operator, which is referred to as the Lie operator because it is the Lie derivative
of g (+) along the vector field -y (-) Koopman| (1931); Abraham et al|(2012); |Chicone & Latushkin
(1999)

K:tJre _
Lig = lim 800 —8(0) 1)
t+e—t t+e—t
The generator operator also defines a linear system of g (-;) because
g 8w _ . KiTg () —g ()
g (1) = lim =————=— = lim =Lig (M) - (22)
e—0 £ t+e—t 15

Although our work primarily focuses on the Koopman operator, one can also model the Lie operator
in application.

B MATHEMATICAL DETAILS OF IMPLEMENTED PDES
In our experiments, we consider the 1-dimensional Bateman—Burgers equation Benton & Platz-
man|(1972) and the 2-dimensional Navier-Stokes equation Wang| (1991)). Below, we introduce their

mathematical definitions.

Bateman-Burgers equation. The 1-dimensional Bateman—Burgers equation is

2
Oy (w0) + s (7 ;“) By (2), € (0,1) % (0,1], 3 € (0,1) x (0,1], (23)
’Y(.’IJO) =1, Zo S (07 1) X {0}7 (24)

where 77 is a periodic initial condition 7 € L2 04 [(0, 1) ; R], parameter v € (0, 00) is the viscos-

ity coefficient, which is set as ¥ = 100 in our experiments. The data set of Eqs. (23}{24) is provided
by Li et al.|(2020a). Please see [Li et al.|(2020a) for details of data generation.

Navier-Stokes equation. Mathematically, the incompressible 2-dimensional Navier-Stokes equa-
tion in a vorticity form is defined as

Ay (1) 4+ x (@) Vv (m¢) = vAYy (1) + 1 (1), @ € (0,1) x (0,00), (25)
Vyx (z1) =0, ; € (0,1) x (0,00), (26)
Y (.’170) =71, X0 S (07 1) X {0}7 (27)

where v (-) measures the vorticity, x () defines the velocity, ¥ (-) denotes a time-independent forc-
ing term. The viscosity coefficient is set as v € {1072,107}. Similar to the situation of Bate-
man-Burgers equation, the data of Egs. is provided by [Li et al.[(2020a). Please see|L1 et al.
(2020a) for details.

C ABLATION EXPERIMENT RESULTS

Our objective in the ablation experiment is to compare between the performance of KNO models
with (8 > 0) and without (8 = 0) the reconstruction term of loss function in Eq. (20). When 8 > 0,
the prediction is undertaken by a learned Koopman operator (a linear layer of o x o) associated
with a convolutional layer in Parts 2-5 while encoder (Part 1) and decoder (Part 6) contribute to
reconstruction. In such a case, the performance is mainly contributed by the Koopman operator
because the convolutional layer only serves as the complement of high-frequency information (as
suggested by|Li et al.|(2020a), a pure convolutional network only achieves poor performance in PDE
solving). Once 8 = 0, encoder and decoder become to be trained for prediction as well, making
the whole network a unified predictor (similar to FNO |Li et al.| (2020a)). The Koopman operator
is validated as important if the prediction performance mainly realized by it (3 > 0) is same as or
better than the performance achieved by the whole network as a unified predictor (3 = 0). The
ablation experiment is implemented as a 1-second prediction task on the data of 1-dimensional
Bateman—Burgers equation with 2% grids. As shown in Table 2, KNO models generally perform
better when 5 > 0, suggesting the significance of the Koopman operator.

14

Under review as a conference paper at ICLR 2023

Operator size 0 Mode number f Iteration number r | « J6] MSE
8 64 10 50 05]243x107°
8 64 10 50 0 2.67 x 107°
16 10 16 50 05]1.05x10°°
16 10 16 50 0 1.10 x 1072
32 10 16 50 05]5.37x10°6
32 10 16 50 0 6.04 x 1076
32 64 16 50 05] 5.47x10°°
32 64 16 50 0 5.78 x 1076
128 10 16 50 05]3.53x10°°
128 10 16 50 0 4.34 x 106

Table 4: Results of ablation experiment.

D CoDE

The basic implementation of the Koopman neural operator is demonstrated here. The full version of
our code will be released once the double-blind review finishes.

import torch

import numpy as np

import torch.nn as nn

import torch.nn.functional as F

torch . manual_seed (0)

class encoder (nn.Module):
def __init__(self, t_len, op_size):
super (encoder, self). __init__ ()
self.layer = nn.Linear(t_len, op_.size)
def forward(self, x):
x = self.layer (x)
x = torch.tanh (x)
return X

class decoder (nn.Module):

def __init__(self, t_len, op_size):
super (decoder, self). __init__ ()
self.layer = nn.Linear(op_size, t_len)
def forward(self, x):
X = torch.tanh(x)
x = self.layer(x)
return X

class Koopman_OperatorlD (nn.Module) :

def __init__(self, op-size, modes.x = 16):
super (Koopman_OperatorlD, self). __init__ ()
self .op_size = op_size
self .scale = (1 / (op.size = op_size))
self . modes_x = modes_x

self.koopman_matrix = nn.Parameter(self.scale % torch.rand
(op-size , op-size, self.modes_.x, dtype=torch.cfloat))
Complex multiplication
def time_marching(self, input, weights):
(batch, t, x), (t, t+1, x) —> (batch, t+1, x)
return torch.einsum("btx, tfx —>bfx”, input, weights)
def forward(self, x):

15

Under review as a conference paper at ICLR 2023

batchsize = x.shape[0]

Fourier Transform

x_ft = torch. fft.rfft(x)

Koopman Operator Time Marching

out_ft = torch.zeros(x_ft.shape, dtype=torch.cfloat,
device = x.device)

out_ft[:, :, :self.modes.x] = self.time_marching(x_ft[:,
:, :self.modes_x], self.koopman_matrix)

#Inverse Fourier Transform

x = torch. fft.irfft(out_ft, n=x.size(-1))

return Xx

class KNOId(nn.Module) :
def __init__(self, op_size, modes.x = 16, decompose = 4, t_len

= 1):
super (KNOId, self). __init__()
Parameter
self .op_size = op_size
self .decompose = decompose
Layer Structure

self .enc = encoder(t_len, op_size)

self .dec = decoder(t_len, op-size)

self.koopman_layer = Koopman_OperatorlD(self.op_size ,
modes_x = modes_Xx)

self .w0 = nn.Convld(op_size, op-size, 1)
def forward(self, x):

Reconstruct

X_reconstruct

X_reconstruct

X_reconstruct

self .enc(x)
torch.tanh(x_reconstruct)
self .dec(x_reconstruct)

Predict

x = self.enc(x) # Encoder

X = x.permute(0, 2, 1)

X_.W = X

for i in range(self.decompose):
x1 = self.koopman_layer(x) # Koopman Operator
X = torch.tanh(x + x1)
x = x + xl

X self . wO(x_-w) + x

X = x.permute (0, 2, 1)
x = self.dec(x) # Decoder
return X, X_reconstruct

class Koopman_Operator2D (nn.Module) :

def __init__(self, op-size, modes):
super (Koopman_Operator2D, self). __init__ ()
self.op_size = op_size
self .scale = (1 / (op.size = op_size))

self . modes_x = modes

self .modes_y = modes

self .koopman_matrix = nn.Parameter(self.scale * torch.rand
(op-size , op.size, self.modes_x, self.modes.y, dtype=
torch.cfloat))

Complex multiplication

def time_marching(self, input, weights):
(batch, t, x,y), (t, t+1, x,y) —> (batch, t+1, x,y)
return torch.einsum("btxy, tfxy—>bfxy”, input, weights)

16

Under review as a conference paper at ICLR 2023

def forward(self, x):
batchsize = x.shape[0]
Fourier Transform
x_ft = torch. fft.rfft2 (x)
Koopman Operator Time Marching
out_ft = torch.zeros(x_ft.shape, dtype=torch.cfloat
device = x.device)

>

out_ft[:, :, :self.modes_.x, :self.modes_.y] = self.
time_marching (x_ft[:, :, :self.modes_.x, :self.modes.y
], self.koopman_matrix)

out_ft[:, :, —self.modes_x:, :self.modes_.y] = self.
time_marching (x_ft[:, :, —self.modes_x:, :self.modes.y

], self.koopman_matrix)
#Inverse Fourier Transform

x = torch.fft.irfft2 (out_ft, s=(x.size(-2), x.size(-1)))

return X

class KNO2d(nn.Module) :

def __init__(self, op-size, modes = 10, decompose = 6, t_len =
10):
super (KNO2d, self). __init__ ()
Parameter
self .op_size = op_size
self .decompose = decompose
self . modes = modes
Layer Structure
self .enc = encoder(t_len, op-size)
self .dec = decoder(t_len, op-size)
self.koopman_layer = Koopman_Operator2D(self.op_size, self
. modes)

self .w0 = nn.Conv2d(op_size, op-size, 1)
def forward(self, x):

Reconstruct

Xx_reconstruct

Xx_reconstruct

X_reconstruct

self .enc(x)
torch.tanh(x_reconstruct)
self .dec(x_reconstruct)

Predict

x = self.enc(x) # Encoder

X = x.permute(0, 3, 1, 2)

X_W = X

for i in range(self.decompose):
x1 = self.koopman_layer(x) # Koopman Operator
X = torch.tanh(x + x1)

x = self . wO(x_.w) + x

X = x.permute(0, 2, 3, 1)

x = self.dec(x) # Decoder

return X, XxX._reconstruct

17

	Introduction
	Framework of Koopman neural operator
	Experiments
	Conclusion
	The associated Lie operator of the Koopman operator
	Mathematical details of implemented PDEs
	Ablation experiment results
	Code

