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ABSTRACT

Video autoregressive generation (VideoAR) sequentially predicts future frames
conditioned on history frames. Despite the advance of recent diffusion-based
VideoAR, the role of conditioning signal—internal representations of history
frames—remains underexplored. Inspired by the success of strong condition
representations in text-conditioned generation, we investigate: Can better inter-
nal representations of history frames improve VideoAR performance? Through
systematic analysis, we show that history representation quality positively cor-
relates with VideoAR, and that enhancing these representations provides gains
that cannot be achieved by refining future frames representations alone. Based on
these insights, we propose MiMo (Masked History Modeling), a novel framework
that seamlessly integrates representation learning into diffusion-based VideoAR.
MiMo applies masks to history frame tokens and trains the model to predict
masked tokens of current and future frames alongside the diffusion objective,
yielding predictive and robust history representations without relying on vision
foundation models (VFMs) or heavy architectural changes. Extensive experiments
demonstrate that MiMo achieves competitive performance in video prediction and
generation tasks while substantially improving training efficiency. Our work un-
derscores the importance of history representations in VideoAR.

1 INTRODUCTION

Video autoregressive generation (VideoAR) predicts future frames conditioned on previously ob-
served or generated frames (the history). The history-to-future generation process naturally aligns
with the causal structure of video dynamics and enables variable-length generation (Villegas et al.,
2022; Yin et al., 2025; Teng et al., 2025). However, early AR approaches (Yan et al., 2021; Hong
et al., 2022; Ge et al., 2022; Villegas et al., 2022) significantly underperformed non-AR methods
(Brooks et al., 2024; Ho et al., 2022; He et al., 2022b; Guo et al., 2024), primarily due to the dif-
ficulty of modeling the complex conditional distribution of future frames given history. Recently,
diffusion-based VideoAR (Kondratyuk et al., 2023; Chen et al., 2024a; Song et al., 2025; Gu et al.,
2025) has emerged as a promising solution, as it can approximate complex conditionals via iterative
denoising of future frames from random noise, conditioned on the history frames.

Despite this progress, the conditioning signal—the representation of the history frames—remains
underexplored. In text-to-image/video (T2I/T2V) and class-conditioned generation, stronger con-
dition representations consistently improve generation quality (Esser et al., 2024; Gao et al., 2024;
Kong et al., 2024; Hu et al., 2024b; Wu et al., 2025), which raises a natural question: Can better
internal representations of history enhance VideoAR performance? 1 Intuitively, if the model’s
internal representations of history effectively capture the semantics and dynamics of the history
frames, predicting coherent future frames should become easier. However, in current diffusion-
based VideoAR, history representations are mainly learned via the diffusion objective, which may
not be optimal for learning semantically aligned, predictive condition representations. Moreover,
good representations do not naturally emerge from VideoAR training, because predicting future
frames requires modeling the low-level details of the future, which can hinder representation learn-
ing (Yu et al., 2024). This limitation motivates us to design dedicated learning objectives to enhance

1We focus on internal representations of clean history frames as conditions, distinct from methods that
improve representations of noisy data within the diffusion process (Yu et al., 2024; Zhang et al., 2025).
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a) Traditional Diffusion AR b) MiMo (Ours) c) Training Steps vs. FVD
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Figure 1: Good representations of history frames improve VideoAR. Our framework, MiMo, incor-
porates masked modeling into the history frames during training. MiMo achieves significantly faster
convergence than baselines without using VFM.

history representations and improve VideoAR performance. Importantly, we aim to achieve this
without relying on external vision foundation models (VFMs) that incur substantial training costs
and may suffer from out-of-distribution issues when applied to new video domains.

In this work, we demonstrate that improving history frame representations can indeed enhance
VideoAR performance—an improvement that cannot be achieved by refining noisy future frame
representations alone. Based on this insight, we propose Masked History Modeling (MiMo), a
novel diffusion-based VideoAR framework without vision foundation model (VFM), illustrated in
Figure 1. MiMo naturally integrates masked modeling (Devlin et al., 2019; He et al., 2022a; Tong
et al., 2022), a simple yet effective representation learning technique, into history frame modeling
for VideoAR. Our approach works as follows: We first address the train-test discrepancy in recent
methods (Chen et al., 2024a; Song et al., 2025) by incorporating clean (noise-free) history frames
alongside the noisy future frames being denoised during training, similar to the approaches of Zhou
et al. (2025); Hu et al. (2024a). Then, we mask (drop) portions of the history frame tokens and train
the model to reconstruct the masked tokens of current and future frames in parallel with the diffusion
loss. This dual objective encourages the model to learn robust history representations that help the
model to predict future frames, while also improving its robustness to perturbations in history.

Unlike previous work that applies masked modeling to noisy inputs of diffusion models (Gao et al.,
2023; Wei et al., 2023), which harms diffusion and requires complicated techniques to mitigate the
negative effects, our approach operates on clean history frames. Our approach greatly alleviates
interference with future prediction and requires minimal architectural modifications. MiMo sub-
stantially improves training efficiency and generation quality through self-supervised visual repre-
sentation learning and achieves strong VideoAR performance, all without external pretrained VFMs
(Yu et al., 2024; Zhang et al., 2025). In MiMo, history frames serve dual purposes: as conditions for
the denoising of the future frame, and as input for self-supervised representation learning. By uni-
fying history representation learning with future frame diffusion modeling, our framework enables
high-quality representations that boost video prediction and generation.

Our main contributions are:

1. We investigate how history frame representations impact VideoAR performance and
demonstrate that better representations lead to improved generation quality.

2. We propose MiMo, a simple yet effective VFM-free framework that seamlessly unifies
diffusion-based VideoAR with self-supervised history representation learning.

3. Our framework demonstrates competitive video prediction and generation performance in
VideoAR, achieving state-of-the-art (SOTA) results on several benchmarks.

2 PRELIMINARIES

VideoAR Given a video x = {xi ∈ RH×W×3|i = 1, . . . , T} with T frames of height H and
width W , AR approaches model the temporal sequence by generating future frames sequentially

2
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conditioned on historical frames, following the natural causal structure of video dynamics. VideoAR
can be formulated by conditional probabilities:

p(xt+1|x1:t) = p(future frame|history frames), (1)

where x1:t = {x1, x2, . . . , xt} represents the history frames and xt+1 is the next frame to generate.

Diffusion-based VideoAR The conditional probabilities defined by Equation (1) are usually com-
plex, which can be modeled by diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020).
Diffusion-based AR approaches models Equation (1) by learning to denoise the Gaussian-nosied
future frame: x(τ)t+1 = ατxt+1 + στ ϵ, conditioned on history frames x1:t, where ϵ ∼ N (0, I)
and τ ∈ [0, 1] is noise level, and {ατ , στ}τ is noise schedule. This is typically done by es-
timating the score function sθ(x

(τ)
t+1; τ, x1:t) ≈ ∇ log pτ (x

(τ)
t+1|x1:t) (Vincent, 2011). In prac-

tice, sθ is often parameterized in alternative forms, such as v-prediction (Salimans & Ho, 2022):
vθ(x

(τ)
t+1; τ, x1:t) ≈ ατ ϵ− στxt+1.

During training, diffusion forcing (Song et al., 2025; Gu et al., 2025) learns vθ that conditions on
noisy history frames x(τ1:t)1:t = {x(τ1)1 , x

(τ2)
2 , . . . , x

(τ2)
t } with independent noise levels τ1:t,

L = Et,τ1:t+1,ϵt+1,x

[
∥ατt+1

ϵt+1 − στt+1
xt+1 − vθ(x(τt+1)

t+1 ; τ1:t+1, x
(τ1:t)
1:t )∥22

]
. (2)

In contrast, complete teacher forcing (CTF) (Hu et al., 2024a; Zhou et al., 2025) eliminates train-test
discrepency of diffusion forcing by conditioning on clean history frames x1:t:

L = Et,τt+1,ϵt+1,x

[
∥ατt+1

ϵt+1 − στt+1
xt+1 − vθ(x(τt+1)

t+1 ; τt+1, x1:t)∥22
]

(3)

During generation, the model iteratively denoises x(τ)t+1 using the learned denoising network, starting
from pure noise and gradually recovering the clean future frame. Once xt+1 is fully denoised, it is
appended to history frames for generating the subsequent frame xt+2.

3 METHOD

3.1 OVERVIEW

We hypothesize that good history frame representations benefit VideoAR. To investigate this hypoth-
esis, we first analyze the relationship between history frame representation quality and VideoAR
performance (Section 3.2). Our findings reveal that improving history representations improves
performance, and such improvement cannot be achieved by solely refining noisy future frames.

These findings motivate our approach. Additionally, we aim to avoid using VFM (Yu et al., 2024),
as they may perform poorly for out-of-distribution (OOD) data, and adapting or pretraining VFMs
on OOD data requires additional effort and increases complexity. Specifically, we propose Masked
History Modeling (MiMo), a unified framework that jointly optimizes history frame representation
learning and VideoAR within a single training process (Section 3.3) without using VFM. The insight
of MiMo lies in treating history frames as noise-free conditioning signals during both training and
inference, while introducing auxiliary masked video modeling objectives specifically targeting his-
tory frames. The dual objectives ensure that the model develops robust history frame representations
while maintaining strong generative capabilities. MiMo can also be extended to other pretraining
objectives (Oquab et al., 2023; Assran et al., 2023; Jiang et al., 2025; Wang & He, 2025), which we
leave for future work.

3.2 EXPLORING REPRESENTATIONS OF HISTORY

In this section, we analyze the impact of history frame representations on VideoAR performance.
We aim to understand whether good representations of history frames correlate with better genera-
tion quality, and whether this is necessary—in other words, whether we can achieve all benefits by
solely improving the representations of the noisy future frames being denoised (Yu et al., 2024). To
exclude the influence of first-frame generation quality and focus on understanding the role of his-
tory frames, we conduct experiments on the K600 video prediction task, where the video prediction

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

(a) Linear Probing Accuracy 
vs Layer Index (300K iters)

(b) Linear Probing Accuracy 
vs Training Iterations

(c) CKNNA Scores vs 
Training Iterations

Figure 2: Exploring representations of history frames.

model predicts eleven future frames based on five given context frames. To study representation
quality, we perform linear probing on K600 and measure CKNNA (Huh et al., 2024) to assess the
similarity between model internal representations and pretrained representations (Yu et al., 2024).
We select VideoMAE (Tong et al., 2022) and V-JEPA (Bardes et al., 2024) as VFM. All models use
DFoT VAE (Song et al., 2025), with identical hyperparameters across all experiments and history
guidance (see Appendix D.5) with scale 1.05 (Song et al., 2025) during inference. Details about
evaluations are provided in Appendix F.

History frame representation quality correlates with video prediction performance We em-
pirically investigate the relationship between history frame representation quality and video pre-
diction performance using the models trained as shown in Figure 1, with results summarized in
Figure 2. Our main findings include: (a) History frame quality positively correlates with video
prediction performance—better models exhibit higher linear probing accuracy and better alignment
with VFM (measured by CKNNA). (b) During training, history frame representation quality gradu-
ally improves but consistently maintains a significant gap with pretrained models. (c) Our proposed
MiMo method effectively improves history frame representation quality. Notably, MiMo changes
the layer where linear probing accuracy peaks, as our method introduces decoders in later layers to
execute the masked history modeling objective (see Section 3.3).

Table 1: Improving representations of history
frames.

Method FVD↓ Acc.(%)↑
ACDiT-B 54.814 6.21

REPA
History 40.022 16.96
Future 40.253 17.04
Both 36.542 19.23

Improving history frame representations is a
feasible way to improve video prediction per-
formance. We investigate whether improving
history frame representation quality can en-
hance video prediction performance by training
ACDiT-B models (Hu et al., 2024a), which take
clean history frames and noisy future frames as
input during training, where both history and
future frames can only attend to themselves and
history frames. This architecture allows us to
explicitly separate the representations of his-
tory frames. We compare two approaches: one
similar to REPA (Yu et al., 2024), which distills features from VFM into history frame represen-
tations; another introduces the MAE objective (He et al., 2022a) in history frames. Table 1 shows
that both REPA and self-supervised methods can improve representation quality and subsequently
enhance video prediction performance, demonstrating that improving history frame representations
is feasible.

Improving noisy future frame representations cannot replace the role of improving history
frame representations. Besides history frame representations, the representation quality of noisy
future frames also affects diffusion model generation performance (Yu et al., 2024; Zhang et al.,
2025). A meaningful question is: Is it sufficient to only improve the representation quality of noisy
future frames? Our answer is no. We train ACDiT-B models and compare introducing REPA ob-
jectives in clean history frames, noisy future frames, or both. Table 1 demonstrates that merely
improving noisy future frame representations is insufficient. Simultaneously improving both history
and future frames yields benefits beyond just improving noisy future frame representations, indicat-

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

DiT Block

DiT Block

DiT Block

Decoder 𝜑! 1,⋅

Decoder 𝜑! 0,⋅

+ℳ
ℎ"ℳ ℎ$ℳ ℎ%ℳ ℎ&ℳ 𝑓"

'! 𝑓$
'" 𝑓%

'# 𝑓&
'$

𝑓*" 𝑓*$ 𝑓*% 𝑓*&

ℎ+" ℎ+$ ℎ+% ℎ+&

+𝜖

ℒ()*+

ℒ,-..

DiT Block

DiT Block

DiT Block

ℎ" ℎ$ ℎ% 𝑓&
'$

𝑓*&

Iterative
Denoise

Use
Frame-Causal 
Attention Mask
like (a) top-left

Use
Attention 

Mask of (a)

(b) Training(a) Attention Mask for Training (c) Inference

𝑥" 𝑥$ 𝑥% 𝑥&

(Tube Mask)

ℎ+$ ℎ+% ℎ+&

𝑣!
/,1

Figure 3: Framework of MiMo. (a) Attention mask used for training. Eight frames are shown.
The clean history frames and noisy future frames are allowed to attend to themselves and previous
history frames. (b) Training. Four frames are shown. The video clip x = {x1, . . . , x3} is both used
as history frames h and masked with a random tube mask M, and as future frames f and noised
with Gaussian noise ϵ. The prediction targets of masked history modeling are the current and next
frames. (c) AR Inference. Three history frames are already generated or provided by the user; the
fourth frame is being denoised. After denoising, the fourth frame is appended to the history frames.

ing that history frames contain unique semantics. Note that our attempt to introduce MAE objective
in noisy future frames (similar to Wei et al. (2023); Gao et al. (2023)) fails to surpass the perfor-
mance of the ACDiT baseline without modifying the model’s macro-architecture (also reported by
Gao et al. (2023)). We leave such exploration for future work.

3.3 MIMO: MASKED HISTORY MODELING

Motivated by our findings in Section 3.2, we propose MiMo to improve history representations in
diffusion-based VideoAR.

Framework Design The core design principle of MiMo is to leverage history frames for dual
purposes: (1) as conditions for diffusion-based future frame generation, and (2) as input for self-
supervised representation learning through masked modeling. This dual utilization enables the
model to develop robust history frame representations that are specifically tailored for video model-
ing tasks. The design is shown in Figure 3.

During training, MiMo follows CTF (Hu et al., 2024a; Zhou et al., 2025), which exposes clean
history frames for representation learning. Given a video clip x = {x1, x2, . . . , xT }, we duplicate it
as both history frames h = {h1, h2, . . . , hT } and target future frames f = {f1, f2, . . . , fT }, where
h = f = x. The history frame ht is input without noise; it can attend to itself and all its previous
history frames ht′≤t. Future frame ft is independently noised with Gaussian noise ϵt as in DFoT
(Chen et al., 2024a; Song et al., 2025); it can attend to itself and all the previous future frames ht′<t.
This can be implemented by an attention mask as depicted in Figure 3(a).

The diffusion objective for future frame generation is:

Ldiff = Et,τ,ϵt,x,M

[
∥ατ ϵt − στft − vθ(f (τ)t ; τ, hM1:t)∥22

]
, (4)

where x(τ)t is the noisy version of the future frame xt at diffusion timestep τ , vθ is the denoising
network (v-prediction (Salimans & Ho, 2022)) conditioned on masked history frames hM1:t, andM
is a random tube mask (Tong et al., 2022) applied on the history frames with a ratio r for masked
history modeling (introduced below).

Masked History Modeling To enhance the model’s understanding of history frames, we introduce
a masked modeling objective on the clean history frames. We randomly mask a subset of tokens in
the history frame ht and train the model to reconstruct the masked content. Crucially, the recon-
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struction target can be either the tokens of the current history frame or any of the clean future frames
ht′≥t. This distinguishes it from the normal diffusion objective as it allows greater flexibility.

Formally, we introduce the reconstruction loss on the masked history frames hM1:t, the reconstruction
target is a set of frames Tt = {t, t+ 1} which contain both t and its next frame t+ 1:

Lmask = Et,τ,ϵt,x,M

[
1

|Tt|
∑
t′∈Tt

∥ht′ − φθ(t
′ − t, vh,lθ (f

(τ)
t ; τ, hM1:t)∥22

]
, (5)

where φθ is a lightweight decoder that predicts the masked tokens of frame t′ ∈ T , and vh,lθ is the
denoising network’s output features of the l-th layer for the history frames h1:t.

The unified training objective combines both losses:

Ltotal = Ldiff + λLmask, (6)

where the hyperparameter λ balances the masked modeling objective.

Inference During inference, as shown in Figure 3, MiMo discards decoder φθ and operates in
standard AR fashion with KV cache (Zhou et al., 2025; Hu et al., 2024a; Gu et al., 2025): given
clean history frames h1:t−1, the model generates the next future frame ft through iterative denoising.
The learned history representations enhance the model’s ability to maintain temporal coherence and
generate high-quality future content. The framework naturally supports variable-length generation
by iteratively updating the history context with newly generated frames.

Discussion Compared with masked diffusion that applies a masked modeling objective to denois-
ing input (Gao et al., 2023; Wei et al., 2023), our approach operates on clean history frames and
mitigates the interference with the diffusion denoising process. Thus, MiMo requires no special ar-
chitectural designs that masked diffusion approaches require. Zhou et al. (2025) also corrupt history
frames, but their motivation is to improve robustness to noise in history, and they apply no recon-
struction target to the history frames. Thus, they are still limited in history representations. Our
approach also reduces the computational costs compared with those of Zhou et al. (2025); Hu et al.
(2024a) due to masking.

4 EXPERIMENTS

4.1 SETUP

Tasks and Datasets We evaluate MiMo on three video modeling tasks: video prediction, uncon-
ditional video generation, and class-conditional video generation. For video prediction, we use the
Kinetics-600 dataset (Carreira et al., 2018), which consists of 480,000 videos with 600 categories
(class labels are not used). Five frames are provided as initial conditions to predict the next eleven
frames. For video generation, we use the UCF-101 dataset (Soomro et al., 2012) with 13,320 videos
across 101 categories. No initial frame is provided, and the model generates 16 frames.

Implementation Details The architecture is based on DiT (Peebles & Xie, 2023). Our modifi-
cations are: 1) using QK normalization (Henry et al., 2020) to stabilize training, 2) incorporating
RoPE (Su et al., 2024), and 3) using separate LayerNorm (Ba et al., 2016) for clean history frames2.
The decoder is a stack of four DiT blocks with the same configuration as the model. Hyperparameter
λ = 0.5. The learning rate is 8×10−4 for Kinetics and 4×10−4 for UCF-101, both decayed to 10−5

with cosine schedule. The global batch size is 256 for Kinetics and 128 for UCF-101. The weight
decay is 0.001, and the betas for AdamW (Loshchilov & Hutter, 2017) are (0.9, 0.99). The model
is trained for 360K steps on Kinetics and 180K on UCF-101 with 32 H100 GPUs. For Kinetics, we
use DFoT’s VAE (Song et al., 2025) with a compression ratio of 4 × 8 × 8 and sample 17 frames
per clip with resolution 128. For UCF-101, we use FAR’s (Gu et al., 2025) per-frame DC-AE (Chen
et al., 2024b) with a compression ratio of 32 × 32 and sample 16 frames per clip with resolution
256. See Appendix D for more details.

2These modifications moderately affect performance, as shown in Section 4.3.
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Table 2: System comparison on Kinetics and UCF-101 with video prediction, unconditional video
generation, and conditional video generation tasks. †: Different from the original work, we reimple-
mented DFoT using a causal architecture to align with the standard AR practice.

Kinetics (Pred.) UCF-101 (Uncond.) UCF-101 (Cond.)Method Type
FVD↓ FVD↓ FVD↓

LVDM (He et al., 2022b) – 372 –
MAGVIT (Yu et al., 2023a) 9.9 – 76
MAGVITv2 (Yu et al., 2023b) 4.3 – 58
Latte (Ma et al., 2024b)

Non-AR

– 478 –
TATS (Ge et al., 2022) – 420 332
Phenaki (Villegas et al., 2022) 36.4 – –
Omni (Wang et al., 2024) 32.9 – 191
DFoT-XL† (Song et al., 2025) 11.1 – –
ACDiT-XL (Hu et al., 2024a) – – 111
MAGI-XL (Zhou et al., 2025) 11.5 298 –
FAR-XL (Gu et al., 2025)

AR

– 279 108
VAE Reconstruction 3.7 15 15
MiMo-XL

AR
8.3 240 98

Inference and Evaluation We follow Song et al. (2025) for evaluation on Kinetics, generating
50,000 random videos and computing the Fréchet Video Distance (FVD) (Karras et al., 2019) on all
frames (including conditioning and generated frames) with the groundtruth videos, both resized to
64 × 64. On UCF-101, following FAR, we randomly sample 2,048 videos and compute the FVD
against groundtruth videos, resized to 256× 256.

4.2 MAIN RESULTS

Table 2 presents a comprehensive comparison of MiMo against state-of-the-art non-AR and AR
methods across three video modeling tasks. For reference, we also report the reconstruction FVD of
the VAE, which represents the upper bound of performance achievable given the groundtruth.

Video Prediction (Pred.) On the challenging Kinetics-600 video prediction benchmark, MiMo
demonstrates exceptional performance with an FVD score of 8.3, establishing a new state-of-the-art
among AR models. This represents a substantial improvement over previous AR methods, with
our approach significantly outperforming DFoT (FVD: 11.1) despite using the same VAE. The per-
formance gain directly demonstrates the superiority of MiMo, as both methods share the same un-
derlying video tokenization and differ primarily in their treatment of historical context. Qualitative
examples are presented in Figure 4(a), where our method generates smooth, realistic continuations.

Unconditional Video Generation (Uncond.) For unconditional video generation on UCF-101,
MiMo achieves remarkable results, establishing new state-of-the-art performance among AR ap-
proaches. Our method substantially outperforms the previous AR leader FAR by nearly 40 FVD
points (240 vs 279) while utilizing the same DC-AE tokenizer, demonstrating the significant impact
of our masked history modeling approach. Also noteworthy is the comparison with MAGI, which
similarly employs Complete Teacher Forcing (CTF) during training—our method achieves a con-
siderable performance improvement (FVD: 240 vs 298), validating the effectiveness of our masked
history modeling objective. The generated videos exhibit diverse motions, realistic textures, and
coherent temporal dynamics, as illustrated in the qualitative examples in Figure 4(b).

Class-Conditional Video Generation (Cond.) In class-conditional video generation on UCF-
101, MiMo again demonstrates superior performance, achieving state-of-the-art results across AR
methods. Our approach surpasses FAR by 10 FVD points (98 vs 108), confirming the consistent
benefits of our approach across different conditioning modalities. The comparison with ACDiT is
also interesting—both methods utilize CTF and share similar architectural foundations, yet MiMo
achieves notable improvements (FVD: 98 vs 111), consistent with our findings in unconditional
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generation when compared against MAGI. This consistency across tasks reinforces that our perfor-
mance gains stem from improvements in history representation learning rather than task-specific
optimizations. Representative generated videos are shown in Figure 4(c).

(a) Kinetics (b) UCF uncond. (c) UCF cond.

Figure 4: Visualization of generated videos.

4.3 ABLATION STUDY

This section ablates the designs of MiMo. All models are based on DiT-B trained on Kinetics for
100K steps with modifications and hyperparameters described in Section 4.1. ACDiT baseline is
MiMo without masked history modeling, similar to MAGI and ACDiT.

Table 3: Comparison with variants of REPA.

Method FVD↓
ACDiT Baseline 54.814

History 40.022
Future 40.253REPA
Both 36.542

MiMo 36.601
MiMo +REPA-Both 34.133

Table 4: Comparison of different prediction
targets for masked history modeling.

Target(s) FVD↓
ACDiT Baseline 54.814
Current Frame 41.832
Next Frame 37.782
Current + Next (MiMo) 36.601
Current + Next+NextNext 36.263

Comparison With REPA An alternative way to inject good representations into the model is
distilling the features from a VFM, known as REPA (Yu et al., 2024). Table 3 compares MiMo with
several variants of REPA, supervising history frames, future frames, or both. Both REPA and MiMo
can significantly improve convergence, while MiMo performs on par or better than all variants. In
practice, however, VFMs for the user’s domain of interest are not always available, in which cases
MiMo is a viable substitute.

MiMo is complementary to VFM-based methods like REPA. MiMo excels at learning task-specific
dynamics from the data, while VFM provides strong semantic priors. Combining MiMo with REPA
in Table 3 yielded further improvements over either method alone. This suggests that MiMo and
VFM capture different aspects of the data.

Prediction Targets of Masked Modeling One of the merits of MiMo is its flexibility: while
diffusion always predicts the noise-free version of the noised current frame effectively, MiMo can
predict both the current and next frames for masked history modeling. Table 4 compares different
prediction targets for masked modeling, and it is clear that predicting both current and history frames
outperforms predicting either.
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We also include a target of predicting the current and next two frames (Current + Next+NextNext) in
Table 4. It is beneficial but yields diminishing returns. We hypothesize that predicting a more distant
future frame is a significantly harder task, and the increased difficulty does not naively translate into
proportional performance gains. Our proposed target (Current + Next) strikes an effective balance
without the added complexity of longer-range prediction.

Table 5: Decoder position (placed after the l-th layer) moderately affects performance. DiT-B has
12 layers in total. None means CFT baseline.

l None 12 11 10 9
FVD↓ 54.814 36.601 35.815 35.838 37.593

Table 6: Architecture modifications.

Modification FVD↓
Vanilla DiT 37.763
+RoPE 37.313
+Separate LayerNorm 36.601

Decoder Position The decoder for masked
modeling is usually placed after the encoder
(He et al., 2022a; Tong et al., 2022). We treat
the first l layers of the DiT model as the en-
coder, and shortcut the output of the l-the layer
corresponding to the history frames into the de-
coder. Table 5 shows the effect of varying l.
The performance is robust to l when l is close
to the last layer.

Model Architecture Table 6 shows the im-
pact of architecture modifications on performance. Incorporating RoPE and separating LayerNorm
layers for history frames both bring moderate gains.

Table 7: Ablations of hyperparameters λ and mask ratios.

λ 0.1 0.5 1.0 2.0 Mask Ratios [0.25, 0.25] [0.25, 0.5] [0.5, 0.75]
FVD↓ 40.213 36.601 37.443 38.910 FVD↓ 37.539 36.601 39.121

Hyperparamter Ablations Table 7 shows the impact of hyperparameters on MiMo-B models
with different λ from 0.25 to 2.0 and mask ratios from 0.25 to 0.75. For λ, a weight of 0.5 provides
the best balance, but performance does not degrade sharply for nearby values. For mask ratios,
performance remains relatively stable between 0.25 and 0.50; however, a higher mask ratio requires
fine-tuning without masking to achieve better performance.

Table 8: Computational costs.

Method MiMo-XL ACDiT-XL FAR-XL
Wall-Clock Time 0.750s 0.788s 0.704s

GFLOPs 8.22 8.81 5.94

Table 9: Comparison of optimization strategies.

Strategy FVD↓
ACDiT Baseline 54.814
Interleaving 38.543
MiMo 36.601

Computational Costs Table 8 shows the
training computational costs of MiMo, ACDiT
(our baseline), and FAR. Compared with our
baseline (ACDiT), MiMo reduces training wall-
clock time by 5%; compared with FAR, MiMo
increases training wall-clock time by a modest
10%, which is a small price for the significant
performance boost (25% from 279 to 240 on
Kinetics, and 14% from 279 to 240 on UCF-
101). Compared with ACDiT, MiMo also re-

duces the FLOPs per training step due to masking (the decoders increase FLOPs). MiMo has higher
training FLOPs compared with FAR, but the increase in training wall-clock time is moderate ( 10%)

9
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due to hardware acceleration. Note that MiMo has no additional inference cost once the training is
complete.

Alternative Optimization Strategy While our approach of simply using a weighted sum of the
two losses is standard practice for auxiliary loss training, an alternative approach is optimizing the
diffusion loss and the auxiliary loss interleavingly (a diffusion-only training step is followed by a
mask-only training step). The results are summarized in Table 9. While the interleaving approach
has lower computational costs per step, it leads to slower convergence, which diminishes its speed
gains.

5 RELATED WORKS

Autoregressive Visual Generation. Autoregressive language modeling (Radford, 2018; Radford
et al., 2019) has facilitated the development of visual content generation using discrete visual tokens
(Van Den Oord et al., 2017). In this framework, pre-trained visual tokenizers like VQ-VAE (Van
Den Oord et al., 2017) map visual patches into a discrete latent space, allowing visual generation to
be approached similarly to language modeling. Early works such as DALL-E (Ramesh et al., 2021)
focus on text-to-image generation by learning a joint distribution between text and discrete image
representations using an autoregressive cross-entropy loss. VideoGPT (Yan et al., 2021) extends this
idea to video generation, employing discrete tokens for autoregressive video prediction. VideoPoet
(Kondratyuk et al., 2023) further advances this approach by integrating a causal video tokenizer (Yu
et al., 2023b). OmniTokenizer (Wang et al., 2024) proposes a unified tokenizer for both discrete
and continuous representations. In contrast, our work focuses on frame-level causality rather than
patch-level, avoiding the limitations of raster-scan order.

Representations and Generative Modeling. Recent advances in diffusion models highlight the
importance of high-quality representations for generative modeling, as diffusion models inherently
struggle to learn good representations (Yu et al., 2024; Zhang et al., 2025; Jiang et al., 2025; Wang &
He, 2025). In practice, diffusion models are predominantly conditional generative models, where the
conditions can be text prompts in T2I/T2v T2V generation, or history frames in VideoAR. Despite
this prevalence, few studies have investigated how the quality of condition representations affects
generative performance. Existing evidence from text-conditional generation provides compelling
support for exploring this relationship. Replacing CLIP text encoders with large language mod-
els such as T5 and Llama has consistently improved generation quality, particularly for attributes
strongly correlated with text conditions (counting, object reference, text rendering, etc.) (Esser
et al., 2024; Gao et al., 2024; Kong et al., 2024; Hu et al., 2024b). Another evidence is that dis-
tilling class representations improves the performance of class-conditioned image generation (Wu
et al., 2025). These observations naturally extend to VideoAR, where future frames depend on his-
tory frames as conditions, suggesting that enhanced history frame representations may potentially
benefit video generation performance, which is the focus of our work.

6 CONCLUTION

In this work, we explored the fundamental question of whether good representations of history
frames can improve VideoAR performance. Through systematic analysis, we demonstrated that
enhancing history frame representations significantly benefits VideoAR, a finding that cannot be
achieved by solely refining noisy future frames. Motivated by these insights, we proposed MiMo
(Masked History Modeling), a novel framework that naturally integrates masked modeling into
diffusion-based VideoAR. By applying masks to history frame tokens and training the model to
predict masked tokens of current and future frames alongside denoising tasks, MiMo learns robust
representations that improve VideoAR performance. Our approach requires no VFM or special
architectural modifications. Extensive experiments across multiple benchmarks demonstrate that
MiMo achieves competitive performance in video prediction and generation tasks, establishing new
state-of-the-art results. Notably, our framework substantially improves training efficiency and gener-
ation quality, showcasing the effectiveness of unified representation learning and diffusion modeling.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Michael S Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic inter-
polants. arXiv preprint arXiv:2209.15571, 2022.

Mahmoud Assran, Quentin Duval, Ishan Misra, Piotr Bojanowski, Pascal Vincent, Michael Rabbat,
Yann LeCun, and Nicolas Ballas. Self-supervised learning from images with a joint-embedding
predictive architecture. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 15619–15629, 2023.

Mido Assran, Adrien Bardes, David Fan, Quentin Garrido, Russell Howes, Matthew Muckley, Am-
mar Rizvi, Claire Roberts, Koustuv Sinha, Artem Zholus, et al. V-jepa 2: Self-supervised video
models enable understanding, prediction and planning. arXiv preprint arXiv:2506.09985, 2025.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Adrien Bardes, Quentin Garrido, Jean Ponce, Xinlei Chen, Michael Rabbat, Yann LeCun, Mahmoud
Assran, and Nicolas Ballas. Revisiting feature prediction for learning visual representations from
video. arXiv preprint arXiv:2404.08471, 2024.

Tim Brooks, Bill Peebles, Connor Holmes, Will DePue, Yufei Guo, Li Jing, David Schnurr, Joe
Taylor, Troy Luhman, Eric Luhman, et al. Video generation models as world simulators. OpenAI
Blog, 1(8):1, 2024.

Jake Bruce, Michael D Dennis, Ashley Edwards, Jack Parker-Holder, Yuge Shi, Edward Hughes,
Matthew Lai, Aditi Mavalankar, Richie Steigerwald, Chris Apps, et al. Genie: Generative inter-
active environments. In Forty-first International Conference on Machine Learning, 2024.

Joao Carreira and Andrew Zisserman. Quo vadis, action recognition? a new model and the kinetics
dataset. In proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
6299–6308, 2017.

Joao Carreira, Eric Noland, Andras Banki-Horvath, Chloe Hillier, and Andrew Zisserman. A short
note about kinetics-600. arXiv preprint arXiv:1808.01340, 2018.

Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T Freeman. Maskgit: Masked generative
image transformer. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 11315–11325, 2022.
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A DIFFUSION MODELING

In this section, we present a brief overview of diffusion-based generative models. These models
learn to approximate target distributions through training denoising neural networks. There are two
correlated approaches: “conventional” diffusion models based on score matching (Appendix A.1),
and flow matching (Appendix A.2), introduced below.

A.1 SCORE MATCHING

Diffusion models based on score matching (Ho et al., 2020; Kingma et al., 2021; Song et al., 2020b)
generate samples x ∼ p0(·) by learning to invert a noise corruption process (i.e., the diffusion
process) that transforms the data distribution into standard Gaussian noise ϵ ∼ N (0, I). The forward
diffusion process is defined as:

pτ (x
(τ)|x) = N (ατx, σ

2
τI); τ ∈ [0, 1], (7)

where the coefficients ατ and στ specify the “noise schedule” that interpolates between data and
noise. Usually α0 = 1, σ0 = 0 and α1 = 0, σ1 = 1, so that x(0) = x and x(1) = ϵ.

x(0) = x, x(1) = ϵ (8)

The generative process is realized by integrating the reverse-time stochastic differential equation
(SDE) (Song et al., 2020b; Lu et al., 2022) that describes the backward diffusion process:

dx(τ) =
[
f(τ)x(τ) − g2(τ)∇x(τ) log pτ (x

(τ))
]
dτ + g(τ) dw̄τ , (9)

where w̄τ denotes the reverse-time Wiener process, and the drift and diffusion coefficients f and g
are given by:

f(τ) =
d logατ

dτ
, g2(τ) = −σ2

τ

d log(ατ/στ )

dτ
. (10)

A score network sθ(x(τ); τ) is trained to approximate∇x(τ) log pτ (x
(τ)) via denoising score match-

ing (Vincent, 2011):
min
θ

Eτ,ϵ,x(0),x(τ)

[
∥ϵ+ στ sθ(x

(τ); τ)∥22
]
. (11)

Beyond directly modeling the score sθ(x(τ); τ), diffusion models commonly use equivalent param-
eterizations tied to the forward relation x(τ) = ατx

(0) + στ ϵ.

Noise prediction (Ho et al., 2020). The model predicts the noise ϵθ(x(τ); τ) ≈ ϵ, yielding the score
via

sθ(x
(τ); τ) = − 1

στ
ϵθ(x

(τ); τ), (12)

and is trained with the MSE objective E
[
∥ϵ− ϵθ(x(τ); τ)∥22

]
.

Data (clean sample) prediction (Sohl-Dickstein et al., 2015). The model outputs a denoised esti-
mate xθ(x(τ); τ) ≈ x(0). Converting to a score gives

sθ(x
(τ); τ) = −x

(τ) − ατxθ(x
(τ); τ)

σ2
τ

, (13)

which is equivalent to first forming ϵ̂ = (x(τ) − ατxθ)/στ and then using sθ = −ϵ̂/στ . Training
objectives is minimizing E

[
∥x(0) − xθ(x(τ); τ)∥22

]
.

v-prediction (Salimans & Ho, 2022). A time-dependent linear combination is predicted:
vθ(x

(τ); τ) ≈ ατ ϵ− στx(0). (14)
From vθ one can recover all other targets:

ϵ̂(x(τ); τ) =
στx

(τ) + ατvθ(x
(τ); τ)

α2
τ + σ2

τ

, (15)

xθ(x
(τ); τ) =

ατx
(τ) − στvθ(x(τ); τ)

α2
τ + σ2

τ

, (16)

sθ(x
(τ); τ) = − 1

στ
ϵ̂(x(τ); τ). (17)
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The training objective becomes E
[
∥ατ ϵ− στx(0) − vθ(x(τ); τ)∥22

]
.

All these parameterizations are connected by τ -dependent linear transforms, and thus represent the
same model class. Choosing among them mainly affects optimization stability and the weighting of
errors across noise levels.

A.2 FLOW MATCHING

Flow matching (Lipman et al., 2022; Liu et al., 2022; Esser et al., 2024) simplifies score matching
by defining the generative process via ordinary differential equations (ODEs). Specifically, given
the same definitions of x, x(τ), ατ , στ as in Appendix A.1, the generative process is governed by a
probability flow ODE:

dx(τ)

dτ
= v(x(τ); τ), (18)

where the velocity field 3 v(x(τ); τ) satisfies:

v(x(τ), τ) = E
[
dx(τ)

dτ

∣∣∣∣x(τ)] = α̇τE[x(0)|x(τ)] + σ̇τE[ϵ|x(τ)], (19)

where α̇τ = dατ

dτ and σ̇τ = dστ

dτ .

The flow matching objective trains a neural network vθ(x(τ); τ) to minimize:

min
θ

Eτ,ϵ,x(0),x(τ)

[
∥vθ(x(τ); τ)− (α̇τx

(0) + σ̇τ ϵ)∥22
]
. (20)

Flow matching and score matching are connected by the score function:

s(x(τ); τ) = − 1

σt
E[ϵ|x(τ)], (21)

which corresponds to an equivalent reverse-time SDE (Ma et al., 2024a):

dx(τ) = v(x(τ); τ)dτ − 1

2
ητs(x

(τ); τ)dτ +
√
ητdw̄t, (22)

where ητ controls the amount of stochasticity and w̄t is a reverse-time Wiener process as in Ap-
pendix A.1. Solving Equations (19) and (21), we obtain:

s(x(τ), τ) =
1

στ
· ατv(x

(τ), τ)− α̇τx
(τ)

α̇τστ − ατ σ̇τ
. (23)

Thus, flow matching and score matching represent the same model class.

Flow matching is easy to implement and usually converges faster than score matching in practice
(Liu et al., 2022; Esser et al., 2024). Another advantage of flow matching is the flexibility to choose
the diffusion coefficient ητ independently of the training process, allowing for post-hoc optimization
of the sampling procedure.

B EXTENDED RELATED WORKS

Masked and Diffusion Video Generation Diffusion models have recently gained prominence in
visual generation tasks (Ho et al., 2020; Rombach et al., 2022; He et al., 2022b; Guo et al., 2023;
Chen et al., 2023; Guo et al., 2024), effectively extending to video generation. Video diffusion mod-
els (Brooks et al., 2024; Ho et al., 2022) utilize bidirectional attention and binary mask embeddings
to facilitate frame-level autoregressive prediction. Notable works such as GameNGen (Valevski
et al., 2024) use bidirectional diffusion models for real-time game generation. However, due to
their bidirectional nature, these models cannot leverage KV Cache for extended video generation,
limiting their scalability. Several masked video generators, such as Genie (Bruce et al., 2024), ex-
tend MaskGIT (Chang et al., 2022) into a causal-attention-based architecture for video generation.
Despite their advantages, these methods suffer from the training-inference gap inherent in masked
autoregressive modeling, which negatively impacts generation quality. In contrast, our approach
fully leverages KV Cache during inference, facilitated by our training paradigm that bridges the
training-inference gap through a novel complete teacher forcing paradigm.

3The velocity field in flow matching is different from the v-prediction parameterization in score matching,
though they are correlated: the two parameterizations are connected by Equation (23).
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Table 10: Hyperparameters.

Name MiMo-B MiMo-XL
Input
Dataset Kinetics-600 Kinetics-600 UCF-101 UCF-101
Task prediction prediction class cond. uncond.
Input shape 17× 128× 128 17× 128× 128 16× 256× 256 16× 256× 256

VAE
Compression ratio 4× 8× 8 4× 8× 8 32× 32 32× 32

Latent shape 5× 16× 16 5× 16× 16 16× 8× 8 16× 8× 8

Architecture
Patch size 1× 1× 1 1× 1× 1 1× 1× 1 1× 1× 1

Depth 12 28 28 28
Embed dim 768 1152 1152 1152
Num heads 12 16 16 16
RoPE theta 100 100 100 100
Decoder
Depth 4 4 4 4
l 9 23 23 23
Diffusion
Parameterization v-prediction v-prediction velocity velocity
Noise scheduler linear linear rectified flow rectified flow

Weighting
fused min-SNR
γ = 5.0, ρ = 0.96

fused min-SNR
γ = 5.0, ρ = 0.96

logit-normal logit-normal

Sampler DDIM DDIM Euler Euler
Sampling steps 50 50 50 50

Guidance
history guidance

1.05
history guidance

1.05
—

class guidance
2.0

Optimization
Training steps 100K 360K 180K 180K
Batch size 256 256 128 128
Optimizer AdamW AdamW AdamW AdamW
Learning rate (LR) 8× 10−4 8× 10−4 4× 10−4 4× 10−4

Warmup steps 10K 10K 10K 10K
LR schedule cosine cosine cosine cosine
End LR 10−5 10−5 10−5 10−5

Weight decay 0.001 0.001 0.001 0.001

(β1, β2) (0.9, 0.99) (0.9, 0.99) (0.9, 0.99) (0.9, 0.99)

Gradient clipping 1.0 1.0 1.0 1.0
λ 0.5 0.5 0.5 0.5
Mask ratios [0.25, 0.5] [0.25, 0.5] [0.25, 0.5] [0.25, 0.5]

EMA decay 0.999 0.999 0.9999 0.9999

C DATASETS

Kinetics-600 Kinetics-600 (Carreira et al., 2018) is a large-scale video action recognition dataset
that extends the original Kinetics-400 dataset (Kay et al., 2017), containing approximately 500,000
video clips across 600 human action categories, sourced from YouTube and covering diverse human
actions ranging from sports and cooking to dancing and musical performances. The dataset is split
into training, validation, and test sets, with each action class containing at least 600 video clips in the
training set and 50 clips in both validation and test sets. Videos in Kinetics-600 are characterized by
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their temporal dynamics and complex motion patterns, making it a challenging benchmark for video
understanding tasks. The dataset provides rich temporal information and diverse visual content,
which makes it particularly suitable for evaluating autoregressive video modeling approaches that
need to capture long-term temporal dependencies and generate coherent future frames based on
historical context. Following existing works (Song et al., 2025), we use a resolution of 128 × 128
pixels and train on the training set while evaluating on the test set. The model is conditioned on the
first 5 frames and predicts the next 11 frames, totaling 16 frames.

UCF-101 UCF-101 (Soomro et al., 2012) is a widely used action recognition dataset consisting of
13,320 video clips distributed across 101 action categories. The dataset was collected from YouTube
and contains realistic videos with significant variations in camera motion, object appearance, pose,
scale, viewpoint, cluttered background, and illumination conditions. Each action class contains 25
groups of videos, with each group sharing common features such as similar backgrounds, simi-
lar viewpoints, etc. UCF-101 covers a diverse range of human actions, including sports activities
(e.g., basketball, tennis, surfing), musical instrument playing, and daily life activities. Despite be-
ing smaller in scale compared to Kinetics datasets, UCF-101 remains a fundamental benchmark for
assessing the generalization capability of video models across different domains and action com-
plexities, due to its well-curated action categories. We follow the protocol of Gu et al. (2025) and
use a resolution of 256 × 256 pixels. The models are trained on the full UCF-101 dataset and
evaluated with class labels as the only initial condition, generating a total of 16 frames.

D IMPLEMENTATION DETAILS

Table 10 summarizes the hyperparameters we use in our implementations. The details are discussed
in the following sections.

D.1 MODEL ARCHITECTURES

Diffusion Models We employ the Diffusion Transformer (DiT) (Peebles & Xie, 2023) with full
3D attention as our backbone. The DiT block is analogous to a vision transformer (ViT) (Dosovit-
skiy et al., 2020) block and replaces the LayerNorm (Ba et al., 2016) layers with adaptive Layer-
Norm (AdaLN) (Peebles & Xie, 2023) layers to inject diffusion timestep condition into the features.
AdaLN works by embedding the timesteps using sinusoidal positional encoding (Vaswani et al.,
2017) and feeding them to an MLP to predict the shift and bias factors for LayerNorm layers. For
class-conditioned generation, the class labels are also embedded and added into the timestep em-
beddings as additional conditions. Following existing works (Song et al., 2025; Gu et al., 2025; Hu
et al., 2024a), AdaLN is applied separately to each noisy future frame because different frames can
have different diffusion timesteps during training (Section 3.3). We use QK normalization (Henry
et al., 2020) to stabilize training. Below, we introduce two other modifications we apply to vanilla
DiT: separate LayerNorm and 3D RoPE. The vanilla DiT block and our modified DiT block are
illustrated in Figure 5.

Separate LayerNorm layers instead of AdaLN are applied to the clean frames. Note that the other
parameters are shared among all frames regardless of whether they are history or future frames. The
attention mask introduced in Section 3.3 is applied to the attention operation to ensure causality
between history and future frames.

Additionally, we incorporate axial 3D RoPE (Su et al., 2024) and assign an equal number of channels
to encode the positions along the T,H,W dimensions.

VAE and Patch Size of DiT Video generation models usually work in some compressed latent
space with reduced space-time dimensions to save computations, due to the sheer volume of pixels
in video. In all of our experiments, the patch size of DiT is 1 × 1 × 1 (T,H,W ), meaning that
compression is done solely in VAE.

For fair comparison with existing methods, we adopt the pretrained 3D video VAE of DFoT (Song
et al., 2025) for Kinetics-600 experiments. DFoT’s VAE has a compression ratio of 4 × 8 × 8
(T,H,W ), where the first frames are separately encoded and the following frames are temporally
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(a) vanilla DiT block (b) modified DiT block

Figure 5: Illustration of vanilla and our modified DiT blocks.

downsampled by a factor of 4, following Yu et al. (2023a). The input resolution is 128× 128 pixels
with 17 frames, leading to a latent shape of 5× 16× 16 per video clip.

We utilize the 2D image DC-AE of FAR (Gu et al., 2025) for UCF-101 experiments. FAR’s DC-
AE has a compression ratio of 32 × 32 with no temporal compression, and it encodes each frame
independently. Given input of 16 frames with a resolution of 256×256, the latent shape is 16×8×8.

Decoder The decoders take masked history frame features from intermediate DiT layers as the
only input, and fill the masked positions with learnable query tokens. Then, the input is fed into a
stack of several decoder blocks and reshaped to the same dimensions as the latents of the history (or
future) frames as the output. The decoder block is the vanilla ViT block with axial 3D RoPE.

D.2 DIFFUSION

Kinetics-600 Experiments For Kinetics-600, we use a linear noise schedule (Nichol & Dhariwal,
2021) with the v-prediction parameterization (Salimans & Ho, 2022) and zero terminal SNR (Lin
et al., 2024). We use the DDIM sampler (Song et al., 2020a) with 50 sampling steps during inference.
We also incorporate the fused min-SNR loss weighting (Chen et al., 2024a), a variant of min-SNR
loss weighting (Hang et al., 2023) for video diffusion, to accelerate convergence.

Fused min-SNR extends the standard min-SNR loss weighting by accounting for the “signals” from
previous frames. The difference between the two methods is the way to compute the signal-to-
noise ratio (SNR) used for loss weighting. Using the notations in Section 2, SNR is defined as
SNRτ = α2

τ/σ
2
τ . Fused min-SNR first normalizes the SNR to [0, 1] by dividing by the maximal

value of SNR. Since min-SNR weighting clips the SNR value with the hyperparameter γ > 0, we
normalize by γ. Then, it computes fused SNR S′

t with decaying factor ρ > 0:

St = normalized SNR factor for the t-th noisy future frame ∈ [0, 1], (24)

S̄t = ρS̄t−1 + (1− ρ)St (exponentially decayed cumulative SNR), (25)

S′
t = 1− (1− St)(1− S̄t−1) (fused reweighting factor), (26)

Fused SNR S′
t combines the current frame signal with accumulated history signals, treating them as

independent probabilistic events. This accounts for the additional information available from history
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1 def compute_loss_weight(snr, gamma, prediction_type, decay=None,
causal=True):

2 """Compute SNR weighting.
3

4 Args:
5 snr (torch.Tensor): per-frame SNR of shape [B, T]
6 gamma (float): clip threshold of min-SNR
7 prediction_type (str): "epsilon", "v_prediction", or "sample"
8 decay (float, optional): if not None, enable fused min-SNR with

the specified decay factor
9 causal (bool, optional): whether we are training a causal model

10

11 Returns:
12 weight (torch.Tensor): per-frame loss weight of shape [B, T]
13 """
14 # Compute fused SNR
15 clipped_snr = snr.clamp(max=gamma)
16 if decay is not None:
17 normalized_clipped_snr = clipped_snr / gamma
18 normalized_snr = snr / gamma
19

20 def compute_cum_snr(reverse: bool = False):
21 new_normalized_clipped_snr = (
22 normalized_clipped_snr.flip(1)
23 if reverse
24 else normalized_clipped_snr
25 )
26 cum_snr = torch.zeros_like(new_normalized_clipped_snr)
27 for t in range(0, snr.shape[1]):
28 if t == 0:
29 cum_snr[:, t] = new_normalized_clipped_snr[:, t]
30 else:
31 cum_snr[:, t] = (
32 decay * cum_snr[:, t - 1]
33 + (1 - decay) * new_normalized_clipped_snr[:, t]
34 )
35 cum_snr = torch.nn.functional.pad(cum_snr[:, :-1], (1, 0, 0,

0), value=0.0)
36 return cum_snr.flip(1) if reverse else cum_snr
37

38 if causal:
39 cum_snr = compute_cum_snr()
40 else:
41 cum_snr = compute_cum_snr(reverse=True) + compute_cum_snr()
42 cum_snr *= 0.5
43 clipped_fused_snr = 1 - (1 - cum_snr * decay) * (1 -

normalized_clipped_snr)
44 fused_snr = 1 - (1 - cum_snr * decay) * (1 - normalized_snr)
45 clipped_snr = clipped_fused_snr * gamma
46 snr = fused_snr * gamma
47

48 # Compute loss weight
49 if prediction_type == "epsilon": # noise-prediction
50 weight = clipped_snr / snr
51 elif prediction_type == "v_prediction": # v-prediction
52 weight = clipped_snr / (snr + 1)
53 else: # data-prediction
54 weight = clipped_snr
55

56 return weight

Listing 1: Fused min-SNR (PyTorch psuedo-code)
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context in video generation, beyond what standard SNR weighting captures. The S′
t is denormalized

by multiplying γ and used to compute the loss weighting as normal min-SNR weighting does.

Listing 1 summarizes the algorithm to compute fused min-SNR weighting.

UCF-101 Experiments For UCF-101, we follow Gu et al. (2025) and use flow matching (Liu
et al., 2022; Lipman et al., 2022; Albergo & Vanden-Eijnden, 2022) with a “straigh” flow path, i.e.,
ατ = 1− τ, στ = τ . We also adopt the logit-normal timestep sampling strategy (Esser et al., 2024),
where the timesteps τ are sampled from a logit-normal distribution (instead of uniformly):

πln(τ) =
1√
2π

1

t(1− t)
exp

(
− log2(t/1− t)

2

)
. (27)

We use the Euler integrator sampler (Esser et al., 2024) with 50 sampling steps during inference.

D.3 TRAINING

Algorithm 1 Training (v-prediction or flow matching)

Input: Dataset D, noise schedule {(ατ , στ )}τ , velocity network vθ, decoder φθ, loss weight λ
Output: Trained velocity network vθ

1: while not converged do
2: Sample video clip x = {xt}Tt=1 from D
3: h← x, f ← x // Duplicate x as history h and future f
4: Sample {τt ∼ Uniform[0, 1]}Tt=1 and {ϵt ∼ N (0, I)}Tt=1
5: Sample random tube maskM
6: hMt ← applyMask(ht,M) // ApplyM to history frame
7: L ← 0
8: for t = 1 to T do
9: f

(τt)
t ← ατtft + στtϵt // Add noise to future frame

10: vtarget ← ατtϵt − στtft or vtarget ← α̇τtft + σ̇τtϵt // v-prediction or flow matching
11: vpred ← vθ(f

(τ)
t ; τ, hM1:t) // Internally apply attention mask (Figure 3(a))

12: Ldiff ← ∥vpred − vtarget∥22 // Diffusion loss (Equation (4))
13: vh,lfeat ← vh,lθ (f

(τ)
t ; τ, hM1:t) // Output features of the l-th layer for history frames h1:t

14: Tt ← {t, t+ 1} // Frame indexes
15: Lmask ← 1

|Tt|
∑

t′∈Tt
∥ht′ − φθ(t

′ − t, vh,lfeat)∥22 // Masked history modeling loss
(Equation (5))

16: L ← L+ Ldiff + λLmask
17: end for
18: Update θ using∇θL
19: end while

The training algorithm is summarized in Algorithm 1. Training hyperparameters are summarized in
Table 10. Note that the masked modeling loss (Equation (5)) is computed in the latent space between
the latents of the history (or future) frames and the predictions of the decoders.

D.4 INFERENCE

The sampling algorithm is summarized in Algorithm 2. Inference hyperparameters are summarized
in Table 10. The inference process is the same as in other diffusion-based video generation models
(Song et al., 2025; Gu et al., 2025; Hu et al., 2024a): Given initial conditions (initial frames for
video prediction, class labels for class-conditioned generation, or no condition for unconditioned
generation), the model iteratively denoises the next frame starting from pure noise, and appends the
generated frame after the known (provided as initial conditions or generated) frames until all frames
are known.
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Algorithm 2 Sampling (v-prediction or flow matching)

Input: Noise schedule {(ατ , στ )}τ , sampling steps N , velocity network vθ, initial frames x1:t0 (∅
if t0 = 0)

Output: Clean frames x1:T
1: for t = t0 + 1 to T do
2: xt ∼ N (0, I) // Initialize with noise at τ = τN = 1
3: for i = N to 1 do
4: vpred ← vθ(xt; τi, x1:t−1) // Internally apply block-causal attention mask
5: xt ← Sampler(xt; τi, τi−1, vpred) // Sampler step, τ0 = 0
6: end for
7: x1:t ← x1:t−1 + {xt} // Append generated frame after known frames
8: end for

D.5 HISTORY GUIDANCE

We incorporate a simplified version of history guidance (Song et al., 2025) into diffusion-based
VideoAR. History guidance takes advantage of the insight that history frames are the conditions for
generating the future frames, much like class labels as conditions for class-conditioned generation,
and applies classifier-free guidance (CFG) (Ho & Salimans, 2022) with history frames as conditions.
Adopting the notations in Section 2, history guidance modifies the score function as

swθ (x
(τ)
t+1; τ, x1:t) = (1− w) · sθ(x(τ)t+1; τ,∅) + w · sθ(x(τ)t+1; τ, x1:t), (28)

where ∅ means no history frame and w > 1 is the guidance scale. We compute sθ(x
(τ)
t+1; τ,∅) by

forbidding (x
(τ)
t+1 to attend to x1:t via attention masking, i.e., by setting the corresponding noisy-to-

clean rows in the attention mask (Figure 3(a)) to −∞.

During training, we randomly select r = 10% future frames and forbid them from attending to the
history frames. The training algorithm with history guidance is summarized in Algorithm 3.

During inference, swθ (x
(τ)
t+1; τ,∅) is computed by Equation (28) and the other process is the same as

in normal CFG. The sampling algorithm with history guidance is summarized in Algorithm 4.

E BASELINES

In our work, we primarily consider three baseline methods in Figure 1 and Section 3.2. All the
considered baselines are trained with the same model architecture and hyperparameters as shown in
Table 10 unless otherwise specified, with the only difference being the training strategies.

ACDiT ACDiT (Hu et al., 2024a) also adopts complete teacher forcing as in MiMo. The primary
difference between MiMo and ACDiT is that we apply the masked history modeling target on the
history frames. Thus, the direct comparison between ACDiT and MiMo clearly demonstrates the
advantage of our approach and the benefit of good history representations.

FAR FAR (Gu et al., 2025) adopts diffusion forcing (Chen et al., 2024a; Song et al., 2025), it
randomly replaces some noisy frames with their clean version to simulate clean history frames. The
better performance of MiMo over FAR demonstrates that MiMo can achieve competitive perfor-
mance even against the best performing models in a broader context.

REPA REPA (Yu et al., 2024) was originally proposed to improve the representation quality of
the noisy images being denoised. We adapt it to diffusion-based VideoAR following the approach
of Zhang et al. (2025). Compared with REPA, we focus on the representations of the history frames
that serve as conditions in AR modeling, while REPA does not consider the AR context. Also, REPA
requires a VFM, but sVFM may not always be available and may misbehave for out-of-distribution
(OOD) data, while MiMo does not rely on VFM.

For the analysis in Section 3.2, we align the features of the 4-the layer with a pretrained VideoMAE-
L (Tong et al., 2022) using a loss weight of 0.5. The feature dimensions of DiT models and Video-

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Algorithm 3 Training with history guidance (v-prediction or flow matching)

Input: Dataset D, noise schedule {(ατ , στ )}τ , velocity network vθ, decoder φθ, loss weight λ,
drop rate r

Output: Trained velocity network vθ
1: while not converged do
2: Sample video clip x = {xt}Tt=1 from D
3: h← x, f ← x // Duplicate x as history h and future f
4: Sample {τt ∼ Uniform[0, 1]}Tt=1 and {ϵt ∼ N (0, I)}Tt=1
5: Sample random tube maskM
6: hMt ← applyMask(ht,M) // ApplyM to history frame
7: L ← 0
8: for t = 1 to T do
9: f

(τt)
t ← ατtft + στtϵt // Add noise to future frame

10: vtarget ← ατtϵt − στtft or vtarget ← α̇τtft + σ̇τtϵt // v-prediction or flow matching
11: if Uniform[0, 1] < r then
12: vpred ← vθ(f

(τ)
t ; τ,∅) // Randomly drop history frames

13: else
14: vpred ← vθ(f

(τ)
t ; τ, hM1:t) // Internally apply attention mask (Figure 3(a))

15: end if
16: Ldiff ← ∥vpred − vtarget∥22 // Diffusion loss (Equation (4))
17: vh,lfeat ← vh,lθ (f

(τ)
t ; τ, hM1:t) // Output features of the l-th layer for history frames h1:t

18: Tt ← {t, t+ 1} // Frame indexes
19: Lmask ← 1

|Tt|
∑

t′∈Tt
∥ht′ − φθ(t

′ − t, vh,lfeat)∥22 // Masked history modeling loss
(Equation (5))

20: L ← L+ Ldiff + λLmask
21: end for
22: Update θ using∇θL
23: end while

Algorithm 4 Sampling with history guidance (v-prediction or flow matching)

Input: Noise schedule {(ατ , στ )}τ , sampling steps N , guidance scale w, velocity network vθ,
initial frames x1:t0 (∅ if t0 = 0)

Output: Clean frames x1:T
1: for t = t0 + 1 to T do
2: xt ∼ N (0, I) // Initialize with noise at τ = τN = 1
3: for i = N to 1 do
4: vpred ← vθ(xt; τi, x1:t−1) // Internally apply block-causal attention mask
5: v∅ ← vθ(xt; τi,∅) // Negative condition
6: vpred ← (1− w) · v∅ + w · vpred // Apply guidance
7: xt ← Sampler(xt; τi, τi−1, vpred) // Sampler step, τ0 = 0
8: end for
9: x1:t ← x1:t−1 + {xt} // Append generated frame after known frames

10: end for

MAE are aligned following the strategy of Zhang et al. (2025), which interpolates the DiT’s repre-
sentations to match the feature dimensions of the pre-trained VideoMAE.

F EVLAUTION DETAILS

Fréchet Video Distance (FVD) FVD (Unterthiner et al., 2018) is a perceptual metric designed
to evaluate the quality of generated videos by measuring the distributional distance between real
and generated video sequences. Similar to the Fréchet Inception Distance (FID) (Heusel et al.,
2017) used for images, FVD employs a pre-trained 3D convolutional neural network (specifically,
an Inflated 3D ConvNet or I3D model trained on Kinetics-400) (Carreira & Zisserman, 2017) to
extract spatio-temporal features from video clips. Then Fréchet distance (Dowson & Landau, 1982)
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is computed between the feature distributions of real and generated videos by fitting multivariate
Gaussian distributions to the extracted features and calculating the Wasserstein-2 distance (Villani
et al., 2008) between them. Lower FVD scores indicate higher similarity to real video distributions.
FVD captures both spatial and temporal aspects of video content, making it a standard evaluation
tool in video synthesis research. Following prior works (Song et al., 2025), we compute FVD for
the entire video, including both initial conditioning frames (for Kinetics-600) and generated frames,
to assess the overall consistency.

Centered Kernel Nearest-Neighbor Alignment (CKNNA) CKNNA (Huh et al., 2024) is a non-
parametric evaluation metric that measures the alignment between two sets of features by analyzing
their local neighborhood structures. CKNNA relaxes the overly rigid Centered Kernel Alignment
(CKA) (Kornblith et al., 2019) metric by computing similarity only for the mutual nearest neigh-
bours of each feature vector. Given two sets of vectorized features {ϕi ∈ Rn} and {ψi ∈ Rm} from
two models and inner product operator ⟨·, ·⟩, CKNNA first computes centered kernel matrices:

K̄ij = ⟨ϕi, ϕj⟩ − El[⟨ϕi, ϕl⟩], L̄ij = ⟨ψi, ψj⟩ − El[⟨ψi, ψl⟩] (29)

The centering operation removes the mean similarity, focusing on relative relationships rather than
absolute magnitudes. CKNNA restricts the alignment computation to mutual nearest neighbors:

Alignknn(K,L) =
∑
i

∑
j

α(i, j) · K̄ijL̄ij (30)

where α(i, j) = 1[ϕj ∈ knn(ϕi) ∧ ψj ∈ knn(ψi) ∧ i ̸= j] (31)

The indicator function α(i, j) ensures we only consider sample pairs whose members are nearest
neighbors to each other, emphasizing local structural consistency over global alignment. The final
CKNNA metric is the normalized version:

CKNNA(K,L) =
Alignknn(K,L)√

Alignknn(K,K) · Alignknn(L,L)
(32)

This normalization bounds the metric to [0, 1], where higher values indicate better preservation of
local neighborhood structure between the two representation spaces. Intuitively, CKNNA measures
whether two feature representations maintain similar local similarity structures within their respec-
tive neighborhoods. Following prior works (Huh et al., 2024; Yu et al., 2024), we evaluate represen-
tation alignment using CKNNA with k = 10 nearest neighbors. We randomly sample 10,000 videos
from the Kinetics-600 test set and extract globally average pooled features using both a pretrained
VideoMAE-L (Tong et al., 2022) (as reference) and our models, treating all frames as clean history
frames. Then, we compute CKNNA between the features of VideoMAE-L and features from each
layer of the query models, reporting the highest alignment score across all layers.

Linear Probing We follow the linear probing protocol of MAE (He et al., 2022a). Specifically, we
use the model representations of the clean history frames for linear probing training and evaluation.
Global average pooling is applied to the output feature map to obtain a single feature vector for each
video. The feature vector is then fed to a parameter-free BatchNorm (Ioffe & Szegedy, 2015) layer
and a linear classifier layer. The training batch size is 128, the learning rate is 10−3 and decayed to
0 with a cosine schedule, the weight decay is 0.01, and the training length is 10 epochs. Random
flipping is used during training. Top-1 accuracy is reported.

G ADDITIONAL VISUALIZATIONS

G.1 SAMPLES

This section shows the samples generated by MiMo on Kinetics-600 (Figure 6), UCF-101 class-
conditioned generation (Figure 7), and unconditional generation (Figure 8). Each row is a generated
video containing 16 frames.

G.2 ATTENTION HEATMAPS

In Figures 9 and 10 we show the attention heatmaps (marked by red) of two videos, each without
and with MiMo. The center position of the last frame (marked by a blue dot) serves as the query,
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Figure 6: Uncurated samples of Kinetics history frames conditional generation.

Figure 7: Uncurated samples of UCF-101 class-conditioned generation.
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Figure 8: Uncurated samples of UCF-101 unconditional generation.

while the other positions are the keys. We take the attention weights from four random heads and
layers 4, 8, 12, 16, 20.

As shown in Figures 9 and 10, without MiMo, attention patterns are more dispersed and less focused,
whereas with MiMo, attention heatmaps show more concentrated patterns that exhibit stronger se-
mantic correlations with the query content. Additionally, Figure 10 demonstrates how different
transformer layers specialize in matching distinct body parts (e.g., arms, torso, legs), revealing the
hierarchical nature of the learned representations.

G.3 EMBEDDING VISUALIZATION

Figure 11 shows the UMAP (McInnes et al., 2018) visualization of video embeddings without and
with MiMo. The model is a DiT-XL and is trained for 360K steps on Kinetics-600. As shown in
Figure 11, without MiMo, the distribution of video embeddings is mostly uniform, while MiMo in-
troduces some structures in the embedding distribution by learning a more structured representation
space.

H ADDITIONAL EXPERIMENTS

H.1 COMPLEMENTARY EVALUATION METRICS

Our evaluation mainly relies on the standard FVD metric. However, FVD is known to have sev-
eral issues and may not fully capture real-world video dynamics (Luo et al., 2024). To provide a
more comprehensive evaluation of MiMo’s performance, we adopt two additional metrics as com-
plements.

VMMD Our VMMD (V-JEPA 2 Maximum Mean Discrepancy) metric is based on the CMMD
metric (Jayasumana et al., 2024). The VMMD metric benchmarks the perceptual similarity between
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Figure 9: Attention heatmaps without and with MiMo.
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Figure 10: Attention heatmaps without and with MiMo.
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(a) MiMo (b) with MiMo

Figure 11: UMAP visualization of video embeddings without and with MiMo.

the generated videos and the reference videos, using the strong V-JEPA 2 (Assran et al., 2025)
pretrained model as the judge. It does not rely on the Gaussian assumption of the FVD metric, and
gives more faithful evaluation (Jayasumana et al., 2024). Specifically, VMMD replaces the CLIP
model in CMMD with V-JEPA 2 Large; other implementations are the same as in CMMD4.

Table 11: Comparison of different methods with VMMD and FVD metrics.

Method ACDiT-XL FAR-XL MiMo-XL
FVD↓ 10.264 9.311 8.257
VMMD↓ 1.075 1.036 0.977

Table 11 compares ACDiT, FAR, and MiMo with both VMMD and FVD metrics. The VMMD
measurement results are consistent with the FVD, indicating that in our cases, FVD and VMMD can
relatively well characterize the generation quality.

0% 20% 40% 60% 80% 100%
Win Rate (%)

Visual
Quality

Motion
Quality

Condition
Following

12.9% 67.7% 19.4%

45.2% 48.4%

54.8% 41.9%

ACDiT Wins Ties MiMo Wins

(a) ACDiT vs MiMo

0% 20% 40% 60% 80% 100%
Win Rate (%)

Visual
Quality

Motion
Quality

Condition
Following

15.2% 66.7% 18.2%

12.1% 45.5% 42.4%

15.2% 48.5% 36.4%

FAR Wins Ties MiMo Wins

(b) FAR vs MiMo

Figure 12: User studies (win rates) of ACDiT, FAR, and MiMo.

User Studies We conduct user studies to better understand what aspects MiMo improves. Five
experts are instructed to evaluate 100 tasks, assessing three key dimensions: condition following,
motion quality, and visual quality.

• Condition following: the visual and semantic consistency between conditioning frames and
generated frames.

• Motion quality: whether there is motion distortion or motion that is semantically inconsis-
tent with the context.

4https://github.com/google-research/google-research/tree/master/cmmd
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• Visual quality: whether there is frame-level visual distortion or visual components that are
semantically inconsistent with the context.

Figure 12 summarizes the results for ACDiT-XL, FAR-XL, and MiMo-XL, all trained for 360K steps
on Kinetics-600. MiMo excels in condition following and motion quality, while the visual quality
is marginally improved. Additionally, MiMo has higher win rates against ACDiT than against FAR,
which indicates that lower VMMD and FVD metric values correlate with better perceptual quality
in our cases.

H.2 LONG-HORIZON VIDEO GENERATION

MiMo is effective for long-horizon video generation, as its robust history representation helps mit-
igate the error accumulation common in autoregressive models. We validate this on the action-
conditioned Minecraft dataset (Yan et al., 2023), predicting 156 frames from 144, following the
FAR (Gu et al., 2025) setup.

Table 12: Long-horizon video generation on the
Minecraft dataset.

Model Steps FVD↓
100K 42.710

FAR-B
150K 33.873

MiMo-B 100K 33.829

The results in Table 12 show that MiMo signifi-
cantly outperforms the baseline. At 100K train-
ing steps, MiMo achieves an rFVD of 33.829,
a 27% improvement over the baseline’s 42.710.
This performance gap highlights MiMo’s abil-
ity to maintain long-term coherence. Fur-
thermore, MiMo accelerates training, reaching
this performance 1.5x faster than the base-
line, which requires an additional 50K steps to
achieve a comparable rFVD. Figure 13 shows
uncurated samples of generated results. These

results confirm that a superior understanding of the past, enforced by MiMo, leads to more plausible
and coherent long-term video generation.

Figure 13: Uncurated samples of Minecraft long-horizon video generation. The upper row of each
video is GT, the lower row is the generated sample. Red bounding boxes indicate conditioning
frames.
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I LIMITATIONS AND FUTURE WORK

In this work, we analyze the impact of the DiT’s internal representations of history frames on
VideoAR. Based on our findings, we propose MiMo to improve history representations without
utilizing VFM.

However, it remains an open question to improve future frame representations with VFM. Masked
DiT (Gao et al., 2023; Wei et al., 2023) achieves success to some extent but requires elaborate
architecture modifications. Some recent approaches (Jiang et al., 2025; Wang & He, 2025) incor-
porate methodologies from self-supervised learning literature, but it is still unclear whether they
(and MiMo) can beat representation alignment approaches (e.g., REPA (Yu et al., 2024)) that utilize
pretrained VFM on in-distribution data of VFM. It is also unclear whether it is possible to pre-
train a generative model that beats VFMs in downstream tasks such as video segmentation, video
grounding, etc.

Furthermore, it is an interesting future direction to explore other training objectives to improve
history representations (Oquab et al., 2023; Assran et al., 2023; Jiang et al., 2025; Wang & He,
2025).
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