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Figure 1: MV-Adapter is a versatile plug-and-play adapter that turns existing pre-trained text-to-
image (T2I) diffusion models to multi-view image generators. Row 1,2,3: results by integrating MV-
Adapter with personalized T2I models, distilled few-step T2I models, and ControlNets (Zhang et al.,
2023), demonstrating its adaptability. Row 4,5: results under various control signals, including
view-guided or geometry-guided generation with text or image inputs, showcasing its versatility.

ABSTRACT

Generating multi-view images of an object has important applications in con-
tent creation and perception. Existing methods achieved this by making invasive
changes to pre-trained text-to-image (T2I) models and performing full-parameter
training, leading to three main limitations: (1) High computational costs, espe-
cially for high-resolution outputs; (2) Incompatibility with derivatives and exten-
sions of the base model, such as personalized models, distilled few-step models,
and plugins like ControlNets; (3) Limited versatility, as they primarily serve a sin-
gle purpose and cannot handle diverse conditioning signals such as text, images,
and geometry. In this paper, we present MV-Adapter, a plug-and-play module
working on top of pre-trained T2I models. MV-Adapter enables efficient training
for high-resolution synthesis while maintaining full compatibility with all kinds of
derivatives of the base T2I model. MV-Adapter provides a unified implementation
for generating multi-view images from various conditions, facilitating applica-
tions such as text- and image-based 3D generation and texturing. We demonstrate
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that MV-Adapter sets a new quality standard for multi-view image generation, and
opens up new possibilities due to its adaptability and versatility.

1 INTRODUCTION

Multi-view image generation is a fundamental task with significant applications in areas such as
2D/3D content creation, robotics perception, and simulation. With the advent of text-to-image (T2I)
diffusion models (Ramesh et al., 2022; Nichol et al., 2022; Saharia et al., 2022; Ramesh et al.,
2021; Balaji et al., 2022; Podell et al., 2024; Mokady et al., 2023), there has been considerable
progress in generating high-quality single-view images. Extending these models to handle multi-
view generation holds the promise of unifying text, image, and 3D data into a cohesive framework.

Recent attempts on multi-view image generation (Shi et al., 2023b; Tang et al., 2023; 2024; Huang
et al., 2024b; Gao et al., 2024; Liu et al., 2023a; Long et al., 2024; Li et al., 2024; Kant et al.,
2024; Zheng & Vedaldi, 2024; Wang & Shi, 2023) involve fine-tuning T2I models on large-scale 3D
datasets (Deitke et al., 2023; Yu et al., 2023) and propose modeling 3D consistency across images
by applying self-attention on relevant pixels in different views. As a pioneer work, MVDream (Shi
et al., 2023b) applies self-attention on latent pixels from all generated views, allowing the network
to implicitly learn the consistency. Follow-up works like SPAD (Kant et al., 2024) and Era3D (Li
et al., 2024) constrain the self-attention along epipolar lines, which improves efficiency and enables
higher-resolution synthesis (Li et al., 2024).

While these advancements have led to progressively better results, they face several limitations that
hinder their practicality. First, they often require full fine-tuning of pre-trained T2I models, which
demands substantial computational resources and memory usage, making it impractical to scale to
larger models and higher resolutions. The most advanced model to date is trained on Stable Diffusion
2-1 with 860M parameters at resolution 512 (Li et al., 2024). Second, full-parameter training with
substantial network structure changes can lead to catastrophic forgetting of pre- trained knowledge,
impairing compatibility with derivatives and extensions of the base model, including personalized
models tailored to specific subjects or styles (Ruiz et al., 2023; Gal et al., 2022; Hu et al., 2021),
distilled few-step models optimized for efficiency (Luo et al., 2023; Lin et al., 2024), and plugins
(e.g. ControlNets (Zhang et al., 2023)) that add new functionalities. This incompatibility restricts
the ability to leverage the continuous advancements and community contributions. Third, existing
methods mainly serve a single purpose, for example generating multi-view images from text (Shi
et al., 2023b; Kant et al., 2024), a reference image (Wang & Shi, 2023; Shi et al., 2023a; Wang
et al., 2024b; Voleti et al., 2024; Wen et al., 2024; Li et al., 2024; Huang et al., 2024b), or geometry
conditions (Bensadoun et al., 2024), but sharing the underlying logic of maintaining multi-view
consistency. It is desirable to have a unified design that incorporates diverse conditioning signals,
addressing the varied requirements of multi-view generation tasks across various domains.

To address these challenges, we propose MV-Adapter, a versatile plug-and-play adapter that en-
hances T2I models and their derivatives for multi-view generation under various conditions. Our
approach eliminates the need for full model fine-tuning by introducing a multi-view adapter network
seamlessly integrated with frozen T2Is. This significantly reduces computational costs and memory
usage in training, making high-resolution generation feasible on larger models like Stable Diffusion
XL (Podell et al., 2024). By preserving the original feature space of the base T2I model during
training, MV-Adapter maintains high compatibility with various derivative models and community-
developed plugins. This adaptability allows users to benefit from personalized subjects or styles, ef-
ficient few-step generation, and additional controllability without specific re-training. Moreover, we
involve a unified design in the adapter network to support diverse conditioning inputs. It comprises
a condition guider that processes camera or geometry guidance, enabling the model to incorporate
viewpoint or structural information and therefore supports both 3D object generation and 3D model
texture generation. This design also introduces decoupled attention blocks, which consists of multi-
view attention layers and optional image cross-attention layers, allowing the model to generate from
both text and image conditions.

We evaluate the performance of our MV-Adapter on a diverse set of personalized and efficient T2Is
from the community. These models encompass a wide spectrum of domains, such as various styles
and concepts, forming a comprehensive benchmark for our evaluation. Results of our experiments
demonstrate promising outcomes.
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In summary, contributions of MV-Adapter are as follows: (1) Efficiency. MV-Adapter eliminates
the need for full fine-tuning, increasing training efficiency and enabling high-resolution generation.
(2) Adaptability. MV-Adapter is fully compatible with derivatives and extensions of the base T2I
model. (3) Versatility. MV-Adapter supports multiple conditioning inputs, broadening the scope
of multi-view generation applications. (4) Performance. Experments demonstrate that T2Is with
MV-Adapter can generate multi-view consistent images while preserving visual quality, leveraging
the specific strengths of the base T2I models.

2 RELATED WORK

Text-to-image diffusion models. Text-to-image (T2I) generation (Ramesh et al., 2022; Nichol
et al., 2022; Saharia et al., 2022; Ramesh et al., 2021; Balaji et al., 2022; Podell et al., 2024; Mokady
et al., 2023; Huang et al., 2024a) has made remarkable progress, particularly with the advancement
of diffusion models (Ho et al., 2020; Song et al., 2020; Dhariwal & Nichol, 2021; Ho & Salimans,
2022). Guided diffusion (Dhariwal & Nichol, 2021) and classifier-free guidance (Ho & Salimans,
2022) improved text conditioning and generation fidelity. DALL-E2 (Ramesh et al., 2022) leverages
CLIP (Radford et al., 2021) for better text-image alignment. The Latent Diffusion Model (Rombach
et al., 2022), also known as Stable Diffusion, enhances efficiency by performing diffusion in the
latent space of an autoencoder. Stable Diffusion XL (Podell et al., 2024), a two-stage cascade
diffusion model, has greatly improved the generation of high-frequency details and overall image
quality, elevating the aesthetic appeal of the outputs.

Derivatives and extensions of T2I models. To facilitate creation with pre-trained T2Is, vari-
ous derivative models and extensions have been developed, focusing on model distillation for ef-
ficiency (Meng et al., 2023; Song et al., 2023; Luo et al., 2023; Lin et al., 2024) and controllable
generation (Cao et al., 2024). These derivatives encompass personalization (Ruiz et al., 2023; Gal
et al., 2022; Hu et al., 2021; Shi et al., 2024; Wang et al., 2024a; Ma et al., 2024; Song et al., 2024;
Kumari et al., 2023; Ye et al., 2023), and spatial control (Mou et al., 2024; Zhang et al., 2023).
Typically, they employ adapters or fine-tuning methods to extend functionality while preserving the
original feature space of the pre-trained models. For instance, DreamBooth (Ruiz et al., 2023) uses
class-specific prior preservation loss for personalization, and ControlNet (Zhang et al., 2023) and
T2I-Adapter (Mou et al., 2024) enable flexible control over generation by incorporating adapters
to the base T2Is. Our work builds on these non-intrusive methods, ensuring compatibility with our
MV-Adapter for broader applications.

Multi-view Generation with T2I models. Multi-view generation methods (Shi et al., 2023b;
Tang et al., 2023; 2024; Huang et al., 2024b; Gao et al., 2024; Liu et al., 2023a; Long et al., 2024;
Li et al., 2024; Kant et al., 2024; Zheng & Vedaldi, 2024; Wang & Shi, 2023) extend T2I models by
leveraging large-scale 3D datasets (Deitke et al., 2023; Yu et al., 2023). For instance, MVDream (Shi
et al., 2023b) integrates camera embeddings and expands the self-attention mechanism from 2D to
3D for cross-view connections, while SPAD (Kant et al., 2024) enhances spatial relational mod-
eling by applying epipolar constraints to cross-view attention. Era3D (Li et al., 2024) introduces
an efficient row-wise self-attention mechanism aligned with epipolar lines across views, facilitating
high-resolution multi-view generation. However, these methods typically require extensive param-
eter updates, altering the feature space of pre-trained T2I models and limiting their compatibility
with T2I derivatives. Our work addresses this by introducing a multi-view adapter that harmonizes
with pre-trained T2Is, significantly expanding the potential for diverse applications.

3 PRELIMINARY

Here we introduce the preliminary of multi-view diffusion models (Shi et al., 2023b; Kant et al.,
2024; Li et al., 2024), which can help understand the common strategies in modeling multi-view
consistency within T2I models.

Multi-view diffusion models. Multi-view diffusion models enhance T2Is by introducing multi-
view attention mechanism, enabling the generation of images that are consistent across different
viewpoints. Several studies (Shi et al., 2023b; Wang & Shi, 2023) extend the self-attention of T2Is
to include all pixels across multi-view images. Let f in denotes the input of the attention block, the
dense multi-view self-attention extends f in from the view itself to the concatenated feature sequence

3
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from n views. While this approach captures global dependencies, it is computationally intensive, as
it processes all pixels of all views. To mitigate the computational cost, epipolar attention (Kant et al.,
2024; Huang et al., 2024b) leverages geometric relationships between views. Specifically, methods
like SPAD (Kant et al., 2024) extend the self-attention by restricting f in to the view itself as well as
patches along its epipolar lines.

Furthermore, when generating orthographic views at an elevation angle of 0◦, the epipolar lines align
with the image rows. Utilizing this property, row-wise self-attention (Li et al., 2024) is introduced
after the original self-attention layers in T2I models. The process is defined as:

fself = SelfAttn(f in) + f in; fmv = MultiViewAttn(fself ) + fself (1)

where MultiViewAttn performs attention across the same rows in different views, effectively enforc-
ing multi-view consistency with reduced computational overhead.

4 METHOD

Text with 
Optional 

Image

Multi-view 
Images

Camera or 
Geometry
Guidance

Image Layers of Pre-trained T2I

MV-Adapter

Attention Modules of MV-Adapter

Module Insert

Figure 2: Inference pipeline.

MV-Adapter is a plug-and-play adapter that
learns multi-view priors transferable to deriva-
tives of T2Is without specific tuning, and enable
them to generate multi-view consistent images
under various conditions. As shown in Fig. 2,
at inference, our MV-Adapter, which contains a
condition guider and the decoupled attention lay-
ers, can be inserted into a personalized or distilled
T2I to constitute the multi-view generator.

In detail, as shown in Fig. 3, the condition guider
in Sec. 4.1 encodes the camera or geometry in-
formation, which supports both camera-guided
and geometry-guided generation. Within the de-
coupled attention mechanism in Sec. 4.2, the ad-
ditional multi-view attention layers learn multi-
view consistency, while the optional image cross-
attention layers are for image-conditioned gener-
ation. Sec. 4.3 elaborates on the training and inference processes of the MV-Adapter.

4.1 CONDITION GUIDER

We design a general condition guider that supports encoding both camera and geometric represen-
tations, enabling T2I models to perform multi-view generation under various guidance.

Camera conditioning. MV-Adapter is designed for generating n orthographic views. To condi-
tion on the camera pose, we use a camera ray representation (“raymap”) that shares the same height
and width as the latent representations and encodes the ray origin and direction at each spatial loca-
tion (Watson et al., 2022; Sajjadi et al., 2022; Gao et al., 2024).

Geometry conditioning. Geometry-guided multi-view generation helps applications like texture
generation. To condition on the geometry information, we use a global, rather than view-dependent
representation that contains position maps and normal maps (Li et al., 2023; Bensadoun et al., 2024).
Each pixel in the position map represents the coordinates of the point on the shape, which provide
point correspondences across different views. Normal maps provide orientation information and
capture fine geometric details, helping produce detailed textures. We concatenate the position map
and normal map along to form a composite geometric conditioning input for each view.

Encoder design. To encode the camera or geometry representation, we design a simple and
lightweight condition guider for the conditioning maps cm (cm ∈ Rn×6×h×w). Inspired by T2I-
Adapter (Mou et al., 2024), the condition guider consists of a series of convolutional networks, which
contain feature extraction blocks and downsampling layers to adapt the feature resolution to the
features in the U-Net encoder. The extracted multi-scale features are then added to the corresponding
scales in the U-Net, enabling the model to integrate the conditioning information seamlessly at
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Figure 3: Overview of MV-Adapter. Our MV-Adapter consists of two components: 1) a condition
guider that encodes camera or geometry condition; 2) decoupled attention layers that contain multi-
view attention for learning multi-view consistency, and optional image cross-attention to support
image-conditioned generation, where we use the pre-trained U-Net to encode fine-grained informa-
tion of the reference image. After training, MV-Adapter can be inserted into any personalized or
distilled T2I to generate multi-view images while leveraging the specific strengths of base models.

multiple levels. In theory, the input to our encoder is not limited to specific types of conditions; it
can also be extended to a wider variety of maps, such as depth maps and pose maps.

4.2 DECOUPLED ATTENTION

We introduce a decoupled attention mechanism, where we retain the original spatial self-attention
layers and add multi-view attention layers that enforce multi-view consistency as well as optional
image cross-attention layers for image-conditioned generation. These three types of attention layers
are organized in a parallel architecture, effectively leveraging the image priors from the pre-trained
self-attention layers.

Multi-view attention. Considering the different applications of camera-guided and geometry-
guided multi-view generation, we design different strategies for multi-view attention to meet the
specific needs of each application (shown in Fig. 4(a)). For camera-guided generation, we follow
Era3D (Li et al., 2024) to achieve image-to-3D creation, allowing the model to generate multi-view
images at an elevation of 0◦. We then employ row-wise self-attention, restricting the multi-view
attention to process only patches within the same row across views. For geometry-guided generation,
considering the view coverage requirements of its main application (i.e., texture generation), we
adjust the distribution of the generated multi-view images. In addition to the four views evenly at
elevation 0◦, we add two views from top and bottom. We perform both row-wise and column-wise
self-attention, enabling efficient information exchange among all views.

Image cross-attention. To condition on reference images ci and achieve control over fine-grained
appearance details, we propose a novel method for incorporating detailed information from the
image without altering the original feature space of the T2I model. We employ the pre-trained
T2I model itself as the image encoder. Specifically, we employ a frozen U-Net that is identical
to the pre-trained SD U-Net (Rombach et al., 2022), with its weights initialized from the SD U-
Net. During the feature extraction process, we pass the clear reference image into this frozen U-Net,
setting the timestep t = 0, and then extract multi-scale features from the spatial self-attention layers.
These fine-grained features contain detailed information about the subject and are injected into the
denoising U-Net through the decoupled image cross-attention layers. In this way, we leverage the
rich representations learned by the pre-trained model, enabling precise control over the generated
content.

Attention architecture. In the pre-trained T2I model, the spatial self-attention layer and text
cross-attention layer are connected serially through residual connections. Suppose feature sequence
f in is the input of the attention block, we can express the process as

fself = SelfAttn(f in) + f in; f cross = CrossAttn(fself ) + fself (2)

A straightforward method to incorporate new attention layers is to append them after the original
layers, connecting them in a serial manner. However, the sequential arrangement may not effectively
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Figure 4: Overview of the decoupled attention design. (a) For camera-guided generation, similar
to Era3D (Li et al., 2024), we apply row-wise self-attention to generate multi-view images at an
elevations of 0◦. For geometry-guided generation, designed for texture generation, we add two views
from the top and bottom to ensure comprehensive coverage and perform both row-wise and column-
wise self-attention. (b) Instead of serially connecting new attention layers, which requires training
additional modules from scratch, we utilize a parallel architecture that builds upon the established
priors of pre-trained self-attention, enabling more efficient learning.

utilize the image priors modeled by the pre-trained self-attention layers, as it requires the new layers
to learn from scratch. To fully exploit the effective priors of the spatial self-attention layers, we
adopt a parallel architecture, as shown in Fig. 4(b). The process can be formulated as

fself = SelfAttn(f in) + MultiViewAttn(f in) + ImageCrossAttn(f in,fref ) + f in (3)

where fref refers to features of the reference image. Since the features f in fed into the new layers
are the same as those to the self-attention layer, we can effectively initialize them with the pre-trained
layers to transfer the image priors. We zero-initialize the output projection layer of the new layers
to ensure that the initial output does not disrupt the original feature space. This architectural choice
allows the model to build upon the established priors, facilitating efficient learning of multi-view
consistency and image-conditioned generation, while preserving the original space of the base T2Is.

4.3 TRAINING AND INFERENCE

During training, we only optimize the MV-Adapter, while freezing weights of the pre-trained T2I
models. We train MV-Adapter on the dataset with pairs of a reference image, text and n views, using
the same training objective as T2I models:

L = EE(x1:n
0 ),ϵ∼N (0,I),ct,ci,cm,t[∥ϵ− ϵθ(z

1:n
t , ct, ci, cm, t)∥22] (4)

where ct, ci and cm represent texts, reference images and conditioning maps (i.e., camera or ge-
ometry conditions) respectively. We randomly zero out the features of the reference image to drop
image conditions, enabling classifier-free guidance at inference. Similar to prior work (Blattmann
et al., 2023; Hoogeboom et al., 2023), we shift the noise schedule towards high noise levels as we
move from the T2Is to the multi-view diffusion model that captures data of higher dimensionality.
We shift the log signal-to-noise ratio by log(n), where n is the number of generated views.

5 EXPERIMENTS

We implemented MV-Adapter on Stable Diffusion V2.1 (SD2.1) and Stable Diffusion XL (SDXL),
training a 512 × 512 adapter for SD2.1 and a 768 × 768 adapter for SDXL using a subset of the
Objaverse dataset (Deitke et al., 2023). Detailed configurations are provided in the Appendix.
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(watercolor) Game art, Female Soldier, wearing Otter-style ral-wtrclr…

Watercolor Style SDXL

Dreamshaper

(general) Fuji X-T20, high quality, a baby lion, cute (realistic) Melissa Benoist dressed in her Supergirl outfit, smiling…

RealVisXL
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(2d cartoon) 1 boy, male focus, Gojo Satoru, white hair, masterpiece

Pokemon Trainer Sprite PixelArt

(pixel art) 1 girl angel with 2 large angel wings and a halo, wearing…

White Pitbull Dog SDXL

(concept) colorful cartoon, a happy White Pitbull Dog playing guitar…

(few step) Samurai koala bear

LCM SDXL ControlNet

(spatial control) Albert Einstein

Figure 5: Results with community models and extensions. Each sample corresponds to a distinct
T2I model or extension. Information about the models can be found in the Appendix.

Table 1: Quantitative comparison on camera-
guided text-to-multiview generation.

Method FID↓ IS↑ CLIP Score↑
MVDream 32.15 14.38 31.76
SPAD 48.79 12.04 30.87
Ours (SD2.1) 31.24 15.01 32.04
Ours (SDXL) 29.71 16.38 33.17

Table 2: Quantitative comparison on camera-
guided image-to-multiview generation.

Method PSNR↑ SSIM↑ LPIPS↓
ImageDream 19.280 0.8472 0.1218
Zero123++ 20.312 0.8417 0.1205
CRM 20.185 0.8325 0.1247
SV3D 20.042 0.8267 0.1396
Ouroboros3D 20.810 0.8535 0.1193
Era3D 20.890 0.8601 0.1199
Ours (SD2.1) 20.867 0.8695 0.1147
Ours (SDXL) 22.131 0.8816 0.1002

5.1 CAMERA-GUIDED MULTI-VIEW GENERATION

Evaluation on community models and extensions. We evaluated MV-Adapter using representa-
tive T2Is and extensions, including personalized models (Ruiz et al., 2023; Hu et al., 2021), efficient
distilled models (Luo et al., 2023; Lin et al., 2024), and plugins such as ControlNet (Zhang et al.,
2023). We present eight qualitative results in Fig. 5. More results can be found in the Appendix.

Comparison with baselines. For text-to-multiview generation, we compared our MV-Adapter
with MVDream (Shi et al., 2023b) and SPAD (Kant et al., 2024) on 1,000 prompts from the Obja-
verse dataset. The results are presented in Fig. 6 and Table 1. For image-to-multiview generation,
we conduct comparison with ImageDream (Wang & Shi, 2023), Zero123++ (Shi et al., 2023a),
CRM (Wang et al., 2024b), SV3D (Voleti et al., 2024), Ouroboros3D (Wen et al., 2024), and
Era3D (Li et al., 2024) on the Google Scanned Objects (GSO) dataset (Downs et al., 2022), as results
shown in Fig. 7 and Table 2. Experiments indicate that, by preserving the original feature space of
T2I models, our MV-Adapter achieves higher visual fidelity and consistency with conditions.
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MVDream SPAD MV-Adapter (SD2.1) MV-Adapter (SDXL)Input

Corgi riding a 
rocket

A character in
blue and white

armor

Figure 6: Qualitative comparison on camera-guided text-to-multiview generation. our MV-Adapter
achieves higher visual fidelity and image-text consistency.

ImageDreamInput Zero123++ CRM SV3D Ouroboros3D Era3D MV-Adapter (SD2.1)

Figure 7: Qualitative comparison on camera-guided image-to-multiview generation.

5.2 GEOMETRY-GUIDED MULTI-VIEW GENERATION

Evaluation on community models and extensions. We evaluated our geometry-guided model
with T2I derivative models. The results in Fig. 8 demonstrate the adaptability of MV-Adapter in
seamlessly integrating with different base models.

Table 3: Quantitative comparison on 3D texture
generation. FID and KID (×10−4) are evaluated
on multi-view renderings. Our models achieves
best texture quality with faster inference.

Method FID↓ KID↓ Time↓
TEXTure 56.44 61.16 90s
Text2Tex 58.43 60.81 421s
Paint3D 44.38 47.06 60s
SyncMVD 36.13 42.28 50s
FlashTex 50.48 56.36 186s

Ours (SD2.1 - Text) 38.19 42.83 18s
Ours (SD2.1 - Image) 33.93 38.73 19s
Ours (SDXL - Text) 32.75 35.18 32s
Ours (SDXL - Image) 27.28 29.47 33s

Comparison with baselines. We compare
our text- and image-conditioned multi-view-
based texture generation method (see Sec. 5.4)
with four state-of-the-art methods, includ-
ing TEXTure (Richardson et al., 2023),
Text2Tex (Chen et al., 2023), Paint3D (Zeng
et al., 2024), SyncMVD (Liu et al., 2023b), and
FlashTex (Deng et al., 2024). For our image-
to-texture model, we used ControlNet (Zhang
et al., 2023) to generate reference images con-
ditioned on text and depth maps. As shown in
Fig. 10 and Table 3, compared to these project-
and-inpaint or synchronized multi-view textur-
ing methods, our approach fine-tunes additional
modules to model geometric associations and
preserves the generative capabilities of the base
T2I model, thereby producing multi-view con-
sistent and high-quality textures. Additionally, testing on a single RTX 4090 GPU revealed that our
method achieves faster generation speeds than the others.

5.3 ABLATION STUDY

We conduct ablation studies to evaluate the efficiency and adaptability of our MV-Adapter, as well
as the detailed design of the adapter network.
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Dreamshaper Animagine-xl SDXL-Lightning

(2d cartoon) girl, mori-
calliope (new year), hololive…

(general) portrait of a girl, 
(medieval armor), metal…

(few step) stylized, a female's 
upper body. Blonde hair…

Watercolor Style SDXL RealVisXL LCM SDXL

(few step) A 3D model of a 
female in a fantasy outfit…

(realistic) A beautiful Warrior 
Elf girl with a hood and boots

(watercolor) A female soldier 
in the stylized suit…

Figure 8: Results of geometry-guided text-to-multiview generation with community models.

Table 4: Comparison of training costs with full-
tuning methods (batch size set to 1).

Method Trainable
params ↓

Memory
usage↓

Training
speed ↑

Era3D (SD2.1) 993M 36G 2.2iter/s
Ours (SD2.1) 127M 17G 3.1iter/s

Era3D (SDXL) 3.1B >80G -
Ours (SDXL) 490M 60G 1.05iter/s

Efficiency. To assess the training efficiency
of our adapter design, we conducted compar-
ison with Era3D (Li et al., 2024), which re-
quires full training rather than fine-tuning only
adapters like us. We further extend this model
to SDXL (Podell et al., 2024) for a comprehen-
sive evaluation. As shown in Table 4, our MV-
Adapter significantly reduces training costs, fa-
cilitating high-resolution multi-view generation
based on larger backbones.

(3d style) 1 girl, blue eyes, upper body, mask, eyes half closed

MVDream MV-Adapter

Figure 9: Qualitative ablation study on the
adaptability of MV-Adapter.

Adaptability. We compare MV-Adapter with
the full-trained text-to-multiview generation
method MVDream (Shi et al., 2023b) regarding
compatibility with T2I derivatives. MVDream,
which fine-tunes the whole T2I model, cannot be
easily replaced with other T2Is; thus, we integrate
LoRA (Hu et al., 2021) for our experiments. As
shown in Fig. 9, MVDream struggles to generate
images that align with the text and style, whereas
our MV-Adapter produces high-quality results,
demonstrating its superior adaptability.

Table 5: Quantitative ablation studies on attention
architecture.

Method PSNR↑ SSIM↑ LPIPS↓
Serial (SDXL) 20.687 0.8681 0.1149
Parallel (SDXL) 22.131 0.8816 0.1002

Network design. We conducted ablation
studies on our proposed image encoder and par-
allel attention architecture. Specifically, we
compare the settings of a) using CLIP (Radford
et al., 2021) for encoding reference images in-
stead of SD U-Net, and b) replacing the paral-
lel architecture with a serial counterpart, with
c) our MV-Adapter. As shown in Fig. 11, comparing a) and c) reveals that CLIP capture only
coarse, semantic-level information, while the pre-trained U-Net encodes finer details, producing re-
sults closely aligned with the input. Comparing b) and c) shows that, the serial setting, which does
not leverage the pre-trained image prior, tends to produce artifacts and misaligned details. Our MV-
Adapter achieves greater consistency both among generated views and with the reference image,
especially at the detail level. More results can be found in the Appendix.
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TEXTure Text2Tex Paint3D SyncMVD

SD2.1 - Text SD2.1 - Image SDXL - Text SDXL - Image

A gray raccoon 3D model with a long tail, pointy ears, black eyes, and a pink nose.

Ba
se

lin
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M
V-
Ad

ap
te
r

FlashTex

Figure 10: Qualitative comparison on texture generation. We compare our text- and image-
conditioned models with baseline methods.

a) CLIP image encoderInput b) Serial attention architecture c) MV-Adapter

Figure 11: Qualitative ablation study on the network design.

5.4 APPLICATIONS

3D generation. We follow the existing pipelines (Li et al., 2024; Wu et al., 2024) to achieve 3D
generation. After generating multi-view images from text or image conditions using MV-Adapter,
we use StableNormal (Ye et al., 2024) to generate corresponding normal maps. The multi-view
images and normal maps are then fed into NeuS (Wang et al., 2021) to reconstruct the 3D mesh.
The generated results are shown in the Appendix.

Texture generation. We use backprojection and incidence-based weighted blending tech-
niques (Bensadoun et al., 2024) to map the generated multi-view images onto the UV texture map.
Despite optimizing view distribution to enhance coverage, some areas may remain uncovered due
to occlusions or extreme angles. To address this, we perform view coverage analysis to identify
uncovered regions, render images from the current 3D texture for those views, and refine them using
an efficient inpainting model (Suvorov et al., 2022). We show more visual results in the Appendix.

6 CONCLUSION

In this paper, we introduce MV-Adapter, a versitile plug-and-play adapter that enhances text-to-
image (T2I) diffusion models and their derivatives for multi-view generation under various condi-
tions, without compromising quality or modifying the original feature space. Our approach incor-
porates a condition guider and a decoupled attention mechanism, enabling both camera-guided and
geometry-guided multi-view generation from text and images. Once trained, our MV-Adapter can
be seamlessly integrated into various T2I models—including personalized, distilled, and plugin-
enhanced models—to generate multi-view images with high consistency and visual fidelity. Exten-
sive evaluations highlight the efficiency, adaptability, and versatility of MV-Adapter across different
models and conditions. Furthermore, we extend our multi-view generation framework to support
applications such as 3D generation and texture generation. Overall, MV-Adapter offers an efficient
and flexible solution for multi-view image generation, significantly broadening the capabilities of
pre-trained T2I models and presenting exciting possibilities for a wide range of applications.
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A APPENDIX

A.1 BACKGROUND

Stable Diffusion (SD) and Stable Diffusion XL (SDXL). We adopt Stable Diffusion (Rombach
et al., 2022) and Stable Diffusion XL (Podell et al., 2024) as our base T2I models, since they have a
well-developed community with many powerful derivatives for evaluation. SD and SDXL perform
the diffusion process within the latent space of a pre-trained autoencoder E(·) and D(·). In training,
an encoded image z0 = E(x0) is perturbed to zt at step t by the forward diffusion. The denoising
network ϵθ learns to reverse this process by predicting the added noise, encouraged by an MSE loss:

L = EE(x0),ϵ∼N (0,I),c,t[∥ϵ− ϵθ(zt, c, t)∥22] (5)

where c denotes the conditioning texts. In SD, ϵθ is implemented as a UNet (Ronneberger et al.,
2015) consisting of pairs of down/up sample blocks and a middle block. Each block contains pairs
of spatial self-attention layers and cross-attention layers, which are serially connected using the
residual structure. SDXL leverages a three times larger UNet backbone than SD for high-resolution
image synthesis, and introduces a refinement denoiser to improve the visual fidelity.

A.2 IMPLEMENTATION DETAILS

Dataset. We trained MV-Adapter on a filtered high-quality subset of the Objaverse dataset (Deitke
et al., 2023), comprising approximately 70,000 samples, with captions from Cap3D (Luo et al.,
2024). To accommodate the efficient multi-view self-attention mechanism, we rendered ortho-
graphic views to train the the model to generate n = 6 views per sample. For the camera-guided
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generation, we rendered views of 3D models with the elevation angle set to 0◦ and azimuth angles
at {0◦, 45◦, 90◦, 180◦, 270◦, 315◦}. This distribution aligns with the setting used in Era3D (Li et al.,
2024), facilitating the application of a similar image-to-3D pipeline for 3D generation tasks. For
the geometry-guided generation, we included four views at an elevation of 0◦ with azimuth angles
of {0◦, 90◦, 180◦, 270◦}, added two additional views from the top and bottom. In addition to the
target views, we rendered five random views within a certain frontal range of the models to serve as
reference images during training.

Training. We utilized two versions of Stable Diffusion (Rombach et al., 2022) as the base mod-
els for training. Specifically, we trained a 512-resolution model based on Stable Diffusion 2.1
(SD2.1) and a 768-resolution model based on Stable Diffusion XL (SDXL). During training, we
randomly dropped the text condition with a probability of 0.1, the image condition with a probabil-
ity of 0.1, and both text and image conditions simultaneously with a probability of 0.1. Following
prior work (Hoogeboom et al., 2023; Blattmann et al., 2023), we shifted the noise schedule to higher
noise levels by adjusting the log signal-to-noise ratio (SNR) by log(n), where n = 6 is the number
of the generated views. For the specific training configurations, we used a learning rate of 5× 10−5

and trained the MV-Adapter on 8 NVIDIA A100 GPUs for 10 epochs.

Inference. In our experimental setup, we generated multi-view images using the DDPM sam-
pler (Ho et al., 2020) with classifier-free guidance (Ho & Salimans, 2022), and set the number of
inference steps to 50. For generation conditioned solely on text (i.e., setting the weight of the image
condition λi to 0), we set the guidance scale to 7.0. For image-conditioned generation, we set the
guidance scale of image condition α and text condition β to 3.0. Following TOSS (Shi et al., 2023c),
the calculation can be expressed as:

ϵ̂θ(z
1:n
t , ct, ci, cm, t) = ϵθ(z

1:n
t , ∅, ∅, cm, t)

+ α
[
ϵθ(z

1:n
t , ∅, ci, cm, t)− ϵθ(z

1:n
t , ∅, ∅, cm, t)

]
+ β

[
ϵθ(z

1:n
t , ct, ci, cm, t)− ϵθ(z

1:n
t , ∅, ci, cm, t)

]
(6)

where ct, ci and cm represent texts, reference images and conditioning maps (i.e., camera or geom-
etry conditions) respectively. Since we did not drop cm during the training process, we do not use
the classifier-free guidance method for it.

Comparison with baselines. We conducted comprehensive comparisons with baseline methods
across three settings: text-to-multiview generation, image-to-multiview generation, and texture gen-
eration. In these experiments, we evaluated both versions of MV-Adapter based on Stable Diffusion
2.1 (SD2.1) (Rombach et al., 2022) and Stable Diffusion XL (SDXL) (Podell et al., 2024), demon-
strating the performance gains brought by MV-Adapter due to its efficient training and scalability.

For text-to-multiview generation, we selected MVDream (Shi et al., 2023b) and SPAD (Kant et al.,
2024) as baseline methods. MVDream extends the original self-attention mechanism of T2I models
to the multi-view domain. SPAD introduces epipolar constraints into the multi-view attention mech-
anism. We tested on 1,000 prompts selected from the Objaverse dataset (Deitke et al., 2023). We
computed Fréchet Inception Distance (FID), Inception Score (IS), and CLIP Score on all generated
views to assess the quality of the generated images and their alignment with the textual prompts.

For image-to-multiview generation, we compared our method with ImageDream (Wang & Shi,
2023), Zero123++(Shi et al., 2023a), CRM(Wang et al., 2024b), SV3D (Voleti et al., 2024),
Ouroboros3D (Wen et al., 2024), and Era3D (Li et al., 2024). ImageDream, Zero123++, CRM,
and Era3D generally fall into the category of modifying the original network architecture of T2I
models to extend them for multi-view generation. SV3D and Ouroboros3D fine-tune text-to-video
(T2V) models to achieve multi-view generation. We selected 100 assets covering multiple object
categories from the Google Scanned Objects (GSO) dataset (Downs et al., 2022) as our test set. For
each asset, we rendered input images from front-facing views, with input views randomly distributed
in azimuth angles between −45◦ and 45◦ and elevation angles between −10◦ and 30◦. We evalu-
ated the generated multi-view images by computing Peak Signal-to-Noise Ratio (PSNR), Structural
Similarity Index Measure (SSIM), and Learned Perceptual Image Patch Similarity (LPIPS) between
the generated images and the ground truth, assessing both the consistency and quality of the outputs.

For 3D texture generation, we compared our text-based and image-based models with project-
and-paint methods such as TEXTure (Richardson et al., 2023), Text2Tex (Chen et al., 2023), and
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Table 6: Community models and extensions for evaluation.

Category Model Name Domain Model Type

Personalized T2I

Dreamshaper1 General T2I Base Model
RealVisXL2 Realistic T2I Base Model
Animagine-xl3 2D Cartoon T2I Base Model
3D Render Style XL4 3D Cartoon LoRA
Pokemon Trainer Sprite PixelArt5 Pixel Art LoRA
Chalk Sketch SDXL6 Chalk Sketch LoRA
Chinese Ink LoRA7 Color Ink LoRA
Zen Ink Wash Sumi-e8 Wash Ink LoRA
Watercolor Style SDXL9 Watercolor LoRA
Papercut SDXL10 Papercut LoRA
Furry Enhancer11 Enhancer LoRA
White Pitbull Dog SDXL12 Concept LoRA
Spider spirit fourth sister13 Concept LoRA

Distilled T2I SDXL-Lightning14 Few Step T2I Base Model
LCM-SDXL15 Few Step T2I Base Model

Extension

ControlNet Openpose16 Spatial Control Plugin
ControlNet Scribble17 Spatial Control Plugin
ControlNet Tile18 Image Deblur Plugin
T2I-Adapter Sketch19 Spatial Control Plugin
IP-Adapter20 Image Prompt Plugin

Paint3D (Zeng et al., 2024), the synchronized multi-view texturing method SyncMVD (Liu et al.,
2023b), and the optimization-based method FlashTex (Deng et al., 2024). We randomly selected
200 models along with their captions from the Objaverse (Deitke et al., 2023) dataset for testing.
Multiple views were rendered from the generated 3D textures, and we computed FID and Kernel
Inception Distance (KID) of them to evaluate the quality of the generated textures. Additionally, we
recorded the texture generation time to assess the inference efficiency of each method.

Community models and extensions for evaluation. To ensure a comprehensive benchmark, we
selected a diverse set of representative T2I derivative models and extensions from the community

1https://civitai.com/models/112902?modelVersionId=126688
2https://civitai.com/models/139562?modelVersionId=789646
3https://huggingface.co/cagliostrolab/animagine-xl-3.1
4https://huggingface.co/goofyai/3d render style xl
5https://civitai.com/models/159333/pokemon-trainer-sprite-pixelart?modelVersionId=443092
6https://huggingface.co/JerryOrbachJr/Chalk-Sketch-SDXL
7https://huggingface.co/ming-yang/sdxl chinese ink lora
8https://civitai.com/models/647926/zen-ink-wash-sumi-e-sdxl-pony-flux?modelVersionId=724876
9https://civitai.com/models/484723/watercolor-style-sdxl

10https://huggingface.co/TheLastBen/Papercut SDXL
11https://civitai.com/models/310964/furry-enhancer?modelVersionId=558568
12https://civitai.com/models/700883/white-pitbull-dog-sdxl?modelVersionId=787948
13https://civitai.com/models/689010/pony-black-myth-wukong-spider-spirit-fourth-

sister?modelVersionId=771146
14https://huggingface.co/ByteDance/SDXL-Lightning
15https://huggingface.co/latent-consistency/lcm-sdxl
16https://huggingface.co/xinsir/controlnet-openpose-sdxl-1.0
17https://huggingface.co/xinsir/controlnet-scribble-sdxl-1.0
18https://huggingface.co/xinsir/controlnet-tile-sdxl-1.0
19https://huggingface.co/TencentARC/t2i-adapter-sketch-sdxl-1.0
20https://huggingface.co/h94/IP-Adapter
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for evaluation. As illustrated in Table 6, these models include personalized models that encompass
various domains such as anime, stylistic paintings, and realistic photographic images, as well as ef-
ficient distilled models and plugins for controllable generation. They cover a wide range of subjects,
including portraits, animals, landscapes, and more. This selection enables a thorough evaluation of
our approach across different styles and content, demonstrating the adaptability and generality of
MV-Adapter in working with various T2I derivatives and extensions.

A.3 ADDITIONAL DISCUSSIONS

A.3.1 MV-ADAPTER VS. MULTI-VIEW LORA

LoRA (Low-Rank Adaptation) (Hu et al., 2021) offers an alternative approach to achieving plug-
and-play multi-view generation. Specifically, using a condition encoder to inject camera represen-
tations, we extend the original self-attention mechanism to operate across all pixels of multiple
views. During training, we introduce trainable LoRA layers into the network, allowing these lay-
ers to learn multi-view consistency or, optionally, generate images conditioned on a reference view.
This approach requires the spatial self-attention mechanism to simultaneously capture spatial image
knowledge, ensure multi-view consistency, and align generated images with reference views.

However, the multi-view LoRA approach has a notable limitation. The “incremental changes” it
introduces to the network are not orthogonal or decoupled from those induced by T2I derivatives,
such as personalized T2I models or LoRAs. Specifically, layers fine-tuned by multi-view LoRA
and those tuned by personalized LoRA often overlap. Note that each weight matrix learned by both
represents a linear transformation defined by its columns, so it is intuitive that the merger would
retain the information available in these columns only when the columns that are being added are
orthogonal to each other (Shah et al., 2023). Clearly, the multi-view LoRA and personalized models
are not orthogonal, which often leads to challenges in retaining both sets of learned knowledge. This
can result in a trade-off where either multi-view consistency or the fidelity of concepts (such as style
or subject identity) is compromised.

In contrast, our proposed decoupled attention mechanism encourages different attention layers to
specialize in their respective tasks without needing to fine-tune the original spatial self-attention
layers. In this design, the layers we train do not overlap with those in the original T2I model,
thereby better preserving the original feature space and enhancing compatibility with other models.

We conducted a series of experiments to test these approaches. We trained two versions of multi-
view LoRA, targeting different modules: (1) inserting LoRA layers only into the attention layers, and
(2) inserting LoRA layers into multiple layers, including the convolutional layers, down-sampling,
up-sampling layers, etc. For both settings, we set the LoRA rank to 64 and alpha to 32. As shown in
Fig. 12 and Fig. 13, while the multi-view LoRA approach can generate multi-view consistent images
when the base model is not changed, it often struggles to maintain multi-view consistency when
switching to a different base model or when integrating a new LoRA. In contrast, as demonstrated in
Fig. 14, our MV-Adapter, equipped with the decoupled attention mechanism, maintains consistent
multi-view generation even when used with personalized models.

Compared to the LoRA mechanism, our decoupled attention-based approach proves more robust
and adaptable for extending T2I models to multi-view generation, offering greater flexibility and
compatibility with various pre-trained models.

A.3.2 ADAPTABILITY OF IMAGE-CONDITIONED MODEL

Evaluating the adaptability of the image-conditioned MV-Adapter on personalized models poses a
challenge because the reference image already provides detailed subject-specific appearance guid-
ance for multi-view generation. As a result, it’s difficult to assess how well the model adapts when
the subject’s details are pre-defined. To address this, we conducted experiments on efficient distilled
models, such as SDXL-Lightning (Lin et al., 2024). As illustrated in Fig. 15, after replacing the base
model with a distilled T2I variant, the MV-Adapter was able to generate high-quality and multi-view
consistent images in just four steps.
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(Base model: SDXL) Daenerys Targaryen from game of throne, full body, blender 3d, art station

(LoRA: Watercolor Style) painting, Burmese Cat, wearing ral-wtrclr, Comic book art

(Base model: Animagine-xl) 1 girl, pink hair, pink shirts, smile, shy, masterpiece

Figure 12: Results of multi-view LoRA (set target modules to attention layers). The azimuth angles
of the images from left to right are 0◦, 45◦, 90◦, 180◦, 270◦, 315◦, corresponding to the front, front-
left, left, back, right, and front-right of the object.

(Base model: SDXL) Daenerys Targaryen from game of throne, full body, blender 3d, art station

(LoRA: Watercolor Style) painting, Burmese Cat, wearing ral-wtrclr, Comic book art

(Base model: Animagine-xl) 1 girl, pink hair, pink shirts, smile, shy, masterpiece

Figure 13: Results of multi-view LoRA (set target modules to attention layers, convolutional layers,
etc.). The azimuth angles of the images from left to right are 0◦, 45◦, 90◦, 180◦, 270◦, 315◦, corre-
sponding to the front, front-left, left, back, right, and front-right of the object.

The experiments clearly demonstrate that our image-conditioned MV-Adapter exhibits strong adapt-
ability. Even when integrated into distilled models, it is capable of rapidly generating high-quality
multi-view images, proving its efficiency and versatility.
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(Base model: SDXL) Daenerys Targaryen from game of throne, full body, blender 3d, art station

(LoRA: Watercolor Style) painting, Burmese Cat, wearing ral-wtrclr, Comic book art

(Base model: Animagine-xl) 1 girl, pink hair, pink shirts, smile, shy, masterpiece

Figure 14: Results of MV-Adapter, which introduces decoupled attention mechanism rather than
LoRA. The azimuth angles of the images from left to right are 0◦, 45◦, 90◦, 180◦, 270◦, 315◦, cor-
responding to the front, front-left, left, back, right, and front-right of the object.

Input Generated Multi-view Images Input Generated Multi-view Images

Figure 15: Results of MV-Adapter on camera-guided image-to-multiview generation with SDXL-
Lightning (Lin et al., 2024) (number of inference steps set to 4).

A.3.3 IMAGE RESTORATION CAPABILITIES

During the training of MV-Adapter, we probabilistically compress the resolution of reference im-
ages in the training data pairs to enhance the robustness of multi-view generation from images. We
observed that the model trained with this approach is capable of generating high-resolution, de-
tailed multi-view images even when the input is low-resolution, as depicted in Fig. 16. Through
such training strategy, MV-Adapter has inherent image restoration capabilities and automatically
enhances and refines input images during the generation process.

A.3.4 SERIAL VS. PARALLEL ATTENTION ARCHITECTURE

To assess the effectiveness of our proposed parallel attention architecture, we conducted ablation
studies on image-to-multi-view generation setting. As shown in Fig. 17, the serial setting, which
cannot leverage the pre-trained image prior, tends to produce artifacts and inconsistent details with
the image input. In contrast, our parallel setting produces high-quality and highly consistent results.
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Input Generated Multi-view Images (Auto Restored)

Figure 16: Results on camera-guided image-to-multiview generation with low-resolution images as
input.

Input Serial attention architecture Parallel attention architecture 

Figure 17: Qualitative ablation study on the attention architecture.

A.3.5 APPLICABILITY OF MV-ADAPTER

Broader potential applications. Beyond the demonstrated applications in 3D object generation
and 3D texture mapping, the MV-Adapter’s strong adaptability and versatility open up a wide array
of potential uses in image creation and personalization. For instance, creators can integrate MV-
Adapter with their personalized T2I models—customized for specific identities or artistic styles—to
generate multi-view images that capture consistent perspectives of their unique concepts. Addi-
tionally, MV-Adapter can facilitate tasks like multi-view portrait generation, where a subject’s face
is rendered consistently across different angles, or stylized multi-view illustrations that maintain
artistic coherence across diverse perspectives.
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Inspiration for related tasks. Our MV-Adapter represents a successful practice of decoupling
image priors from geometric knowledge within T2I diffusion models. This approach provides valu-
able insights for downstream tasks that rely on image priors but also require modeling of geometric,
physical, or temporal aspects. Specifically, characteristics related to geometry and viewpoint—such
as zooming in/out, lighting variations, and shadow dynamics—can potentially be addressed by in-
troducing new layers that decouple these factors or by fine-tuning the multi-view attention layers
of MV-Adapter. By extending this decoupled architecture, it may be possible to model geometric-
related properties more effectively, enabling advancements in areas like view-dependent appearance
synthesis, relighting, and even animation where temporal consistency is crucial. This opens avenues
for future research to explore how similar strategies can be applied to disentangle and control other
complex factors in image generation tasks.

A.3.6 EXTENDING MV-ADAPTER FOR ARBITRARY VIEW SYNTHESIS

In the main text, we introduced a novel adapter architecture—comprising parallel attention layers
and a unified condition encoder—to achieve multi-view generation. We implemented efficient row-
wise and column-wise attention mechanisms tailored for two specific applications: 3D object gener-
ation and 3D texture mapping, generating six views accordingly. However, our adapter framework
is not limited to these configurations and can be extended to perform arbitrary view synthesis. To
explore this capability, we designed a corresponding approach and conducted experiments, training
a new version of MV-Adapter to handle arbitrary viewpoints.

Following CAT3D (Gao et al., 2024), we perform multiple rounds of multi-view generation, with
the number of views generated each time set to n = 8. Starting from text or an initial single image
as input, we first generate eight anchor views that broadly cover the object. In practice, these anchor
views are positioned at elevations of 0◦ and 30◦, with azimuth angles evenly distributed around the
circle (e.g. every 45◦). For generating new target views, we cluster the viewpoints based on their
spatial orientations, grouping them into clusters of 8. We then select the 4 nearest known views from
the already generated anchor views to serve as conditions guiding the generation of each target view.

In terms of implementation, the overall framework of our MV-Adapter remains unchanged. We
adjust its inputs and specific attention components to accommodate arbitrary view synthesis. First,
we set the number of input images to either 1 or 4. When using four input views, we concatenate
them into a long image and input this into the pre-trained T2I U-Net to extract features. This simple
yet effective method allows the images from the four views to interact within the pre-trained U-Net
without requiring additional camera embeddings to represent these views. Second, we utilize full
self-attention in the multi-view attention component, expanding the attention scope to enable the
generation of target views with more flexible distributions.

To train an MV-Adapter capable of generating arbitrary viewpoints, we rendered data from 40 differ-
ent views, with elevations of −10◦, 0◦, 10◦, 20◦, 30◦, and azimuth angles evenly distributed around
360 degrees at each elevation layer. We trained the model for 16 epochs. During the first 8 epochs,
the model was trained using a setting of one conditional view and eight target anchor views. In the
subsequent 8 epochs, we trained with an equal mixture of one condition plus eight target views and
four conditions plus eight target views.

As shown in Fig. 18, the visualization results demonstrate that MV-Adapter can generate consis-
tent, high-quality multi-view images beyond the six views designed for specific applications. This
extension further verifies the scalability and practicality of our adapter framework, showcasing its
potential for arbitrary view synthesis in diverse applications. More results can be found in the sup-
plementary materials.

A.4 LIMITATIONS AND FUTURE WORKS

Domain gap between synthetic data and natural images. A domain gap exists between the
synthetic multi-view data rendered from 3D datasets (Deitke et al., 2023) and natural images, par-
ticularly in terms of background presence and visual fidelity. The model trained with synthetic data
will be affected to some extent by the specific 3D style appearance, which may affect the generaliza-
tion of the model. Although the adapter design successfully leverages the priors from the pre-trained
T2I model, the quality of the generated images is still influenced by the suboptimal visual quality of
the training data. A potential solution involves augmenting the training data with real video datasets,
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Figure 18: Visualization results using MV-Adapter to generate arbitrary viewpoints.

such as MVImgNet (Yu et al., 2023), which could reduce the domain gap. Additionally, during in-
ference, we recommend incorporating a reference image as additional content control, which will
improve the visual fidelity the controllability of the multi-view generation.

Dependency on image backbone. Within our decoupled attention mechanism, the visual content,
multi-view consistency and alignment with the reference image originate from the underlying image
backbone, multi-view attention, and image cross-attention mechanisms, respectively. Notably, both
the multi-view attention and image cross-attention layers are initialized using the parameters of the
original spatial self-attention layers. Consequently, the overall performance of MV-Adapter is heav-
ily dependent on the base T2I model. If the foundational model struggles to generate content that
aligns with the provided prompt or produces images of low quality, MV-Adapter is unlikely to com-
pensate for these deficiencies. On the other hand, employing superior image backbones can enhance
the synthetic results. We present a comparison of outputs generated using SDXL (Podell et al., 2024)
and SD2.1 (Rombach et al., 2022) models in Fig. 19, which confirms this observation, particularly
in text-conditioned multi-view generation. We believe that MV-Adapter can be further developed by
utilizing advanced T2I models (Team, 2024; Labs, 2024) based on the DiT architecture (Peebles &
Xie, 2023), to achieve higher visual quality in the generated images.

A DSLR photo of a frog wearing a sweater Mecha vampire girl chibi

SD2.1

SDXL

Figure 19: Qualitative comparison of our MV-Adapter based on SD2.1 and SDXL.

Future works: sparse-view input, 3D scene generation, dynamic multi-view video generation.
This paper provides extensive analyses and enhancements for our novel multi-view adapter, MV-
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Adapter. While our model has significantly improved efficiency, adaptability, versatility, and perfor-
mance compared to previous models, we identify three promising areas for future work:

• Sparse-view input. To enhance controllability in multi-view generation, we can input sparse
views into our image encoder (i.e., pre-trained SD U-Net), allowing multiple views to guide
the generation process.

• 3D scene generation. We conducted experiments on synthetic data. Our method can be ex-
tended to scene-level multi-view generation, accommodating both camera- and geometry-
guided approaches with text or image conditions.

• Dynamic multi-view video generation. Exploring dynamic multi-view video generation
using a similar approach as MV-Adapter within text-to-video generation models (Zheng
et al., 2024; Yang et al., 2024) presents a valuable opportunity for further advancements.

Future works: modeling new knowledge like MV-Adapter. By decoupling the learning of geo-
metric knowledge from the image prior, our framework efficiently integrates new knowledge with-
out compromising the base model’s rich visual capabilities. This principle enhances learning from
limited data and inspires other tasks that build upon existing image priors to learn new types of
knowledge. Beyond multi-view consistency, our approach can be extended to learn zoom in/out
effects, consistent lighting conditions, and other viewpoint-dependent attributes. It is possible to
model viewpoint-dependent attributes such as lighting, shadows, and reflections by fine-tuning our
decoupled multi-view attention on some specific small datasets, which can be defined as personal-
ization or customization of geometric knowledge. MV-Adapter also provides insights for modeling
physical or temporal knowledge based on image priors, paving the way for future research in related
domains.

A.5 MORE COMPARISON RESULTS

A.5.1 IMAGE-TO-MULTI-VIEW GENERATION

To provide a more in-depth analysis of our quantitative results on image-to-multi-view generation,
we conducted a user study comparing MV-Adapter (based on SD2.1 (Rombach et al., 2022)) with
baseline methods (Wang & Shi, 2023; Shi et al., 2023a; Wang et al., 2024b; Voleti et al., 2024; Wen
et al., 2024; Li et al., 2024). The study aimed to evaluate both multi-view consistency and image
quality preferences. We selected 30 samples covering a diverse range of categories, such as toy
cars, medicine bottles, stationery, dolls, and sculptures. A total of 50 participants were recruited to
provide their preferences between the outputs of different methods.

Participants were presented with pairs of multi-view images generated by MV-Adapter and the base-
line methods. For each pair, they were asked to choose the one they preferred in terms of multi-view
consistency and image quality. The results of the user study are summarized in Fig. 20. The find-
ings indicate that, in terms of multi-view consistency, MV-Adapter performs comparably to Era3D,
with preference rates of 25.07% and 22.33%, respectively. However, regarding image quality, MV-
Adapter demonstrates a significant advantage, receiving a higher preference rate of 36.80% com-
pared to the baseline methods. The improved image quality can be attributed to MV-Adapter’s
ability to leverage the strengths of the underlying T2I models without full fine-tuning, preserving
the original feature space and benefiting from the high-quality priors of the base models.

Additionally, we provide supplementary qualitative comparison results in Fig. 21, showcasing side-
by-side examples of images generated by MV-Adapter and the baseline methods. These examples
further illustrate the superior image quality and consistency achieved by MV-Adapter, highlighting
finer details, better texture reproduction, and more coherent structures across different views.

A.5.2 IMAGE-TO-3D GENERATION

To further evaluate the consistency of multi-view generation and the applicability of MV-Adapter
to downstream tasks, we conducted a quantitative comparison of 3D reconstruction performance
using MV-Adapter and Era3D (Li et al., 2024), which shares a similar pipeline with our method.
The comparison was performed on the Google Scanned Objects (GSO) dataset, focusing on metrics
such as Chamfer Distance and Volumetric IoU to assess the geometric quality of the reconstructed
3D models.
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Figure 20: Results of user study on image-to-multi-view generation.

Table 7: Quantitative comparison on 3D recon-
struction.

Method Chamfer Distance↓ Volume IoU↑
Era3D 0.0329 0.5118
Ours (SD2.1) 0.0317 0.5173
Ours (SDXL) 0.0206 0.5682

The results, summarized in Table 7, show that
3D reconstruction quality using MV-Adapter
based on Stable Diffusion 2.1 (SD2.1) is com-
parable to that achieved with Era3D. However,
when using MV-Adapter based on Stable Dif-
fusion XL (SDXL), the reconstruction quality
is significantly higher, with notable improve-
ments in both Chamfer Distance and Volumetric IoU. This demonstrates that MV-Adapter’s efficient
training design facilitates compatibility with larger and more advanced base models, such as SDXL,
thereby delivering superior results in 3D reconstruction tasks. These findings underline the scalabil-
ity of MV-Adapter and its ability to leverage the strengths of state-of-the-art T2I models, providing
additional benefits to downstream tasks like 3D generation.

A.6 MORE VISUAL RESULTS

In Fig. 22 and Fig. 23, we show more visual results of MV-Adapter on camera-guided text-to-
multiview generation with community models and extensions, such as ControlNet (Zhang et al.,
2023) and IP-Adapter (Ye et al., 2023). In Fig. 24, we show more visual results on camera-guided
image-to-multiview generation. In Fig. 25, we show more visual results on text-to-3D generation.
In Fig. 26, we show more visual results on image-to-3D generation. In Fig. 27, we show more visual
results on geometry-guided text-to-texture generation. In Fig. 28, we show more visual results on
geometry-guided image-to-texture generation. Note that we have removed the background of the
generated images in the visual results.
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Ours (SD2.1)

CRM SV3D

Era3D

ImageDream Zero123++

Input

Ouroboros3D

Ours (SDXL)

Input

ImageDream Zero123++

CRM SV3D

Era3D Ouroboros3D

Ours (SD2.1) Ours (SDXL)

Figure 21: More qualitative comparison on image-to-multiview generation.
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(general) A well-dressed dog named Puproy Doggerson III wearing…

Dreamshaper

(general) A beautiful girl, (medieval armor), upper body…

Dreamshaper

(realistic) trench coat, fedora, private detective, [murder mystery]…

RealVisXL

(realistic) horror surrealism, george morland, mysterious jungle…

RealVisXL

(3d cartoon) 1 boy, jacket, beard

3D Render Style XL

(2d cartoon) 1 girl, izayoi sakuya, touhou, maid headdress, maid…

Animagine-xl

(pixelart) joker, simple background

Pokemon Trainer Sprite PixelArt

(chalk sketch) a lone cowboy dressed in traditional attire…

Chalk Sketch SDXL

(Ink) A simple teapot

Zen Ink Wash Sumi-e

(Chinese Ink) a cute fox

Chinese Ink LoRA

(watercolor) strong Ash Ketchum dressed in ral-wtrclr

Watercolor Style SDXL

(papercut) an owl

Papercut SDXL

(concept) 1 girl, Black Myth Wukong, black hair, single hair bun…

Spider spirit fourth sister

(enhancer) anthro red panda, cyberpunk, fangs

Furry Enhancer

(few step) an astronaut riding a horse

LCM SDXL

(few step) Daenerys Targaryen from game of throne, full body…

SDXL Lightning

Figure 22: Additional results on camera-guided text-to-multiview generation with community mod-
els.
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(ControlNet Openpose) Luffy

(ControlNet Scribble) Aladdin, a character from Disney’s Aladdin… (ControlNet Scribble) A 3D model of a young girl with orange hair…

(ControlNet Tile) A stylized white fox with pink fur on its ears and…

(IP-Adapter) cartoon style, light (IP-Adapter) A ginger tabby cat standing upright…

(T2I-Adapter Sketch) A 3D model of Finn the Human from the … (T2I-Adapter Sketch) A gray marble-like bust of a young woman 

Figure 23: Additional results on camera-guided text-to-multiview generation with extensions.

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Input Generated Multi-view Images Input Generated Multi-view Images

Figure 24: Additional results on camera-guided image-to-multiview generation.

Daenerys Targaryen from game of throne, full body

DnD dwarf with hammer

A DSLR photo of a frog wearing a sweater

Military Mech, future, scifi

Army Jacket, 3D scan

Ironman Scifi helmet with blue glowing elements

Nike air max, realistic, 8k texture, photorealistic

A SquirtleAstronaut bumping high

Figure 25: Visual results on text-to-3D generation.
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Input Generated 3D Objects Input Generated 3D Objects

Figure 26: Visual results on image-to-3D generation.

A blue low poly formula one car with number 33 on the body and a white 
circle on the hood…

A stylized squirrel holding an acorn, chubby body, short legs, a 
large fluffy tail, and big round eyes.

A cartoon-styled rocket ship ride with a predomi-nantly orange body, a 
green base, white details.

A US army motorcycle with a medical cross on the sidecar, a headlight, 
a brown seat, a large wheel…

The 3D model is of the Super Sonic, a yellow anthropomorphic 
hedgehog with spiky hair…

A robot with blue, red and gray colors, and has a flame-like 
pattern on the body…

A purple anthropomorphic chameleon with a yellow belly and 
purple eyes, wearing black and purple…

Mater, a rusty and beat-up tow truck from the 2006 Disney/Pixar 
animated film "Cars", with a rusty…

Coco Bandicoot, from the Crash Bandicoot series, wearing her 
signature orange shirt and blue overalls…

A young girl with black hair, wearing an orange dress and yellow shirt, 
from the waist up.

Figure 27: Additional results on geometry-guided text-to-texture generation.
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Input Rendered Multi-view Images from Generated Texture

Figure 28: Additional results on geometry-guided image-to-texture generation.
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