
Multi-Environment POMDPs: Discrete Model
Uncertainty Under Partial Observability

Eline M. Bovy∗

Radboud University
Nijmegen, The Netherlands

eline.bovy@ru.nl

Caleb Probine∗
The University of Texas at Austin

Austin, TX, USA
cprobine@utexas.edu

Marnix Suilen
University of Antwerp – Flanders Make

Antwerp, Belgium
marnix.suilen@uantwerpen.be

Ufuk Topcu
The University of Texas at Austin

Austin, TX, USA
utopcu@utexas.edu

Nils Jansen
Ruhr-University Bochum & Radboud University
Bochum, Germany & Nijmegen, The Netherlands

n.jansen@rub.de

Abstract

Multi-environment POMDPs (ME-POMDPs) extend standard POMDPs with dis-
crete model uncertainty. ME-POMDPs represent a finite set of POMDPs that
share the same state, action, and observation spaces, but may arbitrarily vary in
their transition, observation, and reward models. Such models arise, for instance,
when multiple domain experts disagree on how to model a problem. The goal
is to find a single policy that is robust against any choice of POMDP within the
set, i.e., a policy that maximizes the worst-case reward across all POMDPs. We
generalize and expand on existing work in the following way. First, we show that
ME-POMDPs can be generalized to POMDPs with sets of initial beliefs, which
we call adversarial-belief POMDPs (AB-POMDPs). Second, we show that any
arbitrary ME-POMDP can be reduced to a ME-POMDP that only varies in its tran-
sition and reward functions or only in its observation and reward functions, while
preserving (optimal) policies. We then devise exact and approximate (point-based)
algorithms to compute robust policies for AB-POMDPs, and thus ME-POMDPs.
We demonstrate that we can compute policies for standard POMDP benchmarks
extended to the multi-environment setting.

1 Introduction

Partially observable Markov decision processes (POMDPs) [25] are important models for sequential
decision-making under uncertainty. With numerous real-world applications, from robotics [47] to
healthcare [21, 49], many algorithms to compute optimal policies have been proposed [32, 39, 40].

Planning algorithms that compute policies for POMDPs rely on knowing the exact parameters of the
underlying transition and observation dynamics, an assumption that is often prohibitive in practice.
Consider, for instance, a setting where a POMDP model is constructed by domain experts. A common

∗Shared first authorship, ordered alphabetically.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

POMDP
Definition 1

ME-POMDP
Definition 4

AB-POMDP
Definition 3

OS-POSG
Definition 2

PO-MEMDPMO-POMDP*
Thm. 4

Thm. 2

Thm. 3

Thm. 1

Figure 1: ME-POMDPs are a rich class of models between POMDPs and one-sided POSGs. Arrows
from class A to class B indicate that we can transform models in class A to models in class B. The
transformed model size is polynomial in the original model size for all arrows not marked by ∗.
Unmarked arrows are trivial reductions. We define MO-POMDPs and PO-MEMDPs in Section 4.3.

example is the preservation of endangered bird species, akin to Chades et al. [8]. Multiple experts
may disagree on parts of the model, leading to discrete sets of different transition and observation
functions, and thus, a discrete set of POMDPs which we call a multi-environment POMDP (ME-
POMDP). Without expressing any preference for one expert over another, i.e., assuming a prior over
the models in the ME-POMDP, a policy needs to be robust against all possible dynamics. That is, the
policy needs to be optimized against the worst-case POMDP. We study ME-POMDPs and develop
exact and approximate methods to compute optimal policies that maximize worst-case reward.

While multi-environment models have been studied extensively in the fully observable case, under
the name of multi-environment MDPs (MEMDPs) [9, 35], existing algorithms do not apply to the
partially observable case. MEMDPs are the discrete version of a broader class of models with
continuous uncertainty known as robust MDPs [2, 24, 50]. Robust POMDPs [RPOMDPs; 5, 31]
are the generalization of robust MDPs to the partially observable setting. While ME-POMDPs
are, in theory, contained in RPOMDPs, algorithms for RPOMDPs rely on structural and semantic
assumptions such as convexity, rectangularity, and dynamic uncertainty [5, 24, 50] as we discuss later.
These assumptions make their application to ME-POMDPs unsuitable or overly conservative.

Contributions We study ME-POMDPs and devise algorithms to compute robust policies against
any adversarial choice of POMDP in the ME-POMDP. We avoid overt conservativeness that appears
when existing RPOMDP approaches are applied to ME-POMDPs. To summarize:

1. Multi-Environment and Adversarial-Belief POMDPs We generalize and expand
on the theory of multi-environment POMDPs. We introduce adversarial-belief POMDPs
(AB-POMDPs): POMDPs where the initial belief is adversarially chosen from a set of
possible initial beliefs. We prove that AB-POMDPs are a special case of one-sided partially
observable stochastic games (POSGs) [22], and show how any multi-environment POMDP
can be modeled as an adversarial-belief POMDP. We also show that we can reduce any
ME-POMDP to a restricted version where either the models do not differ in transitions, i.e.,
a multi-observation POMDP (MO-POMDP), or do not differ in observation functions, i.e., a
partially-observable MEMDP (PO-MEMDP). We outline these relationships in Figure 1.

2. Exact and approximate algorithms for AB-POMDPs We prove that we can combine
value iteration methods for POMDPs with linear programming to solve AB-POMDPs
and thus ME-POMDPs. Specifically, we augment heuristic search value iteration (HSVI)
with linear programming to get AB-HSVI, a point-based method for approximating value
functions in adversarial-belief POMDPs. We evaluate AB-HSVI on standard benchmarks
extended to the multi-environment setting and discuss how solving ME-POMDPs trades
expected reward for computation time compared to a naive, non-robust baseline.

2 Related Work

Discrete model uncertainty has primarily been studied in the fully observable setting of multi-
environment MDPs [MEMDPs; 35]. A large body of work assumes a distribution on the MEMDP’s
environments and provides algorithms for finding optimal policies [7–9, 12, 37, 43]. Recent work also
studies reinforcement learning in MEMDPs where the environment distribution is unknown [11, 12,
27, 28, 51]. In contrast, we do not assume such a distribution exists, and instead focus on computing
policies that are robust against all possible environments. For MEMDPs, the robust setting has been
considered for qualitative objectives [10, 35, 46, 48], and integer programming has been used to find
policies for robust reward maximization [1, 42]. Robust MDPs [24, 50] also capture the robust setting

2

but tend to assume continuous, compact, and convex model uncertainty. Moreover, most robust MDP
algorithms require uncertainty to be independent across states or state-action pairs, an assumption
known as rectangularity. The discrete uncertainty used in MEMDPs and our setting is inherently
non-rectangular. See Suilen et al. [45] for a detailed discussion of rectangularity assumptions.

We combine discrete model uncertainty with partial observability. Robust POMDPs [RPOMDPs;
5, 31] extend robust MDPs with partial observability, but again rely on the assumption of convex
and rectangular uncertainty sets [13, 16, 30, 31, 44]. Two RPOMDP papers address discrete settings
[23, 36], however, these works assume the underlying model can change at each timestep, i.e.,
dynamic uncertainty. In contrast, when we consider the worst-case model, we constrain the model to
be consistent across timesteps. The work [15] develops subgradient descent algorithms for robust
reward maximization in hidden-model POMDPs, a type of ME-POMDP.2 In contrast, our algorithms
are value-iteration-based, and we provide thorough characterizations of the relationships between
different subclasses of multi-environment POMDPs, and their relationships to POSGs.

Work on unsupervised environment design, e.g., [14, 29], uses underspecified POMDPs, equivalent to
ME-POMDPs, as a model when designing reinforcement learning agents. In contrast to these works,
which provide gradient-based learning approaches for minimizing regret, we give value-iteration-
based planning methods for designing robust policies.

3 Preliminaries

A probability distribution on a finite set X is a mapping µ : X → [0, 1] such that
∑

x∈X µ(x) = 1.
We denote the set of distributions on X by ∆(X). Given two distributions µX and µY on sets X and
Y , respectively, we denote their product distribution on X × Y by µX × µY . For x ∈ X , δx is the
Dirac distribution that satisfies δx(x) = 1. We denote the set of integers {1, . . . , n} by [n]. The set of
finite sequences with elements in a set C is C∗. We use ⊥ and ⊤ for dummy states and observations.

We now introduce partially observable Markov decision processes (POMDPs). We consider expected
cumulative reward maximization over both finite and discounted infinite horizons. For brevity, we
compress these two settings into a single definition.

Definition 1 (POMDP) A partially observable Markov decision process (POMDP) is a tupleM =
(S,A,Z, T,O,R, b, γ,H) where S, A, and Z are finite sets of states, actions, and observations,
T : S × A → ∆(S) is a transition function, O : S × A → ∆(Z) is an observation function,
R : S×A→ R is a reward function, b ∈ ∆(S) is an initial state distribution, γ ∈ [0, 1] is a discount
factor, and H ∈ N ∪ {∞} is a horizon.

When H =∞, we restrict γ ∈ [0, 1). For the case where γ = 1, we require that the horizon H be
finite. Additionally, for the case where H = ∞, we define H + 1 = H , such that H + 1 = ∞.
Unless we specify otherwise, we assume all actions are available in all states.

A fully observable Markov decision process is a POMDP where Z = S and O is the deterministic
identity mapping, i.e., ∀s ∈ S, a ∈ A : O(s, a) = δs. A policy π in a POMDP maps a history of
actions and observations to a distribution over the actions, i.e., π : (A×Z)∗ → ∆(A). We denote the
set of policies in a POMDPM by ΠM. We remark that one may differentiate between two classes of
history-dependent randomized policies. A behavioral policy is a mapping π : (A× Z)∗ → ∆(A),
while a mixed policy is a distribution over deterministic behavioral policies.

A belief b ∈ ∆(S) describes the probability of being in a state given the initial state distribution
and a history. We can define belief-based behavioral and mixed policies π : ∆(S) → ∆(A) and
π : ∆(∆(S)→ A). Unless otherwise mentioned, we use history-based behavioral policies.

The value of policy π in a POMDPM is V π
M = E

[∑H
t=1 γ

t−1rt
]
, where rt is the reward at time t.

A policy π∗ is optimal if for all π, we have V π∗

M ≥ V π
M. We denote the optimal value as V ∗

M = V π∗

M .

3.1 Solving POMDPs

Standard POMDP methods use piecewise-linear convex (PWLC) representations of value functions
through a set of linear functions, known as α-vectors [25]. Each α-vector α : S → R represents a

2We remark that [15] was contemporaneous and leave an empirical evaluation against it as future work.

3

deterministic policy and maps states to the values of following that policy when we initialize the
POMDP at that state. In the finite-horizon setting, α-vectors represent t-step history-based policies,
and we compute a new set of α-vectors Γt for each timestep t ≤ H .

Γ1 = {α : S → R | α(s) = R(s, a),∀a ∈ A}, (1)

Γt =
{
α : S → R | α(s) = R(s, a) +

∑
(s′,z)∈S×Z

T (s, a)(s′)O(s′, a)(z)αz(s
′), (2)

∀(a, αz1 , . . . , αz|Z|) ∈ A× (Γt−1)
Z
}
.

The upper envelope of the α-vectors in Γt forms a PWLC function that corresponds to the optimal
value function V ∗ for horizon t. The optimal value given initial state distribution b0 is given by
V ∗(b0) = maxα∈Γt

∑
s∈S b0(s)α(s).

In the infinite-horizon discounted setting, α-vectors represent belief-based policies. Instead of com-
puting multiple sets, we iteratively expand a single set Γ. The upper envelope of Γ can approximate
the optimal value function arbitrarily closely. For some initial set of α-vectors Γ, we can compute a
new α-vector for each (a, αz1 , . . . , αz|Z|) ∈ A× ΓZ similar to the finite-horizon setting as follows.

α(s) = R(s, a) + γ
∑

(s′,z)∈S×Z
T (s, a)(s′)O(s′, a)(z)αz(s

′).

In both settings, we can prune α-vectors from Γ that are pointwise dominated by a single other
α-vector [38]. Pruning can be performed at any iteration, since pointwise dominated α-vectors will
never contribute to the upper envelope of Γ or future iterations of Γ.

Heuristic search value iteration Various approximate POMDP solvers are based on α-vectors,
defining different ways to expand Γ to efficiently approximate the optimal value function, such
as [32, 41]. In particular, heuristic search value iteration [HSVI; 41] keeps track of both an upper
and lower bound, i.e., a set of belief value tuples and a set of α-vectors, respectively, of the optimal
value function. HSVI performs a depth-first search from an initial state distribution, updating the
bounds along the way. The depth-first search selects actions optimistically with respect to the upper
bound, and observations leading to the belief with the largest uncertainty, i.e., the largest gap between
the upper and lower bound. The depth-first search continues until the belief at depth t has a gap of
at most ϵ · γ−t, with ϵ > 0 a predefined error. After each depth-first search, the gap between the
upper and lower bounds at the initial state distribution is computed. If the gap exceeds ϵ, we continue
with another depth-first search. The upper and lower bounds are initialized before the first depth-first
search. HSVI computes the initial upper bound with the Fast Informed Bound [FIB; 20], and the
initial lower bound with an α-vector for each policy that always plays the same action [19].

3.2 One-sided Partially Observable Stochastic Games

Next, we introduce the specific form of partially observable stochastic games (POSGs) we consider
in this paper. As with POMDPs, we again consider both finite horizon and discounted infinite horizon
settings, and the same restrictions on γ and H apply.

Definition 2 (POSG) A one-sided partially observable stochastic game (POSG) is a tuple G =
(S,A1, A2, Z, T,O,R, b, γ,H) where S is a finite set of states, A1 is a finite action set for the
partially observing player, A2 is a finite action set for the fully observing player, Z is a finite set of
observations, T : S × A1 × A2 → ∆(S) is the transition function, O : S × A1 × A2 → ∆(Z) is
the observation function, R : S ×A1 ×A2 → R is the reward function, b ∈ ∆(S) is an initial state
distribution, and γ ∈ [0, 1] and H ∈ N ∪ {∞} are the discount factor and horizon respectively.

We consider concurrent POSGs, as studied in Horák et al. [22]. A policy for the partially observing
player is a mapping π1 : (A1 × Z)∗ → ∆(A1), while a policy for the fully observing player is a
mapping π2 : (S×A1×A2×Z)∗×S → ∆(A2). We write Π1

G and Π2
G to denote the sets of policies

for the partially observing and fully observing players, respectively.

A pair of policies (π1, π2) defines a distribution on state-action trajectories in a POSG. We define
the value of a policy π1 for the partially observing player by the worst-case expected reward V π1

G =

minπ2∈Π2
G
E
[∑H

t=1 γ
t−1rt

]
, where rt is again the reward at time t. The value of the game is

V ∗
G = maxπ1

V π1

G . Existing algorithms for one-sided POSGs work by adapting exact and point-based
value iteration techniques for POMDPs [22].

4

4 Adversarial-Belief and Multi-Environment POMDPs

We now formally introduce adversarial-belief POMDPs (AB-POMDPs) and multi-environment
POMDPs (ME-POMDPs), and show the relations between those models and POSGs.

4.1 Adversarial-Belief POMDPs

Adversarial-belief POMDPs are POMDPs where we replace the initial belief with a set of beliefs.

Definition 3 (AB-POMDP) An adversarial-belief POMDP is a tuple M = (S,A,Z, T,O,R,B,
γ,H) where we define S,A,Z, T,O,R, γ and H as for POMDPs, and B ⊆ ∆(S) is a set of beliefs.

In an AB-POMDP, the objective is to maximize the expected reward in the POMDP under
the worst-case initial belief in B. For an AB-POMDP M and belief b ∈ B, we write Mb =
(S,A,Z, T,O,R, b, γ,H) for the POMDP obtained when initializing the AB-POMDP with belief b.

Problem 1 Given an AB-POMDP M, solve V ∗
M = maxπ∈ΠM

minb∈B V π
Mb

.

When the set of beliefs is the set ∆(Q) on some subset of states Q, any AB-POMDP is equivalent
to a zero-sum one-sided POSG, and we codify this result in Theorem 1. In particular, for an AB-
POMDP, Theorem 1 gives a recipe to construct a POSG that allows us to find optimal policies for
the AB-POMDP. In this POSG, the partially observing player is the agent, and they have the same
actions and observations as in the original AB-POMDP. We replace the set of beliefs with a second
player whose action set is the set of states Q. We shall refer to the partially observing player as the
agent, and the fully observing player as nature. By choosing an appropriate distribution over states,
nature can choose a distribution in ∆(Q) against which the agent’s policy is evaluated. The optimal
policy for the agent in this POSG gives an optimal policy in the original AB-POMDP.

Theorem 1 Let M = (S,A,Z, T,O,R,∆(Q), γ,H) be an AB-POMDP. We define the associated
one-sided POSG G = ((S × {1, 2}) ∪ {⊥}, A,Q,Z ∪ {⊤}, T̂ , Ô, R̂, δ⊥, γ,H + 1) where

T̂ (ŝ, a, q) =

{
δ(q,1) ŝ =⊥,
T (s, a)× δ2 ŝ = (s, j),

Ô(ŝ, a, q) =

{
δ⊤ ŝ = ⊥ ∨ ŝ = (s, 1),

O(s, a) ŝ = (s, 2),

and R̂(ŝ, a, q) = 0 if ŝ = ⊥ and R̂(ŝ, a, q) = R(s,a)/γ when ŝ = (s, j), for all ŝ ∈ (S × {1, 2}) ∪
{⊥}, a ∈ A, and q ∈ Q. Additionally, assume that the agent’s action set in the POSG at ⊥ is a
singleton set {♢} where ♢ ∈ A. Then, the value of the AB-POMDP M and POSG G are equal, and
for any policy σ ∈ Π1

G , the policy π in the AB-POMDP given by

π(a1, z1, . . . , an, zn) = σ(♢,⊤, a1, z1, . . . , an, zn)
for (a1, z1, . . . , an, zn) ∈ (A× Z)∗, satisfies V π

M = minb∈∆(Q) V
π
Mb

= V σ
G .

The proof of Theorem 1 is in Appendix A.1 and follows by establishing mappings between the
policy spaces of the AB-POMDP and POSG that preserve value. We add a 1/γ reward-correction
to compensate for the extra step added to the beginning of the game. We expand the state space to
ensure the stage-one observation is the dummy observation ⊤. Finally, we restrict the agent’s action
at ⊥ so they can not use the initial action as an extra source of randomness to mix over behavioral
policies. We can bypass this assumption in finite-horizon settings by applying Kuhn’s Theorem [26].

4.2 Multi-Environment POMDPs

We now introduce ME-POMDPs and show they are a special case of AB-POMDPs.

Definition 4 (ME-POMDP) M = (S,A,Z, n, {Ti}i∈[n], {Oi}i∈[n], {Ri}i∈[n], {bi}i∈[n], γ,H), a
tuple, is a multi-environment POMDP where S,A,Z, γ and H are as in POMDPs , i.e., finite sets of
states, actions, and observations, a discount factor, and a horizon. We have n ∈ N environments and
for index i ∈ [n], Ti : S×A→ ∆(S) is a transition function, Oi : S×A→ ∆(Z) is an observation
function, Ri : S ×A→ R is a reward function, and bi ∈ ∆(S) is an initial state distribution.

For a fixed i ∈ [n], the tupleMi = (S,A,Z, n, Ti, Oi, Ri, bi, γ,H) defines the i-th POMDP in the
ME-POMDP. The objective is to maximize the worst-case reward across the environments.

5

Problem 2 Given a ME-POMDPM solve V ∗
M = maxπ∈ΠM mini∈[n] V

π
Mi

.

In defining a ME-POMDP, we assume that the reward functions {Ri}i∈[n] exist on an appropriate
scale. For example, if we define a ME-POMDP from expert opinions where one expert uses large
rewards to define their environment, the robust policy may be biased toward said environment. One
must avoid such cases, for example, by ensuring experts calibrate rewards using the same scale.

We can solve ME-POMDPs using AB-POMDPs. For a ME-POMDP, Theorem 2 gives a recipe
to construct an AB-POMDP so that optimal AB-POMDP policies are optimal in the original ME-
POMDP. We construct an AB-POMDP where the state space is the product of the original state space
and a variable for the environment. The adversary choosing a belief in this AB-POMDP corresponds
to the adversary selecting an environment in the ME-POMDP. We formalize this reduction as follows.

Theorem 2 For a ME-POMDPM = (S,A,Z, n, {Ti}i∈[n], {Oi}i∈[n], {Ri}i∈[n], {bi}i∈[n], γ,H),
define the associated adversarial-belief POMDP M̂ = ((S × [n]× {1, 2}) ∪ ({⊥} × [n]), A, Z ∪
{⊤}, T̂ , Ô, R̂,∆({⊥} × [n]), γ,H + 1) where for all ŝ ∈ (S × [n] × {1, 2}) ∪ ({⊥} × [n]) and
a ∈ A, we define

T̂ (ŝ, a) =

{
bi × δi × δ1 ŝ = (⊥, i),
Ti(s, a)× δi × δ2 ŝ = (s, i, j),

Ô(ŝ, a) =

{
δ⊤ ŝ = (⊥, i) ∨ ŝ = (s, i, 1),

Oi(s, a) ŝ = (s, i, 2),

and R̂(ŝ, a) = 0 if ŝ = (⊥, i), and R̂(ŝ, a) = Ri(s,a)/γ when ŝ = (s, i, j). Additionally, assume that
the agent’s action set in the AB-POMDP at states in {⊥} × [n] is a singleton set {♢} where ♢ ∈ A.
Then, for any policy σ ∈ ΠM̂, the policy π in the ME-POMDP given by

π(a1, z1, . . . , an, zn) = σ(♢,⊤, a1, z1, . . . , an, zn) ∀(a1, z1, . . . , an, zn) ∈ (A× Z)∗

satisfies mini∈[n] V
π
Mi

= minb∈∆({⊥}×[n]) V
σ
M̂b

. Also, the values are equal, i.e., V ∗
M = V ∗

M̂
.

The proof of Theorem 2 is nearly identical to that of Theorem 1, as we elaborate in Appendix A.1.

4.3 Restricted Models and Reductions

ME-POMDPs may differ in their transition, observation, and reward functions. By requiring all
environments to either share a transition or observation function, we get restricted models. When
the observation function Oi does not change with the environment, we label the model as a partially
observable multi-environment MDP (PO-MEMDP), i.e., a multi-environment MDP (MEMDP)
extended with an observation function. PO-MEMDPs are equivalent to hidden-model POMDPs [15].

We can transform an AB-POMDP where the belief set B is the set of distributions over a state subset
into a PO-MEMDP, while preserving optimal policies, and Theorem 3 encodes this transformation.
Given B = ∆(Q) for a state subset Q and a policy π, the worst-case belief is δq for some q ∈ Q, and
defines an initial state. The PO-MEMDP encodes these possible initial states.

Theorem 3 Given an AB-POMDP M = (S,A,Z, T,O,R,∆(Q), γ,H) where the belief set is
∆(Q) for a set of states Q ⊆ S, define an associated PO-MEMDP M̂ = ((S × {1, 2}) ∪ {⊥
}, A, Z ∪ {⊤}, |Q|, {T̂q}q∈Q, Ô, R̂, δ⊥, γ,H + 1), where T̂ , Ô and R̂ are as follows.

T̂q(ŝ, a) =

{
δq × δ1 ŝ =⊥,
T (s, a)× δ2 ŝ = (s, j),

Ô(ŝ, a) =

{
δ⊤ ŝ =⊥ ∨ ŝ = (s, 1),

O(s, a) ŝ = (s, 2).

Meanwhile, R̂(ŝ, a) = R(s,a)/γ if ŝ = (s, j) for some s ∈ S, j ∈ {1, 2} and R̂(⊥, a) = 0. Also,
assume that the agent’s action set in the PO-MEMDP at ⊥ is a singleton set {♢} where ♢ ∈ A. Then,
for any policy σ ∈ ΠM̂, the policy π in the AB-POMDP given by

π(a1, z1, . . . , an, zn) = σ(♢,⊤, a1, z1, . . . , an, zn) ∀(a1, z1, . . . , an, zn) ∈ (A× Z)∗

satisfies minb∈∆(Q) V
π
Mb

= minq∈Q V σ
M̂q

, and the values are equal, that is, V ∗
M̂ = V ∗

M.

The proof of Theorem 3 again follows the same techniques as Theorem 1 as we show in Appendix A.1.
Note that we slightly abuse notation by indexing ME-POMDP models with states q ∈ Q.

6

Theorem 3 shows that AB-POMDPs are equivalent to ME-POMDPs as PO-MEMDPs are a subset
of ME-POMDPs. Additionally, Theorem 3 shows that we can represent any ME-POMDP with a
polynomial larger model with multiple transition functions, i.e., a PO-MEMDP.

When the transitions T and initial distribution b do not change across the environments, i.e., (Ti, bi) =
(Tj , bj) for all i, j ∈ [n], we refer to the model as a multi-observation POMDP (MO-POMDP). By
Theorem 4, for any PO-MEMDP, we can construct a MO-POMDP with the same optimal policy.

Theorem 4 Given a PO-MEMDP M = (S,A,Z, [n], {Ti}i∈[n], O, {Ri}i∈[n], {bi}i∈[n], γ,H),
define a MO-POMDP M̂ = (S[n], A, Z, [n], T̂ , {Ôi}i∈[n], {R̂i}i∈[n], b1 × · · · × bn, γ,H) such
that T̂ (s1, . . . , sn, a) = T1(s1, a) × · · · × Tn(sn, a), Ôi(s1, . . . , sn, a) = O(si, a), and
R̂i(s1, . . . , sn, a) = Ri(si, a). The policy sets satisfy ΠM = ΠM̂, and for all π ∈ ΠM, we
have mini∈[n] V

π
Mi

= mini∈[n] V
π
M̂i

.

The resulting MO-POMDP simulates all environments in the state space. Changing the environment
changes the copy of the state that generates observations and rewards, and thus, for a policy π and
environment i, the two models have the same reward. The full proof of Theorem 4 is in Appendix A.1.

Theorem 4 requires multiple reward functions in the MO-POMDP, and we prove that these are, in
fact, necessary for the finite-horizon case in Appendix A.2. An illustrative example of the utility of
ME-POMDPs, MO-POMDPs, and PO-MEMDPs, adapted from [8], can be found in Appendix B.

5 Algorithms for AB-POMDPs

We provide algorithms to solve AB-POMDPs by combining value iteration and linear programming.
AB-POMDPs are equal to POMDPs up to how we specify the initial belief. We show that given a
piecewise-linear convex value function for the POMDP, we can compute the value of the AB-POMDP
by minimizing the value function. This problem is a linear program (LP). Additionally, we can use
the dual LP solution to construct a policy for the agent that attains the value.

5.1 Computing Policies by Solving Linear Programs

When the value function has a piecewise-linear convex representation through a set Γ of α-vectors,
and the belief set B is of the form ∆(Q) for some subset of states Q ⊆ S, we can minimize the value
function by solving a linear program. Indeed, we minimize the value function for beliefs in B by
solving minb∈∆(Q) maxα∈Γ α · b, and this problem can be expressed in the LP in (3).

The resulting value v is the value that nature guarantees by playing belief b, i.e., no matter the policy
the agent plays, if nature plays b, the reward will not be greater than v. Minimizing the value function
upper bounds the AB-POMDP’s value, but it remains to show that a policy exists attaining this bound.

We construct a policy for the agent that attains this value by solving the dual LP, presented in (4).
Each α-vector corresponds to a deterministic history-dependent policy. In the policy corresponding
to the solution y to (4), the agent draws an α-vector according to y and plays the corresponding
history-dependent policy. The resulting value v is the value that the agent can guarantee by playing
the policy corresponding to y, i.e., no matter the initial belief nature plays, if the agent plays y, the
reward will not be less than v. In Theorem 5, we show that the policy we construct from the solution
to the LP in (4) is optimal.

Theorem 5 Let M = (S,A,Z, T,O,R,∆(Q), γ,H) be an AB-POMDP, let Γ be a finite set of
α-vectors such that maxα∈Γ α · b is the value function for this AB-POMDP, and let Pol : Γ→ ΠM

min
b∈RQ,v∈R

v, (3)

s.t. ∀α ∈ Γ :
∑

s∈Q
α(s)b(s) ≤ v,

∀s ∈ Q : b(s) ≥ 0,∑
s∈Q

b(s) = 1.

max
y∈RΓ,v∈R

v, (4)

s.t. ∀s ∈ Q :
∑

α∈Γ
α(s)y(α) ≥ v,

∀α ∈ Γ : y(α) ≥ 0,∑
α∈Γ

y(α) = 1.

7

be a mapping that returns a deterministic history-dependent policy π such that V Pol(α)
Mb

= α · b. If
y ∈ RΓ is the solution to LP (4), then the policy for the agent where they draw an α-vector randomly
according to y and play the corresponding history-dependent policy is an optimal policy for M.

The result above shows that solving an adversarial-belief POMDP reduces to solving a zero-sum game
where nature plays beliefs and the agent plays α-vectors. Indeed, the LPs above encode the problem
of solving a static zero-sum game [3]. Both LPs correspond to minimizing a piecewise-linear convex
function over a compact set, so solutions exist. Theorem 5’s proof simply applies the definition of the
LPs, and we detail this proof in Appendix A.3.

We remark that while Theorem 5 describes a procedure to construct a mixed policy, that is, a mixture
of deterministic policies, we can construct a behavioral policy in ΠM with the same value, following
Kuhn’s theorem [26], and we detail this construction in Appendix A.4.

We additionally remark that if maxα∈Γ α · b under-approximates the value function, we can still
construct a policy that attains the value minb∈∆(Q) maxα∈Γ α · b, as long as Pol exists and satisfies
V

Pol(α)
Mb

≥ α · b. We discuss implementing the Pol mapping in Appendix A.5.

5.2 Adversarial-Belief HSVI

Algorithm 1 AB-HSVI
Input: γ ∈ [0, 1), ϵ > 0
Initialize Υ with Fast Informed Bound
Initialize Γ with "always play action a" α-vector ∀a ∈ A
b← worst-case state distribution in Γ using LP (3)
while Gap(Υ,Γ, b) ≥ ϵ do

Υ,Γ← one iteration of HSVI(Υ,Γ, b, γ, ϵ)
b← worst-case state distribution in Γ using LP (3)

end while

Since AB-POMDPs are equal to POMDPs
up to the initial belief, we can use well-
known POMDP methods to generate the α-
vectors that form (an approximation of) the
value function. For example, for a finite-
horizon H , we can compute ΓH according
to Equations (1) and (2). ΓH represents
all deterministic history-based policies of
length H and does not require specifying
the initial state distribution. We can, there-
fore, compute the optimal value and robust agent and nature policies by applying the LPs (3) and (4)
to ΓH . Note that we can prune dominated α-vectors in ΓH without influencing the result of the LPs.

To construct a more efficient algorithm, we can generate α-vectors that approximate the optimal value
function in the infinite-horizon setting using approximate α-vector-based POMDP methods such
as HSVI. As explained in Section 3, HSVI provably converges to a gap between upper and lower
bounds on the optimal value function of less than a predefined ϵ at a given initial state distribution.
If we use an arbitrary initial state distribution and run HSVI as-is, the algorithm converges for that
state distribution, but there are no guarantees for the upper-lower-bound gap at other distributions.
However, the lower bound is still a sound under-approximation of the value function.

We use this observation to construct a more sophisticated solution, which we call adversarial-belief
HSVI (AB-HSVI, Algorithm 1). We compute the worst-case initial state distribution between each
depth-first search using LP (3), and start the next depth-first search from this distribution. Essentially,
this procedure restarts HSVI, initializing with the upper and lower bounds of the previous iteration.
This algorithm terminates once the worst-case initial state distribution has a gap between the upper
and lower bounds of less than ϵ, giving us a tighter approximation.

6 Experimental Evaluation

The implementation of the LPs (3) and (4) along with AB-HSVI (Algorithm 1) forms a solution
method for ME-POMDPs, and we answer the following research questions regarding this method.

(Q1) Scalability: What is the computational cost of solving AB-POMDPs?
(Q2) Baseline comparison: What is the added difficulty of robustness against adversarial beliefs

compared to a naive baseline of solving individual POMDPs?
(Q3) Model formulation: Does the model type, i.e., whether the problem is formulated as a

ME-POMDP, PO-MEMDP, MO-POMDP or AB-POMDP, influence the performance?

As no benchmarks exist for ME-POMDPs, we introduce two benchmarks for our experimental
evaluation. The first benchmark is based on the endangered bird preservation case study presented in

8

Table 1: Lower bound value, time of convergence, and left-over gap between upper and lower bound
of the Bird problem for various problem sizes and model types.

Properties PO-MEMDP MO-POMDP ME-POMDP

Model |S| n |A| |Z| V<tl Conv (s) Gap V<tl Conv (s) Gap V<tl Conv (s) Gap

BP3,3,3 3 3 3 2 68.26 58.50 < ϵ 70.44 84.98 < ϵ 69.62 2039.31 < ϵ
BP3,3,4 3 3 4 2 44.44 - 4.33 54.85 2976.33 < ϵ 44.79 - 6.02
BP3,3,5 3 3 5 2 74.58 3104.30 < ϵ 80.01 21.08 < ϵ 74.59 - 0.61
BP3,4,3 3 4 3 2 20.48 - 7.80 24.09 118.82 < ϵ 22.56 - 5.81
BP3,5,3 3 5 3 2 31.23 - 11.63 31.85 175.99 < ϵ 32.73 - 9.74

BP4,3,3 4 3 3 2 63.91 - 19.57 73.49 - 2.51 55.96 - 28.56
BP5,3,3 5 3 3 2 35.57 - 6.76 36.04 - 5.30 35.84 - 6.77

Appendix B, which we shall refer to as the Bird problem. We extend the model to ME-POMDPs, PO-
MEMDPs, and MO-POMDPs, using randomization to generate transition and observation functions
to obtain non-trivial problem instances. In particular, we parameterize the number of states |S| ≥ 2,
actions |A|, and experts n. We denote instances of this benchmark as BP|S|,|A|,n.

Remark 1 We exclusively use randomization to create challenging ME-POMDP problem instances.
Even with randomization, creating challenging environments is difficult. When generating 100
random models for the Bird problems with 3 states, 3 actions, and 3 experts, we only found 35 out of
100 non-trivial PO-MEMDPs, where a model is trivial if we can solve it in less than 30 seconds.

For the second benchmark, we extend RockSample [40] to ME-POMDPs. We parameterize the grid
size m, good rocks g, and total number of rocks t, and denote instances of this benchmark as RSm,g,t.
We consider randomized and relatively fixed rock positions. We denote the RockSample instances
with fixed rock positions as RSc

m,g,t. See Appendix C for full details on the benchmarks construction.

We set a time limit tl of 3600 seconds, discount factor γ = 0.95, and set HSVI’s gap threshold to
ϵ = 0.1 ·Rmin where Rmin is the minimum problem reward. We use sparse matrices and prune fully
dominated α-vectors. We run experiments on a computer with an Intel Core i9-10980XE 3.00GHz
processor and 256GB of RAM. We use Gurobi [18] to solve LPs. All code is available at [6].

Results and Discussion

(Q1) Scalability Tables 1 and 2 show the results of running AB-HSVI on the Bird problem
and RockSample. In both problems, the convergence times and gaps increase with the number of
environments. The RockSample problems generally converge faster than Bird problems, likely due
to RockSample’s terminal state. We note that the structure of the environments has a great effect
on the difficulty of the problems. In Figure 2, we show that the relative positions of the rocks, i.e.,
whether they are close or far to the agent’s initial position, have a significant influence on AB-HSVI’s
convergence time. The relationship between environment configuration and solve time explains why,
for the Bird problem, the convergence times and gaps are not monotonic in the problem size.

(Q2) Baseline comparison We compare AB-HSVI with the values and time required to solve
all individual environments (i.e., standard POMDPs) on RockSample. We summarize the results in
Figure 4 and give details in Appendix D. The time increase for the ME-POMDP computation, shown
in Table 3, primarily scales with the number of environments. We also note that robust values achieve
an expected reward that is close to the rewards in individual models, and the robust value far exceeds
the worst case of playing the optimal policy for an incorrectly assumed environment.

(Q3) Model formulation For a Bird problem ME-POMDP, Table 1 shows how solve time and value
vary when we either (1) fix observation functions to get a PO-MEMDP, or (2) fix transitions to get a
MO-POMDP. AB-HSVI tends to converge more quickly and return higher values for MO-POMDPs,
showing that uncertain observation functions are easier to handle than uncertain transitions.

We can formulate problems as either AB-POMDPs or ME-POMDPs, and we compare these formu-
lations for RockSample in Figure 3. In all but two instances, AB-POMDPs converge faster than
ME-POMDPs. Also, gaps between convergence times increase with the number of environments.
Finally, we note that AB-POMDPs report slightly higher values than ME-POMDPs, but the difference
is less than the error ϵ. Details on the two formulations and the results are in Appendices C and D.

9

Table 2: Lower bound value, time of convergence, and left-over gap between upper and lower bound
of the RockSample problem for various problem sizes with rocks nearby or far away.

Properties Rocks nearby Rocks far away

Model |S| n |A| |Z| V<tl Conv (s) Gap V<tl Conv (s) Gap

RSc
2,1,2 9 2 7 3 16.53 11.70 < ϵ 16.53 11.70 < ϵ

RSc
3,1,2 19 2 7 3 16.14 52.74 < ϵ 14.68 169.95 < ϵ

RSc
4,1,2 33 2 7 3 15.48 130.77 < ϵ 13.02 1588.97 < ϵ

RSc
5,1,2 51 2 7 3 15.40 331.37 < ϵ 11.03 - 1.46

RSc
6,1,2 73 2 7 3 14.52 640.40 < ϵ

RSc
7,1,2 99 2 7 3 14.54 1280.66 < ϵ

RSc
2,1,3 9 3 8 3 15.90 115.11 < ϵ 15.90 115.11 < ϵ

RSc
3,1,3 19 3 8 3 15.41 269.10 < ϵ 14.34 1072.32 < ϵ

RSc
4,1,3 33 3 8 3 15.14 787.82 < ϵ 11.11 - 2.73

RSc
5,1,3 51 3 8 3 14.80 1793.75 < ϵ 8.15 - 5.34

RSc
6,1,3 73 3 8 3 14.31 2556.11 < ϵ

RSc
7,1,3 99 3 8 3 13.30 - 2.25

RSc
2, 1, 2 RSc

3, 1, 2 RSc
4, 1, 2 RSc

2, 1, 3 RSc
3, 1, 3

0

500

1000

1500

C
on

ve
rg

en
ce

 ti
m

e
(s

)

Nearby
Far away

Figure 2: Convergence time of RockSample in-
stances with rocks nearby vs. far away.

RS3, 1, 2 RS3, 1, 3 RS3, 1, 4 RS3, 2, 3 RS4, 1, 2 RS5, 1, 2 RS6, 1, 2
0

1000

2000

3000

C
on

ve
rg

en
ce

 ti
m

e
(s

)

AB-POMDP
ME-POMDP

Figure 3: Convergence time of RockSample prob-
lems modeled as AB-POMDPs vs. ME-POMDPs.

RS3, 1, 2 RS3, 1, 3 RS3, 1, 4 RS3, 2, 3 RS4, 1, 2 RS5, 1, 2 RS6, 1, 2
5

0

5

10

15

20

25

30

Va
lu

e
(h

ig
he

r i
s b

et
te

r)

Individual POMDPs
ME-POMDP
Worst-case incorrect POMDP

Figure 4: Lower bound values of POMDPs in a ME-POMDP, the ME-
POMDP, and worst-case missassumed POMDP for RockSample instances.

Table 3: Conver-
gence time increase
from summed individ-
ual POMDPs to ME-
POMDP in Figure 4.

Model Factor

RS3,1,2 2.11
RS3,1,3 17.68
RS3,1,4 65.09
RS3,2,3 5.49
RS4,1,2 2.15
RS5,1,2 4.84
RS6,1,2 2.50

7 Conclusion

We presented new results on multi-environment POMDPs, i.e., discrete sets of POMDPs for which
we need to compute a single policy that maximizes the worst-case expected reward. We introduced
adversarial-belief POMDPs as an overarching model and showed how these AB-POMDPs are a
special case of partially observable stochastic games. Leveraging the understanding of ME-POMDPs
as AB-POMDPs, we developed exact and point-based algorithms for computing policies in ME-
POMDPs. Future work will investigate more efficient algorithms by leveraging the structure in
ME-POMDPs and AB-POMDPs, or by using additional HSVI optimization techniques such as
tracking previously explored beliefs and using compact state space representations [33].

Limitations The main limitation of this work is the scalability of AB-HSVI, particularly, the
substantial increase in convergence time with the number of environments. We believe that exploring
policy-gradient or online-planning methods for ME-POMDPs is a critical next step to ensuring their
applicability, and we believe that our theoretical results provide a foundation for this work.

10

8 Acknowledgements

We would like to thank the anonymous reviewers for their useful comments. This work has been
partially funded by the ERC Starting Grant DEUCE (101077178). This work has also been partially
supported by the Air Force Office of Scientific Research (AFOSR) under grant number FA9550-22-1-
0403, and by the Office of Naval Research (ONR) under grant number N00014-24-1-2797. It has
also been supported by the FWO “SynthEx” project (G0AH524N).

References
[1] Vinayak S. Ahluwalia, Lauren N. Steimle, and Brian T. Denton. Policy-based branch-and-bound

for infinite-horizon multi-model Markov decision processes. Comput. Oper. Res., 126:105108,
2021.

[2] Thom S. Badings, Thiago D. Simão, Marnix Suilen, and Nils Jansen. Decision-making under
uncertainty: beyond probabilities. Int. J. Softw. Tools Technol. Transf., 25(3):375–391, 2023.

[3] Tamer Başar and Geert Jan Olsder. Dynamic noncooperative game theory. SIAM, 1998.

[4] Tyler J. Becker and Zachary Sunberg. Bridging the gap between partially observable stochastic
games and sparse POMDP methods. CoRR, abs/2405.18703, 2024.

[5] Eline M. Bovy, Marnix Suilen, Sebastian Junges, and Nils Jansen. Imprecise probabilities meet
partial observability: Game semantics for robust POMDPs. In IJCAI, pages 6697–6706, 2024.

[6] Eline M. Bovy, Caleb Probine, Marnix Suilen, Ufuk Topcu, and Nils Jansen. Code for the
AB-HSVI algorithm and the experiments in the paper: "Multi-environment POMDPs: Discrete
model uncertainty under partial observability" (NeurIPS 2025), 2025. URL https://doi.
org/10.5281/zenodo.17425571.

[7] Peter Buchholz and Dimitri Scheftelowitsch. Computation of weighted sums of rewards for
concurrent MDPs. Math. Methods Oper. Res., 89(1):1–42, 2019.

[8] Iadine Chades, Josie Carwardine, Tara G. Martin, Samuel Nicol, Régis Sabbadin, and Olivier
Buffet. MOMDPs: A solution for modelling adaptive management problems. In AAAI, pages
267–273, 2012.

[9] Krishnendu Chatterjee, Martin Chmelík, Deep Karkhanis, Petr Novotný, and Amélie Royer.
Multiple-environment Markov decision processes: Efficient analysis and applications. In ICAPS,
pages 48–56, 2020.

[10] Krishnendu Chatterjee, Laurent Doyen, Raskin Jean-François, and Ocan Sankur. The value
problem for multiple-environment MDPs with parity objectives. CoRR, abs/2504.15960, 2025.

[11] Fan Chen, Yu Bai, and Song Mei. Partially observable RL with B-stability: Unified structural
condition and sharp sample-efficient algorithms. In ICLR, 2023.

[12] Fan Chen, Constantinos Daskalakis, Noah Golowich, and Alexander Rakhlin. Near-optimal
learning and planning in separated latent MDPs. In COLT, volume 247, pages 995–1067, 2024.

[13] Murat Cubuktepe, Nils Jansen, Sebastian Junges, Ahmadreza Marandi, Marnix Suilen, and Ufuk
Topcu. Robust finite-state controllers for uncertain POMDPs. In AAAI, pages 11792–11800,
2021.

[14] Michael Dennis, Natasha Jaques, Eugene Vinitsky, Alexandre M. Bayen, Stuart Russell, Andrew
Critch, and Sergey Levine. Emergent complexity and zero-shot transfer via unsupervised
environment design. In NeurIPS, 2020.

[15] Maris F. L. Galesloot, Roman Andriushchenko, Milan Ceska, Sebastian Junges, and Nils Jansen.
Robust finite-memory policy gradients for hidden-model POMDPs. In IJCAI, pages 8518–8526.
ijcai.org, 2025.

11

https://doi.org/10.5281/zenodo.17425571
https://doi.org/10.5281/zenodo.17425571

[16] Maris F. L. Galesloot, Marnix Suilen, Thiago D. Simão, Steven Carr, Matthijs T. J. Spaan, Ufuk
Topcu, and Nils Jansen. Pessimistic iterative planning with RNNs for robust POMDPs. In ECAI,
2025. To appear.

[17] Marek Grzes, Pascal Poupart, Xiao Yang, and Jesse Hoey. Energy efficient execution of POMDP
policies. IEEE Trans. Cybern., 45(11):2484–2497, 2015.

[18] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2024. URL https://www.
gurobi.com.

[19] Milos Hauskrecht. Incremental methods for computing bounds in partially observable Markov
decision processes. In AAAI/IAAI, pages 734–739. AAAI Press / The MIT Press, 1997.

[20] Milos Hauskrecht. Value-function approximations for partially observable Markov decision
processes. J. Artif. Intell. Res., 13:33–94, 2000.

[21] Milos Hauskrecht and Hamish Fraser. Modeling treatment of ischemic heart disease with
partially observable Markov decision processes. In AMIA, 1998.

[22] Karel Horák, Branislav Bosanský, Vojtech Kovarík, and Christopher Kiekintveld. Solving
zero-sum one-sided partially observable stochastic games. Artif. Intell., 316:103838, 2023.

[23] Hideaki Itoh and Kiyohiko Nakamura. Partially observable Markov decision processes with
imprecise parameters. Artif. Intell., 171(8-9):453–490, 2007.

[24] Garud N. Iyengar. Robust dynamic programming. Math. Oper. Res., 30(2):257–280, 2005.

[25] Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. Planning and acting in
partially observable stochastic domains. Artif. Intell., 101(1-2):99–134, 1998.

[26] Harold W Kuhn. Extensive games and the problem of information. Contributions to the Theory
of Games, 2(28):193–216, 1953.

[27] Jeongyeol Kwon, Yonathan Efroni, Constantine Caramanis, and Shie Mannor. Reinforcement
learning in reward-mixing MDPs. In NeurIPS, pages 2253–2264, 2021.

[28] Jeongyeol Kwon, Yonathan Efroni, Constantine Caramanis, and Shie Mannor. RL for latent
MDPs: Regret guarantees and a lower bound. In NeurIPS, pages 24523–24534, 2021.

[29] Nathan Monette, Alistair Letcher, Michael Beukman, Matthew Thomas Jackson, Alexander
Rutherford, Alexander David Goldie, and Jakob N. Foerster. An optimisation framework for
unsupervised environment design. CoRR, abs/2505.20659, 2025.

[30] Hideaki Nakao, Ruiwei Jiang, and Siqian Shen. Distributionally robust partially observable
Markov decision process with moment-based ambiguity. SIAM J. Optim., 31(1):461–488, 2021.

[31] Takayuki Osogami. Robust partially observable Markov decision process. In ICML, volume 37,
pages 106–115, 2015.

[32] Joelle Pineau, Geoffrey J. Gordon, and Sebastian Thrun. Point-based value iteration: An
anytime algorithm for POMDPs. In IJCAI, pages 1025–1032, 2003.

[33] Pascal Poupart and Craig Boutilier. Value-directed compression of POMDPs. In NIPS, pages
1547–1554, 2002.

[34] Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming.
Wiley, 1994.

[35] Jean-François Raskin and Ocan Sankur. Multiple-environment Markov decision processes. In
FSTTCS, volume 29 of LIPIcs, pages 531–543, 2014.

[36] Soroush Saghafian. Ambiguous partially observable Markov decision processes: Structural
results and applications. J. Econ. Theory, 178:1–35, 2018.

12

https://www.gurobi.com
https://www.gurobi.com

[37] Yannik Schnitzer, Alessandro Abate, and David Parker. Certifiably robust policies for uncertain
parametric environments. In TACAS (3), volume 15698 of Lecture Notes in Computer Science,
pages 63–83. Springer, 2025.

[38] Guy Shani, Joelle Pineau, and Robert Kaplow. A survey of point-based POMDP solvers. Auton.
Agents Multi Agent Syst., 27(1):1–51, 2013.

[39] Richard D. Smallwood and Edward J. Sondik. The optimal control of partially observable
Markov processes over a finite horizon. Oper. Res., 21(5):1071–1088, 1973.

[40] Trey Smith and Reid G. Simmons. Heuristic search value iteration for POMDPs. In UAI, pages
520–527, 2004.

[41] Trey Smith and Reid G. Simmons. Point-based POMDP algorithms: Improved analysis and
implementation. In UAI, pages 542–547, 2005.

[42] Lauren N. Steimle, Vinayak S. Ahluwalia, Charmee Kamdar, and Brian T. Denton. Decomposi-
tion methods for solving Markov decision processes with multiple models of the parameters.
IISE Trans., 53(12):1295–1310, 2021.

[43] Lauren N. Steimle, David L. Kaufman, and Brian T. Denton. Multi-model Markov decision
processes. IISE Trans., 53(10):1124–1139, 2021.

[44] Marnix Suilen, Nils Jansen, Murat Cubuktepe, and Ufuk Topcu. Robust policy synthesis for
uncertain POMDPs via convex optimization. In IJCAI, pages 4113–4120, 2020.

[45] Marnix Suilen, Thom S. Badings, Eline M. Bovy, David Parker, and Nils Jansen. Robust Markov
decision processes: A place where AI and formal methods meet. In Principles of Verification
(3), volume 15262 of Lecture Notes in Computer Science, pages 126–154, 2024.

[46] Marnix Suilen, Marck van der Vegt, and Sebastian Junges. A PSPACE algorithm for almost-sure
Rabin objectives in multi-environment MDPs. In CONCUR, volume 311 of LIPIcs, pages
40:1–40:17, 2024.

[47] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic robotics. MIT Press, 2005.

[48] Marck van der Vegt, Nils Jansen, and Sebastian Junges. Robust almost-sure reachability in
multi-environment MDPs. In TACAS (1), volume 13993 of Lecture Notes in Computer Science,
pages 508–526, 2023.

[49] Athanassios Vozikis, J. E. Goulionis, and V. K. Benos. The partially observable Markov decision
processes in healthcare: an application to patients with ischemic heart disease (IHD). Oper.
Res., 12(1):3–14, 2012.

[50] Wolfram Wiesemann, Daniel Kuhn, and Berç Rustem. Robust Markov decision processes.
Math. Oper. Res., 38(1):153–183, 2013.

[51] Wenhao Zhan, Masatoshi Uehara, Wen Sun, and Jason D. Lee. PAC reinforcement learning for
predictive state representations. In ICLR, 2023.

13

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Yes, the theoretical characterizations in the first contribution are formalized
as theorem statements in Section 4. Regarding the algorithmic contributions, we detail the
algorithm in Section 5 while we detail the empirical properties of the algorithm in Section 6.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: All theorems are stated with their assumptions. The limitations of the algorithm,
such as the scalability, are discussed in the experiment section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

14

Answer: [Yes]

Justification: We state the assumptions in all theorems in the main text, and we give full
proofs in the appendix, which we will submit with the supplementary material.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The code is included in the supplementary material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

15

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Yes, upon publication, we will make the implementation publicly available.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The hyperparameters are discussed in the experiments section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: The algorithm is deterministic. It does not use any randomization during
runtime, and hence will produce the same result upon running it twice. Note, we do use
randomization to generate the models that we run our algorithm on, but then the models are
fixed.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The compute resources are discussed in the experminents section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: This research is theoretical, and does not have a direct path to harmful
applications or consequences. We do not use any data drawn from humans.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [No]
Justification: Again, this research is theoretical, and does not have a direct path to harmful
applications or consequences, so we do not discuss societal impact.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.

17

https://neurips.cc/public/EthicsGuidelines

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks by virtue of its theoretical nature.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Where we use existing algorithms and models, we cite them appropriately.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

18

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We do not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve human subjects/crowdsourcing.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve human subjects/crowdsourcing.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

19

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: This research does not involve LLMs as any important, original, or non-
standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM

A Complete Proofs

A.1 Proofs from Section 4

Proof of Theorem 1. We prove Theorem 1 by constructing mappings between the policy spaces
for the adversarial-belief POMDP (AB-POMDP) M and the partially observable stochastic game
(POSG) G that preserve value.

We first recall the policy spaces for M and G. Let ΠM define the policy space for the AB-POMDP
M, and let Π1

G be the policy space for the agent in the POSG G. Recall that a policy π ∈ ΠM is a
mapping

π : (A× Z)∗ → ∆(A), (5)
while a policy σ ∈ Π1

G is a mapping

σ : (A× (Z ∪ {⊤}))∗ → ∆(A). (6)

We note that due to the restriction on the agent’s actions at the initial state, the initial action given by
σ is deterministic and always evaluates to ♢. That is, σ(ϵ) = ♢, where ϵ is the empty history.

We claim that for any policy in the AB-POMDP, we can construct a corresponding policy in the
POSG with the same reward, and vice versa.

To prove the first direction in the above statement, define a mapping f : ΠM → Π1
G as follows

f(π)(a1, z1, a2, z2, . . . , an, zn) =


π(a2, z2, . . . , an, zn) n ≥ 2,∧z2 ̸= ⊤ ∧ . . . ∧ zn ̸= ⊤,
π(ϵ) n = 1,

δ♢ otherwise.
(7)

We note that this definition implies f(π)(ϵ) = δ♢, and thus f(π) is consistent with G. The first two
cases define the policies for feasible trajectories in the game, as only the first observation will be ⊤.
The last case handles the initial action, and ensures the policy is well-defined.

We claim that π and f(π) have the same value. That is,

min
b∈∆(Q)

V π
Mb

= min
π2∈Π2

G

V
f(π),π2

G , (8)

where we use V π1,π2

G to denote the agent’s expected reward in the game G when the agent and nature
play policies π1 and π2 respectively. This fact follows from the structure of the game. Indeed, the
structure of the game G is such that at the initial state ⊥, nature’s action defines an initial state in
S × {1, 2}. States in S × {1, 2} are then closed under transitions in the game G, and have identical
dynamics to M up to the flag in {1, 2}, with nature’s actions having no effect. For completeness, we
carry out this reasoning in its entirety below.

We first compute V
f(π),π2

G |ŝ2=(q,1), where we let V f(π),π2

G |ŝ2=(q,1) denote the reward that the agent
receives from stage 2 onward when ŝ2 = (q, 1) for some q ∈ S. We use ŝt to denote the state in the
game G at time t, and for all t ≥ 2, we note that by definition of G, ŝt will be of the form (st, it) for
some st ∈ S and it ∈ {1, 2}.
We can apply the definition of the game G and the policy f(π) to obtain

V
f(π),π2

G |ŝ2=(q,1) = E

[
H+1∑
t=2

γt−1R̂(ŝt, at)|ŝ2 = (q, 1)

]
(9)

where

ŝt+1 ∼ T̂ (ŝt, at, rt) ∀t ≥ 2, (10)
at+1 ∼ f(π)(a1, z1, . . . , at, zt) ∀t ≥ 2, (11)
rt+1 ∼ π2(ht) ∀t ≥ 2, (12)

zt ∼ Ô(ŝt+1, at, rt) ∀t ≥ 2. (13)

For each t ≥ 3, we have ŝt = (st, 2) for some st ∈ S, by definition of T̂ , and for all t ≥ 2, we have
st+1 ∼ T (st, at), again by definition of T̂ . By assumption, s2 = q. We then note that, by definition

21

of G, and the fact that ŝ2 ∈ S×{1}, that z1 = ⊤, and by definition of f(π) we also have a1 = ♢, and
hence we have f(π)(a1, z1, a2, z2 . . . , at, zt) = π(a2, z2, . . . , at, zt), and f(π)(a1, z1) = π(ϵ). For
t ≥ 2, we have zt ∼ Ô(ŝt+1, at) = Ô((st+1, 2), at) = O(st+1, a). Finally, expanding the reward,
we have R̂(ŝt, at) = R(st, at)/γ for all t ≥ 2. Thus, we can rewrite the expectation as

= E

[
H+1∑
t=2

γt−2R(st, at)|s2 = q

]
(14)

where

st+1 ∼ T (st, at) ∀t ≥ 2, (15)
a2 ∼ π(ϵ), (16)
at+1 ∼ π(a2, z2, . . . , at, zt) ∀t ≥ 2, (17)
zt ∼ O(st+1, at) ∀t ≥ 2. (18)

However, up to relabeling states and timesteps such that s′t = st+1, a′t = at+1 and z′t = zt+1, this
expectation is exactly

E

[
H∑
t=1

γt−1R(s′t, a
′
t)|s′1 = q

]
, (19)

where

s′t+1 ∼ T (s′t, at) ∀t ≥ 1, (20)

a′1 ∼ π(ϵ), (21)

a′t+1 ∼ π(a′1, z
′
1, . . . , a

′
t, z

′
t) ∀t ≥ 1, (22)

z′t ∼ O(s′t+1, a
′
t) ∀t ≥ 1. (23)

This expectation is then equal to V π
Mδq

, and thus we deduce

V
f(π),π2

G |ŝ2=(q,1) = V π
Mδq

. (24)

We now compute the agent’s total reward in G. By (24), and the fact that the reward from the first
stage is always 0 for the agent, we have

V
f(π),π2

G =
∑
q∈Q

P [ŝ2 = (q, 1)] · V f(π),π2

G |ŝ2=(q,1), (25)

and by the definition of the game G, we have P [ŝ2 = (q, 1)] = P[π2(⊥) = q].

Finally, to prove that (8) holds, we construct value-preserving mappings from ∆(Q) to Π2
G and vice

versa. This fact holds as the agent’s reward only depends on nature’s policy through the actions at
⊥, and so each belief is associated with a class of policies that have that belief as the initial action
distribution for the nature player. Define, for a given belief b ∈ ∆(Q), a policy π

(b)
2 ∈ Π2

G with

π
(b)
2 (h) =

{
b h = ⊥,
ρ otherwise,

(26)

where ρ ∈ Q is arbitrary. We have, by definition of π(b)
2 , that

V
f(π),π

(b)
2

G =
∑
q∈Q

b(q) · V f(π),π
(b)
2

G |ŝ2=(q,1) =
∑
q∈Q

b(q) · V π
Mδq

= V π
Mb

. (27)

Thus, for any belief b, there exists a policy for nature that attains the same value in the POSG as
the belief b would induce in the AB-POMDP. Similarly, given a policy π2 ∈ Π2

G , if we define
bπ2 = π2(⊥), we have

V π
M(bπ2)

=
∑
q∈Q

bπ2(q) · V π
Mδq

=
∑
q∈Q

P [π2(⊥) = q]V
f(π),π2

G |ŝ2=(q,1) = V
f(π),π2

G . (28)

With this equality, we can conclude (8) holds.

22

We have proven that for any agent policy in M, we can construct an agent policy f(π) in G with the
same value. This fact establishes one direction of the equality of the value of M and G, that is

max
σ∈Π1

G

V σ
G ≥ max

π∈ΠM

V π
M . (29)

Mapping f is not a bijection, but for each POSG policy σ ∈ Π1
G we can construct a policy σ′ ∈ Π1

G
such that σ′ ∈ Range(f), and σ′ has the same value as σ, and proving this fact will complete the
proof.

Given σ, define qσ ∈ ΠM such that

qσ(a1, z1, . . . , an, zn) = σ(♢,⊤, a1, z1, . . . , an, zn) ∀(a1, z1, . . . , an, zn) ∈ (A× Z)∗. (30)

Note that we, by an abuse of notation, use this definition to communicate that qσ(ϵ) = σ(♢,⊤). We
can then write σ as

σ(ϵ) = δ♢, (31)
σ(♢,⊤) = qσ(ϵ), (32)

σ(♢,⊤, a2, z2, . . . , an, zn) =
{
qσ(a2, z2, . . . , an, zn) z2 ̸= ⊤ ∧ . . . ∧ zn ̸= ⊤,
r(a2, z2, . . . , an, zn) otherwise,

(33)

σ(a1, z1, . . . , an, zn) = w(a1, z1, . . . , an, zn), ∀a1 ̸= ♢, z1 ̸= ⊤, (34)

where r and w are some mappings from (A × (Z ∪ {⊤}))∗ to ∆(A) determined by σ. By (8) we
have that V f(qσ)

G = V qσ
M . However, by definition of G, a1 = ♢, z1 = ⊤, and zi ∈ Z for all i ≥ 2.

Hence, σ and f(qσ) will agree for any feasible path. Thus, we conclude that in fact

V qσ
M = V

f(qσ)
G = V σ

G . (35)

We can now deduce that, for any POSG policy, there exists an AB-POMDP policy with the same
value, thus establishing the other direction in the value equality between G and M. Indeed, the policy
f(qσ) is the required σ′ which has the same value as σ, but lies in the range of f . Additionally, if we
set π̂ = qσ , we have

V π̂
M = V σ

G , (36)
which completes the proof of Theorem 1.

□

We also give proofs of Theorems 2 and 3, however, these proofs are highly similar to Theorem 1 so
we only highlight key differences.

Proof of Theorem 2.

Let ΠM define the policy space for the multi-environment POMDP (ME-POMDP), and let ΠM̂ be
the policy space for the agent in the AB-POMDP. A policy π ∈ ΠM is a mapping

π : (A× Z)∗ → ∆A, (37)

while a policy σ ∈ ΠM̂ is a mapping

σ : (A× (Z ∪ {⊤}))∗ → ∆A. (38)

We define the same mapping f : ΠM → ΠM̂ as in Theorem 1. That is,

f(π)(a1, z1, a2, z2, . . . , an, zn) =


π(a2, z2, . . . , an, zn) n ≥ 2,∧z2 ̸= ⊤ ∧ . . . ∧ zn ̸= ⊤,
π(ϵ) n = 1,

δ♢ otherwise.
.

(39)

For a fixed pair of policies, π and f(π), we claim that V f(π)

M̂
= V π

M. The value of f(π), for a belief
b ∈ ∆({⊥} × [n]), is ∑

i∈[n]

b(⊥,i)V
f(π)

M̂δ(⊥,i)

, (40)

23

and as the belief set is the set of distributions on a set of states,

min
b∈B

∑
i∈[n]

b(⊥,i)V
f(π)

M̂δ(⊥,i)

= min
b∈∆({⊥}×[n])

∑
i∈[n]

b(⊥,i)V
f(π)

M̂δ(⊥,i)

= min
i∈[n]

V
f(π)

M̂δ(⊥,i)

. (41)

The second equality simply uses the fact that if we minimize a function
∑n

i=1 cixi for (xi)
n
i=1 in the

set of distributions on [n], the minimum is the smallest element in (ci)
n
i=1.

We can write the value for a fixed initial state as

V
f(π)

M̂δ(⊥,i)

= E

[
H+1∑
t=2

γt−1R̂(ŝt, at)

]
, (42)

where

ŝ1 = (⊥, i), (43)

ŝt+1 ∼ T̂ (ŝt, at) ∀t ≥ 1, (44)
at+1 ∼ f(π)(a1, z1, a2, z2, . . . , at, zt) ∀t ≥ 1, (45)

zt ∼ Ô(ŝt+1, at) ∀t ≥ 1. (46)

We ignore the first timestep reward as it is 0. Using the definition of the AB-POMDP M̂, we can
evaluate V

f(π)

M̂δ(⊥,i)

. Let ŝt denote the state in the AB-POMDP at time t. We have ŝ2 = (s2, i, 1)

where s2 ∼ bi. For all t ≥ 3, we then have ŝt = (st, i, 2) where st+1 ∼ Ti(st, at). By construction
of the AB-POMDP, we have a1 = ♢, and z1 ∼ Ô(ŝ2, a1) = Ô((s2, i, 1),♢) = δ⊤, so again, we
have f(π)(a1, z1, a2, z2 . . . , at, zt) = π(a2, z2, . . . , at, zt), and f(π)(♢,⊤) = π(ϵ). For all t ≥ 2

we have zt ∼ Ô(ŝt+1, at) = Ô((st+1, i, 2), at) = Oi(st+1, at). Finally, we have R̂(ŝt, at) =

R̂((st, i, j), at) = Ri(st, at)/γ for all t ≥ 2. Thus, we can write the value as

V
f(π)

M̂δ(⊥,i)

= E

[
H+1∑
t=2

γt−2Ri(st, at)

]
, (47)

where

s2 ∼ bi, (48)
st+1 ∼ Ti(st, at) ∀t ≥ 2, (49)
a2 ∼ π(ϵ) (50)
at+1 ∼ π(a2, z2, . . . , at, zt) ∀t ≥ 2, (51)
zt ∼ Oi(st+1, at) ∀t ≥ 2. (52)

Finally, by the same state and timestep relabeling approach we used in Theorem 1, we obtain

V
f(π)

M̂δ(⊥,i)

= V π
Mi

. (53)

Thus, we have

min
b∈∆({⊥}×[n])

∑
i∈[n]

b(⊥,i)V
f(π)

M̂δ(⊥,i)

= min
i∈[n]

V
f(π)

M̂δ(⊥,i)

= min
i∈[n]

V π
Mi

. (54)

That is, the mapping f preserves the value of the policy between the ME-POMDP and the AB-
POMDP, and so we have proven VM̂ ≥ VM.

For the reverse direction, we can again use the same argument as in Theorem 1. Indeed, we can
take any policy σ ∈ ΠM̂ and decompose it into policies qσ, r and w where qσ is a policy in the
ME-POMDP such that

qσ(a1, z1, . . . , at, zt) = σ(♢,⊤, a1, z1, . . . , at, zt) ∀(a1, z1, . . . , at, zt) ∈ (A× Z)∗. (55)

As the policies f(qσ) and σ agree on all feasible histories in the AB-POMDP M̂, we deduce that

V σ
M̂

= V
f(qσ)

M̂
= V qσ

M . (56)

24

From this statement, we deduce that VM̂ = VM, and we have also implicitly proven, via the fact that
V qσ
M = V σ

M̂
, that the mapping from ΠM̂ to ΠM given in Theorem 2 preserves the value.

□

Proof of Theorem 3.

The proof of this theorem follows the same framework as Theorems 1 and 2. That is,

1. We define a mapping f : ΠM → ΠM̂ as in Theorem 1.

2. We prove that V π
M = V

f(π)

M̂
for each π ∈ ΠM.

3. We prove that, for each σ ∈ ΠM̂, the policy qσ defined by

qσ(a1, z1, . . . , at, zt) = σ(♢,⊤, a1, z1, . . . , at, zt) ∀(a1, z1, . . . , at, zt) ∈ (A× Z)∗,

satisfies V qσ
M = V

f(qσ)

M̂
= V σ

M̂, and we conclude that VM = VM̂, along with the fact that
the mapping σ 7→ qσ preserves value.

By assumption, the belief set B is the set of distributions over Q, and so, for a policy π ∈ ΠM,

min
b∈∆(Q)

V π
Mb

= min
b∈∆(Q)

∑
q∈Q

bqV
π
Mδq

= min
q∈Q

V π
Mδq

. (57)

Thus, the value of a policy π in the AB-POMDP M is the worst-case value when we take a worst-case
across the initial state.

However, this differentiation in the initial state is exactly how we define the partially observable
MEMDP (PO-MEMDP) M̂. Indeed, for the same mapping f : ΠM → ΠM̂ as in the previous
theorems, we can evaluate V f(π)

M̂q
as follows. Let ŝt denote the sequence of states in the PO-MEMDP

M̂. For environment q, we have ŝ2 = (q, 1), by definition of T̂ , and for all t ≥ 3, we have ŝt = (st, 2),
where st+1 ∼ T (st, at), again by definition of T̂ . We have z1 ∼ Ô(ŝ2,♢) = Ô((q, 1),♢) = δ⊤, and
for all t ≥ 2, we have zt ∼ Ô(ŝt+1, at) = Ô((st+1, 2), at) = O(st+1, at). We additionally have,
as in Theorem 1, f(π)(a1, z1, a2, z2, . . . , at, zt) = π(a2, z2, . . . , at, zt), as a1 = ♢ and z1 = ⊤,
and we also have f(π)(a1, z1) = π(ϵ). Finally, we have that R̂(ŝ1, a1) = 0, and for all t ≥ 2,
R̂(ŝt, at) = R̂((st, it), at) = R(st, at)/γ. Thus, we have

V
f(π)

M̂q
= E

[
H+1∑
t=2

γt−2R(st, at)

]
, (58)

where

s2 = q (59)
st+1 ∼ T (st, at) ∀t ≥ 2 (60)
zt ∼ O(st+1, at) ∀t ≥ 2 (61)
a2 ∼ π(ϵ) (62)
at+1 ∼ π(a1, z1, . . . , at, zt) ∀t ≥ 2. (63)

We can then again use the same relabelling steps as in the proofs of Theorems 1 and 2 to conclude

V
f(π)

M̂q
= V π

Mδq
. (64)

We can then deduce the same value equivalence result, that is

V π
M = min

q∈Q
V π
Mδq

= min
q∈Q

V
f(π)

M̂q
= V

f(π)

M̂
. (65)

We then complete the same proof for step three as we used in the proofs of Theorems 1 and 2.

□

Proof of Theorem 4.

25

As the PO-MEMDPM and multi-observation POMDP (MO-POMDP) M̂ share action and observa-
tion spaces, they have the same policy spaces.

Fix an arbitrary policy π ∈ ΠM and environment i. It is sufficient to show V π
Mi

= V π
M̂i

.

The proof then follows immediately by looking at the reward in the MO-POMDP. Denote the
MO-POMDP state at time t by

ŝt = (s1,t, . . . , sn,t). (66)

By definition of the MO-POMDP we have

V π
M̂i

= E

[
H∑
t=1

γt−1R̂i(ŝt, at)

]
= E

[
H∑
t=1

γt−1Ri(si,t, at)

]
(67)

where

si,1 ∼ bi (68)
si,t+1 ∼ Ti(si,t, at) ∀t ≥ 1 (69)
zt ∼ O(si,t+1, at) ∀t ≥ 1 (70)
a1 ∼ π(ϵ) (71)
at+1 ∼ π(a1, z1, . . . , at, zt) ∀t ≥ 1. (72)

However, up to labelling of the state random variable, this expectation is exactly V π
Mi

.

□

A.2 Multiple Reward Functions are Necessary for Theorem 4

We next show that the presence of multiple reward functions is necessary for MO-POMDPs to
simulate PO-MEMDPs and hence ME-POMDPs in the finite-horizon case. Previous reductions
have shown that we can construct policies for one class, such as ME-POMDPs, by copying optimal
policies from another class, such as PO-MEMDPs. We argue that no such reduction exists for
MO-POMDPs when the reward does not vary with the environment. This argument appeals to the
case where the environment has a single observation. With a single observation function, the multiple
observation functions must be trivial, mapping all state-action pairs to one observation. Thus, as
the reward function does not change with the environment, the MO-POMDP becomes a POMDP
and has a history-dependent deterministic optimal policy. Meanwhile, PO-MEMDPs exist with a
single observation and randomized optimal policies. Hence, there exist PO-MEMDPs such that
no MO-POMDP produces a correct optimal policy. We formalize this argument in the following
proposition.

Proposition 1 Consider the PO-MEMDPM = ({s}, {a1, a2}, {z}, 2, {Ti}i∈[2], O, {Ri}i∈[2], δs, 1, 1)
where

R1(s, a1) = 1, (73)
R1(s, a2) = −1, (74)
R2(s, a1) = −1, (75)
R2(s, a2) = 1, (76)

and Ti and O are defined appropriately. There does not exist a MO-POMDP M̂ =

(Ŝ, Â, Ẑ, T̂ , {Ôi}i∈[n], R̂, b̂, γ, 1) with an isomorphic observation and action space to M, such
that all optimal policies for M̂ are optimal forM.

Proof: The proof of this statement is mostly described in the preceding paragraph, but we elaborate
it for completeness.

The PO-MEMDPM is a 2× 2 matrix game, and has as a unique optimal policy

π∗(ϵ) =

{
a1 with probability 1/2

a2 with probability 1/2.
(77)

26

As the horizon ofM is 1, the policy class comprises distributions on actions, and does not depend on
the observation.

The policies in ΠM̂ are also a distribution over actions. However, as there is a single reward function,
the reward of any policy is just the expected reward when we take the expectation over the action and
the initial state. Thus, there exists an optimal policy forM that takes an action deterministically.

□

The above argument is similar to the remark in [4] that one can not use POMDPs to solve POSGs due
to the different types of optimal policies they possess.

We remark that even if we added a finite number of extra steps to the MO-POMDP, as we do in
Theorem 2 for the reduction from ME-POMDPs to AB-POMDPs, the observations at these timesteps
would still need to be trivial to enable translation of MO-POMDP policies to the PO-MEMDP.
Thus, even with these added timesteps, the policy would not depend on observations, and a policy
would consist of a distribution of action sequences. There would then exist an optimal policy that
deterministically follows an action sequence that attains the maximum expected reward.

We additionally remark that Proposition 1 can also be proven when we replace the PO-MEMDPM
with a PO-MEMDPM that has multiple transition functions instead of multiple reward functions,
but still, a single observation. Indeed, we simply add an extra step toM, and define two extra states
s1 and s2, such that the multiple transition functions change which action from {a1, a2} leads to
which state. We then define a reward of +1 for one of these states and a reward of −1 for the other,
such that each action always leads to a reward of +1 in one environment and a reward of −1 in the
other. These environments create the same problem as in Proposition 1 where the environment swaps
the reward associated with each action, and so we require random optimal strategies.

A.3 Proofs from Section 5.1

Proof of Theorem 5 Let π̂ be the randomized policy we describe in Theorem 5, and let v∗ be the
optimal value of (4). For any b ∈ ∆(Q) we have

V π̂
Mb

=
∑
α∈Γ

y(α)V
Pol(α)
Mb

=
∑
α∈Γ

y(α)
∑
s∈S

α(s)b(s) ≥
∑
s∈S

v∗b(s) = v∗. (78)

The first equality uses the definition of π̂. The second equality uses the assumption on Pol. The third
equality uses the feasibility of y and the fact that b only has support in Q. The final equality uses the
fact that b is a distribution. Thus we deduce V π̂

M ≥ v∗. However, by the duality of the LPs (3) and (4),
v∗ is also the optimal value of (3), and so v∗ is an upper bound on the value of any policy. Hence, we
conclude that π̂ attains the optimal value of the AB-POMDP. □

A.4 Constructing Behavioral Policies from Mixed Policies

Theorem 5 gives a recipe for constructing a mixed policy in an AB-POMDP which attains the value.
In this section, we recall Kuhn’s theorem [26] to give an explicit construction of an equivalent
behavioral AB-POMDP policy.

Suppose a finite set P = {π1, . . . , πm} of deterministic history-dependent policies is given, and let
{pi}mi=1 be a distribution over these policies that defines a mixed policy π.

We can construct a behavioral policy by randomizing over the deterministic policies in P that could
have generated the current history. For a given finite-length history ht = (a1, z1, . . . , at, zt) in
(A× Z)∗, define T (a1, z1, . . . , at, zt) with

T (a1, z1, . . . , at, zt) = {i ∈ [m] |∀k ∈ [t− 1] : πi(a1, z1, . . . , ak, zk) = ak+1}. (79)

T (ht) contains the indices of the deterministic policies in P that could possibly generate a history ht.
Define a behavioral policy as in [26] by

πP,p(ht)(a) =

{∑
i∈T (ht):πi(ht)=a pi∑

i∈T (ht)
pi

T (ht) ̸= ∅
♢ otherwise,

(80)

where ♢ is a fixed action in A.

27

The policies π and πP,p have the same value for any POMDP. Indeed, the result in [26] implies that
the distribution on finite-length histories is the same.

Proposition 2 ([26]) Let P = {π1, . . . , πm} and {pi}mi=1 define a mixed policy π, and let πP,p be
the behavioral policy in (80). Then any finite length path (s1, a1, z1, . . . , st, at, zt) has the same
probability under the mixed policy π and the behavioral policy πP,p.

The proof of this statement follows by expanding the conditional probabilities that define the path.
Thus, for any finite l ≤ H we have

Eπ

[
l∑

t=1

γt−1R(st, at)

]
= EπP,p

[
l∑

t=1

γt−1R(st, at)

]
. (81)

In the infinite-horizon case, we have

lim
l→∞

Eπ

[
l∑

t=1

γt−1R(st, at)

]
= lim

l→∞
EπP,p

[
l∑

t=1

γt−1R(st, at)

]

=⇒ Eπ

[
lim
l→∞

l∑
t=1

γt−1R(st, at)

]
= EπP,p

[
lim
l→∞

l∑
t=1

γt−1R(st, at)

]

=⇒ Eπ

[∞∑
t=1

γt−1R(st, at)

]
= EπP,p

[∞∑
t=1

γt−1R(st, at)

]
. (82)

We can swap limits and expectations here as the inner random variable is always bounded between
L/1−γ and U/1−γ, where L is a lower bound on rewards and U is an upper bound [34]. Thus, we
conclude that the two policies have the same expected infinite-horizon reward.

A.5 Constructing Mixed Policies from Approximate Value Functions

We must validate that the approximate value function and the associated α-vectors satisfy the
assumptions of Theorem 5, that for each α ∈ Γ, there exists a policy π such that

V π
Mb
≥ α · b ∀b ∈ ∆(S). (83)

Throughout this section, we will use

P(s′, z|s, a) = T (s, a)(s′)O(s′, a)(z) (84)

as a shorthand for the probability of transitioning to a next state s′ and seeing an observation z, when
the agent takes action a at state s.

In a point-based backup, we start with an initial set of α-vectors, and then we define each new
α-vector with an action a and a mapping from each observation z to some previously generated
α-vector αz . That is,

α(s) = R(s, a) + γ
∑

s′∈S,z∈Z

P(s′, z|s, a)αz(s
′), (85)

For each α-vector, we can define two functions Act : Γ→ A and Next : Γ× Z → Γ, that return the
action and α-vectors that defined it. For α-vectors that are not the initial α-vector, we define Act and
Next such that Act(α) = a and Next(α, z) = αz in (85).

For the initial set of α-vectors, we define an α-vector αa,0 for each action a, that represents the policy
that deterministically plays action a at every time step, as in [41]. To compute the α-vector αa,0, we
start with the α-vector that assigns the reward of the worst-case state for each action to each state,
that is

αa,0(s) =
mins′∈S R(s′, a)

1− γ
. (86)

We then improve each αa,0 by applying the following value iteration until the desired convergence.

αa,0(s)← R(s, a) + γ
∑
s′

T (s, a)(s′)αa,0(s
′). (87)

28

By starting this iteration with the worst-case state underapproximation, HSVI ensures that αa,0 is a
correct underapproximation regardless of the number of iterations of αa,0. We set

Act(αa,0) = a, Next(αa,0, z) = αa,0 ∀z ∈ Z. (88)

We note that with this α-vector definition we have, for any initial state, that

αa,0(s) ≤ Eat=Act(αa,0)

[∞∑
t=1

γt−1R(st, at)|s1 = s

]
, (89)

and hence this α-vector lower bounds the value of the policy of always playing Act(αa,0).

We can use these mappings to define a policy by tracking a current α-vector as a state. Indeed,
Algorithm 2 gives a recursive definition of a policy using the Act and Next functions. This method of
extracting policies corresponds to the finite-state machine policy design in [17, 20].

Algorithm 2 Extracting policies from α-vectors.

procedure EXECUTE(h = (a1, z1, . . . , at, zt), α)
if t = 0 then

return Act(α)
else

return EXECUTE(h = (a2, z2, . . . , at, zt),Next(α, z1))
end if

end procedure

The policy we define in Algorithm 2 satisfies the requirements for Theorem 5. Indeed, we have the
following proposition.

Proposition 3 Let Pol : Γ→ Π be the mapping given by Algorithm 2 that defines how to extract a
policy from a set of α-vectors. Then for all α ∈ Γ, s0 ∈ S, we have α(s0) ≤ V

Pol(α)
M (s0), and so

α · b ≤ V
Pol(α)
Mb

for all b ∈ ∆(Q).

This lemma specializes Proposition 9.7 in [22], which describes how to recover policies from
approximate value functions in one-sided POSGs. The resulting proof is simpler than in [22], as the
result we give only needs to hold for POMDPs.

Proof of Proposition 3 We go by induction on the order in which we generate the α-vectors. Let Γk

be the first k ≥ |A| generated α-vectors.

For the base case, when k = |A|, Γk contains the initial α-vectors {αa,0|a ∈ A}. By the definition of
Pol, Pol(αa,0) is simply the policy which always takes action Act(αa,0) = a, and by (89) we have,
for all s0, that

αa,0(s0) ≤ V
Pol(αa,0)
M (s0). (90)

Now, let k be arbitrary, and suppose that, for all α ∈ Γk, s0 ∈ S, we have V
Pol(α)
M (s0) ≥ α(s0). Let

αk+1 be the α-vector generated next.When the agent plays Pol(αk+1), we play Act(αk+1), observe
some z, and then play Pol(Next(αk+1, z)) from the next state. Thus, we can express the reward as
follows

V
Pol(αk+1)
M (s0) = R(s0, a) + γ

∑
s′∈S,z∈Z

P(s′, z|s0, a)V
Pol(Next(αk+1,z))
M (s′). (91)

Applying the inductive assumption, we then have V
Pol(Next(αk+1,z))
M (s′) ≥ Next(αk+1, z)(s

′), as for
all z, Next(αk+1, z) ∈ Γk, and so we obtain

V
Pol(αk+1)
M (s0) ≥ R(s0, a) + γ

∑
s′∈S,z∈Z

P(s′, z|s0, a)Next(αk+1, z)(s
′), (92)

and by definition of αk+1 through the backup we deduce that V Pol(αk+1)
M (s0) ≥ αk+1(s0). As s0

was arbitrary, we now have that the hypothesis holds for the entire αk+1. Since Γk+1 = Γk ∪{αk+1}

29

the hypothesis holds for all vectors in Γk+1. By the principle of mathematical induction, we then
conclude that the lemma holds for all α-vectors in Γ. □

We remark that, as in [22], this procedure still works when pointwise dominated vectors are pruned.
However, we must update the Next function in this case. Indeed, we define ˆNext as an operator that
returns some α-vector that dominates the output of Next, i.e.,

ˆNext(α, z)(s) ≥ Next(α, z)(s) ∀s ∈ S, α ∈ Γ, (93)

and we define a corresponding policy in Algorithm 3.

Algorithm 3 Extracting policies from α-vectors with pruning.

procedure EXECUTE(h = (a1, z1, . . . , at, zt), α)
if t = 0 then

return Act(α)
else

return EXECUTE(h = (a2, z2, . . . , at, zt), ˆNext(α, z1))
end if

end procedure

A version of Proposition 3 still holds when we execute policies using Algorithm 3, but the analysis
needs to be modified. The proof we give follows Proposition 9.7 in [22] again with simplifications
due to the simpler setting of POMDPs.

Proposition 4 ([22]) Let Pol : Γ → Π be the mapping given by Algorithm 3 that defines how to
extract a policy from a pruned set of α-vectors. Then for all α ∈ Γ, s0 ∈ S, we have α(s0) ≤
V

Pol(α)
M (s0).

Proof of Proposition 4 ([22]):

Let U = maxs∈S,a∈A R(s, a), L = mins∈S,a∈A R(s, a), and K = U − L. U is an upper bound on
the reward, while L is a lower bound on the reward.

Let Polj(α) define a policy such that, for the first j actions, we follow Algorithm 3 and for the
remaining timesteps, we use some fixed action ♢ ∈ A. We will first show that the reward of the
policy Polj(α) starting from s0 is approximately lower-bounded by α(s0), where the approximation
error decreases geometrically in j. We then take a limit in j to prove that α(s0) lower-bounds the
reward of Pol(α).

We first show by induction, that for all α ∈ Γ, s0 ∈ S, and j ∈ {0} ∪ N, we have

V
Polj(α)
M (s0) ≥ α(s0)−

γj

1− γ
K. (94)

We first note that any α-vector is bounded above by U/(1 − γ). This fact obviously holds for the
initial α-vectors. For any subsequent α-vectors, we have by induction that

α(s) = R(s, a) + γ
∑

s′∈S,z∈Z

P(s′, z|s, a)αz(s
′) ≤ U + γ

U

1− γ
=

U

1− γ
, (95)

where the induction is with respect to the order in which we generate α-vectors.

For the main induction, that is (94), we have as our base case

V
Pol0(α)
M (s0) = Eat=♢

[∞∑
t=1

γt−1R(st, at)

]
≥

∞∑
t=1

γt−1L =

∞∑
t=1

γt−1(L− U) +

∞∑
t=1

γt−1U

=

∞∑
t=1

γt−1(L− U) +
U

1− γ
≥

(∞∑
t=1

γt−1(L− U)

)
+ α(s0) = α(s0)−

1

1− γ
K. (96)

The inequalities follow from the definitions of L and U along with the fact that the α-vectors are
bounded by U/1−γ.

30

Inducting on j, for an arbitrary α ∈ Γ, we then have

V
Polj(α)
M (s0) = R(s0, a) + γ

∑
s′∈S,z∈Z

P(s′, z|s0, a)V
Polj−1(ˆNext(α,z))
M (s′)

≥ R(s0, a) + γ
∑

s′∈S,z∈Z

P(s′, z|s0, a)
(

ˆNext(α, z)(s′)− γj−1

1− γ
K

)

≥ R(s0, a) + γ
∑

s′∈S,z∈Z

P(s′, z|s0, a)
(
Next(α, z)(s′)− γj−1

1− γ
K

)

= α(s0)−
γj

1− γ
K. (97)

The first equality is just expanding one step of the value. The first inequality uses the inductive
assumption V

Polj−1(α)
M (s′) ≥ α(s′)− Kγj−1

/1−γ. The second inequality uses the definition of ˆNext.
The final equality uses the definition of α through the backup.

We can then use a similar bound between V
Polj(α)
M and V

Pol(α)
M . Indeed, as these policies share actions

for the first j timesteps, and rewards are bounded, we have

V
Pol(α)
M (s0) ≥ V

Polj(α)
M (s0)−

γj

1− γ
K, (98)

and combining the inequalities (97) and (98), we get

V
Pol(α)
M (s0) ≥ α(s0)−

2γj

1− γ
K, (99)

and we can take a limit in j to conclude that we have the desired inequality. □

B Endangered Birds Preservation Model

Consider a population of an endangered bird species, as in [8]. The progression of the population
is influenced by natural causes, such as feral cats hunting the endangered birds. We model the
population of endangered birds under different actions to influence the progression of the population.
At any time, we classify the population as being either low (sL), middle (sM), or high (sH), although
we assume we can only observe whether the population is high (oH) or low (oL). We consider
two possible actions to influence the progression of the population level: control the feral cats (C),
or do nothing (DN). The goal is to increase the population level to high and keep it there without
wasting resources. For this purpose, we associate a reward to each state-action pair: R(sL,C) =
−5, R(sL,DN) = 0, R(sM ,C) = 0, R(sM ,DN) = 5, R(sH ,C) = 5, and R(sH ,DN) = 10.

To define the probabilities in our model, we consider domain experts who define the transition
and observation functions. For simplicity, we assume the experts all agree on the effect of doing
nothing on the progression of the population of birds. See the table in Figure 5 for the different
transition and observation probabilities the experts claim, where psH = 1 − (psL + psM), qsH =
1 − (qsL + qsM), wsH = 1 − (wsL + wsM), and O(sM , a, oL) = zL, O(sM , a, oH) = 1 − zL for
a ∈ {C,DN}.
Expert1 believes that controlling the feral cats is not very effective when the bird population is
low, but becomes more effective as the bird population increases. Additionally, Expert1 believes a
middle population level of the birds is just as likely to be interpreted as a high level and as a low
level. Although Expert2 agrees with Expert1 on the observation probability, Expert2 believes that
controlling feral cats is most effective when the bird population is low, and becomes as effective as
doing nothing as the bird population increases. Based on these two experts, this problem can naturally
be modeled as a PO-MEMDP, since we only have multiple transition functions.

Another expert, Expert3, agrees with Expert1 on the effectiveness of controlling the feral cats but
believes that a middle population level of birds is more likely to be interpreted as high than low. If we
only have Expert1 and Expert3, this problem can naturally be modeled as a MO-POMDP, since we
only have multiple observation functions. If instead, we have all three experts, this problem should be
modeled as a ME-POMDP, as we have both multiple transition and multiple observation functions.

31

sL sM sH

C
psL

psM

psH

DN0.8

0.15

0.05

CqsL

qsM

qsH

DN

0.1

0.8

0.1

C

wsL

wsM

wsH

DN

0.05

0.15

0.8

unk. Expert1 Expert2 Expert3
psL 0.6 0.2 0.6
psM 0.35 0.6 0.35
qsL 0.1 0.1 0.1
qsM 0.5 0.75 0.5
wsL 0 0.05 0
wsM 0.1 0.15 0.1

zL 0.5 0.5 0.4

Figure 5: A visualisation of the Bird problem (left) with three experts (right). An action and
corresponding transition distribution is represented by a solid line labeled by the action to a small node
and dashed lines from the small node to the successor states labeled by the transition probabilities.

C Detailed Benchmark Descriptions

C.1 Bird problem

We extend the endangered bird preservation example in Appendix B to arbitrary ME-POMDPs,
PO-MEMDPs, and MO-POMDPs. In particular, we parameterize the number of states |S| ≥ 2,
actions |A|, and experts n. Each problem has a low and high population level state sL, sH ∈ S,
and all other states represent population levels ordered between low and high. Regardless of the
action, sL is always observed as a low population, sH is always observed as a high population, and
all other states are observed as either high or low populations with distinct observation probabilities.
Each action can be taken from each state and transitions to the same state and the two states with
the closest population levels. In case of sL, these closest population levels are the two population
levels above sL, and similar for sH the two population levels below sH . For all other states, the
two closest population levels are the levels one above and one below the current state. We randomly
define |A| probability distributions over min(|S|, 3) elements with each probability a multiple of
0.05. We order these |A| probability distributions inverse lexographically, meaning the probability
distribution that assigns the most probability to the lowest state, i.e., the state representing the lowest
population level, is first in the ordering. The first probability distribution is therefore considered the
least effective, whereas the last is considered the most effective.

Each expert defines an ordering over the actions for each state. This ordering represents which
action each expert considers the most effective. We randomly generate the orderings, ensuring that
each expert has a different effectiveness ordering for at least one state. The probability distribution
of an action in an environment is hence given by the probability distribution corresponding to the
effectiveness ranking the expert assigns to that action.

We also randomly generate, for each expert, |S|−2 probability distributions over the two observations
oL and oH , again with each probability a factor of 0.05. We order these probability distributions
lexographically, so the first probability distribution gives the most probability to oL. Each observation
probability distribution is then linked to the in-between population level states with the same rank in
the ordering.

The reward for each state-action pair is computed as the reward for the population level of the state
minus the cost of the action. Each problem contains the do nothing action (DN) and |A| − 1 other
actions. The DN action is free, all other actions add a reward of −5. The population level reward is
i · 5 where i is the rank of the population level.

Depending on the model type we want to generate, we generate one or n orderings over actions for
each state and one or n observation probability distributions for |S| − 2 states.

32

Agent

Figure 6: Visualization of relative fixed rock positions. Blue circles indicate the nearby positions, red
circles the far away positions. The dashed circles are only considered with the three-rock version of
the RockSample problem instances.

C.2 RockSample

The second problem is based on RockSample [40]. The RockSample problem consists of an m×m
grid with t rocks at known positions. Each rock is either good or bad, but the agent does not know
the state of the rocks. The agent starts in the bottom left corner, can move through the grid in the
cardinal directions and can exit the grid at the rightmost positions. When in the same position as a
rock, the agent can sample the rock. A good rock gives a reward of 10, and a bad rock a reward of
−10. After sampling a good rock, it becomes bad. To learn the state of a rock, the agent can check a
rock. The probability that this check action gives the agent the correct state depends on the distance
between the agent and the rock.

In the original RockSample problem, the agent starts with a belief that each rock has a 50% chance
of being a good rock. We instead assume there are g good rocks and t− g bad rocks. We consider
problem instances with randomly generated rock positions, as well as with relative fixed rock positions
nearby or far away. For the RockSample instances with relative fixed positions, we consider either
2 or 3 rocks. The nearby rock positions are the three adjacent positions from the agent’s starting
positions, dropping the diagonal adjacent position for the two-rock version. The far-away rock
positions are the three corners that the agent does not start in, dropping the rock in the top right corner
for the two-rock version. The far-away rock positions change with the grid size, and are therefore
relatively fixed. See Figure 6 for a visualization of the relative fixed rock positions.

We can define our version of the RockSample problem either as an AB-POMDP or a ME-POMDP.

To model our version of RockSample as an AB-POMDP, we only need to replace the initial belief of
the original problem by the set of states where g out of the t rocks are good and the agent is in the
bottom left corner. We can simplify this model slightly by removing the unreachable states in which
more than g rocks are good.

To model our version of RockSample as a ME-POMDP, we can simplify the state space to only keep
track of the g good rocks instead of all t rocks. We then add

(
g
t

)
environments, i.e., one environment

for each combination of good rocks and bad rocks. The state space can be used to keep track of
the state of each good rock, whereas the environment maps the good rock state to an actual rock.
Since the transition and observation functions depend on the state of each rock and therefore on the
environment, we need to model this as a ME-POMDP. The initial state in each environment is the
state where all good rocks are still good and the agent is in the bottom left corner.

D Experimental Details

Table 4 shows the variation in convergence time and value for RockSample for environments with
randomized rock positions. Table 4 shows similar trends to Table 2 whereby we see a significant
increase in convergence time as we increase the number of environments. However, due to random-
ization of the rock positions in the instances, convergence time does not increase monotonically with
the number of states, as can be seen by the convergence time decrease of instance RS6,1,2 compared
to instance RS5,1,2.

33

Table 4: Lower bound value, convergence time, and
gap for various RockSample problems.

Properties AB- HSVI

Model |S| n |A| |Z| V<tl Conv (s) Gap

RS3,1,2 19 2 7 3 15.55 41.68 < ϵ
RS3,1,3 19 3 8 3 14.17 774.99 < ϵ
RS3,1,4 19 4 9 3 14.37 2840.85 < ϵ
RS3,1,5 19 5 10 3 10.94 - 5.16

RS3,2,3 37 3 8 3 22.56 891.43 < ϵ
RS3,2,4 37 6 9 3 11.38 - 12.73

RS4,1,2 33 2 7 3 14.40 215.40 < ϵ
RS5,1,2 51 2 7 3 13.51 1252.50 < ϵ
RS6,1,2 73 2 7 3 14.09 1008.00 < ϵ
RS7,1,2 99 2 7 3 10.02 - 3.43

Table 5: Value and convergence time for
RockSample problems modeled as AB-
POMDPs and ME-POMDPs.

AB-POMDP ME-POMDP

Model V<tl Conv (s) V<tl Conv (s)

RS3,1,2 15.55 38.76 15.55 41.68
RS3,1,3 14.37 878.39 14.17 774.99
RS3,1,4 14.63 3064.78 14.37 2840.85
RS3,2,3 22.92 1269.64 22.56 891.43
RS4,1,2 14.40 267.28 14.40 215.40
RS5,1,2 13.51 1355.12 13.51 1252.50
RS6,1,2 14.09 949.19 14.09 1008.00

Table 6: The cost of robustness in RockSample. For each POMDP Mi, we report the value V Mi ,
the time to solve all POMDPs, and the best and worst-case value under a misspecified environment,
which we denote by V and V , respectively. For the ME-POMDP we report the robust value V , the
computation time, and the computation time factor.

Individual POMDPs Incorrect ME-POMDP

Model V M0 V M1 V M2 V M3 Time V V V Time Factor

RS3,1,2 16.31 17.65 19.67 -0.84 -1.35 15.55 41.68 2.11
RS3,1,3 17.17 15.88 17.60 43.82 -0.41 -0.88 14.17 774.99 17.68
RS3,1,4 17.17 17.65 17.60 18.07 43.65 -0.45 -1.35 14.37 2840.85 65.09
RS3,2,3 26.22 25.81 23.75 163.61 9.07 5.70 22.56 891.43 5.49
RS4,1,2 16.76 15.09 100.22 -0.39 -1.29 14.40 215.40 2.15
RS5,1,2 15.13 14.78 258.66 -1.16 -1.51 13.51 1252.50 4.84
RS6,1,2 14.78 16.01 403.18 -1.51 -2.04 14.09 1008.00 2.50

Table 5 shows the variation in convergence time and value between modeling RockSample as an
AB-POMDP or a ME-POMDP, as explained in Appendix C, for the Rocksample instances of Table 4
that converged within the time limit. Table 5 contains the data that defines Figure 3, which we
discuss in Section 6. In particular, we note that in all but two models, the ME-POMDP formulation,
which has multiple environments, converges faster the AB-POMDP formulation, which has a single
environment. We hypothesize that this difference occurs because, in the ME-POMDP formulation,
once an environment has a zero-probability, all beliefs in that environment can be ignored by a single
check, whereas in the AB-POMDP formulation all zero-probability environment-state combinations
must be checked separately.

Table 6 compares the value of solving a ME-POMDP and the time required, as compared to the naive
baseline of solving the individual POMDPs, i.e., the environments of the ME-POMDP. Note that
Table 6 contains the data that defines Figure 4 and Table 3, which we discuss in Section 6. The robust
value achieved by the ME-POMDP lies close to the optimal values of each individual POMDP, and
far outperforms both the best and worst-case value achieved by assuming an incorrect environment as
the true underlying environment, and playing the optimal policy accordingly. However, we also note
that solving the ME-POMDP requires more time than the sum of solving all individual POMDPs.
The factor with which the convergence time increases scales with the number of environments.

Table 7 compares the value and convergence time for the RockSample problem when we either place
the rocks near or far from the agent’s initial position. Table 7 extends Table 2 with results for the case
when we have 2 good rocks, and these results corroborate the trends seen in Section 6.

We also depict the scaling of the solution times with the number of environments in Figure 7 for
instances where the rocks are placed close to the agent’s initial position.

34

Table 7: Lower bound value, time of convergence, and left-over gap between upper and lower bound
of the RockSample problem for various problem sizes with rocks nearby or far away.

Properties Rocks nearby Rocks far away

Model |S| n |A| |Z| V<tl Conv (s) Gap V<tl Conv (s) Gap Factor

RSc
2,1,2 9 2 7 3 16.53 11.70 < ϵ 16.53 11.70 < ϵ 1

RSc
3,1,2 19 2 7 3 16.14 52.74 < ϵ 14.68 169.95 < ϵ 3.22

RSc
4,1,2 33 2 7 3 15.48 130.77 < ϵ 13.02 1588.97 < ϵ 12.15

RSc
5,1,2 51 2 7 3 15.40 331.37 < ϵ 11.03 - 1.46

RSc
6,1,2 73 2 7 3 14.52 640.40 < ϵ

RSc
7,1,2 99 2 7 3 14.54 1280.66 < ϵ

RSc
2,1,3 9 3 8 3 15.90 115.11 < ϵ 15.90 115.11 < ϵ 1

RSc
3,1,3 19 3 8 3 15.41 269.10 < ϵ 14.34 1072.32 < ϵ 3.98

RSc
4,1,3 33 3 8 3 15.14 787.82 < ϵ 11.11 - 2.73

RSc
5,1,3 51 3 8 3 14.80 1793.75 < ϵ 8.15 - 5.34

RSc
6,1,3 73 3 8 3 14.31 2556.11 < ϵ

RSc
7,1,3 99 3 8 3 13.30 - 2.25

RSc
2,2,3 17 3 8 3 22.59 443.88 < ϵ 22.59 443.88 < ϵ 1

RSc
3,2,3 37 3 8 3 22.32 1105.12 < ϵ 19.50 3212.43 < ϵ 2.91

RSc
4,2,3 65 3 8 3 22.01 2389.88 < ϵ 13.15 - 6.64

RSc
5,2,3 101 3 8 3 16.56 - 7.29

0 20 40 60 80 100
Number of states

0

1000

2000

3000

4000

C
on

ve
rg

en
ce

 ti
m

e
(s

)

2 rocks, 1 good
3 rocks, 1 good
3 rocks, 2 good

Figure 7: Variation of convergence time with the number of states in the RockSample instances with
fixed rock positions nearby.

35

	Introduction
	Related Work
	Preliminaries
	Solving POMDPs
	One-sided Partially Observable Stochastic Games

	Adversarial-Belief and Multi-Environment POMDPs
	Adversarial-Belief POMDPs
	Multi-Environment POMDPs
	Restricted Models and Reductions

	Algorithms for AB-POMDPs
	Computing Policies by Solving Linear Programs
	Adversarial-Belief HSVI

	Experimental Evaluation
	Conclusion
	Acknowledgements
	Complete Proofs
	Proofs from sec:mainTechnicalTheory
	Multiple Reward Functions are Necessary for Theorem 4
	Proofs from sec:algorithms:LPs
	Constructing Behavioral Policies from Mixed Policies
	Constructing Mixed Policies from Approximate Value Functions

	Endangered Birds Preservation Model
	Detailed Benchmark Descriptions
	Bird problem
	RockSample

	Experimental Details

