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ABSTRACT

Existing domain adaptation methods tend to treat every domain equally and align
them all perfectly. Such uniform alignment ignores topological structures among
different domains; therefore it may be beneficial for nearby domains, but not
necessarily for distant domains. In this work, we relax such uniform alignment by
using a domain graph to encode domain adjacency, e.g., a graph of states in the US
with each state as a domain and each edge indicating adjacency, thereby allowing
domains to align flexibly based on the graph structure. We generalize the existing
adversarial learning framework with a novel graph discriminator using encoding-
conditioned graph embeddings. Theoretical analysis shows that at equilibrium,
our method recovers classic domain adaptation when the graph is a clique, and
achieves non-trivial alignment for other types of graphs. Empirical results show that
our approach successfully generalizes uniform alignment, naturally incorporates
domain information represented by graphs, and improves upon existing domain
adaptation methods on both synthetic and real-world datasets1.

1 INTRODUCTION

Generalization of machine learning methods hinges on the assumption that training and test data
follows the same distribution. Such an assumption no longer holds when one trains a model in some
domains (source domains), and tests it in other domains (target domains) where data follows different
distributions. Domain adaptation (DA) aims at improving performance in this setting by aligning data
from the source and target domains so that a model trained in source domains can generalize better in
target domains (Ben-David et al., 2010; Ganin et al., 2016; Tzeng et al., 2017; Zhang et al., 2019).
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Figure 1: 15 states in the east of the US as 15 do-
mains. Left: Traditional DA treats each domain
equally and enforces uniform alignment for all
domains, which is equivalent to enforcing a fully
connected domain graph. Right: Our method
generalizes traditional DA to align domains ac-
cording to any specific domain graph, e.g., a do-
main graph describing adjacency among these 15
states.

Existing DA methods tend to enforce uniform
alignment, i.e., to treat every domain equally and
align them all perfectly. However, in practice the
domains are often heterogeneous; one can expect
DA to work well when the source domains are
close to the target domains, but not when they
are too far from each other (Zhao et al., 2019;
Wang et al., 2020). Such heterogeneity can of-
ten be captured by a graph, where the domains
realize the nodes, and the adjacency between two
domains can be captured by an edge (see Fig. 1).
For example, to capture the similarity of weather
in the US, we can construct a graph where each
state is treated as a node and the physical proxim-
ity between two states results in an edge. There
are also many other scenarios where the relation among domains can be naturally captured by a graph,
such as the taxonomies of products in retail or connections among research fields of academic papers.
Given a domain graph, we can tailor the adaptation of domains to the graph, rather than dictating the
data from all the domains to align perfectly regardless of the graph structure.

∗Work conducted during internship at AWS AI Labs.
1Code will soon be available at https://github.com/Wang-ML-Lab/GRDA
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One naïve DA method for such graph-relational domains is to perform DA for each pair of neighboring
domains separately. Unfortunately, due to the strict alignment between each domain pair, this method
will still lead to uniform alignment so long as the graph is connected. To generalize DA to the graph-
relational domains, we argue that an ideal method should (1) only enforce uniform alignment when
the domain graph is a clique (i.e., every two domains are adjacent), and (2) more importantly, relax
uniform alignment to adapt more flexibly across domains according to any non-clique domain graph,
thereby naturally incorporating information on the domain adjacency. In this paper, we generalize
adversarial DA methods and replace the traditional binary (or multi-class) discriminator with a novel
graph discriminator: instead of distinguishing among different domains, our graph discriminator
takes as input the encodings of data to reconstruct the domain graph. We show that our method enjoys
the following theoretical guarantees: it recovers classic DA when the the domain graph is a clique,
and realizes intuitive alignments for other types of graphs such as chains and stars (see Fig. 4). We
summarize our contributions as follows:

• We propose to use a graph to characterize domain relations and develop graph-relational
domain adaptation (GRDA) as the first general adversarial DA method to adapt across
domains living on a graph.

• We provide theoretical analysis showing that at equilibrium, our method can retain the
capability of uniform alignment when the domain graph is a clique, and achieve non-trivial
alignment for other types of graphs.

• Empirical results on both synthetic and real-world datasets demonstrate the superiority of
our method over the state-of-the-art DA methods.

2 RELATED WORK

Adversarial Domain Adaptation. There have been extensive prior works on domain adaptation (Pan
& Yang, 2009; Pan et al., 2010; Long et al., 2018; Saito et al., 2018; Sankaranarayanan et al., 2018;
Zhang et al., 2019; Peng et al., 2019; Chen et al., 2019; Dai et al., 2019; Nguyen-Meidine et al.,
2021). Typically they aim to align the distributions of the source and target domains with the hope
that the predictor trained on labeled source data can generalize well on target data. Such alignment
can be achieved by either directly matching their distributions’ statistics (Pan et al., 2010; Tzeng
et al., 2014; Sun & Saenko, 2016; Peng et al., 2019; Nguyen-Meidine et al., 2021) or training deep
learning models with an additional adversarial loss (Ganin et al., 2016; Zhao et al., 2017; Tzeng
et al., 2017; Zhang et al., 2019; Kuroki et al., 2019; Chen et al., 2019; Dai et al., 2019). The
latter, i.e., adversarial domain adaptation, has received increasing attention and popularity because
of its theoretical guarantees (Goodfellow et al., 2014; Zhao et al., 2018; Zhang et al., 2019; Zhao
et al., 2019), its ability to train end-to-end with neural networks, and consequently its promising
empirical performance. Also loosely related to our work is continuously indexed domain adaptation
(CIDA) Wang et al. (2020), which considers domains indexed by continuous values. These methods
typically treat every domain equally and enforce uniform alignment between source-domain data and
target-domain data; this is done by generating domain-invariant encodings, where domain invariance
is achieved by training the encoder to fool the discriminator that classifies the domain index. In
contrast, we naturally relax such uniform alignment using a graph discriminator to reconstruct a
domain graph that describes domain adjacency.

Domain Adaptation Related to Graphs. There are also works related to both DA and graphs.
Usually they focus on adaptation between two domains where data points themselves are graphs. For
example, (Pilancı & Vural, 2019; Pilanci & Vural, 2020) use frequency analysis to align the data
graphs between the source domain and the target domains, and (Alam et al., 2018; Ding et al., 2018)
perform label propagation on the data graph.

In contrast, GRDA considers a setting completely different from the above references. Instead
of focusing on adapting between two domains with data points in the form of graphs (e.g., each
data point itself is a node), GRDA adapts across multiple domains (e.g., with each state in the US
as a domain) according to a domain graph (i.e., each domain is a node). Therefore the methods
above are not applicable to our setting. Note that (Mancini et al., 2019) uses metadata-weighted
batch normalization to propagate information among domains with similar metadata, but it is not an
adversarial domain adaptation method. It is orthogonal to GRDA and can be used as a backbone
network to further improve GRDA’s performance (see the Appendix for empirical results). It is also
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Figure 2: Difference between discriminators in traditional DA methods and the graph discriminator
in GRDA. Left: In traditional DA methods, the discriminator classifies the domain index given an
encoding. Right: In GRDA, the graph discriminator reconstructs the domain graph given encodings
of data from different domains.

worth noting that, in this paper, we assume the domain graph is given. It would be interesting future
work to combine GRDA with domain relation inference methods (e.g., domain embeddings (Peng
et al., 2020)) when there is a natural but unobserved graph relation among domains.

3 METHOD

In this section, we will first briefly introduce the problem setting and then elaborate our domain
adaptation method.

3.1 PROBLEM SETTING AND NOTATION

We focus on the unsupervised domain adaptation setting with N domains in total. Each domain has a
discrete domain index u ∈ U = [N ] , {1, . . . , N}, belonging to either the source domain index set
Us or the target domain index set Ut. The relationship between domains is described by a domain
graph with the adjacency matrix A = [Aij ], where i and j index nodes (domains) in the graph.
Given labeled data {(xsl , ysl , usl )}nl=1 from source domains (usl ∈ Us), unlabeled data {xtl , utl}ml=1
from target domains (utl ∈ Ut), and the domain graph described by A, we want to predict the label
{ytl}ml=1 for data from target domains. Note that the domain graph is defined on domains with each
domain (node) containing multiple data points.

3.2 GRAPH-RELATIONAL DOMAIN ADAPTATION (GRDA)

Overview. We use an adversarial learning framework to perform adaptation across graph-relational
domains. The adversarial game consists of three players: (1) an encoder E, which takes as input
a datum xl, the associated domain index ul, and the adjacency matrix A to generate an encoding
el = E(xl, ul,A), (2) a predictor F , which makes predictions based on the encoding el, and
(3) a graph discriminator D, which guides the encoding to adapt across graph-relational domains.
Specifically, the discriminator D takes in a mini-batch of B encodings el (l ∈ [B]), and tries to
reconstruct the domain graph A. By letting the encoder E play adversarially against the discriminator
D, the graph-relational information of domains will be removed from the encoding el in order to
make the discriminator D incapable of reconstructing the graph. Note that the graph discriminator
in our adversarial game is different from classic discriminators which classify the domain index, as
shown in Fig. 2.

Formally, GRDA performs a minimax optimization with the following loss function:

min
E,F

max
D

Lf (E,F )− λdLd(D,E), (1)

where Lf (E,F ) is the predictor loss and Ld(D,E) is the discriminator loss, and λd is a hyperpa-
rameter balancing them two. Below we discussed these two terms in detail.

Predictor. In Eqn. 1, the predictor loss Lf (E,F ) is defined as

Lf (E,F ) , Es[hp(F (E(xl, ul,A)), y)],

where the expectation Es is taken over the source-domain data distribution ps(x, y, u). hp(·, ·) is a
predictor loss function for the task (e.g., L2 loss for regression).
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Encoder and Node Embeddings. Given an input tuple (xl, ul,A), the encoder E first computes a
graph-informed domain embedding zul

based on the domain index ul and the domain graph A. Then
we feed zul

along with xl into a neural network to obtain the final encoding el. Formally we have
el = E(xl, ul,A) = f(xl, zul

), (2)
where f(·, ·) is a trainable neural network.

In theory, any embeddings for node (domain) indices should work equally well so long as they are
distinct from one another (thus forming a bijection to the set of domains [N ]). Here we pre-train
the embeddings by a reconstruction loss for simplicity, and our intuition is that good embeddings of
nodes should inform us of (thus reconstruct) the graph structure. Suppose the nodes indices i and
j are sampled independently and identically from the marginal domain index distribution p(u); the
reconstruction loss is written as

Lg = Ei,j∼p(u)[−Aij log σ(z
>
i zj)− (1−Aij) log(1− σ(z>i zj))],

where σ(x) = 1
1+e−x is the sigmoid function. Note that in general we could use any node embedding

methods (Grover & Leskovec, 2016; Tang et al., 2015; Kipf & Welling, 2016b), but this is not the
focus of this paper. For fair comparison, we use exactly the same encoder, i.e., E(x, u,A), for all the
methods in the experiments of Sec. 5.

Graph Discriminator. The discriminator loss Ld(D,E) in Eqn. 1 is defined as

Ld(D,E) ,E(x1,u1),(x2,u2)[h(x1, u1,x2, u2)], (3)

h(x1, u1,x2, u2) =−Au1,u2 log σ(ẑ
>
1 ẑ2)− (1−Au1,u2) log(1− σ(ẑ>1 ẑ2),

where ẑ1 = D(E(x1, u1,A)), ẑ2 = D(E(x2, u2,A)) are the discriminator’s reconstructions of
node embeddings. The expectation E is taken over a pair of i.i.d. samples (x1, u1),(x2, u2) from
the joint data distribution p(x, u). The discriminator loss Ld(D,E) essentially quantifies how well
the reconstructed node embedding ẑ1, ẑ2 preserve the information of the original connections, or,
equivalently, A. We refer readers to the Appendix for detailed model architectures.

Due to the adversarial nature of how the discriminator D and the encoder E engage with the loss,
the discriminator D would aim to recover the domain graph via the adjacency structure (A), while
the encoder E would prevent the discriminator D from doing so. Intuitively, if the discriminator D
is powerful enough to uncover any information regarding the domain graph in the encoding el, the
optimal encoder E will have to remove all the information regarding graph-relational domains in the
encoding el, thus successfully adapting across graph-relational domains. We will formally elaborate
the above arguments further in the next section.

4 THEORY

In this section, we first provide theoretical guarantees that at equilibrium GRDA aligns domains
according to any given domain graph. Specifically, we analyze a game where the graph discriminator
D tries to reconstruct the domain graph while the (joint) encoderE tries to prevent such reconstruction.
To gain more insight on the encoding alignment, we then further discuss the implication of these
general theoretical results on GRDA’s global optimum using simple example graphs such as cliques,
stars, and chains. All proofs of lemma, theorem and corollary can be found in Appendix A.

4.1 ANALYSIS FOR GRDA

For simplicity, we first consider a game which only involves the joint encoder E and the graph
discriminator D with extension to the full game later. Specifically, we focus on following loss
function:

max
E

min
D

Ld(D,E), (4)

where Ld(D,E) is defined in Eqn. 3.

Lemma 4.1 below analyzes the optimal graph discriminator D given a fixed joint encoder E. In-
tuitively, it states that given two encodings e and e′, the optimal D will output the conditional
expectation of Aij over all possible combinations of domain pairs (i, j) sampled from p(u|e) and
p(u|e′).
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Lemma 4.1 (Optimal Discriminator for GRDA). For E fixed, the optimal D satisfies following
equation,

σ(D(e)>D(e′)) = Ei∼p(u|e),j∼p(u|e′)[Aij ],

where e and e′ are from the encoding space.
Theorem 4.1 (Global Optimum for GRDA with General Domain Graphs). Given an adjacency
matrix A, the total loss in Eqn. 4 has a tight upper bound:

Ld(D,E) ≤ H(Ee,e′α(e, e
′)) = H(Ei,j [Aij ]),

where H denotes the entropy function, H(p) = −p log(p) − (1 − p) log(1 − p), and α(e, e′) =
Ei∼p(u|e),j∼p(u|e′)[Aij ]. Furthermore, the equality, i.e., the optimum, is achieved when

α(e, e′) = Ei,j [Aij ], for any e, e′,

or equivalently, Ei,j [Aij |e, e′] = Ei,j [Aij ], where (e, e′) is from the encoding space.

Essentially, Theorem 4.1 shows that if trained to the global optimum, GRDA aligns the domain
distribution p(u|e) for all locations in the embedding space such that α(ei, ej) is identical to the
constant, Eij [Aij ], for any pair (ei, ej).

We can directly apply Theorem 4.1 to evaluate the training process. During training, if the discrimi-
nator loss finally converges to the theoretical optimum H(Ei,j [Aij ]) (Figure 3), we would know that
our training succeeds.

An interesting property of GRDA is that uniform alignment is a solution for any domain graph, as
shown in Corollary 4.1 below.
Corollary 4.1. For GRDA, the global optimum of total loss Ld(D,E) is achieved if the encoding of
all domains (indexed by u) are perfectly (uniformly) aligned, i.e., e ⊥ u.
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Figure 3: Global Optimum of GRDA v.s.
Ld(D,E) during training process. The loss of
the discriminator finally converges to the theoret-
ical optimum H(Ei,j [Aij ]).

Note that replacing the inner product inside σ(·)
with other functions (e.g., L2 distance) does not
change Lemma 4.1 and Theorem 4.1, as long as
cross-entropy loss is used to consider both positive
and negative edges in the graph.

We can also analyze the full game as defined in
Eqn. 1 (see the Appendix for details).
Theorem 4.2. If the encoder E, the predictor F
and the discriminator D have enough capacity
and are trained to reach optimum, any global op-
timal encoder E∗ has the following properties:

H(y|E∗(x, u,A)) = H(y|x, u,A), (5)

where H(·|·) denotes the conditional entropy.

Theorem 4.2 implies that, at equilibrium, the op-
timal joint encoder E produces encodings that
preserve all the information about the label y con-
tained in the data x and the domain index u. There-
fore, the global optimum of the two-player game between E and D matches the global optimum of
the three-play game between E, D, and F .

4.2 IMPLICATION OF GRDA’S GLOBAL OPTIMUM

Sec. 4.1 analyzes the global optimum of GRDA in its general form. In this section, we further discuss
the implication of these general theoretical results using simple example graphs such as cliques, stars,
and chains; we show that GRDA’s global optimum actually translates to domain-graph-informed
constraints on the embedding distributions of every domain.

With N domains in total, we assume each domain contains the same amount of data, i.e. p(u =
1) = · · · = p(u = N) = N−1. We further use pi(e) as a shorthand for p(e|u = i), the embedding
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Figure 4: Example domain graphs as discussed
in Sec. 4.2. Left: Cliques. Middle: Star graphs.
Right: Chain graphs.

p1(𝒆) p2(𝒆) p3(𝒆)

𝒆1 𝒆1 𝒆1

Domain Graph:

Encoding
Distributions:

Figure 5: Possible encoding distributions of three
domains forming a chain graph of three nodes at
equilibrium. We can see that for any encoding,
e.g., e1, we have p2(e1) = 1

2 (p1(e1) + p3(e1)).

distribution in domain i. With our assumption, the marginal embedding distribution is the average em-
bedding distribution over all domains, i.e., p(e) = N−1

∑N
i=1 pi(e). We define βi(e) = pi(e)/p(e),

as the ratio between domain-specific embedding distribution and the marginal embedding distribution.

Cliques (Fully Connected Graphs). In this example, the N domains in our domain graph are fully
connected, i.e. there is an edge between any pair of domains, as shown in Fig. 4 (left).
Corollary 4.2 (Cliques). In a clique, the GRDA optimum is achieved if and only if the embedding
distributions of all the domains are the same, i.e. p1(e) = · · · = pN (e) = p(e),∀e.

Interestingly, Corollary 4.2 shows that at equilibrium, GRDA recovers the uniform alignment of
classic domain adaptation methods when the domain graph is a clique. Among all connected graphs
with N nodes (domains), a clique has the largest number of edges, and therefore GRDA enforces the
least flexible alignment, i.e., uniform alignment, when the domain graph is a clique.

Star Graphs. In this example, we haveN domains forming a star graph (as shown in Fig. 4 (middle)),
where domain 1 is the center of the star while all other domains are connected to domain 1.
Corollary 4.3 (Star Graphs). In a star graph, the GRDA optimum is achieved if and only if
the embedding distribution of the center domain is the average of all peripheral domains, i.e.
p1(e) =

1
N−1

∑N
i=2 pi(e),∀e.

Corollary 4.3 shows that compared to cliques, GRDA enforces a much more flexible alignment when
the domain graph is a star graph. It only requires the embedding distribution of the center domain to
be the average of all peripheral domains. In this case, peripheral domains can have very different
embedding distributions.

Chain Graphs. In this example, we consider the case where N domains form a chain, i.e., domain i
is only connected to domain i− 1 (unless i = 1) and domain i+1 (unless i = N ), as shown in Fig. 4
(right).
Corollary 4.4 (Chain Graphs). Let pi(e) = p(e|u = i) and the average encoding distribution
p(e) = N−1

∑N
i=1 p(e|u = i). In a chain graph, the GRDA optimum is achieved if and only if ∀e, e′

N−1∑
i=1

pi(e)pi+1(e
′) + pi(e

′)pi+1(e)

p(e)p(e′)
= 2(N − 1).

Corollary 4.4 shows that in a chain graph of N domains, direct interactions only exist in domain
pairs(i, i− 1) (i.e., consecutive domains in the chain).

Chain of Three Nodes. To gain more insight, below we analyze a special case of chain graphs with
three domains, i.e., a chain graph of three nodes as the domain graph, where domain 2 is connected
to both domain 1 and domain 3. Note that this is also a special case of star graphs, with one center
node and two peripheral nodes. By Corollary 4.3 or Corollary 4.4, we can prove the following
Proposition 4.1.
Proposition 4.1 (Chain of Three Nodes). In this length three chain graph, the GRDA optimum
is achieved if and only if the embedding distribution of the middle domain is the average of the
embedding distributions of the domains on the two sides, i.e. p2(e) = 1

2 (p1(e) + p3(e)),∀e.

Proposition 4.1 states that, for a chain graph of 3 domains, GRDA relaxes classical DA requiring per-
fect alignment of embedding distributions, and instead only requires linear interpolation/extrapolation
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Figure 6: Domain graphs for the two adaptation tasks on TPT-48, with black nodes indicating source
domains and white nodes indicating target domains. Left: Adaptation from the 24 states in the east
to the 24 states in the west. Right: Adaptation from the 24 states in the north to the 24 states in the
south.

relations among embedding distributions. Fig. 5 shows a simple example. If domain 2 (the center
domain) is the target domain while others are source domains, GRDA interpolates the embedding
distribution of domain 2 according to domain 1 and 3. Similarly, if domain 3 (the peripheral domain
on the right) is the target domain while others are source domains, GRDA extrapolates the embedding
distribution of domain 3 according to domain 1 and 2.

The theorems above show that GRDA can enforce different levels of alignment, from perfect alignment
to linearly interpolating/extrapolating embedding distributions, according to the domain graph.

5 EXPERIMENTS

In this section, we compare GRDA with existing methods on both synthetic and real-world datasets.

5.1 DATASETS

DG-15. We make a synthetic binary classification dataset with 15 domains, which we call DG-15.
Each domain contains 100 data points. To ensure adjacent domains have similar decision boundaries,
we generate DG-15 as follows. In each domain i, we first randomly generate a 2-dimensional unit
vector [ai, bi] as the node embedding for each domain i and denote the angle of the unit vector
as ωi = arcsin( biai ). We then randomly generate positive data (x, 1, i) and negative data (x, 0, i)

from two different 2-dimensional Gaussian distributions, N (µi,1, I) and N (µi,0, I), respectively,
where µi,1 = [ωi

π ai,
ωi

π bi] and µi,0 = [−ωi

π ai,−
ωi

π bi]. To construct the domain graph, we sample
Aij ∼ Bern(0.5aiaj+0.5bibj+0.5), where Bern(θ) is a Bernoulli distribution with the parameter
θ. With such a generation process, domains with similar node embeddings [ai, bi] will (1) have
similar µi,1 and µi,0, indicating similar decision boundaries, and (2) are more likely to have an edge
in the domain graph. We select 6 connected domains as the source domains and use others as target
domains, as shown in Fig. 7.

DG-60. We make another synthetic dataset with the same procedure as DG-15, except that it contains
60 domains, with 6,000 data points in total. The dataset is called DG-60. We again select 6 connected
domains as the source domains, with others as target domains.

TPT-48. TPT-48 contains the monthly average temperature for the 48 contiguous states in the US from
2008 to 2019. The raw data are from the National Oceanic and Atmospheric Administration’s Climate
Divisional Database (nClimDiv) and Gridded 5km GHCN-Daily Temperature and Precipitation
Dataset (nClimGrid) (Vose et al., 2014). We use the data processed by Washington Post (WP, 2020).

Here we focus on the regression task to predict the next 6 months’ temperature based on previous
first 6 months’ temperature. We consider two DA tasks as illustrated in Fig. 6:

• E (24)→W (24): Adapting models from the 24 states in the east to the 24 states in the west.

• N (24)→ S (24): Adapting models from the 24 states in the north to the 24 states in the south.

We define target domains one hop away from the closest source domain as Level-1 Target Domains,
those two hops away as Level-2 Target Domains, and those more than two hops away as Level-3
Target Domains, as shown in Fig. 6.
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GRDA Acc: 84.44%

Source-Only Acc: 39.77%
Acc

100%

0%

DANN Acc: 72.11% ADDA Acc: 69.00%

CDANN Acc: 72.44%MDD Acc: 51.33%

Source domain

Data

Figure 7: Detailed results on DG-15 with 15 domains. On the left is the domain graph for DG-15.
We use the 6 domains in the dashed box as source domains. On the right are the accuracy of various
DA methods for each domain, where the spectrum from ‘red’ to ‘blue’ indicates accuracy from 100%
to 0% (best viewed in color).

Table 1: Accuracy (%) on DG-15 and DG-60.

Method Source-Only DANN ADDA CDANN MDD GRDA (Ours)

DG-15 39.77 72.11 69.00 72.44 51.33 84.44
DG-60 38.39 61.98 32.17 61.70 66.24 96.76

CompCars. Comprehensive Cars (CompCars) (Yang et al., 2015) contains 136,726 images of cars
with labels including car types, viewpoints, and years of manufacture (YOMs). Our task is to predict
the car type based on the image, with each view point and each YOM as a seperate domain. We
choose a subset of CompCars with 4 car types (MPV, SUV, sedan and hatchback), 5 viewpoints (front
(F), rear (R), side (S), front-side (FS), and rear-side (RS)), ranging from 2009 to 2014. It has 30
domains (5 viewpoints × 6 YOMs) and 24,151 images in all. We choose cars with front view and
being produced in 2009 as a source domain, and the others as targets domains. We consider two
domains connected if either their viewpoints or YOMs are identical/nearby. For example, Domain A
and B are connected if their viewpoints are ’F’ and ’FS’, respectively.

5.2 BASELINES AND IMPLEMENTATION

We compared our proposed GRDA with state-of-the-art DA methods, including Domain Adversarial
Neural Networks (DANN) (Ganin et al., 2016), Adversarial Discriminative Domain Adaptation
(ADDA) (Tzeng et al., 2017), Conditional Domain Adaptation Neural Networks (CDANN) (Zhao
et al., 2017), and Margin Disparity Discrepancy (MDD) (Zhang et al., 2019). We also report results
when the model trained in the source domains is directly tested in the target domains (Source-Only).
Besides the baselines above, we formulated the DA task as a semi-supervised learning (SSL) problem
and adapted two variants of graph neural networks (Kipf & Welling, 2016a; Zhou et al., 2020). We
prove that the first variant cannot work (Theorem C.1), and our experiments show that the second
variant performs worse than most domain adaptation baselines. For completeness, we also report the
result of SENTRY, a recent entropy-based method, on our tasks (see the Appendix for details). All
the algorithms are implemented in PyTorch (Paszke et al., 2019) and the balancing hyperparameter
λd is chosen from 0.1 to 1 (see the Appendix for more details on training). Note that since MDD
is originally designed for classification tasks, we replace its cross-entropy loss with an L2 loss so
that it could work in the regression tasks on TPT-48. For fair comparison, all the baselines use x, the
domain index u, and the node embedding z as inputs to the encoder (as mentioned in Eqn. 2).

5.3 RESULTS

DG-15 and DG-60. We show the accuracy of the compared methods in Table 10. Based on the table,
it is clear that training on the source domains without adaptation (Source-Only) leads to even worse
results than random guess (50% accuracy), simply due to overfitting the source domains under domain
shifts. While existing DA methods such as DANN and MDD may outperform Source-Only in most
of the cases, their improvements over random guess are limited. In some cases, they barely improve
upon ‘random prediction’ (e.g., MDD on DG-15) or even underperform Source-Only (e.g., ADDA

8
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Table 2: MSE for various DA methods for both tasks E (24)→ W (24) and N (24)→ S (24) on
TPT-48. We report the average MSE of all domains as well as more detailed average MSE of Level-1,
Level-2, Level-3 target domains, respectively (see Fig. 6). Note that there is only one single DA
model per column. We mark the best result with bold face and the second best results with underline.

Task Domain Source-Only DANN ADDA CDANN MDD GRDA (Ours)

E (24)→W (24)

Average of 8 Level-1 Domains 1.852 3.942 2.449 0.902 0.993 0.936
Average of 7 Level-2 Domains 1.992 2.186 2.401 2.335 1.383 1.025
Average of 9 Level-3 Domains 1.942 1.939 1.966 3.002 1.603 1.830

Average of All 24 Domains 1.926 2.679 2.254 2.108 1.335 1.297

N (24)→S (24)

Average of 10 Level-1 Domains 2.255 1.851 2.172 0.924 1.159 0.754
Average of 6 Level-2 Domains 1.900 1.964 2.600 6.434 2.087 0.882
Average of 8 Level-3 Domains 3.032 4.015 3.462 1.882 3.149 1.889

Average of All 24 Domains 2.426 2.600 2.709 2.621 2.054 1.165

Table 3: Accuracy (%) on CompCars (4-Way Classification).

Method Source-Only DANN ADDA CDANN MDD GRDA (Ours)

CompCars 46.5 50.2 46.1 48.2 49.0 51.0

on DG-60). In contrast, GRDA can successfully perform adaptation by aligning data according to the
domain graph and achieve much higher accuracy.

Fig. 7 shows the accuracy of different DA methods on DG-15 for each domain, where the spectrum
from ‘red’ to ‘blue’ indicates accuracy from 100% to 0%. Without domain adaptation, Source-Only
only achieves high accuracy for the domains immediately adjacent to the source domains, while its
accuracy drops dramatically when the target domain is far away from the source domains, achieving
nearly 0% accuracy in the three most distant domains. While existing DA methods may improve the
overall accuracy, all of them are worse than random guess (50% accuracy) in at least one domain.
Notably, MDD achieves accuracy of only 50% in almost all the target domains. In contrast, the
accuracy of GRDA never falls below 50% for every domain.

TPT-48. Table 2 shows the mean square error (MSE) in both adaptation tasks for different DA
methods on the dataset TPT-48. In terms of average performance of all the target domains, we can
see that DANN, ADDA and CDANN achieve negative performance boost in both E (24)→W (24)
and N (24)→ S (24), highlighting the difficulty of performing DA across graph-relational domains.
MDD can achieve stable improvement upon Source-Only, and our proposed GRDA can further
improve the performance, achieving the lowest average MSE in both tasks.

Besides average MSE of all the target domains, we also report more fine-grained results to see how
the error distributes across different target domains. Specifically, Table 2 shows the average MSE of
Level-1, Level-2, and Level-3 target domains (see Fig. 6 for an illustration) for both tasks. These
results show GRDA can consistently achieve low MSE across all the levels of target domains.

CompCars. Table 3 shows the average classification accuracy on CompCars for different DA
methods. We found that all the DA methods, except ADDA, outperforms Source Only. Our proposed
method GRDA takes full advantage of the domain graph and achieves the most significant accuracy
improvement (9.68%) (see the Appendix for more detailed results).

6 CONCLUSION

In this paper, we identify the problem of adaptation across graph-relational domains, i.e., domains
with adjacency described by a domain graph, and propose a general DA method to address such a
problem. We further provide theoretical analysis showing that our method recover uniform alignment
in classic DA methods, and achieve non-trivial alignment for other types of graphs, thereby naturally
incorporating domain information represented by domain graphs. Empirical results demonstrate our
method’s superiority over state-of-the-art methods. Future work could include fusing automatic graph
discovery with our method, as well as extending our method to multiple or heterogeneous domain
graphs with real-value weights. It would also be interesting to consider other applications such as
recommender systems and natural language processing.
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A PROOF

Lemma 4.1 (Optimal Discriminator for GRDA). For E fixed, the optimal D satisfies following
equation,

σ(D(e)>D(e′)) = Ei∼p(u|e),j∼p(u|e′)[Aij ],

where e and e′ are from the encoding space.

Proof. With E fixed, the optimal D is

argmin
D

E(x,j),(x′,j)∼p(x,u)[Ld(D(E(x, u,A))>D(E(x′, zj)),Aij)]

= argmin
D

E(e,j),(e′,j)∼p(e,u)[Ld(D(e)>D(e′),Aij)]

= argmin
D

E(e,j),(e′,j)∼p(e,u)[Aij log(σ(D(e)>D(e′))) + (1−Aij) log(1− σ(D(e)>D(e′)))]

= argmin
D

Ee,e′∼p(e)Ei∼p(u|e),j∼p(u|e′)[Aij log(σ(D(e)>D(e′))) + (1−Aij) log(1− σ(D(e)>D(e′)))]

= argmin
D

Ee,e′∼p(e)[α(e, e
′) log(σ(D(e)>D(e′))) + (1− α(e, e′)) log(1− σ(D(e)>D(e′)))]

where α(e, e′) = Ei∼p(u|e),j∼p(u|e′)[Aij ]. Notice that the global minimum is achieved if for any
(e, e′), σ(D(e)>D(e′)) minimize the negative binary cross entropy α(e, e′) log(σ(D(e)>D(e′)))+
(1− α(e, e′)) log(1− σ(D(e)>D(e′))), or equivalently, σ(D(e)>D(e′)) = α(e, e′).

Here we will use the chain of 3 nodes as a simple explanatory example: domain 2 is connected
to both domain 1 and domain 3. Suppose data are mapped to either of the 2 encodings, e = 0
and e = 1. The probability of domain index u conditioned on encoding e (i.e., p(u|e)) is given in
Table 4. The discriminator will output the reconstruction result based on what encoding it obtains.
For example, suppose we have two data points, x1 and x2, with their encodings e1 = 0 and e2 = 1.
Their corresponding domain indices u1 and u2 given e1 and e2 follow the distributions p(u|e = 0)
and p(u|e = 1), respectively. Note that here e1 and e2 correspond to e and e′ in Lemma 4.1,
while u1 and u2 correspond to i and j in Lemma 4.1. Based on such a realization, we can obtain
Eu1∼p(u|e=0),u2∼p(u|e=1)[Au1u2

] = 0.38 (assuming no self-loop in the domain adjacency graph).
To minimize the loss, the optimal discriminator will then try to output σ(D(e1)

>D(e2)) = 0.38.

Theorem 4.1 (Global Optimum for GRDA). Given an adjacency matrix A, the total loss Ld(D,E)
has a tight upper bound:

Ld(D,E) ≤ H(Ee,e′α(e, e
′)) = H(Ei,j [Aij ]),

where H denotes the entropy function, H(p) = −p log(p) − (1 − p) log(1 − p), and α(e, e′) =
Ei∼p(u|e),j∼p(u|e′)[Aij ]. Furthermore, the equality, i.e., the optimum, is achieved when

α(e, e′) = Ei,j [Aij ], for any e, e′,

or equivalently, Ei,j [Aij |e, e′] = Ei,j [Aij ], where (e, e′) is from the encoding space.
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Proof. Denoting the discriminator output of the encoding e as de, i.e, de = D(e), we have

Ld(D,E) = E(e,i),(e′,j)∼pE(e,u)[−Aij log(σ(d
>
e de′))− (1−Aij) log(1− σ(d>e de′))]

= E(e,i),(e′,j)[−Aij log(α(e, e
′))− (1−Aij) log(1− α(e, e′))] (6)

= Ee,e′ [−α(e, e′) log(α(e, e′))− (1− α(e, e′)) log(1− α(e, e′))] (7)

= Ee,e′H(α(e, e′)) (8)

≤ H(Ee,e′α(e, e
′)) = H(Ei,j [Aij ]), (9)

Eqn. 6 and Eqn. 7 are due to the optimal discriminator, i.e., Lemma 4.1. The inequality, i.e., Eqn. 9, is
due to the concavity of H and Jensen’s inequality. The optimum achieved when α(e, e′) = Ei,j [Aij ]
for any e, e′, i.e. Ei,j [Aij |e, e′] = Ei,j [Aij ].

Corollary 4.1. For GRDA, the global optimum of total loss Ld(D,E) is achieved if the encoding of
all domains (indexed by u) are perfectly (uniformly) aligned, i.e., e ⊥ u.

Proof. From Theorem 4.1, we have:

Ld(D,E) = Ee,e′H(α(e, e′))

= Ee,e′H(Ei∼p(u|e),j∼p(u|e′)Aij)

= Ee,e′H(Ei∼p(u),j∼p(u)Aij) (10)

= H(Ei∼p(u),j∼p(u)[Aij ])

= H(Ei,j [Aij ]),

which achieves the global optimum. Note that Eqn. 10 is due to the perfect alignment condition, i.e.,
p(u|e) = p(u).

Lemma (Optimal Predictor). Given the encoder E, the prediction loss Vp(F,E) ,
Lp(F (E(x, u)), y) ≥ H(y|E(x, u,A)) where H(·) is the entropy. The optimal predictor F ∗ that
minimizes the prediction loss is

F ∗(E(x, u,A)) = Py(·|E(x, u,A)).

Table 4: Values of p(u|e) for different e and u.

u e = 0 e = 1

1 0.1 0.7
2 0.3 0.2
3 0.6 0.1

Assuming the predictor F and the discrimi-
nator D are trained to achieve their optimal
losses, by Lemma , the three-player game,
min
E,F

max
D

Lf (E,F )−Ld(D,E), can be rewritten

as following training procedure of the encoder E,

min
E

C(E) , H(y|E(x, u,A))− λdCd(E),

(11)

where Cd(E) , minD Ld(E,D) = Ld(E,D
∗
E).

Theorem 4.2. Assuming u ⊥⊥ y, if the encoder E, the predictor F and the discriminator D have
enough capacity and are trained to reach optimum, any global optimal encoder E∗ has the following
properties:

H(y|E∗(x, u,A)) = H(y|x, u,A), (12)

Cd(E
∗) = max

E′
Cd(E

′), (13)

where H(·|·) denotes the conditional entropy.

Proof. Since E(x, u,A) is a function of x, u, and A, by the data processing inequality, we
have H(y|E(x, u,A)) ≥ H(y|x, u,A). Hence, C(E) = H(y|E(x, u,A)) − λdCd(E) ≥
H(y|x, u,A)− λdmaxE′ Cd(E

′). The equality holds if and only if H(y|x, u) = H(y|E(x, u,A))
and Cd(E) = maxE′ Cd(E

′). Therefore, we only need to prove that the optimal value of C(E) is
equal to H(y|x, u,A) − λdmaxE′ Cd(E

′) in order to prove that any global encoder E∗ satisfies
both Eqn. 12 and Eqn. 13.
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We show that C(E) can achieve H(y|x, u,A) − λdmaxE′ Cd(E
′) by considering the following

encoder E0(x, u,A) = Py(·|x, u,A). It can be examined that H(y|E0(x, u,A)) = H(y|x, u,A)
and E0(x, u,A) ⊥⊥ u which leads to Cd(E0) = maxE′ Cd(E

′) using Corollary 4.1, completing the
proof.

Note that u ⊥⊥ y is a weak assumption because it can be true even if both y 6⊥⊥ u|x,A and y 6⊥⊥ x|u,A
are true.

Corollary 4.2 (Cliques). In a clique, the GRDA optimum is achieved if and only if the embedding
distributions of all the domains are the same, i.e. p1(e) = · · · = pN (e) = p(e),∀e.

Proof. We start from Theorem 4.1. For any embedding pair (e, e′), we have N(N−1)
N2 = E[Aij ] =

E[Aij |e, e′] = 1
N2

∑
i<j(βi(e)βj(e

′) + βi(e
′)βj(e)). First, consider the case of e′ = e, which

leads to N(N − 1) =
∑
i<j 2βi(e)βj(e). Since

∑
i βi(e) = N , we have (

∑
i βi(e))

2 = N2. By
the subtraction between two equations, we have

∑
i βi(e)

2 = (
∑
i βi(e))

2 −
∑
i<j 2βi(e)βj(e) =

N2 −N(N − 1) = N . We can further have that
∑
i<j(βi(e)− βj(e))2 = (N − 1)(

∑
i βi(e)

2)−∑
i<j 2βi(e)βj(e) = (N − 1)N −N(N − 1) = 0, leading to βi(e) = βj(e),∀i 6= j. Considering∑N
i=1 βi(e) = N , we have βi(e) = 1,∀i. It is easily to see that the solution also satisfies the case of

e 6= e′.

Corollary 4.3 (Star Graphs). In a star graph, the GRDA optimum is achieved if and only if
the embedding distribution of the center domain is the average of all peripheral domains, i.e.
p1(e) =

1
N−1

∑N
i=2 pi(e),∀e.

Proof. Similarly, we start from Theorem 4.1. For any embedding pair (e, e′), we have 2(N−1)
N2 =

E[Aij ] = E[Aij |e, e′] = 1
N2

∑N
i=2(β1(e)βi(e

′) + β1(e
′)βi(e)). Leveraging the fact that∑N

i=1 βi(e) = N , we have 2(N−1) = β1(e)(N−β1(e′))+β1(e′)(N−β1(e)). Let’s first consider
the case of e′ = e, we have N − 1 = β1(e)(N − β1(e)) which means that, for any e, β1(e) is either
1 or N − 1. Now consider the case of e′ 6= e with the constraint that β1(e), β1(e′) ∈ {1, N − 1};
the solutions are β1(e) = β1(e

′) = 1 or β1(e) = β1(e
′) = N − 1, for any pair (e, e′). Clearly it is

not possible that α(e) = N − 1,∀e, since it violates the equality Ee[1|u = 1] = Ee[1]. Therefore
the only solution is α(e) = 1,∀e, which implies that p1(e) = 1

N−1
∑N
i=2 pi(e),∀e.

Corollary 4.4 (Chain Graphs). Let pi(e) = p(e|u = i) and the average encoding distribution
p(e) = N−1

∑N
i=1 p(e|u = i). In a chain graph, the GRDA optimum is achieved if and only if ∀e, e′

N−1∑
i=1

pi(e)pi+1(e
′) + pi(e

′)pi+1(e)

p(e)p(e′)
= 2(N − 1).

Proof. By Theorem 4.1, ∀e, e′

2(N − 1) = N2E[Aij |e, e′] = N2
N∑
i=1

N∑
j=1

Aijp(u = i|e)p(u = j|e′)

= N2
N∑
i=1

N∑
j=1

Aij
pi(e)p(u = i)pj(e

′)p(u = j)

p(e)p(e′)
=

N−1∑
i=1

pi(e)pi+1(e
′) + pi(e

′)pi+1(e)

p(e)p(e′)
,

which completes the proof.

Proposition 4.1 (Chain of Three Nodes). In this length three chain graph, the GRDA optimum
is achieved if and only if the embedding distribution of the middle domain is the average of the
embedding distributions of the domains on the two sides, i.e. p2(e) = 1

2 (p1(e) + p3(e)),∀e.

Proof. Since a chain graph of three nodes is also a star graph, we have that p2(e) = 1
2 (p1(e) +

p3(e)),∀e.
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Table 5: Accuracy (%) on CompCars with Adagraph(Mancini et al., 2019) as backbone encoders.
In this experiment, we used the network proposed by Adagraph and trained it with adversarial
domain adaptation methods. We mark the best result with bold face and the second best results with
underline.

Method Ada Only Ada + DANN Ada + ADDA Ada + CDANN Ada + MDD Ada + GRDA (Ours)

CompCars 55.05 ± 0.87 55.87 ± 1.22 55.12 ± 1.28 55.82 ± 1.16 56.63 ± 0.64 56.56 ± 0.38

B ADAGRAPH + ADVERSARIAL LEARNING METHODS

Tabel 5 shows the results when using Adagraph(Mancini et al., 2019) as the backbone encoders for
different adversarial methods on the CompCars image classification task. From the table, we could
see that adversarial methods consistently improve the adaptation performance, which demonstrates
the orthogonality of Adagraph and adversarial methods. In this experiment, our method GRDA
achieves high accuracy and stability (the lowest standard deviation among all adversarial methods).

C SEMI-SUPERVISED METHODS

At first blush, our problem setting may look similar to semi-supervised learning (SSL) on graphs,
which can be handled by graph neural networks (GNN), e.g., GCN (Kipf & Welling, 2016a) and
GAT (Velivcković et al., 2017). However, unsupervised domain adaptation (UDA) problem and SSL
are very different from various perspectives.

First, in semi-supervised learning (SSL) problems, the focus is typically on the whole predictor and
it often dictates smoothness of the predictor w.r.t. the graph. In contrast, graph-relational domain
alignment (GRDA) focuses on the embeddings (latent representations), and allows a much more
flexible predictor. For example, the predictor in GRDA does not have to be smooth w.r.t. the graph.

Second, these two problems have very different assumptions. Specifically, UDA often assumes
domain shift and tries to align data from different domains before learning a predictor. In contrast,
SSL does not assume domain shift and directly uses unlabeled data to improve the decision boundary.
Therefore, when domain shift exists, formulating the problem as UDA often leads to better accuracy.

Both our theoretical analysis and empirical results on DG-15 as well as DG-60 show that typical
GNN-SSL methods do not work. Specifically, in this section we discuss 2 variants of GNN-SSL
methods adapted for our setting:

• Variant 1 (GNN-SSL-V1): We treat each sample as a node and connect two samples if
their domains are the same or immediately adjacent. We then perform node classification on
samples.

• Variant 2 (GNN-SSL-V2): We treat each domain as a node and treat each sample as a node
as well. Domain nodes connect to adjacent domain nodes while sample nodes only connect
to domain nodes that they belong to. We then perform node classification on samples.

For Variant 1, if we use Graph Convolutional Network (GCN) as our GNN, we can prove the following
theorem:

Theorem C.1 (Negative Results on Variant 1). For Variant 1, every node (data point) from the
same domain will have the same node embedding after applying GCN.

Proof. For GCN, the l-th neural network layer will perform the operation h
(l+1)
i = σ(b(l) +∑

j∈N (i)
1
cji
h
(l)
j W

(l)), where N (i) contains the neighbours of node i, cij =
√
|N (j)|

√
|N (i)|,

and σ is an activation function. h(l)i is the output of the (l− 1)-th graph convolution layer (h(0)i is the
node feature). W (l) and b(l) denote weight and bias of the l-th layer, respectively (Kipf & Welling,
2016a).
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Table 6: Accuracy (%) on DG-15 and DG-60.

Method Source-Only GNN-SSL-V1 GNN-SSL-V2 DANN ADDA CDANN MDD GRDA (Ours)
DG-15 39.77 50.00 60.15 72.11 69.00 72.44 51.33 84.44
DG-60 38.39 50.00 35.07 61.98 32.17 61.70 66.24 96.76

Table 7: Accuracy (%) on DG-15 and DG-60.

Method Source-Only SENTRY DANN ADDA CDANN MDD GRDA (Ours)

DG-15 39.77 43.67 72.11 69.00 72.44 51.33 84.44
DG-60 38.39 47.80 61.98 32.17 61.70 66.24 96.76

Table 8: Accuracy (%) on TPT-48.

Method Source-Only SENTRY DANN ADDA CDANN MDD GRDA (Ours)

E (24)→W (24) 1.926 2.73 2.679 2.254 2.108 1.335 1.297
N (24)→S (24) 2.426 9.44 2.600 2.709 2.621 2.054 1.165

Table 9: Accuracy (%) on CompCars (4-Way Classification).

Method Source-Only SENTRY DANN ADDA CDANN MDD GRDA (Ours)

CompCars 46.5 31.39 50.2 46.1 48.2 49.0 51.0

Based on the definition of this method, if data points k and m belong to the same domain, they will
have N (k) = N (m) = N (each node has a self loop). Therefore we have

h
(l+1)
k − h(l+1)

m = σ(
∑
j∈N

(
1

cjk
h
(l)
j −

1

cjm
h
(l)
j )W (l))

= σ(
∑
j∈N

(
1√

|N (j)|
√
|N (k)|

h
(l)
j −

1√
|N (j)|

√
|N (m)|

h
(l)
j )W (l)) = 0,

completing the proof.

Theorem C.1 indicates that if we use GCN, the data points in the same domain will obtain same
prediction result (because their node embeddings are the same). This explains the experiment results
in Table 6. Specifically, for binary classification tasks on DG-15 and DG-60, the number of positive
and negative samples are identical in each domain. The polarized prediction (samples in the same
domain are predicted as either all positive or all negative) leads to an accuracy of exactly 50%.
Although we use GCN as our graph neural network during derivation, we can easily generalize our
conclusion to other GNNs as long as they follow similar neighbour aggregation strategies.

For Variant 2 (GCN-SSL-V2), we conduct experiments on both DG-15 and DG-60 as well. As shown
in the Table 6, GCN-SSL-V2 methods perform worse than most domain adaptation baselines on
DG-15, and do not even outperform Souce-Only on DG-60.

D ENTROPY-BASED DOMAIN ADAPTATION METHODS

For completeness, we include SENTRY(Prabhu et al., 2021), a recent entropy-based method as a
baseline. Essentially, entropy-based methods perform self-training by minimizing the conditional
entropy of model predictions, making the predictions more confident on the target domain. Naturally
such a training strategy can only work on single-source single-target adaptation. To adapt SENTRY
to our tasks, we combine all the data in multiple source domains into a single source domain, and
similarly for multiple target domains. On DG-15 and DG-60 (Table 7), SENTRY only outperforms
Source-Only; on TPT-48 (Table 8) and CompCars (Table 9), SENTRY even underperforms Source-
Only, possibly due to the mixture of source data and target data.
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(a) GRDA (b) DANN

Figure 8: Visualization of the encodings of data produced on DG-15.

Table 10: Accuracy of GRDA and DANN on DG-15.

# Source Domains 1 2 4 6 8

GRDA 64.7 74.1 81.5 84.4 100.0
DANN 42.1 44.6 33.5 72.11 88.7

E VISUALIZATION OF ENCODINGS

We also visualize the encodings of data produced on DG-15 here. All the encodings are reduced to 2
dimensions by TSNE.

Figure 9(a) shows the domain graph for DG-15. To showcase GRDA’s ability to align encodings
according to the domain graph, Figure 8(a) plots the encodings of domains 0, 1, 7, and 9 produced by
GRDA. We can see the encodings from adjacent domains (i.e., domains 9, 7, and 1) align with each
other, while the encodings from distant domains (i.e., domains 0 and 9) do not align with each other.
This demonstrates that our model successfully relaxes uniform alignment according to the domain
graph.

Figure 8(b) shows the encodings of DANN. We can see that although domain 0 and 9 are distant,
they still align with each other, showing that classical domain adaptation methods lack the flexibility
of alignment compared with GRDA.

F DATASET VISUALIZATION

Figure 9(a) and 9(b) show the angle ωi = arcsin( biai ) of each domain for DG-15 and DG-60 (the
angle of each ground-truth boundary is ωi). Figure 10 visualizes a part of the TPT-48 dataset that is
used for training and testing.

G THE EFFECT OF SOURCE DOMAIN NUMBERS

Table 10 provides results on DG-15 for different numbers of source domains. It shows that the
accuracy increases with more source domains, and that GRDA still outperforms the baselines in all
cases.
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Figure 9: Visualization of the DG-15 (left) and DG-60 (right) datasets. We use ‘red’ and ‘blue’ to
roughly indicate positive and negative data points inside a domain. The boundaries between ‘red’ half
circles and ‘blue’ half circles show the direction of ground-truth decision boundaries in the datasets.
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Figure 10: Visualization for data of four of the states in TPT-48. Here we show the states’ monthly
average temperature in Fahrenheit.

H IMPLEMENTATION DETAILS

H.1 MODEL ARCHITECTURES

To ensure fair comparison, all algorithms use the same network architecture for the encoder and the
predictor. The encoder of each model consists of 3 components.

• A graph encoder embeds the domain graph A and the domain index ul to the domain
embeddings el.

• A raw data encoder embeds the data xl into data embeddings hl.

• A joint encoder then takes as input both el and hl and produces the final embeddings.

For DG-15, DG-60 and TPT-48, the raw data encoder contains 3 fully connected (FC) layers, and
the predictor contains 3 FC layers, both with ReLU as activation functions. For CompCars, we use
AlexNet (Krizhevsky et al., 2012) as the raw data encoder. All joint encoders contain 2 FC layers.

The discriminators of different algorithms all have 6 FC layers, with slight differences on the output
dimension. GRDA’s discriminator produces a k-dimensional node (domain) embedding.
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GRDA Acc: 96.76%

Source-Only Acc: 38.39%Acc

100%

0%

DANN Acc: 61.98% ADDA Acc: 32.17%

CDANN Acc: 61.70%MDD Acc: 66.24%

Source domain

Data

Figure 11: Detailed results on DG-60 with 60 domains. On the left is the domain graph for DG-60.
We use the 6 domains in the dashed box as source domains. On the right is the accuracy of various
DA methods for each domain, where the spectrum from ‘red’ to ‘blue’ indicates accuracy from 100%
to 0% (best viewed in color).

H.2 OTHER HYPERPARAMETERS

For experiments on all 4 datasets, we choose k = 2. We use a mixture policy for sampling nodes
(domains) to train GRDA’s discriminator. One method is to randomly sample several nodes, and
another is to pick the nodes from randomly chosen connected sub-graphs. We pick one of the policies
randomly in each iteration and calculate the loss of each forward pass. The models are trained using
the Adam (Kingma & Ba, 2015) optimizer with learning rates ranging from 1× 10−5 to 1× 10−4,
and λd ranging from 0.1 to 1.For each adaptation task, the input data is normalized by its mean and
variance. We run all our experiments on a Tesla V100 GPU using AWS SageMaker (Liberty et al.,
2020).

H.3 TRAINING PROCESS

We perform the standard gradient-based alternating optimization for minimax games (e.g., DANNs
and GANs); we iteratively perform the following 2 steps: (a) optimizing discriminator D with the
encoderE and predictor F fixed, and (b) optimizing encoderE and predictor F with the discriminator
D fixed. Specifically:

For (a), we first use the encoder mentioned above to produce the encoding and then use the loss
function in Equation (3) of the main paper to train the discriminator D. This loss function quantifies
whether the node embedding reproduced by D preserves domain connection information in A.

For (b), we fix the discriminator D and minimize the predictor loss plus the negation of the discrim-
inator loss (i.e., Lf (E,F ) − λdLd(D,E)) to train the encoder E and the predictor F . This loss
function enables the encoder to preserve useful features for prediction while removing domain-related
information in the encoding to align different domains in the encoding space.

We perform these 2 steps iteratively until convergence.

I DETAILED RESULTS FOR EACH DOMAIN ON DG-60 AND CompCars

Figure 11 shows the detailed results on DG-60. It shows that GRDA significantly outperforms
all baselines. We also include the detailed results on CompCars (Figure 12), where GRDA also
outperforms all the other methods.
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GRDA Acc: 51.0%

Source-Only Acc: 46.5%Acc
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Figure 12: Detailed results on CompCars with 30 domains. On the left is the domain graph for
CompCars. We use the domain in the dashed box as the source domain. On the right is the accuracy
of various DA methods for each domain, where the spectrum from ‘red’ to ‘blue’ indicates accuracy
from 65% to 30% (best viewed in color).
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