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ABSTRACT

Video autoregressive generation (VideoAR) sequentially predicts future frames
conditioned on history frames. Despite the advance of recent diffusion-based
VideoAR, the role of conditioning signal—internal representations of history
frames—remains underexplored. Inspired by the success of strong condition
representations in text-conditioned generation, we investigate: Can better inter-
nal representations of history frames improve VideoAR performance? Through
systematic analysis, we show that history representation quality positively cor-
relates with VideoAR, and that enhancing these representations provides gains
that cannot be achieved by refining future frames representations alone. Based on
these insights, we propose MiMo (Masked History Modeling), a novel framework
that seamlessly integrates representation learning into diffusion-based VideoAR.
MiMo applies masks to history frame tokens and trains the model to predict
masked tokens of current and future frames alongside the diffusion objective,
yielding predictive and robust history representations without relying on vision
foundation models (VFMs) or heavy architectural changes. Extensive experiments
demonstrate that MiMo achieves competitive performance in video prediction and
generation tasks while substantially improving training efficiency. Our work un-
derscores the importance of history representations in VideoAR.

1 INTRODUCTION

Video autoregressive generation (VideoAR) predicts future frames conditioned on previously ob-
served or generated frames (the history). The history-to-future generation process naturally aligns
with the causal structure of video dynamics and enables variable-length generation (Villegas et al.,
2022; |Yin et al., [2025; [Teng et al., 2025). However, early AR approaches (Yan et al., 2021} [Hong
et al.; 2022; |Ge et al., [2022; |Villegas et al., |2022) significantly underperformed non-AR methods
(Brooks et al., [2024; Ho et al., 2022; He et al., 2022b; |Guo et al., 2024), primarily due to the dif-
ficulty of modeling the complex conditional distribution of future frames given history. Recently,
diffusion-based VideoAR (Kondratyuk et al., [2023; |Chen et al.| 2024a; |Song et al.,|2025; |Gu et al.}
20235)) has emerged as a promising solution, as it can approximate complex conditionals via iterative
denoising of future frames from random noise, conditioned on the history frames.

Despite this progress, the conditioning signal—the representation of the history frames—remains
underexplored. In text-to-image/video (T2I/T2V) and class-conditioned generation, stronger con-
dition representations consistently improve generation quality (Esser et al., [2024} |Gao et al.| [2024;
Kong et al., 2024} Hu et al.| [2024b; Wu et al., [2025)), which raises a natural question: Can better
internal representations of history enhance VideoAR performance? E] Intuitively, if the model’s
internal representations of history effectively capture the semantics and dynamics of the history
frames, predicting coherent future frames should become easier. However, in current diffusion-
based VideoAR, history representations are mainly learned via the diffusion objective, which may
not be optimal for learning semantically aligned, predictive condition representations. Moreover,
good representations do not naturally emerge from VideoAR training, because predicting future
frames requires modeling the low-level details of the future, which can hinder representation learn-
ing (Yu et al.,|2024)). This limitation motivates us to design dedicated learning objectives to enhance

"We focus on internal representations of clean history frames as conditions, distinct from methods that
improve representations of noisy data within the diffusion process (Yu et al., 2024} Zhang et al., 2025).
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Figure 1: Good representations of history frames improve VideoAR. Our framework, MiMo, incor-
porates masked modeling into the history frames during training. MiMo achieves significantly faster
convergence than baselines without using VFM.

history representations and improve VideoAR performance. Importantly, we aim to achieve this
without relying on external vision foundation models (VFMs) that incur substantial training costs
and may suffer from out-of-distribution issues when applied to new video domains.

In this work, we demonstrate that improving history frame representations can indeed enhance
VideoAR performance—an improvement that cannot be achieved by refining noisy future frame
representations alone. Based on this insight, we propose Masked History Modeling (MiMo), a
novel diffusion-based VideoAR framework without vision foundation model (VFM), illustrated in
Figure[I] MiMo naturally integrates masked modeling (Devlin et al., 2019; [He et al.| [2022a} [Tong
et al., 2022)), a simple yet effective representation learning technique, into history frame modeling
for VideoAR. Our approach works as follows: We first address the train-test discrepancy in recent
methods (Chen et al., [2024a; [Song et al [2025) by incorporating clean (noise-free) history frames
alongside the noisy future frames being denoised during training, similar to the approaches of Zhou
et al.| (2025); |Hu et al.|(2024a). Then, we mask (drop) portions of the history frame tokens and train
the model to reconstruct the masked tokens of current and future frames in parallel with the diffusion
loss. This dual objective encourages the model to learn robust history representations that help the
model to predict future frames, while also improving its robustness to perturbations in history.

Unlike previous work that applies masked modeling to noisy inputs of diffusion models (Gao et al.,
2023} |Wei et al., [2023)), which harms diffusion and requires complicated techniques to mitigate the
negative effects, our approach operates on clean history frames. Our approach greatly alleviates
interference with future prediction and requires minimal architectural modifications. MiMo sub-
stantially improves training efficiency and generation quality through self-supervised visual repre-
sentation learning and achieves strong VideoAR performance, all without external pretrained VFMs
(Yu et al., 2024} [Zhang et al.| [2025). In MiMo, history frames serve dual purposes: as conditions for
the denoising of the future frame, and as input for self-supervised representation learning. By uni-
fying history representation learning with future frame diffusion modeling, our framework enables
high-quality representations that boost video prediction and generation.

Our main contributions are:
1. We investigate how history frame representations impact VideoAR performance and
demonstrate that better representations lead to improved generation quality.

2. We propose MiMo, a simple yet effective VFM-free framework that seamlessly unifies
diffusion-based VideoAR with self-supervised history representation learning.

3. Our framework demonstrates competitive video prediction and generation performance in
VideoAR, achieving state-of-the-art (SOTA) results on several benchmarks.

2 PRELIMINARIES

VideoAR Given a video x = {z; € REXW>3|; = 1 ... T} with T frames of height H and
width W, AR approaches model the temporal sequence by generating future frames sequentially
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conditioned on historical frames, following the natural causal structure of video dynamics. VideoAR
can be formulated by conditional probabilities:

p(zt41|21:4) = p(future frame|history frames), (1)

where x1.; = {x1, %2, ..., 2} represents the history frames and x;,1 is the next frame to generate.

Diffusion-based VideoAR The conditional probabilities defined by Equation (I) are usually com-
plex, which can be modeled by diffusion models (Sohl-Dickstein et al., 2015 Ho et al., [2020).
Diffusion-based AR approaches models Equation by learning to denoise the Gaussian-nosied
future frame: 35%?1 = ;%41 + 0r¢, conditioned on history frames w1.;, where ¢ ~ N(0,T)
and 7 € [0,1] is noise level, and {a,, 0}, is noise schedule. This is typically done by es-
timating the score function sa(xgi)l;T,ml;t) ~ Vlong(xii)ﬂml;t) (Vincent, [2011). In prac-
tice, sg is often parameterized in alternative forms, such as v-prediction (Salimans & Hol [2022):

(T) . ~
Vo (T4 13 T, T1:t) N Qr€ — 07 Tpy1.

During training, diffusion forcing (Song et al., 2025} |Gu et al.l [2025) learns vy that conditions on

noisy history frames {7 = {2{™) 2{™ . 2{™)} with independent noise levels 1.,

T+ T1: 2
L= Et,71:t+1,€t+1,x [”a‘l't+1€t+1 — O 1 T4l — Ue(ﬂfgffl)§ TlttJrlvxg:tl t))HZ] . (2)

In contrast, complete teacher forcing (CTF) (Hu et al., 2024a; Zhou et al.,|2025) eliminates train-test
discrepency of diffusion forcing by conditioning on clean history frames x;.4:

2
£ =B cinnin |0mpseein = onpn e = w07 s e, 0|13 ©)

During generation, the model iteratively denoises J;ﬁ_?l using the learned denoising network, starting

from pure noise and gradually recovering the clean future frame. Once x4, 1 is fully denoised, it is
appended to history frames for generating the subsequent frame x; 5.

3 METHOD

3.1 OVERVIEW

We hypothesize that good history frame representations benefit VideoAR. To investigate this hypoth-
esis, we first analyze the relationship between history frame representation quality and VideoAR
performance (Section [3.2). Our findings reveal that improving history representations improves
performance, and such improvement cannot be achieved by solely refining noisy future frames.

These findings motivate our approach. Additionally, we aim to avoid using VFM (Yu et al., |2024),
as they may perform poorly for out-of-distribution (OOD) data, and adapting or pretraining VFMs
on OOD data requires additional effort and increases complexity. Specifically, we propose Masked
History Modeling (MiMo), a unified framework that jointly optimizes history frame representation
learning and VideoAR within a single training process (Section [3.3) without using VFM. The insight
of MiMo lies in treating history frames as noise-free conditioning signals during both training and
inference, while introducing auxiliary masked video modeling objectives specifically targeting his-
tory frames. The dual objectives ensure that the model develops robust history frame representations
while maintaining strong generative capabilities. MiMo can also be extended to other pretraining
objectives (Oquab et al., 2023} |Assran et al., 2023} Jiang et al., 2025 [Wang & He, |2025)), which we
leave for future work.

3.2 EXPLORING REPRESENTATIONS OF HISTORY

In this section, we analyze the impact of history frame representations on VideoAR performance.
We aim to understand whether good representations of history frames correlate with better genera-
tion quality, and whether this is necessary—in other words, whether we can achieve all benefits by
solely improving the representations of the noisy future frames being denoised (Yu et al.|[2024)). To
exclude the influence of first-frame generation quality and focus on understanding the role of his-
tory frames, we conduct experiments on the K600 video prediction task, where the video prediction
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Figure 2: Exploring representations of history frames.

model predicts eleven future frames based on five given context frames. To study representation
quality, we perform linear probing on K600 and measure CKNNA (Huh et al., 2024)) to assess the
similarity between model internal representations and pretrained representations (Yu et al., [2024).
We select VideoMAE (Tong et al.,[2022)) and V-JEPA (Bardes et al.,|2024)) as VFM. All models use
DFoT VAE (Song et al.l [2025), with identical hyperparameters across all experiments and history
guidance (see Appendix [D.5)) with scale 1.05 (Song et al.| 2025) during inference. Details about
evaluations are provided in Appendix [F

History frame representation quality correlates with video prediction performance We em-
pirically investigate the relationship between history frame representation quality and video pre-
diction performance using the models trained as shown in Figure |1} with results summarized in
Figure 2] Our main findings include: (a) History frame quality positively correlates with video
prediction performance—better models exhibit higher linear probing accuracy and better alignment
with VFM (measured by CKNNA). (b) During training, history frame representation quality gradu-
ally improves but consistently maintains a significant gap with pretrained models. (c) Our proposed
MiMo method effectively improves history frame representation quality. Notably, MiMo changes
the layer where linear probing accuracy peaks, as our method introduces decoders in later layers to
execute the masked history modeling objective (see Section[3.3)).

Improving history frame representations is a

feasible way to improve video prediction per- Taple 1: Improving representations of history
formance. We investigate whether improving  frames.

history frame representation quality can en-

hance video pcrle;iiction peliformance b);l training Method FVD| Acc.(%)}
ACDIiT-B models (Hu et al., [2024a)), which take -

clean history frames and noisy future frames as ACDiT-B 54.814 621
input during training, where both history and History | 40.022 16.96
future frames can only attend to themselves and REPA  Future | 40.253 17.04
history frames. This architecture allows us to Both 36.542 19.23

explicitly separate the representations of his-
tory frames. We compare two approaches: one
similar to REPA (Yu et al., |2024), which distills features from VFM into history frame represen-
tations; another introduces the MAE objective (He et al.l [2022a)) in history frames. Table E] shows
that both REPA and self-supervised methods can improve representation quality and subsequently
enhance video prediction performance, demonstrating that improving history frame representations
is feasible.

Improving noisy future frame representations cannot replace the role of improving history
frame representations. Besides history frame representations, the representation quality of noisy
future frames also affects diffusion model generation performance (Yu et all 2024} [Zhang et al.,
2025)). A meaningful question is: Is it sufficient to only improve the representation quality of noisy
future frames? Our answer is no. We train ACDiT-B models and compare introducing REPA ob-
jectives in clean history frames, noisy future frames, or both. Table [T] demonstrates that merely
improving noisy future frame representations is insufficient. Simultaneously improving both history
and future frames yields benefits beyond just improving noisy future frame representations, indicat-
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Figure 3: Framework of MiMo. (a) Attention mask used for training. Eight frames are shown.
The clean history frames and noisy future frames are allowed to attend to themselves and previous
history frames. (b) Training. Four frames are shown. The video clip x = {z1,...,z3} is both used
as history frames h and masked with a random tube mask M, and as future frames f and noised
with Gaussian noise e. The prediction targets of masked history modeling are the current and next
frames. (c) AR Inference. Three history frames are already generated or provided by the user; the
fourth frame is being denoised. After denoising, the fourth frame is appended to the history frames.

ing that history frames contain unique semantics. Note that our attempt to introduce MAE objective
in noisy future frames (similar to Wei et al.[ (2023); |Gao et al.| (2023)) fails to surpass the perfor-
mance of the ACDIT baseline without modifying the model’s macro-architecture (also reported by
Gao et al.|(2023)). We leave such exploration for future work.

3.3 MIMoO: MASKED HISTORY MODELING

Motivated by our findings in Section [3.2] we propose MiMo to improve history representations in
diffusion-based VideoAR.

Framework Design The core design principle of MiMo is to leverage history frames for dual
purposes: (1) as conditions for diffusion-based future frame generation, and (2) as input for self-
supervised representation learning through masked modeling. This dual utilization enables the
model to develop robust history frame representations that are specifically tailored for video model-
ing tasks. The design is shown in Figure 3]

During training, MiMo follows CTF (Hu et al [2024a; Zhou et al., 2025)), which exposes clean
history frames for representation learning. Given a video clip x = {x1, zo, ..., 27}, we duplicate it
as both history frames h = {hy, ho, ..., hr} and target future frames f = {f1, fo,..., fr}, where
h = f = x. The history frame %, is input without noise; it can attend to itself and all its previous
history frames hy <;. Future frame f; is independently noised with Gaussian noise €; as in DFoT
(Chen et al., 2024a; |Song et al.|[2025); it can attend to itself and all the previous future frames hy/ 4.
This can be implemented by an attention mask as depicted in Figure [3{(a).

The diffusion objective for future frame generation is:

Lair = Eorepimt | laree = o0 fi = va(£7m, D)) @)

where ICET) is the noisy version of the future frame x; at diffusion timestep 7, vy is the denoising

network (v-prediction (Salimans & Ho, 2022)) conditioned on masked history frames h{\fé, and M
is a random tube mask (Tong et al., 2022) applied on the history frames with a ratio r for masked
history modeling (introduced below).

Masked History Modeling To enhance the model’s understanding of history frames, we introduce
a masked modeling objective on the clean history frames. We randomly mask a subset of tokens in
the history frame /; and train the model to reconstruct the masked content. Crucially, the recon-
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struction target can be either the tokens of the current history frame or any of the clean future frames
h¢ >¢. This distinguishes it from the normal diffusion objective as it allows greater flexibility.

Formally, we introduce the reconstruction loss on the masked history frames h{\’} the reconstruction
target is a set of frames 7; = {¢,¢ + 1} which contain both ¢ and its next frame ¢ + 1:

1 T
Emask = Et,T,Gt:X,M m Z Hht’ — wg(t/ — t, Ug’l(ft ); T, h{vi)H% 5 (5)
t'eT:

where g is a lightweight decoder that predicts the masked tokens of frame ¢’ € T, and vg’l is the
denoising network’s output features of the [-th layer for the history frames h;.;.

The unified training objective combines both losses:
Lioal = Laitt + ALrmask (6)

where the hyperparameter A balances the masked modeling objective.

Inference During inference, as shown in Figure [3} MiMo discards decoder ¢y and operates in
standard AR fashion with KV cache (Zhou et al., [2025} |Hu et al., 2024a; Gu et al.l [2025): given
clean history frames h1.;1, the model generates the next future frame f; through iterative denoising.
The learned history representations enhance the model’s ability to maintain temporal coherence and
generate high-quality future content. The framework naturally supports variable-length generation
by iteratively updating the history context with newly generated frames.

Discussion Compared with masked diffusion that applies a masked modeling objective to denois-
ing input (Gao et al., 2023} [Wei et al.| [2023), our approach operates on clean history frames and
mitigates the interference with the diffusion denoising process. Thus, MiMo requires no special ar-
chitectural designs that masked diffusion approaches require. [Zhou et al.|(2025)) also corrupt history
frames, but their motivation is to improve robustness to noise in history, and they apply no recon-
struction target to the history frames. Thus, they are still limited in history representations. Our
approach also reduces the computational costs compared with those of Zhou et al.|(2025); Hu et al.
(20244a) due to masking.

4 EXPERIMENTS

4.1 SETUP

Tasks and Datasets We evaluate MiMo on three video modeling tasks: video prediction, uncon-
ditional video generation, and class-conditional video generation. For video prediction, we use the
Kinetics-600 dataset (Carreira et al.| [2018)), which consists of 480,000 videos with 600 categories
(class labels are not used). Five frames are provided as initial conditions to predict the next eleven
frames. For video generation, we use the UCF-101 dataset (Soomro et al.,[2012) with 13,320 videos
across 101 categories. No initial frame is provided, and the model generates 16 frames.

Implementation Details The architecture is based on DiT (Peebles & Xiel [2023). Our modifi-
cations are: 1) using QK normalization (Henry et al., [2020) to stabilize training, 2) incorporatin
ROPE (Su et al.}[2024)), and 3) using separate LayerNorm (Ba et al.,[2016) for clean history framesﬁ
The decoder is a stack of four DiT blocks with the same configuration as the model. Hyperparameter
A = 0.5. The learning rate is 8 x 10~* for Kinetics and 4 x 10~* for UCF-101, both decayed to 10~5
with cosine schedule. The global batch size is 256 for Kinetics and 128 for UCF-101. The weight
decay is 0.001, and the betas for AdamW (Loshchilov & Hutter, |2017) are (0.9, 0.99). The model
is trained for 360K steps on Kinetics and 180K on UCF-101 with 32 H100 GPUs. For Kinetics, we
use DFoT’s VAE (Song et al.l 2025 with a compression ratio of 4 x 8 x 8 and sample 17 frames
per clip with resolution 128. For UCF-101, we use FAR’s (Gu et al., 2025) per-frame DC-AE (Chen
et al} |2024b) with a compression ratio of 32 x 32 and sample 16 frames per clip with resolution
256. See Appendix [D]for more details.

’These modifications moderately affect performance, as shown in Section
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Table 2: System comparison on Kinetics and UCF-101 with video prediction, unconditional video
generation, and conditional video generation tasks. I: Different from the original work, we reimple-
mented DFoT using a causal architecture to align with the standard AR practice.

Method Type Kinetics (Pred.) | UCF-101 (Uncond.) | UCF-101 (Cond.)
FVD] FVD, FVD]
TATS (Ge et al.| 2022) - 420 332
Phenaki (Villegas et al.||2022) 36.4 - -
Omni (Wang et al.|[2024) 32.9 — 191
DFoT-XL' (Song et al.|[2025) AR 11.1 - -
ACDIT-XL (Hu et al.||2024a) - - 111
MAGI-XL (Zhou et al.|[2025) 11.5 298 -
FAR-XL (Gu et al.|[2025) - 279 108
AR
MiMo-XL 8.3 240 98

Inference and Evaluation We follow [Song et al.| (2025) for evaluation on Kinetics, generating
50,000 random videos and computing the Fréchet Video Distance (FVD) (Karras et al.,[2019) on all
frames (including conditioning and generated frames) with the groundtruth videos, both resized to
64 x 64. On UCF-101, following FAR, we randomly sample 2,048 videos and compute the FVD
against groundtruth videos, resized to 256 x 256.

4.2 MAIN RESULTS

Table [2| presents a comprehensive comparison of MiMo against state-of-the-art non-AR and AR
methods across three video modeling tasks. For reference, we also report the reconstruction FVD of
the VAE, which represents the upper bound of performance achievable given the groundtruth.

Video Prediction (Pred.) On the challenging Kinetics-600 video prediction benchmark, MiMo
demonstrates exceptional performance with an FVD score of 8.3, establishing a new state-of-the-art
among AR models. This represents a substantial improvement over previous AR methods, with
our approach significantly outperforming DFoT (FVD: 11.1) despite using the same VAE. The per-
formance gain directly demonstrates the superiority of MiMo, as both methods share the same un-
derlying video tokenization and differ primarily in their treatment of historical context. Qualitative
examples are presented in Figure[d{a), where our method generates smooth, realistic continuations.

Unconditional Video Generation (Uncond.) For unconditional video generation on UCF-101,
MiMo achieves remarkable results, establishing new state-of-the-art performance among AR ap-
proaches. Our method substantially outperforms the previous AR leader FAR by nearly 40 FVD
points (240 vs 279) while utilizing the same DC-AE tokenizer, demonstrating the significant impact
of our masked history modeling approach. Also noteworthy is the comparison with MAGI, which
similarly employs Complete Teacher Forcing (CTF) during training—our method achieves a con-
siderable performance improvement (FVD: 240 vs 298), validating the effectiveness of our masked
history modeling objective. The generated videos exhibit diverse motions, realistic textures, and
coherent temporal dynamics, as illustrated in the qualitative examples in Figure @{b).

Class-Conditional Video Generation (Cond.) In class-conditional video generation on UCF-
101, MiMo again demonstrates superior performance, achieving state-of-the-art results across AR
methods. Our approach surpasses FAR by 10 FVD points (98 vs 108), confirming the consistent
benefits of our approach across different conditioning modalities. The comparison with ACDIT is
also interesting—both methods utilize CTF and share similar architectural foundations, yet MiMo
achieves notable improvements (FVD: 98 vs 111), consistent with our findings in unconditional
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generation when compared against MAGI. This consistency across tasks reinforces that our perfor-
mance gains stem from improvements in history representation learning rather than task-specific
optimizations. Representative generated videos are shown in Figure fc).

(a) Kinetics (b) UCF uncond. (c) UCF cond.

Figure 4: Visualization of generated videos.

4.3 ABLATION STUDY

This section ablates the designs of MiMo. All models are based on DiT-B trained on Kinetics for
100K steps with modifications and hyperparameters described in Section .1} ACDIT baseline is
MiMo without masked history modeling, similar to MAGI and ACDiT.

Table 3: Comparison with variants of REPA. Table 4: Comparison of different prediction
targets for masked history modeling.

Method FVDJ

ACDIT Baseline 54.814 Target(s) FVD]
History 40.022 ACDIT Baseline 54.814

REPA Future 40.253 Current Frame 41.832
Both 36.542 Next Frame 37.782

MiMo 36.601 Current + Next (MiMo) 36.601

MiMo +REPA-Both | 34.133 Current + Next+NextNext | 36.263

Comparison With REPA An alternative way to inject good representations into the model is
distilling the features from a VFM, known as REPA [2024). Table [3|compares MiMo with
several variants of REPA, supervising history frames, future frames, or both. Both REPA and MiMo
can significantly improve convergence, while MiMo performs on par or better than all variants. In
practice, however, VFMs for the user’s domain of interest are not always available, in which cases
MiMo is a viable substitute.

MiMo is complementary to VEM-based methods like REPA. MiMo excels at learning task-specific
dynamics from the data, while VEM provides strong semantic priors. Combining MiMo with REPA
in Table [3] yielded further improvements over either method alone. This suggests that MiMo and
VEM capture different aspects of the data.

Prediction Targets of Masked Modeling One of the merits of MiMo is its flexibility: while
diffusion always predicts the noise-free version of the noised current frame effectively, MiMo can
predict both the current and next frames for masked history modeling. Table 4 compares different
prediction targets for masked modeling, and it is clear that predicting both current and history frames
outperforms predicting either.
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We also include a target of predicting the current and next two frames (Current + Next+NextNext) in
Table[d] It is beneficial but yields diminishing returns. We hypothesize that predicting a more distant
future frame is a significantly harder task, and the increased difficulty does not naively translate into
proportional performance gains. Our proposed target (Current + Next) strikes an effective balance
without the added complexity of longer-range prediction.

Table 5: Decoder position (placed after the [-th layer) moderately affects performance. DiT-B has
12 layers in total. None means CFT baseline.

l None 12 11 10 9
FVD/| | 54.814 | 36.601 35.815 35.838 37.593

Decoder Position The decoder for masked

Table 6: Architecture modifications. modeling is usually placed after the encoder
(He et al 2022a; Tong et al., 2022). We treat

Modification FVD| the first [ layers of the DiT model ?s the en-

; : coder, and shortcut the output of the [-the layer
Vanilla DiT 37.763 corresponding to the historI))/ frames into the ze-
+RoPE 37.313 coder. Table [5] shows the effect of varying L.
+Separate LayerNorm | 36.601 The performance is robust to [ when [ is close

to the last layer.

Model Architecture Table [6] shows the im-
pact of architecture modifications on performance. Incorporating RoPE and separating LayerNorm
layers for history frames both bring moderate gains.

Table 7: Ablations of hyperparameters A and mask ratios.

A 0.1 0.5 1.0 20 Mask Ratios | [0.25,0.25] [0.25,0.5] [0.5,0.75]
FVD| | 40.213 36.601 37.443 38910 FVD| 37.539 36.601 39.121

Hyperparamter Ablations Table [/| shows the impact of hyperparameters on MiMo-B models
with different A from 0.25 to 2.0 and mask ratios from 0.25 to 0.75. For A, a weight of 0.5 provides
the best balance, but performance does not degrade sharply for nearby values. For mask ratios,
performance remains relatively stable between 0.25 and 0.50; however, a higher mask ratio requires
fine-tuning without masking to achieve better performance.

Table 8: Computational costs.

Method MiMo-XL ACDIT-XL. FAR-XL
Wall-Clock Time 0.750s 0.788s 0.704s

Computational Costs Table [§] shows the

Table 9: Comparison of optimization strategies. ~ training computational costs of MiMo, ACDiT
(our baseline), and FAR. Compared with our

Strategy FVDJ baselin.e (ACDIT), MiMo reduce.s training ngl-

ACDIT Baseline | 54.814 c;lock time by. 5%, compared Wlth FAR, MiMo

increases training wall-clock time by a modest

Interleaving 38.543 10%, which is a small price for the significant
MiMo 36.601 performance boost (25% from 279 to 240 on
Kinetics, and 14% from 279 to 240 on UCF-
101). Compared with ACDiT, MiMo also re-
duces the FLOPs per training step due to masking (the decoders increase FLOPs). MiMo has higher
training FLOPs compared with FAR, but the increase in training wall-clock time is moderate ( 10%)
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due to hardware acceleration. Note that MiMo has no additional inference cost once the training is
complete.

Alternative Optimization Strategy While our approach of simply using a weighted sum of the
two losses is standard practice for auxiliary loss training, an alternative approach is optimizing the
diffusion loss and the auxiliary loss interleavingly (a diffusion-only training step is followed by a
mask-only training step). The results are summarized in Table[9] While the interleaving approach
has lower computational costs per step, it leads to slower convergence, which diminishes its speed
gains.

5 RELATED WORKS

Autoregressive Visual Generation. Autoregressive language modeling (Radford, [2018} |Radford
et al.,2019) has facilitated the development of visual content generation using discrete visual tokens
(Van Den Oord et al.l [2017). In this framework, pre-trained visual tokenizers like VQ-VAE (Van
Den Oord et al.; [2017) map visual patches into a discrete latent space, allowing visual generation to
be approached similarly to language modeling. Early works such as DALL-E (Ramesh et al., 2021)
focus on text-to-image generation by learning a joint distribution between text and discrete image
representations using an autoregressive cross-entropy loss. VideoGPT (Yan et al.l[2021) extends this
idea to video generation, employing discrete tokens for autoregressive video prediction. VideoPoet
(Kondratyuk et al.| [2023)) further advances this approach by integrating a causal video tokenizer (Yu
et al.l 2023b). OmniTokenizer (Wang et al., [2024) proposes a unified tokenizer for both discrete
and continuous representations. In contrast, our work focuses on frame-level causality rather than
patch-level, avoiding the limitations of raster-scan order.

Representations and Generative Modeling. Recent advances in diffusion models highlight the
importance of high-quality representations for generative modeling, as diffusion models inherently
struggle to learn good representations (Yu et al., | 2024; Zhang et al., 2025} Jiang et al.,|2025;|Wang &
He, 2025)). In practice, diffusion models are predominantly conditional generative models, where the
conditions can be text prompts in T2I/T2v T2V generation, or history frames in VideoAR. Despite
this prevalence, few studies have investigated how the quality of condition representations affects
generative performance. Existing evidence from text-conditional generation provides compelling
support for exploring this relationship. Replacing CLIP text encoders with large language mod-
els such as TS5 and Llama has consistently improved generation quality, particularly for attributes
strongly correlated with text conditions (counting, object reference, text rendering, etc.) (Esser
et al., 2024; |Gao et al., 2024; [Kong et al., 2024} |[Hu et al., [2024b). Another evidence is that dis-
tilling class representations improves the performance of class-conditioned image generation (Wu
et al.|2025). These observations naturally extend to VideoAR, where future frames depend on his-
tory frames as conditions, suggesting that enhanced history frame representations may potentially
benefit video generation performance, which is the focus of our work.

6 CONCLUTION

In this work, we explored the fundamental question of whether good representations of history
frames can improve VideoAR performance. Through systematic analysis, we demonstrated that
enhancing history frame representations significantly benefits VideoAR, a finding that cannot be
achieved by solely refining noisy future frames. Motivated by these insights, we proposed MiMo
(Masked History Modeling), a novel framework that naturally integrates masked modeling into
diffusion-based VideoAR. By applying masks to history frame tokens and training the model to
predict masked tokens of current and future frames alongside denoising tasks, MiMo learns robust
representations that improve VideoAR performance. Our approach requires no VFM or special
architectural modifications. Extensive experiments across multiple benchmarks demonstrate that
MiMo achieves competitive performance in video prediction and generation tasks, establishing new
state-of-the-art results. Notably, our framework substantially improves training efficiency and gener-
ation quality, showcasing the effectiveness of unified representation learning and diffusion modeling.
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A DIFFUSION MODELING

In this section, we present a brief overview of diffusion-based generative models. These models
learn to approximate target distributions through training denoising neural networks. There are two
correlated approaches: “conventional” diffusion models based on score matching (Appendix [A.T),
and flow matching (Appendix [A.2)), introduced below.

A.1 SCORE MATCHING

Diffusion models based on score matching (Ho et al.l[2020; |Kingma et al.,2021};|Song et al.,2020b)
generate samples © ~ po(-) by learning to invert a noise corruption process (i.e., the diffusion
process) that transforms the data distribution into standard Gaussian noise € ~ A (0, I'). The forward
diffusion process is defined as:

pr(a7|z) = N(azz,o20); 7€ 0,1], @
where the coefficients o, and o, specify the “noise schedule” that interpolates between data and
noise. Usually o = 1,00 = 0 and a; = 0,07 = 1, so that 2(?) = z and (V) = ¢,

2@ =z W= ®)

The generative process is realized by integrating the reverse-time stochastic differential equation
(SDE) (Song et al.,|2020b; [Lu et al., 2022) that describes the backward diffusion process:
Az = [f(1)a") = (1) V s log p, (+7)] dr + g(r) davy, ©

where w, denotes the reverse-time Wiener process, and the drift and diffusion coefficients f and g
are given by:

flr) = DB oy = _pdloslan/on) (10)
T dr

A score network sq(z(7); 7) is trained to approximate V (-, log p, (2(™)) via denoising score match-
ing (Vincent, [2011):
min B ;0 40 [lle + o7 so(z\™;7)|12]. (11)

Beyond directly modeling the score sy (2(7); 7), diffusion models commonly use equivalent param-
eterizations tied to the forward relation z(7) = o, 2(%) + o €.

Noise prediction (Ho et al., 2020). The model predicts the noise €y (:c(T); T) & ¢, yielding the score
via
1

so(z'7);7) = ——ep (a7 1), (12)
or

and is trained with the MSE objective E [[|e — eg(2(™); 7)[|3].

Data (clean sample) prediction (Sohl-Dickstein et al., 2015). The model outputs a denoised esti-
mate z¢(z(7); 7) ~ (%), Converting to a score gives
(1) _ (7).
ol r) = LAt (13)

2
or

which is equivalent to first forming é = (z(7) — a,¢)/0, and then using sy = —¢/o . Training
objectives is minimizing E[||z(?) — zo(z(); 7)|3].
v-prediction (Salimans & Ho)}|2022). A time-dependent linear combination is predicted:

vo (275 7) = e — ora®. (14)
From vy one can recover all other targets:
o2 + arvg(z();7)

e r) = S , (15)
(r) _ (7).
T orvg(x\s T
xe(x(T)§7') = a2 + 52( )’ (10
1
so(2(7);7) = —— é(a; 7). (a7

T
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The training objective becomes E[||c e — 020 — vg(2(7); 7)|3].

All these parameterizations are connected by 7-dependent linear transforms, and thus represent the
same model class. Choosing among them mainly affects optimization stability and the weighting of
errors across noise levels.

A.2 FLOW MATCHING

Flow matching (Lipman et al.l [2022; Liu et al., [2022; [Esser et al.| 2024)) simplifies score matching
by defining the generative process via ordinary differential equations (ODEs). Specifically, given
the same definitions of z, ("), i, o, as in Appendix the generative process is governed by a
probability flow ODE:

dz(™

= (=" 7), (18)
dr
where the velocity ﬁeldv(x(T); 7) satisfies:
dz(™
vz, 7)=E [ z ‘x(T)} = &, E[z Dz + 5, E[¢|z(7], (19)
T
. da, - _ do,
where &, = 7= and 6, = <=,

The flow matching objective trains a neural network vg(z(™); 7) to minimize:
inn B 20 2(m [||U9(x(7); T) = (de(O) + dTG)Hg]' (20)

Flow matching and score matching are connected by the score function:
sz 1) = —%]E[dx(ﬂ], (21
which corresponds to an equivalent reverse-time SDE (Ma et al., 2024a):
dz™ = v(z;7)dr — %1773(37(7); T)dT + \/nrdiy, (22)

where 7, controls the amount of stochasticity and w; is a reverse-time Wiener process as in Ap-
pendix[A.T] Solving Equations (I9) and (21)), we obtain:
1 o™, 1) = ™
S({E(T),T):—- T ( 3 ) .T .
o Gr0r — Q07
Thus, flow matching and score matching represent the same model class.

(23)

Flow matching is easy to implement and usually converges faster than score matching in practice
(Liu et al.,|2022; [Esser et al.,[2024). Another advantage of flow matching is the flexibility to choose
the diffusion coefficient 7 independently of the training process, allowing for post-hoc optimization
of the sampling procedure.

B EXTENDED RELATED WORKS

Masked and Diffusion Video Generation Diffusion models have recently gained prominence in
visual generation tasks (Ho et al.| [2020; Rombach et al., [2022; |[He et al., 2022b; |Guo et al., 2023
Chen et al.|[2023;|Guo et al.,|2024), effectively extending to video generation. Video diffusion mod-
els (Brooks et al.,|2024; |Ho et al.| 2022) utilize bidirectional attention and binary mask embeddings
to facilitate frame-level autoregressive prediction. Notable works such as GameNGen (Valevski
et al) [2024) use bidirectional diffusion models for real-time game generation. However, due to
their bidirectional nature, these models cannot leverage KV Cache for extended video generation,
limiting their scalability. Several masked video generators, such as Genie (Bruce et al., [2024)), ex-
tend MaskGIT (Chang et al.l [2022) into a causal-attention-based architecture for video generation.
Despite their advantages, these methods suffer from the training-inference gap inherent in masked
autoregressive modeling, which negatively impacts generation quality. In contrast, our approach
fully leverages KV Cache during inference, facilitated by our training paradigm that bridges the
training-inference gap through a novel complete teacher forcing paradigm.

3The velocity field in flow matching is different from the v-prediction parameterization in score matching,
though they are correlated: the two parameterizations are connected by Equation @
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Table 10: Hyperparameters.

Name MiMo-B MiMo-XL

Input

Dataset Kinetics-600 Kinetics-600 UCF-101 UCF-101
Task prediction prediction class cond. uncond.
Input shape 17 x 128 x 128 17 x 128 x 128 16 x 256 x 256 16 x 256 x 256
VAE

Compression ratio 4x8x8 4x8x8 32 x 32 32 x 32
Latent shape 5x 16 x 16 5x 16 x 16 16 x 8 x 8 16 x 8 x 8
Architecture

Patch size 1x1x1 I1x1x1 1x1x1 1x1x1
Depth 12 28 28 28
Embed dim 768 1152 1152 1152
Num heads 12 16 16 16
ROPE theta 100 100 100 100
Decoder

Depth 4 4 4 4

l 9 23 23 23
Diffusion

Parameterization v-prediction v-prediction velocity velocity

Noise scheduler

linear
fused min-SNR

linear
fused min-SNR

rectified flow

rectified flow

Weighting = 50,p=0.96 ~=5.0,p=096 logit-normal logit-normal
Sampler DDIM DDIM Euler Euler
Sampling steps 50 50 50 50

. history guidance history guidance class guidance
Guidance 1.05 1.05 - 2.0
Optimization
Training steps 100K 360K 180K 180K
Batch size 256 256 128 128
Optimizer AdamW AdamW AdamW AdamW
Learning rate (LR) 8 x 1074 8 x 1074 4 %104 4 %1074
Warmup steps 10K 10K 10K 10K
LR schedule cosine cosine cosine cosine
End LR 1075 107° 1075 107°
Weight decay 0.001 0.001 0.001 0.001
(51, B2) (0.9,0.99) (0.9,0.99) (0.9,0.99) (0.9,0.99)
Gradient clipping 1.0 1.0 1.0 1.0
A 0.5 0.5 0.5 0.5
Mask ratios [0.25,0.5] [0.25,0.5] [0.25,0.5] [0.25,0.5]
EMA decay 0.999 0.999 0.9999 0.9999

C DATASETS

Kinetics-600 Kinetics-600 (Carreira et al.,|2018) is a large-scale video action recognition dataset
that extends the original Kinetics-400 dataset (Kay et al.,|2017)), containing approximately 500,000
video clips across 600 human action categories, sourced from YouTube and covering diverse human
actions ranging from sports and cooking to dancing and musical performances. The dataset is split
into training, validation, and test sets, with each action class containing at least 600 video clips in the
training set and 50 clips in both validation and test sets. Videos in Kinetics-600 are characterized by
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their temporal dynamics and complex motion patterns, making it a challenging benchmark for video
understanding tasks. The dataset provides rich temporal information and diverse visual content,
which makes it particularly suitable for evaluating autoregressive video modeling approaches that
need to capture long-term temporal dependencies and generate coherent future frames based on
historical context. Following existing works (Song et al., 2025)), we use a resolution of 128 x 128
pixels and train on the training set while evaluating on the test set. The model is conditioned on the
first 5 frames and predicts the next 11 frames, totaling 16 frames.

UCF-101 UCF-101 (Soomro et al.,2012)) is a widely used action recognition dataset consisting of
13,320 video clips distributed across 101 action categories. The dataset was collected from YouTube
and contains realistic videos with significant variations in camera motion, object appearance, pose,
scale, viewpoint, cluttered background, and illumination conditions. Each action class contains 25
groups of videos, with each group sharing common features such as similar backgrounds, simi-
lar viewpoints, etc. UCF-101 covers a diverse range of human actions, including sports activities
(e.g., basketball, tennis, surfing), musical instrument playing, and daily life activities. Despite be-
ing smaller in scale compared to Kinetics datasets, UCF-101 remains a fundamental benchmark for
assessing the generalization capability of video models across different domains and action com-
plexities, due to its well-curated action categories. We follow the protocol of |Gu et al.| (2025) and
use a resolution of 256 x 256 pixels. The models are trained on the full UCF-101 dataset and
evaluated with class labels as the only initial condition, generating a total of 16 frames.

D IMPLEMENTATION DETAILS

Table [I0] summarizes the hyperparameters we use in our implementations. The details are discussed
in the following sections.

D.1 MODEL ARCHITECTURES

Diffusion Models We employ the Diffusion Transformer (DiT) (Peebles & Xiel [2023)) with full
3D attention as our backbone. The DiT block is analogous to a vision transformer (ViT) (Dosovit-
skiy et al.| [2020) block and replaces the LayerNorm (Ba et al., |2016) layers with adaptive Layer-
Norm (AdalLN) (Peebles & Xie), 2023) layers to inject diffusion timestep condition into the features.
AdaLLN works by embedding the timesteps using sinusoidal positional encoding (Vaswani et al.,
2017) and feeding them to an MLP to predict the shift and bias factors for LayerNorm layers. For
class-conditioned generation, the class labels are also embedded and added into the timestep em-
beddings as additional conditions. Following existing works (Song et al.| 2025} |Gu et al., 2025} Hu
et al.,|2024a), AdaLN is applied separately to each noisy future frame because different frames can
have different diffusion timesteps during training (Section [3.3). We use QK normalization (Henry
et al., [2020) to stabilize training. Below, we introduce two other modifications we apply to vanilla
DiT: separate LayerNorm and 3D RoPE. The vanilla DiT block and our modified DiT block are
illustrated in Figure[3]

Separate LayerNorm layers instead of AdaLLN are applied to the clean frames. Note that the other
parameters are shared among all frames regardless of whether they are history or future frames. The
attention mask introduced in Section [3.3]is applied to the attention operation to ensure causality
between history and future frames.

Additionally, we incorporate axial 3D RoPE (Su et al., |2024)) and assign an equal number of channels
to encode the positions along the T, H, W dimensions.

VAE and Patch Size of DiT Video generation models usually work in some compressed latent
space with reduced space-time dimensions to save computations, due to the sheer volume of pixels
in video. In all of our experiments, the patch size of DiT is 1 x 1 x 1 (T', H, W), meaning that
compression is done solely in VAE.

For fair comparison with existing methods, we adopt the pretrained 3D video VAE of DFoT (Song
et al.l 2025) for Kinetics-600 experiments. DFoT’s VAE has a compression ratio of 4 x 8 x 8
(T, H,W), where the first frames are separately encoded and the following frames are temporally
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Figure 5: Illustration of vanilla and our modified DiT blocks.

downsampled by a factor of 4, following|Yu et al.|(2023a)). The input resolution is 128 x 128 pixels
with 17 frames, leading to a latent shape of 5 x 16 x 16 per video clip.

We utilize the 2D image DC-AE of FAR (Gu et al., 2025) for UCF-101 experiments. FAR’s DC-
AE has a compression ratio of 32 x 32 with no temporal compression, and it encodes each frame
independently. Given input of 16 frames with a resolution of 256 x 256, the latent shape is 16 x 8 x 8.

Decoder The decoders take masked history frame features from intermediate DiT layers as the
only input, and fill the masked positions with learnable query tokens. Then, the input is fed into a
stack of several decoder blocks and reshaped to the same dimensions as the latents of the history (or
future) frames as the output. The decoder block is the vanilla ViT block with axial 3D RoPE.

D.2 DIFFUSION

Kinetics-600 Experiments For Kinetics-600, we use a linear noise schedule (Nichol & Dhariwal,
2021) with the v-prediction parameterization (Salimans & Hol [2022) and zero terminal SNR (Lin
et al.,|2024). We use the DDIM sampler (Song et al.,|2020a)) with 50 sampling steps during inference.
We also incorporate the fused min-SNR loss weighting (Chen et al.| 2024a)), a variant of min-SNR
loss weighting (Hang et al.,|2023) for video diffusion, to accelerate convergence.

Fused min-SNR extends the standard min-SNR loss weighting by accounting for the “signals” from
previous frames. The difference between the two methods is the way to compute the signal-to-
noise ratio (SNR) used for loss weighting. Using the notations in Section [2, SNR is defined as
SNR, = a2/02. Fused min-SNR first normalizes the SNR to [0, 1] by dividing by the maximal
value of SNR. Since min-SNR weighting clips the SNR value with the hyperparameter v > 0, we
normalize by 7. Then, it computes fused SNR S; with decaying factor p > 0:

Sy = normalized SNR factor for the ¢-th noisy future frame € [0, 1], (24)
S; =pS;_1 +(1—p)S; (exponentially decayed cumulative SNR), (25)
Si=1—(1-5)(1—S;_1) (fused reweighting factor), (26)

Fused SNR S; combines the current frame signal with accumulated history signals, treating them as
independent probabilistic events. This accounts for the additional information available from history
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29

def compute_loss_weight (snr, gamma, prediction_type, decay=None,
causal=True) :
"""Compute SNR weighting.

Args:
snr (torch.Tensor): per—frame SNR of shape [B, T]
gamma (float): clip threshold of min—-SNR
prediction_type (str): "epsilon", "v_prediction", or "sample"
decay (float, optional): if not None, enable fused min-SNR with
the specified decay factor
causal (bool, optional): whether we are training a causal model

Returns:
weight (torch.Tensor): per—-frame loss weight of shape [B, T]

mmn

# Compute fused SNR

clipped_snr = snr.clamp (max=gamma)

if decay is not None:
normalized_clipped_snr = clipped_snr / gamma
normalized_snr = snr / gamma

def compute_cum_snr (reverse: bool = False):
new_normalized_clipped_snr = (
normalized_clipped_snr.flip (1)
if reverse
else normalized_clipped_snr

cum_snr = torch.zeros_like (new_normalized_clipped_snr)
for t in range (0, snr.shape[l]):

if t ==
cum_snr[:, t] = new_normalized_clipped_snr[:, t]
else:
cum_snr[:, t] = (
decay * cum_snr[:, t — 1]
+ (1 - decay) *» new_normalized_clipped_snr[:, t]
)
cum_snr = torch.nn.functional.pad(cum_snr[:, :-1], (1, 0, O,

0), value=0.0)
return cum_snr.flip(l) if reverse else cum_snr

if causal:

cum_snr = compute_cum_snr ()
else:
cum_snr = compute_cum_snr (reverse=True) + compute_cum_snr ()
cum_snr *= 0.5
clipped_fused_snr = 1 - (1 - cum_snr x decay) = (1 -
normalized_clipped_snr)
fused_snr = 1 - (1 - cum_snr * decay) * (1 - normalized_snr)
clipped_snr = clipped_fused_snr * gamma
snr = fused_snr * gamma

# Compute loss weight

if prediction_type == "epsilon": # noise-prediction
weight = clipped_snr / snr

elif prediction_type == "v_prediction": # v-prediction
weight = clipped_snr / (snr + 1)

else: # data-prediction

weight = clipped_snr

return weight

Listing 1: Fused min-SNR (PyTorch psuedo-code)
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context in video generation, beyond what standard SNR weighting captures. The Sj is denormalized
by multiplying v and used to compute the loss weighting as normal min-SNR weighting does.

Listing[I] summarizes the algorithm to compute fused min-SNR weighting.

UCF-101 Experiments For UCF-101, we follow |Gu et al.| (2025) and use flow matching (Liu
et al.| 2022} [Lipman et al., [2022; |Albergo & Vanden-Eijnden, |2022) with a “straigh” flow path, i.e.,
ar = 1—71,0, = 7. We also adopt the logit-normal timestep sampling strategy (Esser et al.,[2024)),
where the timesteps 7 are sampled from a logit-normal distribution (instead of uniformly):

1 1 log?(t/1 —t)
(7)) = N exp (—2> . 27

We use the Euler integrator sampler (Esser et al., [2024) with 50 sampling steps during inference.

D.3 TRAINING

Algorithm 1 Training (v-prediction or flow matching)

Input: Dataset D, noise schedule {(«, 0,)}., velocity network vy, decoder vy, loss weight A
Output: Trained velocity network vy
1: while not converged do

2:  Sample video clip x = {z;}]_, from D

33 h+xf+x /I Duplicate x as history h and future f
4:  Sample {7; ~ Uniform[0,1]}7_, and {¢; ~ N(0,1)}1;

5:  Sample random tube mask M

6:  hM <« applyMask(h¢, M) /1 Apply M to history frame
7. L<+0

8: fort=1toT do

9: ft(“) — [t + o6 /I Add noise to future frame
10: Vtarget $— Qr € — Or, ft OF Ugarget — Cir, ft + 07, € /I v-prediction or flow matching
11: Vpred < g ft(T); 7, hi) // Internally apply attention mask (Figure a))
12: Laitr 4 ||Vpred — Vearget||3 // Diffusion loss (Equation )
13: vfheall — vg ot ( ft(T); 7, h) // Output features of the [-th layer for history frames h1.;
14: Te < {t, t+1} // Frame indexes
15: Lomask < % ver, I1he — wa(t' —t, vf};dlt)H% // Masked history modeling loss

(Equation @)

16: L < L+ Lair + ANmask

17:  end for

18:  Update 6 using VoL
19: end while

The training algorithm is summarized in Algorithm[I] Training hyperparameters are summarized in
Table[T0} Note that the masked modeling loss (Equation (5))) is computed in the latent space between
the latents of the history (or future) frames and the predictions of the decoders.

D.4 INFERENCE

The sampling algorithm is summarized in Algorithm 2] Inference hyperparameters are summarized
in Table[T0] The inference process is the same as in other diffusion-based video generation models
(Song et al.| 2025} |Gu et al. 2025 |[Hu et al.l 2024a): Given initial conditions (initial frames for
video prediction, class labels for class-conditioned generation, or no condition for unconditioned
generation), the model iteratively denoises the next frame starting from pure noise, and appends the
generated frame after the known (provided as initial conditions or generated) frames until all frames
are known.
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Algorithm 2 Sampling (v-prediction or flow matching)

Input: Noise schedule {(a,0,)}, sampling steps N, velocity network vy, initial frames z1.;, (&
ifto = 0)
Output: Clean frames z1.7
1: fort =ty + 1to T do

20 @ ~N(0,1) // Initialize with noise at 7 = 7y = 1
3: fori=Ntoldo

4: Vpred <= Vo (L¢3 T, T1:4—1) / Internally apply block-causal attention mask
5: x¢ < Sampler(z¢; T;, Ti—1, Vpred) // Sampler step, 7o = 0
6: end for

7o g X1a—1 + {x} /I Append generated frame after known frames
8: end for

D.5 HISTORY GUIDANCE

We incorporate a simplified version of history guidance (Song et al., 2025) into diffusion-based
VideoAR. History guidance takes advantage of the insight that history frames are the conditions for
generating the future frames, much like class labels as conditions for class-conditioned generation,
and applies classifier-free guidance (CFG) (Ho & Salimans| [2022)) with history frames as conditions.
Adopting the notations in Section 2} history guidance modifies the score function as

sg (@7 ) = (1—w) - sp(2lT 7, 2) + w - sp(2lT); 7, 210), (28)

where & means no history frame and w > 1 is the guidance scale. We compute se(a:g?l; 7,9) by

forbidding (xi_?l to attend to x1.; via attention masking, i.e., by setting the corresponding noisy-to-
clean rows in the attention mask (Figure Eka)) to —oo.

During training, we randomly select » = 10% future frames and forbid them from attending to the
history frames. The training algorithm with history guidance is summarized in Algorithm 3]

During inference, sg’ (fol; T, &) is computed by Equation lb and the other process is the same as

in normal CFG. The sampling algorithm with history guidance is summarized in Algorithm [4]

E BASELINES

In our work, we primarily consider three baseline methods in Figure [I] and Section [3.2] All the
considered baselines are trained with the same model architecture and hyperparameters as shown in
Table[I0|unless otherwise specified, with the only difference being the training strategies.

ACDIiT ACDIT (Hu et al.l 2024a)) also adopts complete teacher forcing as in MiMo. The primary
difference between MiMo and ACDIT is that we apply the masked history modeling target on the
history frames. Thus, the direct comparison between ACDiT and MiMo clearly demonstrates the
advantage of our approach and the benefit of good history representations.

FAR FAR (Gu et al., [2025) adopts diffusion forcing (Chen et al.l 2024a; [Song et al., [2025)), it
randomly replaces some noisy frames with their clean version to simulate clean history frames. The
better performance of MiMo over FAR demonstrates that MiMo can achieve competitive perfor-
mance even against the best performing models in a broader context.

REPA REPA (Yu et al., |2024) was originally proposed to improve the representation quality of
the noisy images being denoised. We adapt it to diffusion-based VideoAR following the approach
of Zhang et al.|(2025)). Compared with REPA, we focus on the representations of the history frames
that serve as conditions in AR modeling, while REPA does not consider the AR context. Also, REPA
requires a VFEM, but sVFM may not always be available and may misbehave for out-of-distribution
(OOD) data, while MiMo does not rely on VFM.

For the analysis in Section[3.2] we align the features of the 4-the layer with a pretrained VideoMAE-
L (Tong et al., [2022)) using a loss weight of 0.5. The feature dimensions of DiT models and Video-
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Algorithm 3 Training with history guidance (v-prediction or flow matching)

Input: Dataset D, noise schedule {(a.,0;)}-, velocity network vy, decoder g, loss weight A,
drop rate r
Output: Trained velocity network vy
1: while not converged do

2:  Sample video clip x = {z;}]_, from D

33 h+xf+x /I Duplicate x as history h and future f

4:  Sample {7; ~ Uniform[0,1]}7_, and {¢; ~ N(0,1)}1;

5:  Sample random tube mask M

6:  hM <« applyMask(h¢, M) /I Apply M to history frame

7. L<+0

8: fort=1to7T do

9: ft(”) — [t + o€ /I Add noise to future frame
10: Vtarget $— Qr, €¢ — Or, ft OF Ugarget — Ctr, ft + 07, € /I v-prediction or flow matching
11: if Uniform[0, 1] < 7 then
12: Upred $— Ug(ffT) T, D) // Randomly drop history frames
13: else

14: Upred < Vo ( ft(T); 7, h{) // Internally apply attention mask (Figure a))
15: end if

16: Laitr 4 ||Vpred — Vearget||3 // Diffusion loss (Equation )
17: vféalt — vg od ( ft(T); 7, h) /I Output features of the [-th layer for history frames h.;
18: T {t,t + 1} // Frame indexes
19: Loask < 77 Swers 1he — ot — v 13 // Masked history modeling loss

(Equation (3))

20: L < L+ Lair + MNmask
21:  end for

22:  Update 0 using VoL
23: end while

Algorithm 4 Sampling with history guidance (v-prediction or flow matching)

Input: Noise schedule {(a,,0,)},, sampling steps N, guidance scale w, velocity network vy,
initial frames 1.4, (& if tg = 0)
Output: Clean frames z1.p

1: fort =tg+ 1to T do
20 @ ~N(0,I) // Initialize with noise at 7 = 7y = 1
3 fori = Nto1ldo
4 Vpred <= Vo (L¢3 T, T1:4—1) // Internally apply block-causal attention mask
5 Vg Vo (24574, D) // Negative condition
6: Upred <= (1 —w) - Vg + W - Upred /I Apply guidance
7 @y < Sampler(z¢; Ty, Ti—1, Vpred) // Sampler step, 79 = 0
8 end for
9 Xy X141 + {2} /I Append generated frame after known frames
10: end for

MAE are aligned following the strategy of |[Zhang et al.| (2025), which interpolates the DiT’s repre-
sentations to match the feature dimensions of the pre-trained VideoMAE.

F EVLAUTION DETAILS

Fréchet Video Distance (FVD) FVD (Unterthiner et al., 2018) is a perceptual metric designed
to evaluate the quality of generated videos by measuring the distributional distance between real
and generated video sequences. Similar to the Fréchet Inception Distance (FID) (Heusel et al.,
2017) used for images, FVD employs a pre-trained 3D convolutional neural network (specifically,
an Inflated 3D ConvNet or I3D model trained on Kinetics-400) (Carreira & Zisserman), [2017) to
extract spatio-temporal features from video clips. Then Fréchet distance (Dowson & Landau, |1982)
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is computed between the feature distributions of real and generated videos by fitting multivariate
Gaussian distributions to the extracted features and calculating the Wasserstein-2 distance (Villani
et al., 2008) between them. Lower FVD scores indicate higher similarity to real video distributions.
FVD captures both spatial and temporal aspects of video content, making it a standard evaluation
tool in video synthesis research. Following prior works (Song et al., 2025), we compute FVD for
the entire video, including both initial conditioning frames (for Kinetics-600) and generated frames,
to assess the overall consistency.

Centered Kernel Nearest-Neighbor Alignment (CKNNA) CKNNA (Huh et al., [2024)) is a non-
parametric evaluation metric that measures the alignment between two sets of features by analyzing
their local neighborhood structures. CKNNA relaxes the overly rigid Centered Kernel Alignment
(CKA) (Kornblith et al.| [2019) metric by computing similarity only for the mutual nearest neigh-
bours of each feature vector. Given two sets of vectorized features {¢; € R™} and {¢); € R™} from
two models and inner product operator (-, -), CKNNA first computes centered kernel matrices:

Kij = (01, 65) — Ei(bi, o)), Lij = (i, 05) — Bl (i, 1) (29)
The centering operation removes the mean similarity, focusing on relative relationships rather than
absolute magnitudes. CKNNA restricts the alignment computation to mutual nearest neighbors:

Aligninn (K, L) = > > " a(i, j) - KijLi; (30)
i g

where (i, j) = 1[¢; € knn(¢;) A; € knn(vh;) A # j] @31
The indicator function «(%, j) ensures we only consider sample pairs whose members are nearest
neighbors to each other, emphasizing local structural consistency over global alignment. The final
CKNNA metric is the normalized version:
Aligninn (K, L)
\/Alignknn (K,K) - Alignina (L, L)

This normalization bounds the metric to [0, 1], where higher values indicate better preservation of
local neighborhood structure between the two representation spaces. Intuitively, CKNNA measures
whether two feature representations maintain similar local similarity structures within their respec-
tive neighborhoods. Following prior works (Huh et al.,2024; Yu et al., [2024)), we evaluate represen-
tation alignment using CKNNA with & = 10 nearest neighbors. We randomly sample 10,000 videos
from the Kinetics-600 test set and extract globally average pooled features using both a pretrained
VideoMAE-L (Tong et al., 2022) (as reference) and our models, treating all frames as clean history
frames. Then, we compute CKNNA between the features of VideoMAE-L and features from each
layer of the query models, reporting the highest alignment score across all layers.

CKNNA(K, L) = (32)

Linear Probing We follow the linear probing protocol of MAE (He et al.,|2022a). Specifically, we
use the model representations of the clean history frames for linear probing training and evaluation.
Global average pooling is applied to the output feature map to obtain a single feature vector for each
video. The feature vector is then fed to a parameter-free BatchNorm (loffe & Szegedyl 2015)) layer
and a linear classifier layer. The training batch size is 128, the learning rate is 10~ and decayed to
0 with a cosine schedule, the weight decay is 0.01, and the training length is 10 epochs. Random
flipping is used during training. Top-1 accuracy is reported.

G ADDITIONAL VISUALIZATIONS

G.1 SAMPLES
This section shows the samples generated by MiMo on Kinetics-600 (Figure [6), UCF-101 class-

conditioned generation (Figure[7), and unconditional generation (Figure[8)). Each row is a generated
video containing 16 frames.

G.2 ATTENTION HEATMAPS

In Figures [0 and [T0] we show the attention heatmaps (marked by red) of two videos, each without
and with MiMo. The center position of the last frame (marked by a blue dot) serves as the query,

26



Under review as a conference paper at ICLR 2026

g Rl = Rlass= Blagpa Blapo= Blagos Mapa=

JSH UIT UPS WITH PUSH UIT UPS WITH PUSH UIT UPS WITH PUSH UI T UPS WITH PUSH U1 T UPS WITH PUSH UIT UPS WITH PUSH Ul

5
\.

I\I
I S

" O “' O ‘U D‘ ‘!@U s9uie?

“l"l'l‘ﬂ{'l“l"l ‘l ﬂ 'l"l“l"l“l“lf‘l
e e LS"ELR" o ';‘ e

U e e

r///////"

ﬂ :J r'l m' l"l

— —mrm e e ———

Figure 7: Uncurated samples of UCF-101 class-conditioned generation.
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Figure 8: Uncurated samples of UCF-101 unconditional generation.

while the other positions are the keys. We take the attention weights from four random heads and
layers 4, 8, 12, 16, 20.

As shown in Figures[9]and[T0] without MiMo, attention patterns are more dispersed and less focused,
whereas with MiMo, attention heatmaps show more concentrated patterns that exhibit stronger se-
mantic correlations with the query content. Additionally, Figure [10] demonstrates how different
transformer layers specialize in matching distinct body parts (e.g., arms, torso, legs), revealing the
hierarchical nature of the learned representations.

G.3 EMBEDDING VISUALIZATION

Figure [TT] shows the UMAP (Mclnnes et al| 2018) visualization of video embeddings without and
with MiMo. The model is a DiT-XL and is trained for 360K steps on Kinetics-600. As shown in
Figure[T1] without MiMo, the distribution of video embeddings is mostly uniform, while MiMo in-
troduces some structures in the embedding distribution by learning a more structured representation
space.

H ADDITIONAL EXPERIMENTS

H.1 COMPLEMENTARY EVALUATION METRICS

Our evaluation mainly relies on the standard FVD metric. However, FVD is known to have sev-
eral issues and may not fully capture real-world video dynamics (Luo et all, 2024). To provide a
more comprehensive evaluation of MiMo’s performance, we adopt two additional metrics as com-
plements.

VMMD Our VMMD (V-JEPA 2 Maximum Mean Discrepancy) metric is based on the CMMD
metric (Jayasumana et al[2024). The VMMD metric benchmarks the perceptual similarity between
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Figure 9: Attention heatmaps without and with MiMo.

Figure 10: Attention heatmaps without and with MiMo.
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(a) MiMo (b) with MiMo

Figure 11: UMAP visualization of video embeddings without and with MiMo.

the generated videos and the reference videos, using the strong V-JEPA 2 (Assran et all, [2025))
pretrained model as the judge. It does not rely on the Gaussian assumption of the FVD metric, and
gives more faithful evaluation (Jayasumana et all, 2024). Specifically, VMMD replaces the CLIP
model in CMMD with V-JEPA 2 Large; other implementations are the same as in CMMlﬂ

Table 11: Comparison of different methods with VMMD and FVD metrics.

Method ACDIT-XL FAR-XL MiMo-XL
FVD| 10.264 9.311 8.257
VMMD| 1.075 1.036 0.977

Table |'1;1'| compares ACDiT, FAR, and MiMo with both VMMD and FVD metrics. The VMMD
measurement results are consistent with the FVD, indicating that in our cases, FVD and VMMD can
relatively well characterize the generation quality.

mmm ACDIT Wins mmm Ties MiMo Wins mmm FAR Wins mmm Ties MiMo Wins
Condition 54.8% 1.99 Condition 15.2% 48.5% | 36.4% |
Following Following
Motion 45.2% | as4% Motion L1 45.5% | a2.40 o
Quality Quality

ViSl_lal 2 67.7% | 19.49 ViSl_lal 15.2%
Quality Quality

66.7% 7————+

0% 20% 40% 60% 80% 100% 0% 20% 40% 60% 80% 100%
Win Rate (%) Win Rate (%)
(a) ACDIiT vs MiMo (b) FAR vs MiMo

Figure 12: User studies (win rates) of ACDiT, FAR, and MiMo.

User Studies We conduct user studies to better understand what aspects MiMo improves. Five
experts are instructed to evaluate 100 tasks, assessing three key dimensions: condition following,
motion quality, and visual quality.

* Condition following: the visual and semantic consistency between conditioning frames and
generated frames.

* Motion quality: whether there is motion distortion or motion that is semantically inconsis-
tent with the context.

*nttps://github.com/google-research/google-research/tree/master/cmmd
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* Visual quality: whether there is frame-level visual distortion or visual components that are
semantically inconsistent with the context.

Figureﬂzl summarizes the results for ACDiT-XL, FAR-XL, and MiMo-XL, all trained for 360K steps
on Kinetics-600. MiMo excels in condition following and motion quality, while the visual quality
is marginally improved. Additionally, MiMo has higher win rates against ACDiT than against FAR,
which indicates that lower VMMD and FVD metric values correlate with better perceptual quality
in our cases.

H.2 LONG-HORIZON VIDEO GENERATION

MiMo is effective for long-horizon video generation, as its robust history representation helps mit-
igate the error accumulation common in autoregressive models. We validate this on the action-
conditioned Minecraft dataset (Yan et al., [2023)), predicting 156 frames from 144, following the

FAR (Gu et al., 2025)) setup.
The results in Table[T2]show that MiMo signifi-
Table 12: Long-horizon video generation on the —cantly outperforms the baseline. At 100K train-

Minecraft dataset. ing steps, MiMo achieves an rFVD of 33.829,
a 27% improvement over the baseline’s 42.710.

Model Steps FVDJ This performa.nce gap highlights MiMo’s abil-

100K 42.710 ity to maintain long-term coher.ence. Fpr-

FAR-B : thermore, MiMo accelerates training, reaching

150K 33.873 this performance 1.5x faster than the base-

MiMo-B | 100K  33.829 line, which requires an additional 50K steps to

achieve a comparable rFVD. Figure [I3] shows
uncurated samples of generated results. These
results confirm that a superior understanding of the past, enforced by MiMo, leads to more plausible
and coherent long-term video generation.

'? i »w.-&uiqh = . ',‘
v @ 5w v wwe~

Figure 13: Uncurated samples of Minecraft long-horizon video generation. The upper row of each
video is GT, the lower row is the generated sample. Red bounding boxes indicate conditioning
frames.
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I LIMITATIONS AND FUTURE WORK

In this work, we analyze the impact of the DiT’s internal representations of history frames on
VideoAR. Based on our findings, we propose MiMo to improve history representations without
utilizing VFM.

However, it remains an open question to improve future frame representations with VFM. Masked
DiT (Gao et al.| 2023 Wei et al., 2023)) achieves success to some extent but requires elaborate
architecture modifications. Some recent approaches (Jiang et al.l [2025; [Wang & Hel [2025)) incor-
porate methodologies from self-supervised learning literature, but it is still unclear whether they
(and MiMo) can beat representation alignment approaches (e.g., REPA (Yu et al.,[2024)) that utilize
pretrained VFM on in-distribution data of VFM. It is also unclear whether it is possible to pre-
train a generative model that beats VFMs in downstream tasks such as video segmentation, video
grounding, etc.

Furthermore, it is an interesting future direction to explore other training objectives to improve
history representations (Oquab et al., [2023; |Assran et al. 2023} Jiang et al., |2025; Wang & Hel
2025)).
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