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Figure 1: Conventional large language models tailored for code (LLM-C) (Chameleon) are
trained with a fixed cutoff date. However, as code environments are dynamic
and subject to ongoing changes introduced by developers (young chameleons),
these LLM-C models encounter challenges in adapting to such evolving scenarios.
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Abstract

The ever-changing landscape of programming languages poses a significant challenge in the
development and training of models designed for code generation. Code, being a dynamic
and constantly evolving environment, necessitates a continuous process of adaptation to
stay in sync with the rapidly shifting paradigms, frameworks, and methodologies within
the software development domain. The inherent variability in coding styles, the emergence
of new programming languages, and the continuous evolution of libraries and packages
underscore the imperative for an active approach in updating code generation models. In
response to this challenge, we introduce GitChameleon, an innovative dataset comprising
more than 12,000 version-sensitive examples in Python, designed to facilitate research into
the adaptation of code generation models to the rapidly changing landscape of programming
languages. Furthermore, we assess the performance of state-of-the-art code models and
demonstrate their inadequacy in generating version-specific code. For example, the latest
CodeLlama-70B (Rozière et al. (2024)) only achieves a 46.76% exact string match score
when evaluated on GitChameleon.

Keywords: Large language models, code generation, lifelong learning, prompting, library-
level understanding, version-sensitive code

1 Introduction

Large language models (LLMs) require substantial data for effective generalization, espe-
cially in coding contexts. The dynamic evolution of libraries complicates the collection of
comprehensive data across diverse projects using them. Challenges escalate when libraries
undergo significant version changes, resulting in LLMs generating code specific to one ver-
sion, but not necessarily the current one. Companies dealing with these challenges may need
to adhere to a particular library version, even if the model excels with a different one. Recog-
nizing this, there is a push to establish benchmarks highlighting the constrained capabilities
of large language models customized for code (LLM-C), emphasizing both library-specific
nuances and version-specific considerations.

Code is inherently dynamic, especially with the growing global community of developers
and the rise of open-source software (OSS). GitHub reported a significant 27% year-over-
year growth in project creation, with 4.5 billion contributions in 20231. As shown in Fig. 2,
prominent machine and deep learning libraries have experienced multiple version updates,
reflecting a consistent upward trend in user downloads.

With the rise of coding and software development jobs, more individuals are turning
to AI-assisted coding tools for learning and collaborative programming. A Stack Overflow
survey2 found that 70% of participants are either using or planning to integrate AI coding
tools such as GitHub Copilot3. Among the respondents, 33% cited increased productivity
as the main motivation for incorporating AI-based coding tools into their workflows. While
various studies have explored the impact of AI-assisted coding in education (Becker et al.
(2022); Kazemitabaar et al. (2023)) and the professional realm (Dakhel et al. (2023); Ziegler
et al. (2022); Peng et al. (2023); Perry et al. (2023)), the consensus strongly supports the
growing significance of integrating such tools into the coding workflow.

1. https://github.blog/2023-11-08-the-state-of-open-source-and-ai/
2. https://stackoverflow.co/labs/developer-sentiment-ai-ml/
3. https://github.com/features/copilot
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Figure 2: From left to right: (i) Year over year trends in number of version releases for
popular machine learning/ deep learning stack libraries. (ii) Subplots (a), (b),
(c), (d) represent the month over month PyPI downloads for PyTorch (Paszke
et al. (2019)), Numpy (Harris et al. (2020)), Transformers (Wolf et al. (2020))
and Scikit-Learn (Buitinck et al. (2013)) respectively.

Due to the high demand, several recent LLM-C models have been proposed that include
StarCoder (Li et al. (2023)), WizardCoder (Luo et al. (2023)), CodeGen v1 and v2 (Nijkamp
et al. (2023b,a)), the CodeLLama family (Rozière et al. (2023)), and others. Further details
on LLM-C can be found in Section 2.1. However, these models are typically trained with a
static dataset that has a cut-off date, limiting the model’s knowledge base. This limitation
raises concerns about their ability to adapt to code changes, especially with the introduction
of new library versions post their cut-off date.

Recognizing this significant limitation has been inadequately addressed and researched,
primarily due to the inherent absence of evaluation protocols and benchmarks designed to
highlight this aspect. In response, we have developed a new dataset and benchmark named
GitChameleon. This benchmark comprises 12,584 samples of version-sensitive code, with
the objective of assessing the capabilities of LLM-C to generate version-specific code and
subsequently adapt to new versions or changes resulting from version upgrades.

Hence, our primary contributions can be succinctly summarized as follows.

1. We construct a novel and comprehensive Python-based dataset, namedGitChameleon,
specifically designed to be version-sensitive.

2. Our analysis across diverse LLM and LLM-C models provides initial evidence of their
failure in generating version-specific code on our proposed dataset.

3. We empirically demonstrate the influence of model scaling, particularly within the
CodeLLama family (Rozière et al. (2023)), in addressing our benchmark challenges.

4. In light of these findings, we propose a set of open research avenues utilizing our
dataset GitChameleon, followed by a discussion on potential frameworks focused
on fast adaptation.
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Table 1: Popular Datasets for Code Generation

Dataset Problems Data Source Library Specific Version Specific

HumanEval (Chen et al. (2021)) 164 Hand-Written No No
MBPP (Austin et al. (2021)) 974 Hand-Written No No
MTPB (Nijkamp et al. (2022)) 115 Hand-Written No No
APPS (Hendrycks et al. (2021)) 10000 Competitions No No
CodeContests (Li et al. (2022)) 117 Competitions No No
JulCe (Agashe et al. (2019)) 1518049 Notebooks No No
DSP (Chandel et al. (2022)) 1119 Notebooks Yes No
CoNaLa (Yin et al. (2018)) 2879 StackOverflow Yes No
DS-1000 (Lai et al. (2023)) 1000 StackOverflow Yes No

GitChameleon (Ours) 12584 Github Yes Yes

2 Related work

2.1 LLM-C training and evaluation protocols

LLM-C evaluations mainly revolve around code completion (Zhang et al. (2023a); van Dam
et al. (2023); Lu et al. (2021)). Existing benchmarks emphasize generic code completion,
yet a recognized limitation is the inability of LLM-C to comprehend and link library and
project-level knowledge (Xu and Zhu, 2022), vital for real-world software applications.

Recent initiatives address repository-level code understanding by LLMs (Bairi et al.
(2023); Shrivastava et al. (2023a,b); Liu et al. (2023); Guo et al. (2024)). Attempts at
library-level code generation (Zan et al. (2022)) and consideration of dependencies between
files (Guo et al. (2024)) have been made. However, these efforts do not directly address the
challenge of accommodating library version-sensitive changes, adding complexity.

The core issue arises from models being trained on library code without explicit knowl-
edge of library versions or their functional changes. Consequently, when tasked with gen-
erating code specifically compatible with a particular library version, these models often
encounter failures.

2.2 Datasets

Existing datasets like HumanEval (Chen et al. (2021)), MBPP (Austin et al. (2021)), and
MTPB (Nijkamp et al. (2022)) provide sets of handwritten prompts and test cases to evalu-
ate code generated by LLM-C. However, these datasets are relatively small and lack context
regarding a model’s comprehension of repositories. APPS (Hendrycks et al. (2021)) and
CodeContest (Li et al. (2022)) offer challenging datasets with coding competition questions,
providing insights into a model’s performance on difficult problems but without a focus on
library-specific challenges. DSP (Chandel et al. (2022)) and DS-1000 (Lai et al. (2023))
concentrate on the top data science libraries in Python, while JulCe (Agashe et al. (2019))
uses Jupyter Notebooks for training and evaluation, but these notebooks do not necessar-
ily need to be repository-specific. CoNaLa (Yin et al. (2018)) contains problems collected
from StackOverflow across multiple programming languages, including both library-specific
questions and non-library-specific code. Although these datasets offer valuable resources for
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training and evaluating models in various contexts, our contribution of the GitChameleon
dataset opens up new avenues for research into version-conditioned generation by LLM-C.

2.3 Implications for Lifelong Learning

Continual/lifelong learning in code generation models is in its early stages (Yadav et al.,
2023; Weyssow et al., 2024; Wu et al., 2024; Gao et al., 2023). However, current efforts
often focus on artificial sequential tasks rather than utilizing the natural distribution shift in
the chronological evolution of code. Notably, continual learning mainly targets mitigating
catastrophic forgetting and balancing forward- and backward-transfer on a data stream,
which may not align optimally with coding environment demands.

In coding environments, obsolete or legacy libraries may prompt selective forgetting
of irrelevant knowledge, particularly at the library/package level. Previous research, such
as Caccia et al. (2021), serves as a foundation for developing continual learning in Large
Language Models for code (LLM-C). These approaches aim to prevent forgetting pre-
training knowledge while adapting to new libraries and versions.

3 Dataset

3.1 Definitions

To ensure uniformity throughout the paper, our objective is to establish clear definitions
for specific terminologies that are frequently used in reference to the proposed dataset and
its corresponding construction framework.

1. Project: A project is characterized as any repository that utilizes components (classes,
functions, helper code) from or is precisely a dependent of a library.

2. Library: A library is defined as any package containing reusable functions or classes
that dependent projects invoke in their subsequent code. Libraries are assumed to be
more commonly used and often undergo multiple version updates over time.

3. Version Change: A version change is described as any substantial modification
marked in a new release for a specific library. For example, the transition from
PyTorch (Paszke et al., 2019) 1.6 to 1.7 constitutes a specific version change for the
PyTorch library.

3.2 Collection Framework

We curated a selection of the top 364 libraries4, each having multiple versions/releases. Ad-
ditionally, we compile a list of the top 700 projects based on their star count5, each featuring
only one release. Subsequently, we extracted the requirements for all these projects, with
only 380 of them having accompanying requirements.txt files. Among these, 310 projects

4. Libraries were selected by filtering for those with a minimum of 1 GitHub star, extending up to a
maximum of 16102 stars.

5. Projects were selected by filtering for those with a minimum of 5 GitHub stars, extending up to a
maximum of 2500 stars.
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Figure 3: GitChameleon construction framework: Initiated with a collection of li-
braries, we identify version differences for each library using get diff(). Follow-
ing this, we gather a set of projects employing the specified libraries and identify
lines in each project file where a version-sensitive function from the package is
invoked, utilizing get blanks(). Subsequently, we annotate these lines for later
use in the version-specific code completion task.

had a requirement that matched our set of libraries. We proceeded to use the versions and
checked for the existence of a GitHub release that corresponded to the version specified in
the requirements.txt file from the projects. By doing so, we obtained that version and a
version preceding it, resulting in a total of 47 libraries.

Subsequently, we identified the projects that had a requirement from the set of 47
libraries and proceeded to download these projects. Our download process successfully
retrieved 32 projects.

Filtering: We filter out projects older than 2023-04-016. We filter out projects that
have more than one version. We filter out libraries which have only one version. We use the
requirements.txt file from projects and keep only the projects that use a specific version
from a library. We then use the set of versions for each library and download all versions
for each library.

get diff(v 1,v 2): To identify version-specific method invocations in projects, we em-
ploy an AST parser to extract all class and method names from each file. Our analysis
compares two versions of a library, identifying significant changes based on criteria that
may introduce breaking changes for users. These include the presence or absence of func-
tion or class names, discrepancies in non-optional arguments, and changes in the order of
arguments for functions. For classes with the same name in both versions, differences in
attributes are considered. This approach aims to pinpoint modifications that affect the
compatibility or functionality of the library.

get blanks(file): To pinpoint sections requiring updates between versions, we sys-
tematically go through the files of each library. Using get diff for files present in both

6. This date corresponds to the training cut-off date for the StarCoder model (Li et al., 2023)
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Figure 4: GitChameleon evaluation benchmark

versions, we identify spots necessitating modifications due to library updates. Subsequently,
we scrutinize each line of the project files to identify calls to library functions that have
undergone substantial changes between versions, marking these areas as blanks. This auto-
mated approach aids in identifying lines in projects that may lead to compatibility issues.

We provide further details on the dataset structure in the Appendix A.

4 Evaluation

4.1 Task and prompts

In this study, we delve into the task of version-specific code completion. Specifically, for lines
where version-sensitive code was identified through get blanks(), we mask those lines and
instruct the LLM/LLM-C to generate the version-specific code using the prompt templates
outlined in Table 2.

template 1 ”# Using library-version: {}”
template 2 ”# Given the following code uses library-version: {}”
template 3 ”# Finalize the provided code using library-version: {}”
template 4 ”# Strictly use library-version: {} to complete the following code”

Table 2: Prompt templates for version specific code completion.

We discuss other potential tasks on GitChameleon in the Appendix B.
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4.2 Results

In Fig. 4a, we investigate various LLM and LLM-C models, including WizardLM (13B,
34B) (Luo et al., 2023), DeepSeekCoder (33B Instruct) (Guo et al., 2024), Nous Hermes
(7B, 13B) (Teknium, 2023), Mistral-7B (Jiang et al., 2023), Mixtral 8x7B (Jiang et al.,
2024), CodeLLama (7B, 13B, 34B, 70B, Instruct 34B) (Rozière et al., 2023, 2024), Falcon
(7B, 40B) (Almazrouei et al., 2023), and StarCoder+7 (15.5 B) (Li et al., 2023). Our
assessment focused on the version-specific code completion task outlined in Sec. 4.1. The
summary of our findings is as follows:

1. Scaling Trends. The results presented in Fig. 4a and 4b indicate a consistent
scaling behavior. As observed, models with higher parametric capacity tend to exhibit
elevated exact string match scores and reduced perplexity, both within the same
model class and across different model families. For example, Falcon 7B achieves an
approximate exact string match score of 29.85%, while its larger counterpart, Falcon
40B, achieves around 42.1% exact string match score. Regarding the perplexity
analysis, as highlighted in Fig. 4b, our focus is specifically on the CodeLLama model
family. Across all prompt templates, perplexity consistently decreases with increasing
parametric capacity of the model.

2. Inability to perform the task. It is noteworthy that even the most advanced
state-of-the-art (SoTA) LLM-C models struggle to accomplish the task. For ex-
ample, the recent CodeLlama-70B (Rozière et al. (2024)) achieves only a 46.76%
exact string match when assessed on the GitChameleon dataset.

Note: In Fig. 4a, we report the score for each model based on the best exact string match

score obtained across all used prompt templates. Details on the metrics used are provided
in the Appendix D.

5 Conclusion

Recognizing the crucial need for LLM-C adaptation to evolving code environments, partic-
ularly in widely used libraries, we introduce a novel and extensive Python-based version-
specific benchmark named GitChameleon. By effectively leveraging GitChameleon, we
expose the shortcomings of existing state-of-the-art (SoTA) LLM and LLM-C models in
producing version-specific code, representing an inaugural effort to draw attention to this
challenge. While our work exposes this shortcoming, we acknowledge the dataset’s limita-
tions, such as the filtered number of projects and the confinement to the Python language.
In future endeavors, we aim to enhance the dataset’s comprehensiveness across various pro-
gramming languages and frameworks. Additionally, we plan to introduce new tasks that
can benefit research on LLM-C models using GitChameleon.

Finally, in Appendices B, and C, we outline potential implications of this benchmark,
present research questions, identify open problems, and suggest different avenues of solutions
that can support foundational LLM-C models in addressing this task.

7. StarCoder+ model card: https://huggingface.co/bigcode/starcoderplus
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Broader Impact Statement

With GitChameleon, researchers and developers gain a valuable resource to improve LLM-C
models, aligning them more closely with the dynamic landscape of programming languages,
frameworks, and libraries. This potential improvement could significantly boost developer
efficiency and mitigate version-related errors in AI-assisted code generation. Industries often
face challenges in updating dependencies or crafting version-specific code to address vulner-
abilities arising from older versions. By investigating how models generate version-specific
code, we anticipate advancements in addressing these issues. The project’s open-access
approach, providing both dataset and task to the public, fosters collaborative innovation,
enabling the wider research community to contribute to the evolution of code generation
technologies. This inclusive strategy encourages cooperation, accelerates progress, and de-
mocratizes access to cutting-edge tools.

While our dataset represents a crucial initial step in evaluating LLM-C model capabilities
for version-specific code generation, we acknowledge its limitations. The dataset focuses
exclusively on Python code and is restricted to public projects, limiting the scope of sectors
for model evaluation.
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A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. Pytorch: An
imperative style, high-performance deep learning library, 2019.

S. Peng, E. Kalliamvakou, P. Cihon, and M. Demirer. The impact of ai on developer
productivity: Evidence from github copilot, 2023.

N. Perry, M. Srivastava, D. Kumar, and D. Boneh. Do users write more insecure code with
ai assistants? In Proceedings of the 2023 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’23. ACM, Nov. 2023. doi: 10.1145/3576915.3623157.
URL http://dx.doi.org/10.1145/3576915.3623157.

B. Rozière, J. Gehring, F. Gloeckle, S. Sootla, I. Gat, X. E. Tan, Y. Adi, J. Liu,
T. Remez, J. Rapin, A. Kozhevnikov, I. Evtimov, J. Bitton, M. Bhatt, C. C. Ferrer,
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Appendix A. GitChameleon structure and statistics

Following the filtration process outlined in Sec. 3.2, we now have 47 distinct libraries and 32
individual projects. The complete list of all projects and libraries part of the GitChameleon
dataset is provided in Sec E. nightly and pre-release versions while are used to differentiate
between libraries and projects, we only compute get diff() on the main releases.

blanks_lines_by_library ->

"jinja": {

"Projects/THUDM/WebGLM/model/retriever/extracting/html2text.py": [ -> this

is the file

[

[

"jinja-3.1.2",

"jinja-3.0.2"

],

849,

"escape"

],

[

[

"jinja-3.1.2",

"jinja-3.0.2"

|

-> these are the versions we compared for getting the

difference

],

849, -> this is the line

"escape" -> this is the function

]

]
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Figure 5: License distributions of the projects
contained within the GitChameleon
dataset.

We introduce a dataset designed to as-
sess the effectiveness of an LLM in generat-
ing version-specific code. The dataset has
a distinctive structure that centers on vari-
ations in function calls across different ver-
sions of widely used libraries. To exemplify
its organization, we present a section of the
dataset called blanks lines by library.

The dataset is organized as a nested
dictionary, with the outer layer keyed by
library names. For example, under the
”jinja” key, there is an associative array
mapping file paths to specific instances of
version-dependent code. Each file path
leads to an array of items, each represent-
ing a unique instance where a function call
differs between versions of the library.
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An item in this array is a triple, where the first element consists of version identifiers
(e.g., ”jinja-3.1.2” and ”jinja-3.0.2”), denoting the specific releases compared to identify
functional differences. The second element is an integer that indicates the line number
in the file where the difference occurs. Finally, the third element is a string naming the
function involved in the version-specific change.
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Figure 6: Repository creation date in 2023 of

the projects scraped as part of the
GitChameleon dataset.

This structured approach facilitates a
thorough examination of how functions
evolve across versions within a library. The
dataset’s analysis of these version-specific
changes provides a valuable resource for
evaluating the LLM’s capability to generate
precise and version-aware code.

Regarding the statistics of the data
set, all the projects used in crafting
GitChameleon are publicly accessible and
predominantly carry open-source licenses,
with the Apache License 2.0 and the MIT
License being the primary licenses, as illus-
trated in Fig. 5. The complete dataset con-
tains a total of 3363723 lines of code.

As shown in Fig. 6, the majority of
projects included in the current version of GitChameleon, as presented in this study, were
created in the months of April, May, and June 2023. We recognize this as a limitation of
our current dataset construction process and, as a result, plan to enhance it in the next
iteration of the benchmark.

One crucial criterion for filtering projects involved adhering to the StarCoder (Li et al.,
2023) cut-off date of 2023-04-01. This measure aimed to prevent exposure of StarCoder to
the projects included in the dataset during its training, mitigating the risk of data leakage.
However, it is important to note that this safeguard cannot be guaranteed for the other
models examined in this paper. Initially, it is essential to acknowledge that some of the
models assessed in this study are closed-source or lack detailed information about their
training data, introducing a potential risk of data leakage for those models. In particular,
the CodeLLama model (Rozière et al., 2023, 2024) has a cut-off date of September 2022,
ensuring that the best-performing open-source model on our benchmark avoids data leakage.

A prospective avenue for exploration involves examining the performance of each model
on versions within and outside their respective training cut-off dates. Assessing versions
outside the training cut-off window serves as a proxy for out-of-distribution generalization,
presenting an intriguing challenge for further investigation of state-of-the-art LLM-C models.

Appendix B. Future work

As discussed in previous sections, our ongoing efforts to enhance the GitChameleon bench-
mark and introduce novel tasks involve exploring the following key areas:

1. More projects: While GitChameleon offers a substantial dataset, we recognize the
need for greater comprehensiveness. Expanding to include projects created beyond
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April, May, and June 2023 is vital. This expansion aims to cover repositories associ-
ated with new frameworks, diverse research areas, and the latest package versions.

2. Exploration of software stacks: The current library set explicitly focuses on the
machine / deep learning software stack. While serving as a strong baseline, it is
essential to assess how observations transfer to other software stacks. Therefore,
expanding to encompass other software stacks is a critical future exploration.

3. Analysing performance based on model cut-off date: As outlined in Section
A, we plan to analyze model performance on partitions of the GitChameleon dataset
conditioned on their training cut-off date.

4. Expanding to other programming languages: While Python is a popular and
well-documented language for the machine/deep learning stack, our aim is to extend
our dataset to include other languages such as C++, Rust, and Java.

5. Exploring new tasks on GitChameleon: Our work, initially focused on code
completion, has limitations. To address this, we intend to propose novel tasks that
leverage the dataset’s structure to discover fundamental properties of the LLM-C
models. One potential task is inspired by automated fault diagnosis (Cao et al., 2022;
Nikanjam et al., 2021), which involves the model in identifying or annotating code
lines in a project file that could be version sensitive.

6. Synthetic test set generation: All experiments in this paper relied on zero-shot
prompting for inference with the LLM and LLM-C models. However, GitChameleon
can be employed for the rapid adaptation of the LLM and LLM-C models. Con-
sequently, a test set is needed to evaluate the effectiveness of GitChameleon when
integrated into any training framework.

Appendix C. Potential Solutions to Library-version specific adaptation

RAG+LLM-C. Retrieval Augmented Generation (RAG) is an approach that incorporates
a retriever model with access to non-parametric memory, such as the entire Wikipedia index
Lewis et al. (2020). The use of RAG has recently been explored as a solution to generate
code at the repository level Zhou et al. (2023); Zhang et al. (2023b). Consequently, there
is an intuitive direction toward integrating LLM-C models with RAG. In this setup, the
RAG’s knowledge base is continuously updated with new version releases of libraries. When
presented with a version-specific code generation task, the RAG can retrieve the relevant
code or references from the library documentation corresponding to that specific version.

Knowledge injection: Another recent strategy to integrate new information into an
LLM is known as knowledge injection (Zhang et al., 2023c; Emelin et al., 2022). Previous
research has investigated the efficacy of knowledge injection specifically for library version-
specific code (Chen et al., 2023). Although this method can be a viable means of continually
updating LLM-C, it is essential to note that these approaches may incur significant compu-
tational expenses.
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Appendix D. Metrics

The results presented in Sec 4.2 utilized two distinct metrics for evaluation: (i) exact str match,
and, (ii) Perplexity.

exact str match simply computes whether the generated output from the LLM/ LLM-
C model is equal to the target/ ground-truth. Higher exact str match values indicate
better model performance.

Perplexity can be mathematically defined as:

Perplexity = 2−
1
N

∑N
i=1 log2 P (wi|w1,w2,...,wi−1) (1)

• N is the total number of words in the sequence.

• wi is the actual word at position i.

• P (wi|w1, w2, ..., wi−1) is the probability assigned by the language model to the word
wi given the preceding context w1, w2, ..., wi−1

• The sum runs over all words in the sequence.

This formula calculates the average perplexity over the entire sequence of words, mea-
suring how well the language model predicts the next word in a sequence. Lower perplexity
values indicate better model performance.
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Appendix E. List of projects and libraries in GitChameleon

Table 3: Projects
peterw/Chat-with-Github-Repo muellerberndt/mini-agi
facebookresearch/llama-recipes sail-sg/EditAnything
SCUTlihaoyu/open-chat-video-editor Lightning-AI/lit-gpt
yanqiangmiffy/Chinese-LangChain IntelligenzaArtificiale/Free-Auto-GPT
baichuan-inc/Baichuan-13B VideoCrafter/VideoCrafter
thomas-yanxin/LangChain-ChatGLM-Webui Jittor/JittorLLMs
TigerResearch/TigerBot jxxghp/MoviePilot
yangjianxin1/Firefly turboderp/exllama
THUDM/CodeGeeX2 agiresearch/OpenAGI
ttengwang/Caption-Anything NotJoeMartinez/yt-fts
X-PLUG/mPLUG-Owl Docta-ai/docta
liltom-eth/llama2-webui AlanChen4/Summer-2024-SWE-Internships
linyiLYi/snake-ai liucongg/ChatGLM-Finetuning
open-mmlab/Multimodal-GPT ZrrSkywalker/Personalize-SAM
lyuchenyang/Macaw-LLM wenge-research/YaYi
mishalhossin/Discord-AI-Chatbot a16z-infra/llama2-chatbot
peterw/Chat-with-Github-Repo

Table 4: Libraries

openai/openai-python
theskumar/python-dotenv
pytorch/pytorch
google/python-fire
huggingface/transformers
numpy/numpy
gradio-app/gradio
pallets/jinja
huggingface/diffusers
fxsjy/jieba
encode/starlette
matplotlib/matplotlib
PaddlePaddle/PaddleNLP

pandas-dev/pandas
mozillazg/python-pinyin
psf/requests
Textualize/rich
pytorch/vision
tqdm/tqdm
microsoft/DeepSpeed
DLR-RM/stable-baselines3
openai/gym
jiaaro/pydub
langchain-ai/langchain
pydantic/pydantic
openai/tiktoken

scikit-learn/scikit-learn
psf/black
huggingface/datasets
albumentations-team/albumentations
Lightning-AI/lightning
streamlit/streamlit
pallets/click
tiangolo/fastapi
pallets/flask
huggingface/pytorch-image-models
joblib/joblib
librosa/librosa
Delgan/loguru
python-jsonschema/jsonschema
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Appendix F. ML reproducibility checklist

1. For all authors...

a. Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope? [Yes]

b. Did you describe the limitations of your work? [Yes]

c. Did you discuss any potential negative societal impacts of your work? [N/A]

d. Have you read the ethics review guidelines and ensured that your paper conforms
to them? [Yes]

2. If you are including theoretical results...

a. Did you state the full set of assumptions of all theoretical results? [N/A]

b. Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments (e.g. for benchmarks)...

a. Did you include the code, data, and instructions needed to reproduce the main
experimental results (either in the supplemental material or as a URL)? [Yes] The
dataset GitChameleon proposed in the paper is publicly available at https://

shorturl.at/dvJ45 and will be de-anonymized and hosted on HuggingFace Hub
after acceptance of the paper. All models benchmarked in the paper are accessible
on https://together.xyz/.

b. Did you specify all the training details (e.g., data splits, hyperparameters, how
they were chosen)? [Yes]

c. Did you report error bars (e.g., with respect to the random seed after running
experiments multiple times)? [N/A]

d. Did you include the total amount of compute and the type of resources used (e.g.,
type of GPUs, internal cluster, or cloud provider)? [Yes] Considering the paper
provides only inference-based zero-shot results, only CPU-based compute resources
were utilized for the project. Acknowledgments of the computational resources
utilized shall be disclosed upon the acceptance of the paper. For the evaluation
of the models, we used the Inference Engine of https://together.xyz/ which
resulted in a total amount of USD$ 46.6.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new
assets...

a. If your work uses existing assets, did you cite the creators? [Yes]

b. Did you mention the license of the assets? [Yes]

c. Did you include any new assets either in the supplemental material or as a URL?
[Yes]

d. Did you discuss whether and how consent was obtained from people whose data
you’re using/curating? [N/A]
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e. Did you discuss whether the data you are using/curating contains personally iden-
tifiable information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...

a. Did you include the full text of instructions given to participants and screenshots,
if applicable? [N/A]

b. Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

c. Did you include the estimated hourly wage paid to participants and the total
amount spent on participant compensation? [N/A]
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Appendix G. Datasheet

Motivation

For what purpose was the dataset cre-
ated? Was there a specific task in mind?
Was there a specific gap that needed to be
filled? Please provide a description.
GitChameleon was created to demonstrate
the current SoTA LLM and LLM for code
models’ shortcomings in generating version-
specific code.

Who created this dataset (e.g., which
team, research group) and on behalf of
which entity (e.g., company, institution,
organization)?

Who funded the creation of the dataset?
If there is an associated grant, please pro-
vide the name of the grantor and the grant
name and number.
No explicit funding was utilized in the cre-
ation of the GitChameleon dataset. Ac-
knowledgment of the computational re-
sources utilized shall be disclosed upon the
acceptance of the paper.

Any other comments?

Composition

What do the instances that comprise the
dataset represent (e.g., documents, pho-
tos, people, countries)? Are there multi-
ple types of instances (e.g., movies, users,
and ratings; people and interactions be-
tween them; nodes and edges)? Please
provide a description.
The dataset comprises publicly avail-

able Python code repositories sourced from
GitHub. It includes libraries with multiple
versions and associated projects that utilize
at least one version from those libraries.

How many instances are there in total (of
each type, if appropriate)?

There is a total of 47 unique libraries (with
multiple versions) and 32 unique projects.

Does the dataset contain all possible in-
stances or is it a sample (not necessarily
random) of instances from a larger set?
If the dataset is a sample, then what is the
larger set? Is the sample representative of
the larger set (e.g., geographic coverage)?
If so, please describe how this representa-
tiveness was validated/verified. If it is not
representative of the larger set, please de-
scribe why not (e.g., to cover a more diverse
range of instances, because instances were
withheld or unavailable).
The dataset is a subset of the most widely
used libraries and projects. Popularity is de-
termined by the number of stars each reposi-
tory receives. We selected the top X libraries
and the top Y projects on the basis of their
star count. Libraries had to have multiple
versions, while projects were limited to a sin-
gle version. Additionally, the projects were
required to use at least one specific version
of a library, confirmed by inspection of the
requirements.txt file in the library’s repos-
itory.

What data does each instance consist
of? “Raw” data (e.g., unprocessed text
or images) or features? In either case,
please provide a description.
Each repository’s data comprises the cloned
repository itself, containing code files, text,
and other relevant materials associated with
the repository.

Is there a label or target associated with
each instance? If so, please provide a de-
scription.
Each repository has a specific name as de-
fined in the repository name on GitHub.
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Is any information missing from individ-
ual instances? If so, please provide a
description, explaining why this information
is missing (e.g., because it was unavail-
able). This does not include intentionally re-
moved information, but might include, e.g.,
redacted text.
There was no removal of data from each

repository; we solely downloaded the ver-
sions specifically utilized by the projects.

Are relationships between individual in-
stances made explicit (e.g., users’ movie
ratings, social network links)? If so,
please describe how these relationships are
made explicit.
The connection between libraries and

projects is established by examining the
requirements.txt file in each project. Each
library is represented by a folder and within
it there are subfolders containing cloned
repositories for each distinct version.

Are there recommended data splits (e.g.,
training, development/validation, test-
ing)? If so, please provide a description of
these splits, explaining the rationale behind
them.
This dataset exclusively serves as testing

data, specifically designed for zero-shot in-
ference, and thus, it does not include any
splits.

Are there any errors, sources of noise, or
redundancies in the dataset? If so, please
provide a description.
The data is in its raw form, and there may
be redundancies since no deduplication pre-
processing has been applied.

Is the dataset self-contained, or does
it link to or otherwise rely on external
resources (e.g., websites, tweets, other
datasets)? If it links to or relies on exter-
nal resources, a) are there guarantees that
they will exist, and remain constant, over
time; b) are there official archival versions of

the complete dataset (i.e., including the ex-
ternal resources as they existed at the time
the dataset was created); c) are there any
restrictions (e.g., licenses, fees) associated
with any of the external resources that might
apply to a future user? Please provide de-
scriptions of all external resources and any
restrictions associated with them, as well as
links or other access points, as appropriate.
The repositories are downloaded and zipped.
The libraries are guaranteed to remain con-
stant, since they were downloaded for specific
versions. However, projects may change. Li-
censing varies for each repository, as illus-
trated in Fig. 5.

Does the dataset contain data that might
be considered confidential (e.g., data
that is protected by legal privilege or by
doctor-patient confidentiality, data that
includes the content of individuals non-
public communications)? If so, please
provide a description.
The data was gathered from public reposi-
tories, ensuring that there is no confidential
information involved.

Does the dataset contain data that, if
viewed directly, might be offensive, in-
sulting, threatening, or might otherwise
cause anxiety? If so, please describe why.
While we did not scrutinize the contents of
the repositories, their popularity implies that
they likely contain valuable code, and we an-
ticipate that they do not include any content
that could be considered offensive, insulting,
threatening, or otherwise anxiety-inducing.

Does the dataset relate to people? If not,
you may skip the remaining questions in this
section.
No.

Does the dataset identify any subpop-
ulations (e.g., by age, gender)? If so,
please describe how these subpopulations
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are identified and provide a description
of their respective distributions within the
dataset.

Is it possible to identify individuals (i.e.,
one or more natural persons), either di-
rectly or indirectly (i.e., in combination
with other data) from the dataset? If so,
please describe how.

Does the dataset contain data that might
be considered sensitive in any way (e.g.,
data that reveals racial or ethnic origins,
sexual orientations, religious beliefs, po-
litical opinions or union memberships, or
locations; financial or health data; bio-
metric or genetic data; forms of govern-
ment identification, such as social secu-
rity numbers; criminal history)? If so,
please provide a description.

Any other comments?

Collection Process

How was the data associated with each
instance acquired? Was the data di-
rectly observable (e.g., raw text, movie rat-
ings), reported by subjects (e.g., survey re-
sponses), or indirectly inferred/derived from
other data (e.g., part-of-speech tags, model-
based guesses for age or language)? If data
was reported by subjects or indirectly in-
ferred/derived from other data, was the data
validated/verified? If so, please describe
how.
The data is directly accessible since it com-
prises public GitHub repositories.

What mechanisms or procedures were
used to collect the data (e.g., hardware
apparatus or sensor, manual human cu-
ration, software program, software API)?
How were these mechanisms or procedures
validated?

Projects were filtered to have only one re-
lease version, while libraries were required
to have multiple versions. The selection en-
sured that all the projects utilized a specific
version of a library.

If the dataset is a sample from a larger
set, what was the sampling strategy (e.g.,
deterministic, probabilistic with specific
sampling probabilities)?
We collected the top 700 projects with stars
ranging from 5 to 2500 on GitHub, filter-
ing based on their requirements and release
count. Additionally, we gathered the top 364
libraries with stars ranging from 1 to 16102,
ensuring that they had multiple release ver-
sions.

Who was involved in the data collection
process (e.g., students, crowdworkers,
contractors) and how were they compen-
sated (e.g., how much were crowdwork-
ers paid)?
The data collection process was carried out
exclusively by individuals involved in this
project, with no external contributors.

Over what timeframe was the data col-
lected? Does this timeframe match the
creation timeframe of the data asso-
ciated with the instances (e.g., recent
crawl of old news articles)? If not, please
describe the timeframe in which the data as-
sociated with the instances was created.
Data collection and download occurred from
July 31st, 2023, to August 16th, 2023.

Were any ethical review processes con-
ducted (e.g., by an institutional review
board)? If so, please provide a descrip-
tion of these review processes, including the
outcomes, as well as a link or other access
point to any supporting documentation.
No ethical review processes were conducted.
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Does the dataset relate to people? If not,
you may skip the remaining questions in this
section.
No.

Did you collect the data from the individ-
uals in question directly, or obtain it via
third parties or other sources (e.g., web-
sites)?

Were the individuals in question notified
about the data collection? If so, please
describe (or show with screenshots or other
information) how notice was provided, and
provide a link or other access point to, or
otherwise reproduce, the exact language of
the notification itself.

Did the individuals in question consent
to the collection and use of their data?
If so, please describe (or show with screen-
shots or other information) how consent was
requested and provided, and provide a link
or other access point to, or otherwise repro-
duce, the exact language to which the indi-
viduals consented.

If consent was obtained, were the
consenting individuals provided with a
mechanism to revoke their consent in the
future or for certain uses? If so, please
provide a description, as well as a link or
other access point to the mechanism (if ap-
propriate).

Has an analysis of the potential impact
of the dataset and its use on data sub-
jects (e.g., a data protection impact anal-
ysis) been conducted? If so, please pro-
vide a description of this analysis, includ-
ing the outcomes, as well as a link or other
access point to any supporting documenta-
tion.

Any other comments?

Preprocessing/cleaning/labeling

Was any preprocessing/cleaning/label-
ing of the data done (e.g., discretiza-
tion or bucketing, tokenization, part-
of-speech tagging, SIFT feature extrac-
tion, removal of instances, processing of
missing values)? If so, please provide a
description. If not, you may skip the remain-
der of the questions in this section.
We exclude projects created before 2023-

04-01 and select projects that utilize a par-
ticular version from a library based on the
requirements.txt file.

Was the “raw” data saved in addition to
the preprocessed/cleaned/labeled data
(e.g., to support unanticipated future
uses)? If so, please provide a link or other
access point to the “raw” data.
The raw dataset of repositories and the

dataset suitable for code generation tasks are
both accessible.

Is the software used to preprocess/-
clean/label the instances available? If so,
please provide a link or other access point.
No software was used.

Any other comments?

Uses

Has the dataset been used for any tasks
already? If so, please provide a descrip-
tion.
No.

Is there a repository that links to any
or all papers or systems that use the
dataset? If so, please provide a link or other
access point.
N/A.
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What (other) tasks could the dataset be
used for?
We leverage the raw dataset to formu-

late a task for evaluating the ability of a
language model to generate version-specific
code. Additionally, our dataset can be used
for other tasks focusing on the assessment of
repository-specific attributes and their vari-
ous versions.

Is there anything about the composition
of the dataset or the way it was col-
lected and preprocessed/cleaned/labeled
that might impact future uses? For ex-
ample, is there anything that a future user
might need to know to avoid uses that could
result in unfair treatment of individuals or
groups (e.g., stereotyping, quality of service
issues) or other undesirable harms (e.g., fi-
nancial harms, legal risks) If so, please pro-
vide a description. Is there anything a future
user could do to mitigate these undesirable
harms?
No.

Are there tasks for which the dataset
should not be used? If so, please provide
a description.
No.

Any other comments?

Distribution

Will the dataset be distributed to third
parties outside of the entity (e.g., com-
pany, institution, organization) on behalf
of which the dataset was created? If so,
please provide a description.
No.

How will the dataset will be distributed
(e.g., tarball on website, API, GitHub)
Does the dataset have a digital object iden-
tifier (DOI)?
The dataset is distributed as an open-source
dataset hosted on the HuggingFace Hub.

Currently, the dataset can be accessed at
https://shorturl.at/dvJ45

When will the dataset be distributed?
The dataset will be distributed with open-
access after the acceptance of the paper.

Will the dataset be distributed under
a copyright or other intellectual prop-
erty (IP) license, and/or under applicable
terms of use (ToU)? If so, please describe
this license and/or ToU, and provide a link
or other access point to, or otherwise repro-
duce, any relevant licensing terms or ToU,
as well as any fees associated with these
restrictions.
The licensing is dependent on each file

within the dataset.

Have any third parties imposed IP-based
or other restrictions on the data associ-
ated with the instances? If so, please de-
scribe these restrictions, and provide a link
or other access point to, or otherwise repro-
duce, any relevant licensing terms, as well
as any fees associated with these restric-
tions.
No.

Do any export controls or other regula-
tory restrictions apply to the dataset or
to individual instances? If so, please de-
scribe these restrictions, and provide a link
or other access point to, or otherwise repro-
duce, any supporting documentation.
No.

Any other comments?

Maintenance

Who will be supporting/hosting/main-
taining the dataset?
The authors of the paper will be collectively
responsible in maintaining, supporting and
hosting the dataset.
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How can the owner/curator/manager of
the dataset be contacted (e.g., email ad-
dress)?
The authors of the dataset can be contacted
via email which shall be publicly available
post acceptance of the paper.

Is there an erratum? If so, please provide
a link or other access point.
N/A

Will the dataset be updated (e.g., to cor-
rect labeling errors, add new instances,
delete instances)? If so, please describe
how often, by whom, and how updates will
be communicated to users (e.g., mailing list,
GitHub)?
Any updates will be noted on the Hugging-
Face hub.

If the dataset relates to people, are there
applicable limits on the retention of the
data associated with the instances (e.g.,
were individuals in question told that
their data would be retained for a fixed
period of time and then deleted)? If

so, please describe these limits and explain
how they will be enforced.
N/A

Will older versions of the dataset con-
tinue to be supported/hosted/main-
tained? If so, please describe how. If not,
please describe how its obsolescence will
be communicated to users.
Yes, older versions of the dataset shall be
hosted and maintained on the HuggingFace
hub.

If others want to extend/augment/build
on/contribute to the dataset, is there a
mechanism for them to do so? If so,
please provide a description. Will these
contributions be validated/verified? If so,
please describe how. If not, why not? Is
there a process for communicating/distribut-
ing these contributions to other users? If so,
please provide a description.
Not for the moment. If there is, it will be
noted on the HuggingFace hub.

Any other comments?
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